Zearalenone (BioDeep_00000400370)

Main id: BioDeep_00000002618

 

natural product PANOMIX_OTCML-2023


代谢物信息卡片


Zearalenone

化学式: C18H22O5 (318.1467)
中文名称: 玉米烯酮 来源于赤霉菌, 玉米赤霉稀酮
谱图信息: 最多检出来源 not specific(not specific) 0%

分子结构信息

SMILES: CC1CCCC(=O)CCCC=CC2=C(C(=CC(=C2)O)O)C(=O)O1
InChI: InChI=1S/C18H22O5/c1-12-6-5-9-14(19)8-4-2-3-7-13-10-15(20)11-16(21)17(13)18(22)23-12/h3,7,10-12,20-21H,2,4-6,8-9H2,1H3

描述信息

A macrolide comprising a fourteen-membered lactone fused to 1,3-dihydroxybenzene; a potent estrogenic metabolite produced by some Giberella species.
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens
D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
CONFIDENCE standard compound; INTERNAL_ID 5970
Origin: Microbe; Formula(Parent): C18H22O5; Bottle Name:zearalenone; PRIME Parent Name:Zearalenone; PRIME in-house No.:V0033
CONFIDENCE Reference Standard (Level 1)
Zearalenone is a mycotoxin produced mainly by fungi belonging to the genus Fusarium in foods and feeds. Possess oestrogenic activity in pigs, cattle and sheep, with low acute toxicity. Causes precocious development of mammae and other estrogenic effects in young gilts[1][2].
Zearalenone is a mycotoxin produced mainly by fungi belonging to the genus Fusarium in foods and feeds. Possess oestrogenic activity in pigs, cattle and sheep, with low acute toxicity. Causes precocious development of mammae and other estrogenic effects in young gilts[1][2].

同义名列表

6 个代谢物同义名

Zearalenone; ZON; FES; Mycotoxin F2; Toxin F2; Zearalenone



数据库引用编号

34 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

8 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 12 ALB, CASP9, ESR1, GPER1, HPGDS, HTT, KEAP1, MAPK8, MARVELD1, MTOR, TFPT, TJP1
Peripheral membrane protein 3 ESR1, MTOR, TJP1
Endosome membrane 1 HTT
Endoplasmic reticulum membrane 3 CYP19A1, GPER1, MTOR
Mitochondrion membrane 1 GPER1
Nucleus 13 ALB, CASP9, ESR1, ESR2, GPER1, HTT, KEAP1, MAPK8, MARVELD1, MTOR, TFPT, TJP1, ZEB2
autophagosome 1 HTT
cytosol 13 ALB, CASP9, ESR1, GPER1, GPT, GSR, HPGDS, HTT, KEAP1, MAPK8, MTOR, TJP1, ZEB2
dendrite 3 GPER1, HTT, MTOR
mitochondrial membrane 1 GPER1
phagocytic vesicle 1 MTOR
trans-Golgi network 1 GPER1
centrosome 1 ALB
nucleoplasm 10 ESR1, ESR2, GPER1, HPGDS, HTT, KEAP1, MAPK8, MTOR, TFPT, ZEB2
Cell membrane 5 CD8A, ESR1, HTT, MARVELD1, TJP1
Cytoplasmic side 3 ESR1, MTOR, TJP1
Cell projection, axon 1 GPER1
Multi-pass membrane protein 4 CYP19A1, GPER1, HTT, MARVELD1
Golgi apparatus membrane 2 GPER1, MTOR
Synapse 2 HTT, MAPK8
cell junction 1 TJP1
dendritic shaft 1 GPER1
Golgi apparatus 4 ALB, ESR1, GPER1, HTT
Golgi membrane 2 GPER1, MTOR
lysosomal membrane 1 MTOR
presynaptic membrane 2 GPER1, HTT
Lysosome 1 MTOR
plasma membrane 6 CD8A, ESR1, GPER1, HTT, MARVELD1, TJP1
presynaptic active zone 1 GPER1
Membrane 5 CYP19A1, ESR1, GPER1, MARVELD1, MTOR
apical plasma membrane 1 TJP1
axon 3 GPER1, HTT, MAPK8
basolateral plasma membrane 1 TJP1
extracellular exosome 3 ALB, GPT, GSR
Lysosome membrane 1 MTOR
endoplasmic reticulum 5 ALB, CYP19A1, GPER1, HTT, KEAP1
extracellular space 3 ALB, CXCL8, IL2
perinuclear region of cytoplasm 2 GPER1, HTT
Cell junction, tight junction 1 TJP1
adherens junction 1 TJP1
apicolateral plasma membrane 1 TJP1
bicellular tight junction 1 TJP1
gap junction 1 TJP1
intercalated disc 1 TJP1
intercellular canaliculus 1 TJP1
mitochondrion 4 CASP9, ESR2, GSR, TJP1
protein-containing complex 5 ALB, CASP9, ESR1, HTT, TJP1
intracellular membrane-bounded organelle 3 ESR2, GPER1, HPGDS
Microsome membrane 2 CYP19A1, MTOR
postsynaptic density 1 GPER1
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 1 CD8A
Secreted 3 ALB, CXCL8, IL2
extracellular region 4 ALB, CD8A, CXCL8, IL2
Mitochondrion outer membrane 1 MTOR
mitochondrial outer membrane 1 MTOR
hippocampal mossy fiber to CA3 synapse 1 GPER1
[Isoform 2]: Secreted 1 CD8A
mitochondrial matrix 1 GSR
anchoring junction 1 ALB
transcription regulator complex 1 ESR1
centriolar satellite 1 KEAP1
external side of plasma membrane 2 CD8A, GSR
nucleolus 2 GPER1, ZEB2
midbody 1 KEAP1
Early endosome 2 GPER1, HTT
apical part of cell 1 TJP1
recycling endosome 1 GPER1
postsynaptic membrane 1 HTT
Membrane raft 1 HTT
Cell junction, focal adhesion 1 HTT
Cytoplasm, cytoskeleton 1 MARVELD1
focal adhesion 1 HTT
Nucleus, PML body 1 MTOR
PML body 1 MTOR
Late endosome 1 HTT
receptor complex 1 CD8A
Cell projection, neuron projection 1 HTT
neuron projection 1 HTT
ciliary basal body 1 ALB
chromatin 3 ESR1, ESR2, ZEB2
cell projection 1 TJP1
Chromosome 1 ZEB2
cytoskeleton 1 MARVELD1
Cell projection, podosome 1 TJP1
podosome 1 TJP1
centriole 2 ALB, HTT
spindle pole 1 ALB
actin filament 2 KEAP1, TFPT
blood microparticle 1 ALB
Cul3-RING ubiquitin ligase complex 1 KEAP1
nuclear envelope 2 GPER1, MTOR
Endomembrane system 2 HTT, MTOR
Cytoplasmic vesicle membrane 2 GPER1, HTT
Cell projection, dendrite 1 GPER1
euchromatin 1 ESR1
plasma membrane raft 1 CD8A
endoplasmic reticulum lumen 1 ALB
platelet alpha granule lumen 1 ALB
axon terminus 1 GPER1
tight junction 1 TJP1
apoptosome 1 CASP9
[Isoform 1]: Nucleus 1 ESR1
basal dendrite 1 MAPK8
apical junction complex 1 TJP1
[Isoform 1]: Cell membrane 1 CD8A
keratin filament 1 GPER1
postsynaptic cytosol 1 HTT
Cytoplasmic vesicle, phagosome 1 MTOR
dendritic spine head 1 GPER1
Cell projection, dendritic spine membrane 1 GPER1
dendritic spine membrane 1 GPER1
presynaptic cytosol 1 HTT
Ino80 complex 1 TFPT
T cell receptor complex 1 CD8A
inclusion body 2 HTT, KEAP1
serotonergic synapse 1 HTT
[Huntingtin]: Cytoplasm 1 HTT
[Huntingtin, myristoylated N-terminal fragment]: Cytoplasmic vesicle, autophagosome 1 HTT
ciliary transition fiber 1 ALB
caspase complex 1 CASP9


文献列表

  • Xue Li, Meng-Yao Wang, Yu Wang, Wen-Zhi Yang, Cheng-Xiong Yang. Fabrication of amino- and hydroxyl dual-functionalized magnetic microporous organic network for extraction of zearalenone from traditional Chinese medicine prior to the HPLC determination. Journal of chromatography. A. 2024 Jun; 1724(?):464915. doi: 10.1016/j.chroma.2024.464915. [PMID: 38663319]
  • Philippe Guerre, Elodie Lassallette, Ugo Beaujardin-Daurian, Angelique Travel. Fumonisins alone or mixed with other fusariotoxins increase the C22-24:C16 sphingolipid ratios in chicken livers, while deoxynivalenol and zearalenone have no effect. Chemico-biological interactions. 2024 May; 395(?):111005. doi: 10.1016/j.cbi.2024.111005. [PMID: 38615975]
  • Raul Rivera-Chacon, Thomas Hartinger, Ezequias Castillo-Lopez, Claudia Lang, Felipe Penagos-Tabares, Rita Mühleder, Rana Muhammad Atif, Johannes Faas, Qendrim Zebeli, Sara Ricci. Duration of Zearalenone Exposure Has Implications on Health Parameters of Lactating Cows. Toxins. 2024 Feb; 16(3):. doi: 10.3390/toxins16030116. [PMID: 38535782]
  • Yina Li, Yujin Gao, Dan Yao, Zongshuai Li, Jiamian Wang, Xijun Zhang, Xingxu Zhao, Yong Zhang. Heme Oxygenase-1 Regulates Zearalenone-Induced Oxidative Stress and Apoptosis in Sheep Follicular Granulosa Cells. International journal of molecular sciences. 2024 Feb; 25(5):. doi: 10.3390/ijms25052578. [PMID: 38473826]
  • Honglei Qu, Yunduo Zheng, Ruifen Kang, Yulong Feng, Pengshuai Li, Yantao Wang, Jie Cheng, Cheng Ji, Wenqiong Chai, Qiugang Ma. Toxicokinetics of Zearalenone following Oral Administration in Female Dezhou Donkeys. Toxins. 2024 Jan; 16(1):. doi: 10.3390/toxins16010051. [PMID: 38251267]
  • Chao Dai, Mengqian Hou, Xudong Yang, Zhefeng Wang, Changpo Sun, Xin Wu, Shujin Wang. Increased NAD+ levels protect female mouse reproductive system against zearalenone-impaired glycolysis, lipid metabolism, antioxidant capacity and inflammation. Reproductive toxicology (Elmsford, N.Y.). 2023 Dec; 124(?):108530. doi: 10.1016/j.reprotox.2023.108530. [PMID: 38159578]
  • Soumya Moonjely, Malaika Ebert, Drew Paton-Glassbrook, Zachary A Noel, Ludmila Roze, Rebecca Shay, Tara Watkins, Frances Trail. Update on the state of research to manage Fusarium head blight. Fungal genetics and biology : FG & B. 2023 12; 169(?):103829. doi: 10.1016/j.fgb.2023.103829. [PMID: 37666446]
  • Honghui Shi, Jiaxin Li, Yan Zhao, Jiangdi Mao, Haifeng Wang, Junli Zhu. Effect of Aspergillus flavus contamination on the fungal community succession, mycotoxin production and storage quality of maize kernels at various temperatures. Food research international (Ottawa, Ont.). 2023 Dec; 174(Pt 2):113662. doi: 10.1016/j.foodres.2023.113662. [PMID: 37981378]
  • Tao Deng, Yefei Chen, Jinqiang Zhang, Yanping Gao, Changgui Yang, Weike Jiang, Xiaohong Ou, Yanhong Wang, Lanping Guo, Tao Zhou, Qing-Song Yuan. A Probiotic Bacillus amyloliquefaciens D-1 Strain Is Responsible for Zearalenone Detoxifying in Coix Semen. Toxins. 2023 Nov; 15(12):. doi: 10.3390/toxins15120674. [PMID: 38133178]
  • Shasha Chen, Tong Xu, Anqi Xu, Jiahong Chu, Dongliu Luo, Guangliang Shi, Shu Li. Quercetin alleviates zearalenone-induced apoptosis and necroptosis of porcine renal epithelial cells by inhibiting CaSR/CaMKII signaling pathway. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2023 Nov; ?(?):114184. doi: 10.1016/j.fct.2023.114184. [PMID: 37951344]
  • Haonan Ruan, Yunyun Wang, Jing Zhang, Ying Huang, Yanan Yang, Chongming Wu, Mengyue Guo, Jiaoyang Luo, Meihua Yang. Zearalenone-14-glucoside specifically promotes dysplasia of Gut-Associated Lymphoid Tissue: A natural product for constructing intestinal nodular lymphatic hyperplasia model. Journal of advanced research. 2023 10; 52(?):135-150. doi: 10.1016/j.jare.2023.05.006. [PMID: 37230382]
  • Qiuling Du, Wei Zhang, Ning Xu, Xianhong Jiang, Jie Cheng, Ruiguo Wang, Peilong Wang. Efficient and simultaneous removal of aflatoxin B1, B2, G1, G2, and zearalenone from vegetable oil by use of a metal-organic framework absorbent. Food chemistry. 2023 Aug; 418(?):135881. doi: 10.1016/j.foodchem.2023.135881. [PMID: 36966721]
  • Zhibing Liao, Wentao Guo, Guiai Ning, Yaohui Wu, Yonghong Wang, Ge Ning. A sensitive electrochemical aptasensor for zearalenone detection based on target-triggered branched hybridization chain reaction and exonuclease I-assisted recycling. Analytical and bioanalytical chemistry. 2023 Aug; 415(20):4911-4921. doi: 10.1007/s00216-023-04797-2. [PMID: 37326832]
  • Fernando Pradanas-González, Rubén Aragoneses-Cazorla, Miguel Ángel Merino-Sierra, Elena Andrade-Bartolomé, Fernando Navarro-Villoslada, Elena Benito-Peña, María Cruz Moreno-Bondi. Extracting mycotoxins from edible vegetable oils by using green, ecofriendly deep eutectic solvents. Food chemistry. 2023 Jul; 429(?):136846. doi: 10.1016/j.foodchem.2023.136846. [PMID: 37467670]
  • Fei Ma, Qi Guo, Zhaowei Zhang, Xiaoxia Ding, Liangxiao Zhang, Peiwu Li, Li Yu. Simultaneous removal of aflatoxin B1 and zearalenone in vegetable oils by hierarchical fungal mycelia@graphene oxide@Fe3O4 adsorbent. Food chemistry. 2023 Jul; 428(?):136779. doi: 10.1016/j.foodchem.2023.136779. [PMID: 37413832]
  • Magdalena Gajęcka, Iwona Otrocka-Domagała, Paweł Brzuzan, Łukasz Zielonka, Michał Dąbrowski, Maciej T Gajęcki. Influence of deoxynivalenol and zearalenone on the immunohistochemical expression of oestrogen receptors and liver enzyme genes in vivo in prepubertal gilts. Archives of toxicology. 2023 Jun; ?(?):. doi: 10.1007/s00204-023-03502-7. [PMID: 37328583]
  • Haonan Ruan, Jiashuo Wu, Fangqing Zhang, Ziyue Jin, Jiao Tian, Jing Xia, Jiaoyang Luo, Meihua Yang. Zearalenone Exposure Disrupts STAT-ISG15 in Rat Colon: A Potential Linkage between Zearalenone and Inflammatory Bowel Disease. Toxins. 2023 06; 15(6):. doi: 10.3390/toxins15060392. [PMID: 37368693]
  • Jiao Tian, Jiaoyang Luo, Jiaan Qin, Yudan Wang, Xinqi Sun, Jing Zhang, Tongwei Ke, Mengyue Guo, Haonan Ruan, Fang An, Meihua Yang. Preparation of a broad-specificity antibody against zearalenone and its primary analogues and development of immunoassay of Coicis Semen and related products. Journal of food science. 2023 May; ?(?):. doi: 10.1111/1750-3841.16600. [PMID: 37195191]
  • Oky Setyo Widodo, Dhidhi Pambudi, Makoto Etoh, Emiko Kokushi, Seiichi Uno, Osamu Yamato, Masayasu Taniguchi, Mirni Lamid, Mitsuhiro Takagi. Practical Application of a Urinary Zearalenone Monitoring System for Feed Hygiene Management of a Japanese Black Cattle Breeding Herd-Relevance to Anti-Müllerian Hormone and Serum Amyloid A Clarified from a Two-Year Survey. Toxins. 2023 Apr; 15(5):. doi: 10.3390/toxins15050317. [PMID: 37235352]
  • Jiangshan Li, Xiaoping Huang, Zhanghui Zeng, Zhehao Chen, Jinxin Huang, Chenjing He, Taihe Xiang. Zearalenone regulates microRNA156 to affect the root development of Tetrastigma hemsleyanum. Tree physiology. 2023 04; 43(4):643-657. doi: 10.1093/treephys/tpac148. [PMID: 36579817]
  • Haiyu Luo, Siyu Meng, Yecheng Deng, Zhiyong Deng, Huilu Shi. In vitro antifungal activity of lasiodiplodin, isolated from endophytic fungus Lasiodiplodia pseudotheobromae J-10 associated with Sarcandra glabra and optimization of culture conditions for lasiodiplodin production. Archives of microbiology. 2023 Mar; 205(4):140. doi: 10.1007/s00203-023-03440-z. [PMID: 36964826]
  • Thomas Hartinger, Iris Kröger, Viktoria Neubauer, Johannes Faas, Barbara Doupovec, Dian Schatzmayr, Qendrim Zebeli. Zearalenone and Its Emerging Metabolites Promptly Affect the Rumen Microbiota in Holstein Cows Fed a Forage-Rich Diet. Toxins. 2023 Feb; 15(3):. doi: 10.3390/toxins15030185. [PMID: 36977076]
  • Xi Zhu, Caiping Yang, Wanqian Quan, Guidi Yang, Longhua Guo, Huifeng Xu. An immobilization-free electrochemical aptamer-based assay for zearalenone based on target-triggered dissociation of DNA from polydopamine nanospheres with strand displacement amplification. Analytical methods : advancing methods and applications. 2023 02; 15(7):987-992. doi: 10.1039/d3ay00065f. [PMID: 36734614]
  • Wanderson Bucker Moraes, Laurence V Madden, James Gillespie, Pierce A Paul. Environment, Grain Development, and Harvesting Strategy Effects on Zearalenone Contamination of Grain from Fusarium Head Blight-Affected Wheat Spikes. Phytopathology. 2023 Feb; 113(2):225-238. doi: 10.1094/phyto-05-22-0190-r. [PMID: 35994731]
  • Fenghua Zhu, Lianqin Zhu, Jindong Xu, Yuchang Wang, Yang Wang. Effects of moldy corn on the performance, antioxidant capacity, immune function, metabolism and residues of mycotoxins in eggs, muscle, and edible viscera of laying hens. Poultry science. 2023 Jan; 102(4):102502. doi: 10.1016/j.psj.2023.102502. [PMID: 36739801]
  • Consiglia Longobardi, Sara Damiano, Gianmarco Ferrara, Serena Montagnaro, Valentina Meucci, Luigi Intorre, Samanta Bacci, Luigi Esposito, Nadia Piscopo, Antonio Rubino, Antonio Raffaele, Salvatore Florio, Roberto Ciarcia. Zearalenone (ZEN) and Its Metabolite Levels in Tissues of Wild Boar (Sus scrofa) from Southern Italy: A Pilot Study. Toxins. 2023 01; 15(1):. doi: 10.3390/toxins15010056. [PMID: 36668876]
  • Neda Alvarez-Ortega, Karina Caballero-Gallardo, Cristina Juan, Ana Juan-Garcia, Jesus Olivero-Verbel. Cytoprotective, Antiproliferative, and Anti-Oxidant Potential of the Hydroethanolic Extract of Fridericia chica Leaves on Human Cancer Cell Lines Exposed to α- and β-Zearalenol. Toxins. 2023 Jan; 15(1):. doi: 10.3390/toxins15010036. [PMID: 36668856]
  • Dallas R Soffa, Jacob W Stewart, Erica D Pack, Alicia G Arneson, Raffaella De Vita, James W Knight, Dane W Fausnacht, Robert P Rhoads, Sherrie G Clark, David G Schmale, Michelle L Rhoads. Short-term consumption of the mycotoxin zearalenone by pubertal gilts causes persistent changes in the histoarchitecture of reproductive tissues. Journal of animal science. 2023 Jan; 101(?):. doi: 10.1093/jas/skac421. [PMID: 36574505]
  • Fenghua Li, Xianqi Zhao, Yanni Jiao, Xinglan Duan, Lianlong Yu, Fengjia Zheng, Xiaolin Wang, Lin Wang, Jia-Sheng Wang, Xiulan Zhao, Tianliang Zhang, Wei Li, Jun Zhou. Exposure assessment of aflatoxins and zearalenone in edible vegetable oils in Shandong, China: health risks posed by mycotoxin immunotoxicity and reproductive toxicity in children. Environmental science and pollution research international. 2023 Jan; 30(2):3743-3758. doi: 10.1007/s11356-022-22385-2. [PMID: 35953745]
  • Z A Chalyy, M G Kiseleva, I B Sedova, V A Tutelyan. [Mycotoxins in spices consumed in Russia]. Voprosy pitaniia. 2023; 92(2):26-34. doi: 10.33029/0042-8833-2023-92-2-26-34. [PMID: 37346017]
  • Chenglin Yang, Yunqin Chen, Mengran Yang, Jiayan Li, You Wu, Hui Fan, Xiangyi Kong, Can Ning, Siqi Wang, Wenguang Xiao, Zhihang Yuan, Jine Yi, Jing Wu. Betulinic acid alleviates zearalenone-induced uterine injury in mice. Environmental pollution (Barking, Essex : 1987). 2023 Jan; 316(Pt 1):120435. doi: 10.1016/j.envpol.2022.120435. [PMID: 36257561]
  • Fatemeh Ghafari, Zohre Sadeghian, Akram Oftadeh Harsin, Sodabe Khodabandelo, Akram Ranjbar. Anti-oxidative properties of nanocrocin in Zearalenone induced toxicity on Hek293 cell; The novel formulation and cellular assessment. Human & experimental toxicology. 2023 Jan; 42(?):9603271231169911. doi: 10.1177/09603271231169911. [PMID: 37072122]
  • Changqing Zhang, Chenqinyao Li, Kechun Liu, Yun Zhang. Characterization of zearalenone-induced hepatotoxicity and its mechanisms by transcriptomics in zebrafish model. Chemosphere. 2022 Dec; 309(Pt 1):136637. doi: 10.1016/j.chemosphere.2022.136637. [PMID: 36181844]
  • Marta Modrzewska, Lidia Błaszczyk, Łukasz Stępień, Monika Urbaniak, Agnieszka Waśkiewicz, Tomoya Yoshinari, Marcin Bryła. Trichoderma versus Fusarium-Inhibition of Pathogen Growth and Mycotoxin Biosynthesis. Molecules (Basel, Switzerland). 2022 Nov; 27(23):. doi: 10.3390/molecules27238146. [PMID: 36500242]
  • Wanderson Bucker Moraes, Laurence V Madden, Pierce A Paul. Efficacy of Genetic Resistance and Fungicide Application Against Fusarium Head Blight and Mycotoxins in Wheat Under Persistent Pre- and Postanthesis Moisture. Plant disease. 2022 Nov; 106(11):2839-2855. doi: 10.1094/pdis-02-22-0263-re. [PMID: 35471074]
  • Kuntan Wu, Sifan Jia, Dongfang Xue, Shahid Ali Rajput, Minjie Liu, Desheng Qi, Shuai Wang. Dual effects of zearalenone on aflatoxin B1-induced liver and mammary gland toxicity in pregnant and lactating rats. Ecotoxicology and environmental safety. 2022 Oct; 245(?):114115. doi: 10.1016/j.ecoenv.2022.114115. [PMID: 36179448]
  • Julius Ndoro, Idah Tichaidza Manduna, Makomborero Nyoni, Olga de Smidt. Multiple Mycotoxin Contamination in Medicinal Plants Frequently Sold in the Free State Province, South Africa Detected Using UPLC-ESI-MS/MS. Toxins. 2022 Oct; 14(10):. doi: 10.3390/toxins14100690. [PMID: 36287959]
  • Larissa T Franco, Carlos A F Oliveira. Assessment of occupational and dietary exposures of feed handling workers to mycotoxins in rural areas from São Paulo, Brazil. The Science of the total environment. 2022 Sep; 837(?):155763. doi: 10.1016/j.scitotenv.2022.155763. [PMID: 35561905]
  • Cintia Adácsi, Szilvia Kovács, István Pócsi, Tünde Pusztahelyi. Elimination of Deoxynivalenol, Aflatoxin B1, and Zearalenone by Gram-Positive Microbes (Firmicutes). Toxins. 2022 08; 14(9):. doi: 10.3390/toxins14090591. [PMID: 36136529]
  • Rohan Sarkar, Raviraj Shinde, Manisha Dhanshetty, Kaushik Banerjee. Multi-mycotoxin analysis method using liquid chromatography with tandem mass spectrometry and fluorescence detection in Indian medicinal herbs: Development and validation. Journal of chromatography. A. 2022 Aug; 1677(?):463310. doi: 10.1016/j.chroma.2022.463310. [PMID: 35853424]
  • Matthias Koch, Tatjana Mauch, Juliane Riedel. Development of a Hydrazine-Based Solid-Phase Extraction and Clean-Up Method for Highly Selective Quantification of Zearalenone in Edible Vegetable Oils by HPLC-FLD. Toxins. 2022 08; 14(8):. doi: 10.3390/toxins14080549. [PMID: 36006211]
  • Sigita Janaviciene, Skaidre Suproniene, Grazina Kadziene, Romans Pavlenko, Zane Berzina, Vadims Bartkevics. Toxigenicity of F. graminearum Residing on Host Plants Alternative to Wheat as Influenced by Environmental Conditions. Toxins. 2022 08; 14(8):. doi: 10.3390/toxins14080541. [PMID: 36006203]
  • Sara Gheraibia, Noureddine Belattar, Kawthar A Diab, Marwa E Hassan, Aziza A El-Nekeety, Sekena H Abdel-Aziem, Nabila S Hassan, Mosaad A Abdel-Wahhab. Costus speciosus extract protects against the oxidative damage of zearalenone via modulation of inflammatory cytokines, Nrf2 and iNOS gene expression in rats. Toxicon : official journal of the International Society on Toxinology. 2022 Jul; 214(?):62-73. doi: 10.1016/j.toxicon.2022.05.002. [PMID: 35597521]
  • Haonan Ruan, Yunyun Wang, Yong Hou, Jing Zhang, Jiashuo Wu, Fangqing Zhang, Ming Sui, Jiaoyang Luo, Meihua Yang. Zearalenone-14-Glucoside Is Hydrolyzed to Zearalenone by β-Glucosidase in Extracellular Matrix to Exert Intracellular Toxicity in KGN Cells. Toxins. 2022 07; 14(7):. doi: 10.3390/toxins14070458. [PMID: 35878196]
  • Fengyang Wu, Jia Cui, Xinyu Yang, Baojiang Chen. Effects of zearalenone on liver development, antioxidant capacity and inflammatory factors of prepubertal gilts. Journal of animal physiology and animal nutrition. 2022 Jul; 106(4):832-840. doi: 10.1111/jpn.13628. [PMID: 34494684]
  • Nicholas N A Kyei, Benedikt Cramer, Hans-Ulrich Humpf, Gisela H Degen, Nurshad Ali, Sabine Gabrysch. Assessment of multiple mycotoxin exposure and its association with food consumption: a human biomonitoring study in a pregnant cohort in rural Bangladesh. Archives of toxicology. 2022 07; 96(7):2123-2138. doi: 10.1007/s00204-022-03288-0. [PMID: 35441239]
  • Jun Bai, Yusong Zhou, Xin Luo, Jia Hai, Xuemeng Si, Jun Li, Huiyang Fu, Zhaolai Dai, Ying Yang, Zhenlong Wu. Roles of stress response-related signaling and its contribution to the toxicity of zearalenone in mammals. Comprehensive reviews in food science and food safety. 2022 07; 21(4):3326-3345. doi: 10.1111/1541-4337.12974. [PMID: 35751400]
  • Ming Li, Chenfei Han, Chuqin Yang, Mingna Sun, Jinsheng Duan, Xuchun Qiu, Daolin Du. Ultrasensitive fluorometric oligonucleotide immunoassay for the simultaneous and efficient detection of two mycotoxins in agricultural products. Analytical methods : advancing methods and applications. 2022 06; 14(21):2108-2116. doi: 10.1039/d2ay00367h. [PMID: 35583257]
  • D C C Brito, I P Silva, A C A Ferreira, N A R Sá, M I F Guedes, A P R Rodrigues, R R Santos, J R Figueiredo. Effects of in vitro exposure of sheep ovarian tissue to zearalenone and matairesinol on preantral follicles. Zygote (Cambridge, England). 2022 Jun; 30(3):419-422. doi: 10.1017/s0967199421000794. [PMID: 34689852]
  • Haifei Wang, Yeyi Xiao, Chao Xu, Yue Cao, Pengfei Jing, Shenglong Wu, Jianfeng Liu, Wenbin Bao. Integrated Metabolomics and Transcriptomics Analyses Reveal Metabolic Mechanisms in Porcine Intestinal Epithelial Cells under Zearalenone Stress. Journal of agricultural and food chemistry. 2022 Jun; 70(21):6561-6572. doi: 10.1021/acs.jafc.2c01107. [PMID: 35583463]
  • Guodong Cai, Fang Zhong, Qianying Cao, Yuni Bai, Hui Zou, Jianhong Gu, Yan Yuan, Guoqiang Zhu, Zongping Liu, Jianchun Bian. ZEA and DON inhibited inflammation after L. monocytogenes infection and induced ribosomal hyperfunction. Ecotoxicology and environmental safety. 2022 May; 236(?):113470. doi: 10.1016/j.ecoenv.2022.113470. [PMID: 35395601]
  • Tingwei Wang, Yongli Ye, Jian Ji, Xingxing Yang, Jiayuan Xu, Jia-Sheng Wang, Xiaomin Han, Ting Zhang, Xiulan Sun. Diet composition affects long-term zearalenone exposure on the gut-blood-liver axis metabolic dysfunction in mice. Ecotoxicology and environmental safety. 2022 May; 236(?):113466. doi: 10.1016/j.ecoenv.2022.113466. [PMID: 35390688]
  • Maximilian Meyer, Gabriele Ellen Schaumann, Katherine Muñoz. How does multiannual plastic mulching in strawberry cultivation influence soil fungi and mycotoxin occurrence in soil?. Mycotoxin research. 2022 May; 38(2):93-105. doi: 10.1007/s12550-022-00451-5. [PMID: 35316485]
  • Manoj B Kudupoje, Venkataramaiah Malathi, Alexandros Yiannikouris. Impact of a Natural Fusarial Multi-Mycotoxin Challenge on Broiler Chickens and Mitigation Properties Provided by a Yeast Cell Wall Extract and a Postbiotic Yeast Cell Wall-Based Blend. Toxins. 2022 04; 14(5):. doi: 10.3390/toxins14050315. [PMID: 35622561]
  • Angela Sinyani, Kehinde Idowu, Letitia Shunmugam, Hezekiel Mathambo Kumalo, Rene Khan. A molecular dynamics perspective into estrogen receptor inhibition by selective flavonoids as alternative therapeutic options. Journal of biomolecular structure & dynamics. 2022 Apr; ?(?):1-13. doi: 10.1080/07391102.2022.2062786. [PMID: 35477414]
  • Paula Llorens, Marta Herrera, Ana Juan-García, Juan José Payá, Juan Carlos Moltó, Agustín Ariño, Cristina Juan. Biomarkers of Exposure to Zearalenone in In Vivo and In Vitro Studies. Toxins. 2022 04; 14(5):. doi: 10.3390/toxins14050291. [PMID: 35622538]
  • Hongxia Tan, Hongyuan Zhou, Ting Guo, Jiaxin Li, Chi Zhang, Shuo Wang, Yuhao Zhang, Liang Ma. Zein structure and its hidden zearalenone: Effect of zein extraction methods. Food chemistry. 2022 Apr; 374(?):131563. doi: 10.1016/j.foodchem.2021.131563. [PMID: 34823935]
  • Boyang Wan, Libo Huang, Changwei Jing, Yang Li, Ning Jiao, Ming Liang, Shuzhen Jiang, Weiren Yang. Zearalenone promotes follicle development through activating the SIRT1/PGC-1α signaling pathway in the ovaries of weaned gilts. Journal of animal science. 2022 Apr; 100(4):. doi: 10.1093/jas/skac058. [PMID: 35213700]
  • Xue Yang, Feng Li, Hangyi Ning, Wei Zhang, Dongyan Niu, Zhuo Shi, Sa Chai, Anshan Shan. Screening of Pig-Derived Zearalenone-Degrading Bacteria through the Zearalenone Challenge Model, and Their Degradation Characteristics. Toxins. 2022 03; 14(3):. doi: 10.3390/toxins14030224. [PMID: 35324721]
  • Lei Xia, Hifza Rasheed, Michael N Routledge, Hang Wu, Yun Yun Gong. Super-Sensitive LC-MS Analyses of Exposure Biomarkers for Multiple Mycotoxins in a Rural Pakistan Population. Toxins. 2022 03; 14(3):. doi: 10.3390/toxins14030193. [PMID: 35324690]
  • Sanderson Dias Calixto, Thatiana Lopes Biá Ventura Simão, Fabrício Moreira de Almeida, Stella Schuenck Antunes, Nelilma Correia Romeiro, Warley de Souza Borges, Fernanda Oliveira das Chagas, Lucy Seldin, Eulógio Carlos Queiroz de Carvalho, Willian Jonis Andrioli, Denise Oliveira Guimarães, Elena Lasunskaia, Michelle Frazão Muzitano. (R)-(+)-Lasiodiplodin isolated from the endophytic fungus Sordaria tamaensis exhibits potent antimycobacterial and anti-inflammatory activities in vitro and in vivo: a dual approach for the treatment of severe pulmonary tuberculosis. The Journal of pharmacy and pharmacology. 2022 Mar; 74(3):446-457. doi: 10.1093/jpp/rgab165. [PMID: 34850064]
  • Dengying Gao, Xinxin Cao, Huihui Ren, Lihang Wu, Youxin Yan, Renwu Hua, Wenkai Xing, Minggang Lei, Jian Liu. Immunotoxicity and uterine transcriptome analysis of the effect of zearalenone (ZEA) in sows during the embryo attachment period. Toxicology letters. 2022 Mar; 357(?):33-42. doi: 10.1016/j.toxlet.2021.12.017. [PMID: 34933075]
  • Oky Setyo Widodo, Makoto Etoh, Emiko Kokushi, Seiichi Uno, Osamu Yamato, Dhidhi Pambudi, Hiroaki Okawa, Masayasu Taniguchi, Mirni Lamid, Mitsuhiro Takagi. Practical Application of Urinary Zearalenone Monitoring System for Feed Hygiene Management of a Japanese Black Cattle Breeding Herd-The Relationship between Monthly Anti-Müllerian Hormone and Serum Amyloid A Concentrations. Toxins. 2022 02; 14(2):. doi: 10.3390/toxins14020143. [PMID: 35202171]
  • Kilian G J Kenngott, Julius Albert, Friederike Meyer-Wolfarth, Gabriele E Schaumann, Katherine Muñoz. Fusarium Mycotoxins in Maize Field Soils: Method Validation and Implications for Sampling Strategy. Toxins. 2022 02; 14(2):. doi: 10.3390/toxins14020130. [PMID: 35202157]
  • Jéssica Cristina Zoratto Romoli, Milena Veronezi Silva, Giseli Cristina Pante, Danielle Hoeltgebaum, Juliana Cristina Castro, Gustavo Henrique Oliveira da Rocha, Isis Regina Grenier Capoci, Samuel Botião Nerilo, Simone Aparecida Galerani Mossini, Eduardo Micotti da Gloria, Terezinha Inez Estivalet Svidzinski, Jane Martha Graton Mikcha, Miguel Machinski. Anti-mycotoxigenic and antifungal activity of ginger, turmeric, thyme and rosemary essential oils in deoxynivalenol (DON) and zearalenone (ZEA) producing Fusarium graminearum. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment. 2022 Feb; 39(2):362-372. doi: 10.1080/19440049.2021.1996636. [PMID: 34854801]
  • Qian Lu, Jiao-Yang Luo, Hao-Nan Ruan, Chang-Jian Wang, Mei-Hua Yang. Structure-toxicity relationships, toxicity mechanisms and health risk assessment of food-borne modified deoxynivalenol and zearalenone: A comprehensive review. The Science of the total environment. 2022 Feb; 806(Pt 3):151192. doi: 10.1016/j.scitotenv.2021.151192. [PMID: 34710421]
  • Magdalena Mróz, Magdalena Gajęcka, Katarzyna E Przybyłowicz, Tomasz Sawicki, Sylwia Lisieska-Żołnierczyk, Łukasz Zielonka, Maciej Tadeusz Gajęcki. The Effect of Low Doses of Zearalenone (ZEN) on the Bone Marrow Microenvironment and Haematological Parameters of Blood Plasma in Pre-Pubertal Gilts. Toxins. 2022 01; 14(2):. doi: 10.3390/toxins14020105. [PMID: 35202133]
  • I B Sedova, M G Kiseleva, Z A Chalyy, N R Efimochkina, V A Tutelyan. [Mycotoxins contamination of cocoa products and carob marketed in the Russian Federation]. Voprosy pitaniia. 2022; 91(5):65-77. doi: 10.33029/0042-8833-2022-91-5-65-77. [PMID: 36394930]
  • Solomon E Owumi, Samuel A Bello, Sarah E Najophe, Sarah O Nwozo, Ifeoluwa O Esan. Coadministration of gallic acid abates zearalenone-mediated defects in male rat's reproductive function. Journal of biochemical and molecular toxicology. 2022 Jan; 36(1):e22940. doi: 10.1002/jbt.22940. [PMID: 34723416]
  • Paul Gerard Bruinenberg, Mathieu Castex. Evaluation of a Yeast Hydrolysate from a Novel Strain of Saccharomyces cerevisiae for Mycotoxin Mitigation using In Vitro and In Vivo Models. Toxins. 2021 12; 14(1):. doi: 10.3390/toxins14010007. [PMID: 35050984]
  • Wenqiang Shen, Yaojun Liu, Xinyue Zhang, Xiong Zhang, Xiaoping Rong, Lihong Zhao, Cheng Ji, Yuanpei Lei, Fengjuan Li, Jing Chen, Qiugang Ma. Comparison of Ameliorative Effects between Probiotic and Biodegradable Bacillus subtilis on Zearalenone Toxicosis in Gilts. Toxins. 2021 12; 13(12):. doi: 10.3390/toxins13120882. [PMID: 34941719]
  • Edyta Ksieniewicz-Woźniak, Marcin Bryła, Dorota Michałowska, Agnieszka Waśkiewicz, Tomoya Yoshinari. Transformation of Selected Fusarium Toxins and Their Masked Forms during Malting of Various Cultivars of Wheat. Toxins. 2021 12; 13(12):. doi: 10.3390/toxins13120866. [PMID: 34941704]
  • Julia Mironenka, Sylwia Różalska, Przemysław Bernat. Potential of Trichoderma harzianum and Its Metabolites to Protect Wheat Seedlings against Fusarium culmorum and 2,4-D. International journal of molecular sciences. 2021 Dec; 22(23):. doi: 10.3390/ijms222313058. [PMID: 34884860]
  • Junnan Zhang, Yunduo Zheng, Hui Tao, Jie Liu, Peng Zhao, Fan Yang, Zonghao Lv, Jinquan Wang. Effects of Bacillus subtilis ZJ-2019-1 on Zearalenone Toxicosis in Female Gilts. Toxins. 2021 11; 13(11):. doi: 10.3390/toxins13110788. [PMID: 34822572]
  • Veronika Nagl, Bertrand Grenier, Philippe Pinton, Ursula Ruczizka, Maximiliane Dippel, Moritz Bünger, Isabelle P Oswald, Laura Soler. Exposure to Zearalenone Leads to Metabolic Disruption and Changes in Circulating Adipokines Concentrations in Pigs. Toxins. 2021 11; 13(11):. doi: 10.3390/toxins13110790. [PMID: 34822574]
  • Erica D Pack, Sarah Weiland, Rob Musser, David G Schmale. Survey of zearalenone and type-B trichothecene mycotoxins in swine feed in the USA. Mycotoxin research. 2021 Nov; 37(4):297-313. doi: 10.1007/s12550-021-00442-y. [PMID: 34537950]
  • Jingnan Xu, Shurou Li, Liqiang Jiang, Xinxin Gao, Wei Liu, Xingyi Zhu, Wenlong Huang, Haiguang Zhao, Zhengkai Wei, Kai Wang, Zhengtao Yang. Baicalin protects against zearalenone-induced chicks liver and kidney injury by inhibiting expression of oxidative stress, inflammatory cytokines and caspase signaling pathway. International immunopharmacology. 2021 Nov; 100(?):108097. doi: 10.1016/j.intimp.2021.108097. [PMID: 34521024]
  • Jalila Ben Salah-Abbès, Marwa Mannai, Hela Belgacem, Abdella Zinedine, Samir Abbès. Efficacy of lactic acid bacteria supplementation against Fusarium graminearum growth in vitro and inhibition of Zearalenone causing inflammation and oxidative stress in vivo. Toxicon : official journal of the International Society on Toxinology. 2021 Oct; 202(?):115-122. doi: 10.1016/j.toxicon.2021.09.010. [PMID: 34562499]
  • Agnieszka Tkaczyk, Piotr Jedziniak, Łukasz Zielonka, Michał Dąbrowski, Piotr Ochodzki, Adrianna Rudawska. Biomarkers of Deoxynivalenol, Citrinin, Ochratoxin A and Zearalenone in Pigs after Exposure to Naturally Contaminated Feed Close to Guidance Values. Toxins. 2021 10; 13(11):. doi: 10.3390/toxins13110750. [PMID: 34822534]
  • Neda Alvarez-Ortega, Karina Caballero-Gallardo, María Taboada-Alquerque, Jackeline Franco, Elena E Stashenko, Cristina Juan, Ana Juan-García, Jesus Olivero-Verbel. Protective Effects of the Hydroethanolic Extract of Fridericia chica on Undifferentiated Human Neuroblastoma Cells Exposed to α-Zearalenol (α-ZEL) and β-Zearalenol (β-ZEL). Toxins. 2021 10; 13(11):. doi: 10.3390/toxins13110748. [PMID: 34822532]
  • Tao Deng, Qing-Song Yuan, Tao Zhou, Lan-Ping Guo, Wei-Ke Jiang, Shi-Hua Zhou, Chang-Gui Yang, Chuan-Zhi Kang. [Screening of zearalenone-degrading bacteria and analysis of degradation conditions]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2021 Oct; 46(20):5240-5246. doi: 10.19540/j.cnki.cjcmm.20210716.101. [PMID: 34738425]
  • Yuanliang Li, Jiangnan Yi, Qiwen Zeng, Yingwei Liu, Bijing Yang, Bingxian Liu, Yangwei Li, Khalid Mehmood, Riaz Hussain, Zhaoxin Tang, Hui Zhang, Ying Li. Zearalenone exposure mediated hepatotoxicity via mitochondrial apoptotic and autophagy pathways: Associated with gut microbiome and metabolites. Toxicology. 2021 10; 462(?):152957. doi: 10.1016/j.tox.2021.152957. [PMID: 34537261]
  • Lin Li, Tongtong Zhang, Xiaohan Ren, Bingxin Li, Shangqian Wang. Male reproductive toxicity of zearalenone-meta-analysis with mechanism review. Ecotoxicology and environmental safety. 2021 Sep; 221(?):112457. doi: 10.1016/j.ecoenv.2021.112457. [PMID: 34175827]
  • Boyang Wan, Xuejun Yuan, Weiren Yang, Ning Jiao, Yang Li, Faxiao Liu, Mei Liu, Zaibin Yang, Libo Huang, Shuzhen Jiang. The Effects of Zearalenone on the Localization and Expression of Reproductive Hormones in the Ovaries of Weaned Gilts. Toxins. 2021 09; 13(9):. doi: 10.3390/toxins13090626. [PMID: 34564630]
  • Ewa Jakimiuk, Justyna Radwińska, Maciej Woźny, Andrzej Pomianowski, Paweł Brzuzan, Paweł Wojtacha, Kazimierz Obremski, Łukasz Zielonka. The Influence of Zearalenone on Selected Hemostatic Parameters in Sexually Immature Gilts. Toxins. 2021 09; 13(9):. doi: 10.3390/toxins13090625. [PMID: 34564628]
  • Zhenjiang Liu, Xiaoyan Wang, Xuexiang Ren, Weibin Li, Jianfan Sun, Xinwei Wang, Yuqian Huang, Yanguo Guo, Huawei Zeng. Novel fluorescence immunoassay for the detection of zearalenone using HRP-mediated fluorescence quenching of gold-silver bimetallic nanoclusters. Food chemistry. 2021 Sep; 355(?):129633. doi: 10.1016/j.foodchem.2021.129633. [PMID: 33819808]
  • Sieprawska Apolonia, Łabanowska Maria, Kurdziel Magdalena, Filek Maria, Skórka Magdalena, Barbasz Anna. Protective responses of tolerant and sensitive wheat seedlings to systemic and local zearalenone application - Electron paramagnetic resonance studies. BMC plant biology. 2021 Aug; 21(1):393. doi: 10.1186/s12870-021-03177-1. [PMID: 34418972]
  • Friederike Meyer-Wolfarth, Elisabeth Oldenburg, Torsten Meiners, Katherine Muñoz, Stefan Schrader. Effects of temperature and soil fauna on the reduction and leaching of deoxynivalenol and zearalenone from Fusarium graminearum-infected maize stubbles. Mycotoxin research. 2021 Aug; 37(3):249-263. doi: 10.1007/s12550-021-00434-y. [PMID: 34173210]
  • Jingming Zhou, Yanghui Li, Zhanxiang Liu, Wenjing Qian, Yumei Chen, Yanhua Qi, Aiping Wang. Induction of anti-Zearalenone immune response with mimotopes identified from a phage display peptide library. Toxicon : official journal of the International Society on Toxinology. 2021 Aug; 199(?):1-6. doi: 10.1016/j.toxicon.2021.05.010. [PMID: 34033860]
  • Dionisia Carballo, Noelia Pallarés, Emilia Ferrer, Francisco J Barba, Houda Berrada. Assessment of Human Exposure to Deoxynivalenol, Ochratoxin A, Zearalenone and Their Metabolites Biomarker in Urine Samples Using LC-ESI-qTOF. Toxins. 2021 07; 13(8):. doi: 10.3390/toxins13080530. [PMID: 34437401]
  • Beatriz Arce-López, Lydia Alvarez-Erviti, Barbara De Santis, María Izco, Silvia López-Calvo, Maria Eugenia Marzo-Sola, Francesca Debegnach, Elena Lizarraga, Adela López de Cerain, Elena González-Peñas, Ariane Vettorazzi. Biomonitoring of Mycotoxins in Plasma of Patients with Alzheimer's and Parkinson's Disease. Toxins. 2021 07; 13(7):. doi: 10.3390/toxins13070477. [PMID: 34357949]
  • M Estefanía González-Alvarez, Bailey C McGuire, Aileen F Keating. Obesity alters the ovarian proteomic response to zearalenone exposure†. Biology of reproduction. 2021 07; 105(1):278-289. doi: 10.1093/biolre/ioab069. [PMID: 33855340]
  • M Alonso-Garrido, M Frangiamone, G Font, A Cimbalo, L Manyes. In vitro blood brain barrier exposure to mycotoxins and carotenoids pumpkin extract alters mitochondrial gene expression and oxidative stress. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2021 Jul; 153(?):112261. doi: 10.1016/j.fct.2021.112261. [PMID: 34015425]
  • Wojciech Barański, Magdalena Gajęcka, Łukasz Zielonka, Magdalena Mróz, Ewa Onyszek, Katarzyna E Przybyłowicz, Arkadiusz Nowicki, Andrzej Babuchowski, Maciej T Gajęcki. Occurrence of Zearalenone and Its Metabolites in the Blood of High-Yielding Dairy Cows at Selected Collection Sites in Various Disease States. Toxins. 2021 06; 13(7):. doi: 10.3390/toxins13070446. [PMID: 34203296]
  • Omeralfaroug Ali, Miklós Mézes, Krisztián Balogh, Melinda Kovács, András Szabó. The Effects of Mixed Fusarium Mycotoxins at EU-Permitted Feed Levels on Weaned Piglets' Tissue Lipids. Toxins. 2021 06; 13(7):. doi: 10.3390/toxins13070444. [PMID: 34199083]
  • Xiaofei Liu, Xiaofang Liao, Boyu Jia, Chaonan Sun, Lidong Zhou, Weijun Kong. Development of a multi-channel magnetic bead micro-probe assay for high-throughput detection of zearalenone in edible and medicinal Coix seed. Food chemistry. 2021 Jun; 347(?):128977. doi: 10.1016/j.foodchem.2020.128977. [PMID: 33497872]
  • Zhenjiang Liu, Xinwei Wang, Fengshou Dong, Yuanbo Li, Yanguo Guo, Xingang Liu, Jun Xu, Xiaohu Wu, Yongquan Zheng. Ultrasensitive immunoassay for detection of zearalenone in agro-products using enzyme and antibody co-embedded zeolitic imidazolate framework as labels. Journal of hazardous materials. 2021 06; 412(?):125276. doi: 10.1016/j.jhazmat.2021.125276. [PMID: 33550132]
  • Darika Awapak, Awanwee Petchkongkaew, Michael Sulyok, Rudolf Krska. Co-occurrence and toxicological relevance of secondary metabolites in dairy cow feed from Thailand. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment. 2021 Jun; 38(6):1013-1027. doi: 10.1080/19440049.2021.1905186. [PMID: 33861173]
  • Jakub Pałubicki, Robert Kosicki, Magdalena Twarużek, Iwona Ałtyn, Jan Grajewski. Concentrations of zearalenone and its metabolites in female wild boars from woodlands and farmlands. Toxicon : official journal of the International Society on Toxinology. 2021 Jun; 196(?):19-24. doi: 10.1016/j.toxicon.2021.03.011. [PMID: 33766687]