Subcellular Location: Cytoplasm, myofibril, sarcomere

Found 500 associated metabolites.

22 associated genes. ABRA, ADPRHL1, ARHGEF25, CAPZB, CAVIN4, CORO1C, CSRP3, DCTN4, ILK, LMOD1, LMOD2, MTM1, MTMR12, MYBPHL, MYH7, MYPN, NBR1, PYROXD1, SIMC1, SQSTM1, STYXL2, TCAP

(20R)-Ginsenoside Rh2

3-O-β-D-Glucopyranosyl-20(S)-protopanaxadiol

C36H62O8 (622.4444)


(20S)-ginsenoside Rh2 is a ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy group at position 3 has been converted to the corresponding beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite, an antineoplastic agent, an apoptosis inducer, a cardioprotective agent, a bone density conservation agent and a hepatoprotective agent. It is a beta-D-glucoside, a 12beta-hydroxy steroid, a ginsenoside, a tetracyclic triterpenoid and a 20-hydroxy steroid. It derives from a hydride of a dammarane. Ginsenoside Rh2 is a natural product found in Panax ginseng and Panax notoginseng with data available. A ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy group at position 3 has been converted to the corresponding beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. Ginsenoside C-K, a bacterial metabolite of G-Rb1, exhibits anti-inflammatory effects by reducing iNOS and COX-2. Ginsenoside C-K exhibits an inhibition against the activity of CYP2C9 and CYP2A6 in human liver microsomes with IC50s of 32.0±3.6 μM and 63.6±4.2 μM, respectively. Ginsenoside C-K, a bacterial metabolite of G-Rb1, exhibits anti-inflammatory effects by reducing iNOS and COX-2. Ginsenoside C-K exhibits an inhibition against the activity of CYP2C9 and CYP2A6 in human liver microsomes with IC50s of 32.0±3.6 μM and 63.6±4.2 μM, respectively. Ginsenoside Rh2 induces the activation of caspase-8 and caspase-9. Ginsenoside Rh2 induces cancer cell apoptosis in a multi-path manner. Ginsenoside Rh2 induces the activation of caspase-8 and caspase-9. Ginsenoside Rh2 induces cancer cell apoptosis in a multi-path manner.

   

Angelicin

2-Propenoic acid, 3-(4-hydroxy-5-benzofuranyl)-, .delta.-lactone

C11H6O3 (186.0317)


Angelicin is a furanocoumarin. Angelicin is a natural product found in Cullen cinereum, Psoralea glabra, and other organisms with data available. Angelicin is found in coriander. Angelicin is a constituent of roots and leaves of angelica (Angelica archangelica). Angelicin is found in roots and on surface of parsnips and diseased celery.Angelicin is a furanocoumarin. It can be found in Bituminaria bituminosa. It is present in the list of IARC Group 3 carcinogens (Angelicin plus ultraviolet A radiation). (Wikipedia). See also: Angelica archangelica root (part of); Cullen corylifolium fruit (part of). Angelicin is found in coriander. Angelicin is a constituent of roots and leaves of angelica (Angelica archangelica). Angelicin is found in roots and on surface of parsnips and diseased celery.Angelicin is a furanocoumarin. It can be found in Bituminaria bituminosa. It is present in the list of IARC Group 3 carcinogens (Angelicin plus ultraviolet A radiation). (Wikipedia). Constituent of roots and leaves of angelica (Angelica archangelica). Found in roots and on surface of parsnips and diseased celery D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D007364 - Intercalating Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D000927 - Anticonvulsants Angelicin is a natural tricyclic aromatic hydrocarbon compound that is structurally related to psoralen and has anti-cancer, anti-inflammatory, anti-viral and other activities. Cytotoxic, IC50: 49.56 μM; inhibits MHV-68, IC50: 5.39 μg/ml (28.95 μM). Angelicin is a natural tricyclic aromatic hydrocarbon compound that is structurally related to psoralen and has anti-cancer, anti-inflammatory, anti-viral and other activities. Cytotoxic, IC50: 49.56 μM; inhibits MHV-68, IC50: 5.39 μg/ml (28.95 μM).

   

Loganin

(1S,4aS,6S,7R,7aS)-6-hydroxy-7-methyl-1-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-1,4a,5,6,7,7a-hexahydrocyclopenta[d]pyran-4-carboxylic acid methyl ester

C17H26O10 (390.1526)


Loganin is an iridoid monoterpenoid with formula C17H26O10 that is isolated from several plant species and exhibits neuroprotective and anti-inflammatory properties. It has a role as a plant metabolite, a neuroprotective agent, an EC 3.4.23.46 (memapsin 2) inhibitor, an EC 3.2.1.20 (alpha-glucosidase) inhibitor, an anti-inflammatory agent and an EC 3.1.1.7 (acetylcholinesterase) inhibitor. It is a cyclopentapyran, a beta-D-glucoside, an enoate ester, a monosaccharide derivative, an iridoid monoterpenoid, a methyl ester and a secondary alcohol. It is functionally related to a loganetin. Loganin is one of the best-known of the iridoid glycosides. It is named for the Loganiaceae, having first been isolated from the seeds of a member of that plant family, namely those of Strychnos nux-vomica. It also occurs in Alstonia boonei (Apocynaceae),[1] a medicinal tree of West Africa and in the medicinal/entheogenic shrub Desfontainia spinosa (Columelliaceae) native to Central America and South America. Loganin is a natural product found in Strychnos axillaris, Lonicera japonica, and other organisms with data available. An iridoid monoterpenoid with formula C17H26O10 that is isolated from several plant species and exhibits neuroprotective and anti-inflammatory properties. Loganin, also known as loganoside, is a member of the class of compounds known as iridoid o-glycosides. Iridoid o-glycosides are iridoid monoterpenes containing a glycosyl (usually a pyranosyl) moiety linked to the iridoid skeleton. Thus, loganin is considered to be an isoprenoid lipid molecule. Loganin is soluble (in water) and a very weakly acidic compound (based on its pKa). Loganin can be found in a number of food items such as groundcherry, annual wild rice, muscadine grape, and broad bean, which makes loganin a potential biomarker for the consumption of these food products. Loganin is one of the best-known of the iridoid glycosides.It is named for the Loganiaceae,having first been isolated from the seeds of a member of that plant family, namely those of Strychnos nux-vomica. It also occurs in Alstonia boonei (Apocynaceae), a medicinal tree of West Africa and in the medicinal/entheogenic shrub Desfontainia spinosa (Columelliaceae) native to Central America and South America . Loganin is formed from loganic acid by the enzyme loganic acid O-methyltransferase (LAMT). Loganin then becomes a substrate for the enzyme secologanin synthase (SLS) to form secologanin, a secoiridoid monoterpene found as part of ipecac and terpene indole alkaloids. Loganin is the main iridoid glycoside compound in Cornus officinalis and has anti-inflammatory and anti-shock effects. Loganin is the main iridoid glycoside compound in Cornus officinalis and has anti-inflammatory and anti-shock effects.

   

Notoginsenoside R1

2-{[2-(8-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}-5,16-dihydroxy-2,6,6,10,11-pentamethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl)-6-methylhept-5-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C47H80O18 (932.5344)


Notoginsenoside R1 is a ginsenoside found in Panax notoginseng that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding beta-D-xylopyranosyl-(1->2)-beta-D-glucopyranoside and beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite, an antioxidant, a neuroprotective agent, an apoptosis inducer and a phytoestrogen. It is a beta-D-glucoside, a 12beta-hydroxy steroid, a 3beta-hydroxy steroid, a disaccharide derivative, a ginsenoside, a tetracyclic triterpenoid and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Notoginsenoside R1 is a natural product found in Panax ginseng, Panax notoginseng, and other organisms with data available. See also: Panax notoginseng root (part of). Notoginsenoside R1 is found in tea. Notoginsenoside R1 is a constituent of roots of Panax notoginseng (ginseng) Constituent of roots of Panax notoginseng (ginseng). Notoginsenoside R1 is found in tea. Notoginsenoside R1 (Sanchinoside R1), a saponin, is isolated from P. notoginseng. Notoginsenoside R1 exhibits anti-oxidation, anti-inflammatory, anti-angiogenic, and anti-apoptosis activities. Notoginsenoside R1 provides cardioprotection against ischemia/reperfusion (I/R) injury. Notoginsenoside R1 also provides neuroprotection in H2O2-induced oxidative damage in PC12 cells[1][2][3]. Notoginsenoside R1 (Sanchinoside R1), a saponin, is isolated from P. notoginseng. Notoginsenoside R1 exhibits anti-oxidation, anti-inflammatory, anti-angiogenic, and anti-apoptosis activities. Notoginsenoside R1 provides cardioprotection against ischemia/reperfusion (I/R) injury. Notoginsenoside R1 also provides neuroprotection in H2O2-induced oxidative damage in PC12 cells[1][2][3].

   

Bufalin

5-[(3S,5R,8R,9S,10S,13R,14S,17R)-3,14-dihydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]pyran-2-one

C24H34O4 (386.2457)


Bufalin is a cardiotonic steroid toxin[1] originally isolated from Chinese toad venom, which is a component of some traditional Chinese medicines.[2][3] Bufalin has in vitro antitumor effects against various malignant cell lines, including hepatocellular[4] and lung carcinoma.[5] However, as with other bufadienolides, its potential use is hampered by its cardiotoxicity.[6] Bufalin is a 14beta-hydroxy steroid that is bufan-20,22-dienolide having hydroxy substituents at the 5beta- and 14beta-positions. It has been isolated from the skin of the toad Bufo bufo. It has a role as an antineoplastic agent, a cardiotonic drug, an anti-inflammatory agent and an animal metabolite. It is a 3beta-hydroxy steroid and a 14beta-hydroxy steroid. It is functionally related to a bufanolide. Bufalin is a natural product found in Cunninghamella blakesleeana, Bufo gargarizans, and other organisms with data available. Bufalin is an active ingredient and one of the glycosides in the traditional Chinese medicine ChanSu; it is also a bufadienolide toxin originally isolated from the venom of the Chinese toad Bufo gargarizans, with potential cardiotonic and antineoplastic activity. Although the mechanism of action of bufalin is still under investigation, this agent is a specific Na+/K+-ATPase inhibitor and can induce apoptosis in cancer cell lines through the activation of the transcription factor AP-1 via a mitogen activated protein kinase (MAPK) pathway. A 14beta-hydroxy steroid that is bufan-20,22-dienolide having hydroxy substituents at the 5beta- and 14beta-positions. It has been isolated from the skin of the toad Bufo bufo. Bufalin is an active component isolated from Chan Su, acts as a potent Na+/K+-ATPase inhibitor, binds to the subunit α1, α2 and α3, with Kd of 42.5, 45 and 40 nM, respectively[1][2]. Anti-cancer activity[2]. Bufalin is an active component isolated from Chan Su, acts as a potent Na+/K+-ATPase inhibitor, binds to the subunit α1, α2 and α3, with Kd of 42.5, 45 and 40 nM, respectively[1][2]. Anti-cancer activity[2].

   

(-)-dehydrocostus lactone

Azuleno(4,5-b)furan-2(3H)-one, decahydro-3,6,9-tris(methylene)-, (3aS-(3a.alpha.,6a.alpha.,9a.alpha.,9b.beta.))-

C15H18O2 (230.1307)


Dehydrocostus lactone is an organic heterotricyclic compound and guaianolide sesquiterpene lactone that is acrylic acid which is substituted at position 2 by a 4-hydroxy-3,8-bis(methylene)decahydoazulen-5-yl group and in which the hydroxy group and the carboxy group have undergone formal condensation to afford the corresponding gamma-lactone. It has a role as a metabolite, a trypanocidal drug, an antineoplastic agent, a cyclooxygenase 2 inhibitor, an antimycobacterial drug and an apoptosis inducer. It is a sesquiterpene lactone, a guaiane sesquiterpenoid, an organic heterotricyclic compound and a gamma-lactone. Dehydrocostus lactone is a natural product found in Marshallia obovata, Cirsium carolinianum, and other organisms with data available. See also: Arctium lappa Root (part of). An organic heterotricyclic compound and guaianolide sesquiterpene lactone that is acrylic acid which is substituted at position 2 by a 4-hydroxy-3,8-bis(methylene)decahydoazulen-5-yl group and in which the hydroxy group and the carboxy group have undergone formal condensation to afford the corresponding gamma-lactone. CONFIDENCE standard compound; ML_ID 36 Dehydrocostus Lactone is a major sesquiterpene lactone isolated from the roots of Saussurea costus. IC50 value: Target: In vitro: Dehydrocostus Lactone promoted apoptosis with increased activation of caspases 8, 9, 7, 3, enhanced PARP cleavage, decreased Bcl-xL expression and increased levels of Bax, Bak, Bok, Bik, Bmf, and t-Bid. We have demonstrated that Dehydrocostus Lactone inhibits cell growth and induce apoptosis in DU145 cells [1]. Dehydrocostus Lactone inhibits NF-kappaB activation by preventing TNF-alpha-induced degradation and phosphorylation of its inhibitory protein I-kappaB alpha in human leukemia HL-60 cells and that dehydrocostus lactone renders HL-60 cells susceptible to TNF-alpha-induced apoptosis by enhancing caspase-8 and caspase-3 activities [2]. Dehydrocostus Lactone inhibited the production of NO in lipopolysaccharide (LPS)-activated RAW 264.7 cells by suppressing inducible nitric oxide synthase enzyme expression. In vivo: Dehydrocostus Lactone decreased the TNF-alpha level in LPS-activated systems in vivo [3]. Dehydrocostus Lactone is a major sesquiterpene lactone isolated from the roots of Saussurea costus. IC50 value: Target: In vitro: Dehydrocostus Lactone promoted apoptosis with increased activation of caspases 8, 9, 7, 3, enhanced PARP cleavage, decreased Bcl-xL expression and increased levels of Bax, Bak, Bok, Bik, Bmf, and t-Bid. We have demonstrated that Dehydrocostus Lactone inhibits cell growth and induce apoptosis in DU145 cells [1]. Dehydrocostus Lactone inhibits NF-kappaB activation by preventing TNF-alpha-induced degradation and phosphorylation of its inhibitory protein I-kappaB alpha in human leukemia HL-60 cells and that dehydrocostus lactone renders HL-60 cells susceptible to TNF-alpha-induced apoptosis by enhancing caspase-8 and caspase-3 activities [2]. Dehydrocostus Lactone inhibited the production of NO in lipopolysaccharide (LPS)-activated RAW 264.7 cells by suppressing inducible nitric oxide synthase enzyme expression. In vivo: Dehydrocostus Lactone decreased the TNF-alpha level in LPS-activated systems in vivo [3].

   

Ailanthone

(1R,2R,3aS,3a1S,6aR,7aS,11S,11aS,11bR)-1,2,11-Trihydroxy-8,11a-dimethyl-3-methylene-2,3,3a,4,7,7a,11,11a-octahydro-1H-1,3a1-(epoxymethano)dibenzo[de,g]chromene-5,10(6aH,11bH)-dione

C20H24O7 (376.1522)


Ailanthone is a triterpenoid. Ailanthone (Δ13-Dehydrochaparrinone) is a potent inhibitor of both full-length androgen receptor (AR) (IC50=69?nM) and constitutively active truncated AR splice variants (AR1-651 IC50=309?nM). Ailanthone (Δ13-Dehydrochaparrinone) is a potent inhibitor of both full-length androgen receptor (AR) (IC50=69?nM) and constitutively active truncated AR splice variants (AR1-651 IC50=309?nM).

   

Agnuside

((1S,4AR,5S,7AS)-5-HYDROXY-1-(((2S,3R,4S,5S,6R)-3,4,5-TRIHYDROXY-6-(HYDROXYMETHYL)TETRAHYDRO-2H-PYRAN-2-YL)OXY)-1,4A,5,7A-TETRAHYDROCYCLOPENTA[C]PYRAN-7-YL)METHYL 4-HYDROXYBENZOATE

C22H26O11 (466.1475)


Agnuside is a benzoate ester resulting from the formal condensation of the carboxy group of 4-hydroxybenzoic acid with the primary hydroxy group of aucubin. It is an iridoid glycoside found in several Vitex plants including Vitex agnus-castus. It has a role as a plant metabolite, an anti-inflammatory agent, a pro-angiogenic agent and a cyclooxygenase 2 inhibitor. It is a terpene glycoside, an iridoid monoterpenoid, a benzoate ester, a member of phenols, a beta-D-glucoside, a cyclopentapyran and a monosaccharide derivative. It is functionally related to an aucubin. Agnuside is a natural product found in Crescentia cujete, Vitex peduncularis, and other organisms with data available. See also: Chaste tree fruit (part of); Vitex negundo leaf (part of). Isolated from Vitex agnus-castus (agnus castus). Agnuside is found in herbs and spices and fruits. Agnuside is found in fruits. Agnuside is isolated from Vitex agnus-castus (agnus castus). Agnuside is a compound isolated from Vitex negundo, down-regulates pro-inflammatory mediators PGE2 and LTB4, and reduces the expression of cytokines, with anti-arthritic activity[1]. Agnuside is used in the study of asthma, inflammation, and angiogenic diseases. Agnuside is an orally active compound that can be extracted from Vitex negundo[1][2][3][4]. Agnuside is a compound isolated from Vitex negundo, down-regulates pro-inflammatory mediators PGE2 and LTB4, and reduces the expression of cytokines, with anti-arthritic activity[1].

   

Arenobufagin

5-[(3S,5R,8R,9S,10S,11S,13R,14S,17R)-3,11,14-trihydroxy-10,13-dimethyl-12-oxo-2,3,4,5,6,7,8,9,11,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl]pyran-2-one

C24H32O6 (416.2199)


Arenobufagin is a natural product found in Bufo gargarizans, Bufotes viridis, and other organisms with data available. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides Arenobufagin is a natural bufadienolide from toad venom; has potent antineoplastic activity against HCC HepG2 cells as well as corresponding multidrug-resistant HepG2/ADM cells. IC50 value: Target: in vitro: arenobufagin induced mitochondria-mediated apoptosis in HCC cells, with decreasing mitochondrial potential, as well as increasing Bax/Bcl-2 expression ratio, Bax translocation from cytosol to mitochondria. Arenobufagin also induced autophagy in HepG2/ADM cells. Autophagy-specific inhibitors (3-methyladenine, chloroquine and bafilomycin A1) or Beclin1 and Atg 5 small interfering RNAs (siRNAs) enhanced arenobufagin-induced apoptosis, indicating that arenobufagin-mediated autophagy may protect HepG2/ADM cells from undergoing apoptotic cell death [1]. arenobufagin inhibited vascular endothelial growth factor (VEGF)-induced viability, migration, invasion and tube formation in human umbilical vein endothelial cells (HUVECs) in vitro [2]. Arenobufagin blocked the Na+/K+ pump current in a dose-dependent manner with a half-maximal concentration of 0.29 microM and a Hill coefficient of 1.1 [3]. in vivo: arenobufagin inhibited the growth of HepG2/ADM xenograft tumors, which were associated with poly (ADP-ribose) polymerase cleavage, light chain 3-II activation and mTOR inhibition [1]. Arenobufagin also suppressed sprouting formation from VEGF-treated aortic rings in an ex vivo model [2]. Arenobufagin is a natural bufadienolide from toad venom; has potent antineoplastic activity against HCC HepG2 cells as well as corresponding multidrug-resistant HepG2/ADM cells. IC50 value: Target: in vitro: arenobufagin induced mitochondria-mediated apoptosis in HCC cells, with decreasing mitochondrial potential, as well as increasing Bax/Bcl-2 expression ratio, Bax translocation from cytosol to mitochondria. Arenobufagin also induced autophagy in HepG2/ADM cells. Autophagy-specific inhibitors (3-methyladenine, chloroquine and bafilomycin A1) or Beclin1 and Atg 5 small interfering RNAs (siRNAs) enhanced arenobufagin-induced apoptosis, indicating that arenobufagin-mediated autophagy may protect HepG2/ADM cells from undergoing apoptotic cell death [1]. arenobufagin inhibited vascular endothelial growth factor (VEGF)-induced viability, migration, invasion and tube formation in human umbilical vein endothelial cells (HUVECs) in vitro [2]. Arenobufagin blocked the Na+/K+ pump current in a dose-dependent manner with a half-maximal concentration of 0.29 microM and a Hill coefficient of 1.1 [3]. in vivo: arenobufagin inhibited the growth of HepG2/ADM xenograft tumors, which were associated with poly (ADP-ribose) polymerase cleavage, light chain 3-II activation and mTOR inhibition [1]. Arenobufagin also suppressed sprouting formation from VEGF-treated aortic rings in an ex vivo model [2].

   

Berbamine

16H-1,24:6,9-dietheno-11,15-metheno-2H-pyrido(2,3:17,18)(1,11)dioxacycloeicosino(2,3,4-ij)isoquinolin-12-ol, 3,4,4a,5,16a,17,18,19-octahydro-21,22,26-trimethoxy-4,17-dimethyl-, hydrochloride, hydrate (1:1:4), (4aS,16aR)-

C37H40N2O6 (608.2886)


Berbamine is a member of isoquinolines and a bisbenzylisoquinoline alkaloid. Berbamine is a natural product found in Berberis poiretii, Berberis integerrima Berbamine inhibits the proliferation of KM3 cells in a dose- and time-dependent manner. Combination of berbamine with dexamethasone (Dex), doxorubicin (Dox) or arsenic trioxide (ATO) resulted in enhanced inhibition of cell growth. Flow cytometric analysis revealed that KM3 cells were arrested at G1 phase and apoptotic cells increased from 0.54\\\% to 51.83\\\% for 36 h. Morphological changes of cells undergoing apoptosis were observed under light microscope. Berbamine treatment led to increased expression of A20, down-regulation of IKKα, p-IκBα, and followed by inhibition of p65 nuclear localization. As a result, NF-κB downstream targets such as cyclinD1, Bcl-xL, Bid and survivin were down-regulated. Berbamine inhibits SARS-CoV-2 infection by compromising TRPMLs-mediated endolysosomal trafficking of ACE2. (+)-Berbamine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=478-61-5 (retrieved 2024-06-29) (CAS RN: 478-61-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Berbamine is a natural compound extracted from traditional Chinese medicine?Phellodendron amurense Rupr. with anti-tumor, immunomodulatory and cardiovascular effects. Berbamine?is a calcium channel blocker. Berbamine is a natural compound extracted from traditional Chinese medicine?Phellodendron amurense Rupr. with anti-tumor, immunomodulatory and cardiovascular effects. Berbamine?is a calcium channel blocker.

   

(all-E)-Crocetin

(2E,4E,6E,8E,10E,12E,14E)-2,6,11,15-tetramethylhexadeca-2,4,6,8,10,12,14-heptaenedioic acid8,8-diapocarotene-8,8-dioic acid

C20H24O4 (328.1675)


Crocetin is a 20-carbon dicarboxylic acid which is a diterpenoid and natural carotenoid. Found in the crocus flower, it has been administered as an anti-fatigue dietary supplement. It has a role as a nutraceutical, a metabolite and an antioxidant. It is a carotenoic acid, a diterpenoid and a polyunsaturated dicarboxylic acid. It is a conjugate acid of a crocetin(2-). Vitamin A-analog that increases diffusivity of oxygen in aqueous solutions, including plasma. Crocetin is a natural product found in Verbascum lychnitis, Gardenia jasminoides, and other organisms with data available. cis-Crocetin is found in herbs and spices. cis-Crocetin is occurs as glycoside in saffro COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Occurs as glycoside in saffron. cis-Crocetin is found in herbs and spices. D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Cynaropicrin

2-PROPENOIC ACID, 2-(HYDROXYMETHYL)-, DODECAHYDRO-8-HYDROXY-3,6,9-TRIS(METHYLENE)-2-OXOAZULENO(4,5-B)FURAN-4-YL ESTER, (3AR-(3A.ALPHA.,4.ALPHA.,6A.ALPHA.,8.BETA.,9A.ALPHA.,9B.BETA.))-

C19H22O6 (346.1416)


Constituent of Cynara scolymus (artichoke). Cynaropicrin is found in cardoon, globe artichoke, and root vegetables. Cynaropicrin is found in cardoon. Cynaropicrin is a constituent of Cynara scolymus (artichoke). Cynaropicrin is a sesquiterpene lactone. Cynaropicrin is a natural product found in Pleiotaxis rugosa, Pseudostifftia kingii, and other organisms with data available. See also: Cynara scolymus leaf (part of). D009676 - Noxae > D003603 - Cytotoxins Cynaropicrin is a sesquiterpene lactone which can inhibit tumor necrosis factor (TNF-α) release with IC50s of 8.24 and 3.18 μM for murine and human macrophage cells, respectively. Cynaropicrin also inhibits the increase of cartilage degradation factor (MMP13) and suppresses NF-κB signaling. Cynaropicrin is a sesquiterpene lactone which can inhibit tumor necrosis factor (TNF-α) release with IC50s of 8.24 and 3.18 μM for murine and human macrophage cells, respectively. Cynaropicrin also inhibits the increase of cartilage degradation factor (MMP13) and suppresses NF-κB signaling.

   

Escin

(2S,3S,4S,5R,6R)-6-[[(3S,4S,4aR,6aR,6bS,8R,8aR,9R,10R,12aS,14aR,14bR)-9-acetyloxy-8-hydroxy-4,8a-bis(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-10-[(E)-2-methylbut-2-enoyl]oxy-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-4-hydroxy-3,5-bis[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy]oxane-2-carboxylic acid

C55H86O24 (1130.5509)


Aescin is a triterpenoid saponin. escin Ib is a natural product found in Aesculus chinensis, Aesculus hippocastanum, and other organisms with data available. See also: Horse Chestnut (part of). D002317 - Cardiovascular Agents escin Ia is a natural product found in Aesculus chinensis and Aesculus hippocastanum with data available. See also: Horse Chestnut (part of). Escin, a natural compound of triterpenoid saponins isolated from horse chestnut (Aesculus hippocastanum) seeds, can be used as a vasoprotective anti-inflammatory, anti-edematous and anti-nociceptive agent[1]. Escin, a natural compound of triterpenoid saponins isolated from horse chestnut (Aesculus hippocastanum) seeds, can be used as a vasoprotective anti-inflammatory, anti-edematous and anti-nociceptive agent[1]. Escin IA is a triterpene saponin isolated from Aesculus hippocastanum, which inhibits HIV-1 protease with IC50 values of 35 μM. Escin IA has anti-TNBC metastasis activity, and its action mechanisms involved inhibition of epithelial-mesenchymal transition process by down-regulating LOXL2 expression[1][2]. Escin IA is a triterpene saponin isolated from Aesculus hippocastanum, which inhibits HIV-1 protease with IC50 values of 35 μM. Escin IA has anti-TNBC metastasis activity, and its action mechanisms involved inhibition of epithelial-mesenchymal transition process by down-regulating LOXL2 expression[1][2]. Escin IB is a saponin isolated from skin and the endosperm of seeds of horse chestnut (Aesculus hippocastanum). Escin IB shows inhibitory effect on pancreatic lipase activity[1][2]. Escin IB is a saponin isolated from skin and the endosperm of seeds of horse chestnut (Aesculus hippocastanum). Escin IB shows inhibitory effect on pancreatic lipase activity[1][2]. Escin IB is a saponin isolated from skin and the endosperm of seeds of horse chestnut (Aesculus hippocastanum). Escin IB shows inhibitory effect on pancreatic lipase activity[1][2].

   

Gamabufogenin

5-[(3S,5R,8R,9S,10S,11R,13R,14S,17R)-3,11,14-trihydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]pyran-2-one

C24H34O5 (402.2406)


Gamabufogenin is a steroid lactone. It is functionally related to a bufanolide. Gamabufotalin is a natural product found in Bufotes viridis, Bufo, and other organisms with data available. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides Gamabufotalin (Gamabufagin), a main active compound isolated from Chinese medicine Chansu, has been shown to strongly inhibit cancer cell growth and inflammatory response. Gamabufotalin could inhibite angiogenesis by inhibiting the activation of VEGFR-2 signaling pathways. Gamabufotalin (Gamabufagin), a main active compound isolated from Chinese medicine Chansu, has been shown to strongly inhibit cancer cell growth and inflammatory response. Gamabufotalin could inhibite angiogenesis by inhibiting the activation of VEGFR-2 signaling pathways.

   

Marmesin

(2S)-2-(2-hydroxypropan-2-yl)-2,3-dihydrofuro[3,2-g]chromen-7-one

C14H14O4 (246.0892)


Marmesin is a member of psoralens and a tertiary alcohol. 2-(2-Hydroxypropan-2-yl)-2,3-dihydrofuro[3,2-g]chromen-7-one is a natural product found in Zanthoxylum beecheyanum, Zanthoxylum arnottianum, and other organisms with data available. Nodakenetin is found in wild celery. Nodakenetin is a constituent of Angelica species Constituent of Angelica subspecies Nodakenetin is found in wild celery. (+)-marmesin is a marmesin. It is an enantiomer of a nodakenetin. Marmesin is a natural product found in Coronilla scorpioides, Clausena dunniana, and other organisms with data available. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity. (+)-Marmesin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=13849-08-6 (retrieved 2024-09-04) (CAS RN: 13849-08-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Gracillin

(2S,3R,4R,5R,6S)-2-[(2R,3R,4S,5R,6R)-5-hydroxy-6-(hydroxymethyl)-2-[(1S,2S,4S,5R,6R,7S,8R,9S,12S,13R,16S)-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icos-18-ene-6,2-oxane]-16-yl]oxy-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-3-yl]oxy-6-methyloxane-3,4,5-triol

C45H72O17 (884.4769)


Gracillin is a triterpenoid. Gracillin is a natural product found in Dracaena draco, Clintonia udensis, and other organisms with data available. Gracillin is a steroidal saponin extracted from the roots of the plant and has anti-tumor properties. Gracillin is a steroidal saponin extracted from the roots of the plant and has anti-tumor properties.

   

Biochanin A

5,7-dihydroxy-3-(4-methoxyphenyl)-4H-chromen-4-one

C16H12O5 (284.0685)


Biochanin A is a member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone which is substituted by an additional hydroxy group at position 5 and a methoxy group at position 4. A phytoestrogen, it has putative benefits in dietary cancer prophylaxis. It has a role as a phytoestrogen, a plant metabolite, an EC 3.5.1.99 (fatty acid amide hydrolase) inhibitor, a tyrosine kinase inhibitor and an antineoplastic agent. It is a member of 7-hydroxyisoflavones and a member of 4-methoxyisoflavones. It is a conjugate acid of a biochanin A(1-). Biochanin A is under investigation in clinical trial NCT02174666 (Isoflavone Treatment for Postmenopausal Osteopenia.). biochanin A is a natural product found in Dalbergia oliveri, Dalbergia sissoo, and other organisms with data available. The phytoestrogen biochanin A is an isoflavone derivative isolated from red clover Trifolium pratense with anticarcinogenic properties. Treating MCF-7 human breast carcinoma cells with biochanin A alone caused the accumulation of CYP1A1 mRNA and an increase in CYP1A1-specific 7-ethoxyresorufin O-deethylase (EROD) activity in a dose dependent manner. Biochanin A may be a natural ligand to bind on aryl hydrocarbon receptor acting as an antagonist/agonist of the pathway. (A7920). Biochanin A suppress nuclear factor-kappaB-driven interleukin-6 (IL6) expression. In addition to its physiologic immune function as an acute stress cytokine, sustained elevated expression levels of IL6 promote chronic inflammatory disorders, aging frailty, and tumorigenesis. (A7921). Biochanin A induces a decrease in invasive activity of U87MG cells in a dose-related manner. (A7922). Biochanin A activates peroxisome proliferator-activated receptors (PPAR) PPARalpha, PPARgamma, and adipocyte differentiation in vitro of 3T3-L1 preadipocytes, suggesting potential value of isoflavones, especially biochanin A and their parent botanicals, as antidiabetic agents and for use in regulating lipid metabolism. (A7923). See also: Trifolium pratense flower (part of). The phytoestrogen biochanin A is an isoflavone derivative isolated from red clover Trifolium pratense with anticarcinogenic properties. Treating MCF-7 human breast carcinoma cells with biochanin A alone caused the accumulation of CYP1A1 mRNA and an increase in CYP1A1-specific 7-ethoxyresorufin O-deethylase (EROD) activity in a dose dependent manner. Biochanin A may be a natural ligand to bind on aryl hydrocarbon receptor acting as an antagonist/agonist of the pathway. (PMID: 16903077). Biochanin A suppress nuclear factor-kappaB-driven interleukin-6 (IL6) expression. In addition to its physiologic immune function as an acute stress cytokine, sustained elevated expression levels of IL6 promote chronic inflammatory disorders, aging frailty, and tumorigenesis. (PMID: 16651441). Biochanin A induces a decrease in invasive activity of U87MG cells in a dose-related manner. (PMID: 16598420). Biochanin A activates peroxisome proliferator-activated receptors (PPAR) PPARalpha, PPARgamma, and adipocyte differentiation in vitro of 3T3-L1 preadipocytes, suggesting potential value of isoflavones, especially biochanin A and their parent botanicals, as antidiabetic agents and for use in regulating lipid metabolism. (PMID: 16549448). A member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone which is substituted by an additional hydroxy group at position 5 and a methoxy group at position 4. A phytoestrogen, it has putative benefits in dietary cancer prophylaxis. Widespread isoflavone found in alfalfa (Medicago sativa), chick peas (Cicer arietinum) and white clover (Trifolium repens). Glycosides also widespread. Potential nutriceutical D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents CONFIDENCE standard compound; INTERNAL_ID 960; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9176; ORIGINAL_PRECURSOR_SCAN_NO 9175 CONFIDENCE standard compound; INTERNAL_ID 960; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4338; ORIGINAL_PRECURSOR_SCAN_NO 4335 CONFIDENCE standard compound; INTERNAL_ID 960; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9201; ORIGINAL_PRECURSOR_SCAN_NO 9199 CONFIDENCE standard compound; INTERNAL_ID 960; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9188; ORIGINAL_PRECURSOR_SCAN_NO 9183 CONFIDENCE standard compound; INTERNAL_ID 960; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4313; ORIGINAL_PRECURSOR_SCAN_NO 4310 CONFIDENCE standard compound; INTERNAL_ID 960; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9213; ORIGINAL_PRECURSOR_SCAN_NO 9210 CONFIDENCE standard compound; INTERNAL_ID 960; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4329; ORIGINAL_PRECURSOR_SCAN_NO 4326 CONFIDENCE standard compound; INTERNAL_ID 960; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9187; ORIGINAL_PRECURSOR_SCAN_NO 9186 CONFIDENCE standard compound; INTERNAL_ID 960; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4328; ORIGINAL_PRECURSOR_SCAN_NO 4326 CONFIDENCE standard compound; INTERNAL_ID 960; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4310; ORIGINAL_PRECURSOR_SCAN_NO 4307 CONFIDENCE standard compound; INTERNAL_ID 960; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9197; ORIGINAL_PRECURSOR_SCAN_NO 9194 IPB_RECORD: 181; CONFIDENCE confident structure Biochanin A is a naturally occurring fatty acid amide hydrolase (FAAH) inhibitor, which inhibits FAAH with IC50s of 1.8, 1.4 and 2.4 μM for mouse, rat, and human FAAH, respectively. Biochanin A is a naturally occurring fatty acid amide hydrolase (FAAH) inhibitor, which inhibits FAAH with IC50s of 1.8, 1.4 and 2.4 μM for mouse, rat, and human FAAH, respectively. Biochanin A is a naturally occurring fatty acid amide hydrolase (FAAH) inhibitor, which inhibits FAAH with IC50s of 1.8, 1.4 and 2.4 μM for mouse, rat, and human FAAH, respectively.

   

Icariin

5-hydroxy-2-(4-methoxyphenyl)-8-(3-methylbut-2-en-1-yl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C33H40O15 (676.2367)


Icariin is a member of the class of flavonols that is kaempferol which is substituted at position 8 by a 3-methylbut-2-en-1-yl group and in which the hydroxy groups at positions 3, 4, and 7 have been converted to the corresponding 6-deoxy-alpha-L-mannopyranoside, methyl ether, and beta-D-glucopyranoside, respectively. A phoshphodiesterase-5 inhibitor, it is obtained from several species of plants in the genus Epimedium and is thought to be the main active ingredient of the Chinese herbal medicine Herba Epimedii (yinyanghuo). It has a role as a bone density conservation agent, a phytoestrogen, an EC 3.1.4.35 (3,5-cyclic-GMP phosphodiesterase) inhibitor and an antioxidant. It is a glycosyloxyflavone and a member of flavonols. Icariin has been investigated for the basic science of the Pharmacokinetic Profile of Icariin in Humans. Icariin is a natural product found in Epimedium pubescens, Epimedium grandiflorum, and other organisms with data available. Origin: Plant, Pyrans Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.077 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.073 Icariin is a flavonol glycoside. Icariin inhibits PDE5 and PDE4 activities with IC50s of 432 nM and 73.50 μM, respectively. Icariin also is a PPARα activator. Icariin is a flavonol glycoside. Icariin inhibits PDE5 and PDE4 activities with IC50s of 432 nM and 73.50 μM, respectively. Icariin also is a PPARα activator. Icariin is a flavonol glycoside. Icariin inhibits PDE5 and PDE4 activities with IC50s of 432 nM and 73.50 μM, respectively. Icariin also is a PPARα activator.

   

trans-Isoasarone

17-(1,5-Dimethyl-hexyl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol; compound with 1,2,4-trimethoxy-5-propenyl-benzene (Alphaasarone and cholesterol)

C12H16O3 (208.1099)


Alpha-asarone is the trans-isomer of asarone. It has a role as an anticonvulsant and a GABA modulator. alpha-Asarone is a natural product found in Sphallerocarpus gracilis, Asarum hypogynum, and other organisms with data available. trans-Isoasarone is found in carrot. trans-Isoasarone is a constituent of Asarum species and carrot seed (Daucus carota) (CCD) Constituent of Asarum subspecies and carrot seed (Daucus carota) (CCD). trans-Isoasarone is found in wild carrot and carrot. D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D009676 - Noxae > D002273 - Carcinogens D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents The trans-isomer of asarone. alpha-Asarone (α-Asarone) is one of the main psychoactive compounds, and possesses an antidepressant-like activity in mice. alpha-Asarone (α-Asarone) is one of the main psychoactive compounds, and possesses an antidepressant-like activity in mice. alpha-Asarone (α-Asarone) is one of the main psychoactive compounds, and possesses an antidepressant-like activity in mice. Beta-asarone is a major ingredient of Acorus tatarinowii Schott, penetrates blood brain barrier, with the properties of immunosuppression, central nervous system inhibition, sedation, and hypothermy. Beta-asarone protects against Parkinson’s disease[1]. Beta-asarone is a major ingredient of Acorus tatarinowii Schott, penetrates blood brain barrier, with the properties of immunosuppression, central nervous system inhibition, sedation, and hypothermy. Beta-asarone protects against Parkinson’s disease[1].

   

Collettiside I

(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-[(1S,2S,4S,5R,6R,7S,8R,9S,12S,13R,16S)-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icos-18-ene-6,2-oxane]-16-yl]oxyoxane-3,4,5-triol

C33H52O8 (576.3662)


Diosgenin 3-O-beta-D-glucoside is a sterol 3-beta-D-glucoside having diosgenin as the sterol component. It has a role as a metabolite. It is a sterol 3-beta-D-glucoside, a monosaccharide derivative, a hexacyclic triterpenoid and a spiroketal. It is functionally related to a diosgenin. It derives from a hydride of a spirostan. Disogluside is a natural product found in Allium rotundum, Allium narcissiflorum, and other organisms with data available. Capsicoside A3 is found in herbs and spices. Capsicoside A3 is a constituent of Capsicum annuum roots. C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent Diosgenin glucoside, a saponin compound extracted from Trillium tschonoskii, provides neuroprotection by regulating microglial M1 polarization. Diosgenin glucoside protects against spinal cord injury by regulating autophagy and alleviating apoptosis [1][2]. Diosgenin glucoside, a saponin compound extracted from Trillium tschonoskii, provides neuroprotection by regulating microglial M1 polarization. Diosgenin glucoside protects against spinal cord injury by regulating autophagy and alleviating apoptosis [1][2].

   

Isofraxidin

7-Hydroxy-6,8-dimethoxy-2H-1-benzopyran-2-one

C11H10O5 (222.0528)


Isofraxidin, also known as 6,8-dimethoxy-7-hydroxycoumarin or 7-hydroxy-6,8-dimethoxy-2h-1-benzopyran-2-one, is a member of the class of compounds known as 7-hydroxycoumarins. 7-hydroxycoumarins are coumarins that contain one or more hydroxyl groups attached to the C7 position the coumarin skeleton. Isofraxidin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isofraxidin can be found in muskmelon, tarragon, and watermelon, which makes isofraxidin a potential biomarker for the consumption of these food products. Isofraxidin is a chemical compound found in a variety of plants including Eleutherococcus senticosus . Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2]. Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2].

   

Cordycepin

(2R,3R,5S)-2-(6-amino-9H-purin-9-yl)-5-(hydroxymethyl)tetrahydrofuran-3-ol

C10H13N5O3 (251.1018)


Cordycepin is a 3-deoxyribonucleoside and a member of adenosines. It has a role as an antimetabolite and a nucleoside antibiotic. Cordycepin has been used in trials studying the treatment of Leukemia. Cordycepin is a natural product found in Aspergillus nidulans, Streptomyces sparsogenes, and other organisms with data available. Cordycepin is a purine nucleoside antimetabolite and antibiotic isolated from the fungus Cordyceps militaris with potential antineoplastic, antioxidant, and anti-inflammatory activities. Cordycepin is an inhibitor of polyadenylation, activates AMP-activated protein kinase (AMPK) and reduces mammalian target of rapamycin (mTOR) signaling, which may result in both the induction of tumor cell apoptosis and a decrease in tumor cell proliferation. mTOR, a serine/threonine kinase belonging to the phosphatidylinositol 3-kinase (PI3K)-related kinase (PIKK) family, plays an important role in the PI3K/AKT/mTOR signaling pathway that regulates cell growth and proliferation, and its expression or activity is frequently dysregulated in human cancers. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D009676 - Noxae > D009153 - Mutagens D000970 - Antineoplastic Agents Cordycepin (3'-Deoxyadenosine) is a nucleoside derivative and inhibits IL-1β-induced MMP-1 and MMP-3 expression in rheumatoid arthritis synovial fibroblasts (RASFs) in a dose-dependent manner[1]. Cordycepin kills Mycobacterium tuberculosis through hijacking the bacterial adenosine kinase[2]. Cordycepin (3'-Deoxyadenosine) is a nucleoside derivative and inhibits IL-1β-induced MMP-1 and MMP-3 expression in rheumatoid arthritis synovial fibroblasts (RASFs) in a dose-dependent manner[1]. Cordycepin kills Mycobacterium tuberculosis through hijacking the bacterial adenosine kinase[2]. Cordycepin (3'-Deoxyadenosine) is a nucleoside derivative and inhibits IL-1β-induced MMP-1 and MMP-3 expression in rheumatoid arthritis synovial fibroblasts (RASFs) in a dose-dependent manner[1]. Cordycepin kills Mycobacterium tuberculosis through hijacking the bacterial adenosine kinase[2].

   

Gastrodin

(2R,3S,4S,5R,6S)-2-(hydroxymethyl)-6-(4-(hydroxymethyl)phenoxy)-tetrahydro-2H-pyran-3,4,5-triol

C13H18O7 (286.1052)


Gastrodin is a glycoside. Gastrodin is a natural product found in Cyrtosia septentrionalis, Dactylorhiza hatagirea, and other organisms with data available. See also: Gastrodia elata tuber (part of). Gastrodin, a main constituent of a Chinese herbal medicine Tianma, has been known to display anti-inflammatory effects. Gastrodin, has long been used for treating dizziness, epilepsy, stroke and dementia. Gastrodin, a main constituent of a Chinese herbal medicine Tianma, has been known to display anti-inflammatory effects. Gastrodin, has long been used for treating dizziness, epilepsy, stroke and dementia.

   

Glycocholic acid

((R)-4-((3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoyl)glycine;Glycocholic acid

C26H43NO6 (465.309)


Glycocholic acid is an acyl glycine and a bile acid-glycine conjugate. It is a secondary bile acid produced by the action of enzymes existing in the microbial flora of the colonic environment. Bacteroides, Bifidobacterium, Clostridium and Lactobacillus are involved in bile acid metabolism and produce glycocholic acid (PMID: 6265737; 10629797). In hepatocytes, both primary and secondary bile acids undergo amino acid conjugation at the C-24 carboxylic acid on the side chain, and almost all bile acids in the bile duct therefore exist in a glycine conjugated form (PMID: 16949895). More specifically, glycocholic acid or cholylglycine, is a crystalline bile acid involved in the emulsification of fats. It occurs as a sodium salt in the bile of mammals. Its anion is called glycocholate. As the glycine conjugate of cholic acid, this compound acts as a detergent to solubilize fats for absorption and is itself absorbed (PubChem). Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). Glycocholic acid is found to be associated with alpha-1-antitrypsin deficiency, which is an inborn error of metabolism. Glycocholic acid is a bile acid glycine conjugate having cholic acid as the bile acid component. It has a role as a human metabolite. It is functionally related to a cholic acid and a glycochenodeoxycholic acid. It is a conjugate acid of a glycocholate. Glycocholic acid is a natural product found in Caenorhabditis elegans and Homo sapiens with data available. The glycine conjugate of CHOLIC ACID. It acts as a detergent to solubilize fats for absorption and is itself absorbed. Glycocholic acid, or cholylglycine, is a crystalline bile acid involved in the emulsification of fats. It occurs as a sodium salt in the bile of mammals. It is a conjugate of cholic acid with glycine. Its anion is called glycocholate. [Wikipedia] A bile acid glycine conjugate having cholic acid as the bile acid component. Glycocholic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=475-31-0 (retrieved 2024-07-01) (CAS RN: 475-31-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1]. Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1].

   

Rotenone

[1]Benzopyrano[3,4-b]furo[2,3-h][1]benzopyran-6(6aH)-one, 1,2,12,12a-tetrahydro-8,9-dimethoxy-2-(1-methylethenyl)-, [2R-(2alpha,6aalpha,12aalpha)]-

C23H22O6 (394.1416)


Rotenone appears as colorless to brownish crystals or a white to brownish-white crystalline powder. Has neither odor nor taste. (NTP, 1992) Rotenone is a member of the class of rotenones that consists of 1,2,12,12a-tetrahydrochromeno[3,4-b]furo[2,3-h]chromen-6(6aH)-one substituted at position 2 by a prop-1-en-2-yl group and at positions 8 and 9 by methoxy groups (the 2R,6aS,12aS-isomer). A non-systemic insecticide, it is the principal insecticidal constituent of derris (the dried rhizome and root of Derris elliptica). It has a role as a phytogenic insecticide, a mitochondrial NADH:ubiquinone reductase inhibitor, a metabolite, an antineoplastic agent, a toxin and a piscicide. It is an organic heteropentacyclic compound and a member of rotenones. Rotenone is an isoflavone compound that naturally occurs in the jicama vine plant as well as many Fabaceae plants. It has broad spectrum insecticide and pesticide activity and is also toxic to fish. Rotenone is a natural product found in Pachyrhizus erosus, Millettia ferruginea, and other organisms with data available. Rotenone is a naturally occurring organic heteropentacyclic compound and member of rotenones that is found in the roots of several plant species. It is a mitochondrial NADH:ubiquinone reductase inhibitor, toxin, and metabolite, and is used as an antineoplastic agent and insecticide. It is characterized as a colorless to brownish or a white to brownish-white crystalline solid that is odorless. Exposure occurs by inhalation, ingestion, or contact. Rotenone is found in jicama. Rotenone is widely distributed in the Leguminosae (Papilionoideae) e.g. Pachyrrhizus erosus (yam bean).Rotenone is an odorless chemical that is used as a broad-spectrum insecticide, piscicide, and pesticide. It occurs naturally in the roots and stems of several plants such as the jicama vine plant. In mammals, including humans, it is linked to the development of Parkinsons disease. (Wikipedia) Rotenone has been shown to exhibit apoptotic, neuroprotectant and neuroprotective functions (A7776, A7777, A7777).Rotenone belongs to the family of Rotenoids. These are phenolic compounds containing aA cis-fused tetrahydrochromeno[3,4-b]chromenenucleus. Many rotenoids contain an additional ring, e.g rotenone[1]. (Reference: [1] IUPAC. Compendium of Chemical Terminology, 2nd ed. (the Gold Book). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: http://goldbook.iupac.org (2006-) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. ISBN 0-9678550-9-8. doi:10.1351/goldbook. (PAC, 1995, 67, 1307 (Glossary of class names of organic compounds and reactivity intermediates based on structure (IUPAC Recommendations 1995)) on page 1364)). A botanical insecticide that is an inhibitor of mitochondrial electron transport. Rotenone is found in jicama. Rotenone is widely distributed in the Leguminosae (Papilionoideae) e.g. Pachyrrhizus erosus (yam bean).Rotenone is an odorless chemical that is used as a broad-spectrum insecticide, piscicide, and pesticide. It occurs naturally in the roots and stems of several plants such as the jicama vine plant. In mammals, including humans, it is linked to the development of Parkinsons disease. A member of the class of rotenones that consists of 1,2,12,12a-tetrahydrochromeno[3,4-b]furo[2,3-h]chromen-6(6aH)-one substituted at position 2 by a prop-1-en-2-yl group and at positions 8 and 9 by methoxy groups (the 2R,6aS,12aS-isomer). A non-systemic insecticide, it is the principal insecticidal constituent of derris (the dried rhizome and root of Derris elliptica). Widely distrib. in the Leguminosae (Papilionoideae) e.g. Pachyrrhizus erosus (yam bean) D004791 - Enzyme Inhibitors > D014475 - Uncoupling Agents D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Rotenone is a mitochondrial electron transport chain complex I inhibitor. Rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. Rotenone is a mitochondrial electron transport chain complex I inhibitor. Rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. Rotenone is a mitochondrial electron transport chain complex I inhibitor. Rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production.

   

Astragaloside IV

(2R,3R,4S,5S,6R)-2-(((2aR,3R,4S,5aS,5bS,7S,7aR,9S,11aR,12aS)-4-hydroxy-3-((2R,5S)-5-(2-hydroxypropan-2-yl)-2-methyltetrahydrofuran-2-yl)-2a,5a,8,8-tetramethyl-9-(((2S,3R,4S,5R)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)oxy)tetradecahydro-1H,12H-cyclopenta[a]cyclopropa[e]phenanthren-7-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C41H68O14 (784.4609)


Astragaloside IV is a pentacyclic triterpenoid that is cycloastragenol having beta-D-xylopyranosyl and beta-D-glucopyranosyl residues attached at positions O-3 and O-6 respectively. It is isolated from Astragalus membranaceus var mongholicus. It has a role as an EC 4.2.1.1 (carbonic anhydrase) inhibitor, an anti-inflammatory agent, a neuroprotective agent, an antioxidant, a pro-angiogenic agent and a plant metabolite. It is a triterpenoid saponin and a pentacyclic triterpenoid. It is functionally related to a cycloastragenol. Astragaloside IV is a natural product found in Euphorbia glareosa, Astragalus ernestii, and other organisms with data available. A pentacyclic triterpenoid that is cycloastragenol having beta-D-xylopyranosyl and beta-D-glucopyranosyl residues attached at positions O-3 and O-6 respectively. It is isolated from Astragalus membranaceus var mongholicus. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells.

   

Spinosin

6-((2S,3R,4S,5S,6R)-4,5-Dihydroxy-6-(hydroxymethyl)-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2-yl)-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4H-chromen-4-one

C28H32O15 (608.1741)


Spinosin is a flavone C-glycoside that is flavone substituted by hydroxy groups at positions 5 and 4, a methoxy group at position 7 and a 2-O-beta-D-glucopyranosyl-beta-D-glucopyranosyl residue at position 6 via a C-glycosidic linkage. It has a role as a plant metabolite and an anxiolytic drug. It is a flavone C-glycoside, a dihydroxyflavone and a monomethoxyflavone. It is functionally related to a flavone. Spinosin is a natural product found in Clutia abyssinica, Galipea trifoliata, and other organisms with data available. A flavone C-glycoside that is flavone substituted by hydroxy groups at positions 5 and 4, a methoxy group at position 7 and a 2-O-beta-D-glucopyranosyl-beta-D-glucopyranosyl residue at position 6 via a C-glycosidic linkage. Spinosyn a C-glycoside flavonoid isolated from the seeds of Zizyphus jujube, with neuroprotective effects. Spinosin inhibits Aβ1-42 production and aggregation via activating Nrf2/HO-1 pathway[1][2][3]. Spinosyn a C-glycoside flavonoid isolated from the seeds of Zizyphus jujube, with neuroprotective effects. Spinosin inhibits Aβ1-42 production and aggregation via activating Nrf2/HO-1 pathway[1][2][3].

   

Calycosin

4H-1-Benzopyran-4-one, 7-hydroxy-3-(3-hydroxy-4-methoxyphenyl)-

C16H12O5 (284.0685)


Calycosin is a member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone which is substituted by an additional hydroxy group at the 3 position and a methoxy group at the 4 position. It has a role as a metabolite and an antioxidant. It is a member of 7-hydroxyisoflavones and a member of 4-methoxyisoflavones. It is functionally related to an isoflavone. It is a conjugate acid of a calycosin(1-). Calycosin is a natural product found in Thermopsis lanceolata, Hedysarum polybotrys, and other organisms with data available. A polyphenol metabolite detected in biological fluids [PhenolExplorer] Calycosin is a natural compound with antioxidant and anti-inflammatory activity. Calycosin is a natural compound with antioxidant and anti-inflammatory activity.

   

Lycorine

1H-[1,3]Dioxolo[4,5-j]pyrrolo[3,2,1-de]phenanthridine-1,2-diol, 2,4,5,7,12b,12c-hexahydro-, (1S,2S,12bS,12cS)-

C16H17NO4 (287.1158)


Lycorine is an indolizidine alkaloid that is 3,12-didehydrogalanthan substituted by hydroxy groups at positions and 2 and a methylenedioxy group across positions 9 and 10. Isolated from Crinum asiaticum, it has been shown to exhibit antimalarial activity. It has a role as a protein synthesis inhibitor, an antimalarial, a plant metabolite and an anticoronaviral agent. It derives from a hydride of a galanthan. Lycorine is a natural product found in Sternbergia clusiana, Pancratium trianthum, and other organisms with data available. Lycorine is a toxic crystalline alkaloid found in various Amaryllidaceae species, such as the cultivated bush lily (Clivia miniata), surprise lilies (Lycoris), and daffodils (Narcissus). It may be highly poisonous, or even lethal, when ingested in certain quantities. Symptoms of lycorine toxicity are vomiting, diarrhea, and convulsions. Lycorine, definition at mercksource.com Regardless, it is sometimes used medicinally, a reason why some groups may harvest the very popular Clivia miniata. An indolizidine alkaloid that is 3,12-didehydrogalanthan substituted by hydroxy groups at positions and 2 and a methylenedioxy group across positions 9 and 10. Isolated from Crinum asiaticum, it has been shown to exhibit antimalarial activity. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.144 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.136 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.138 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2316 INTERNAL_ID 2316; CONFIDENCE Reference Standard (Level 1) [Raw Data] CBA60_Lycorine_pos_30eV.txt [Raw Data] CBA60_Lycorine_pos_10eV.txt [Raw Data] CBA60_Lycorine_pos_50eV.txt [Raw Data] CBA60_Lycorine_pos_40eV.txt [Raw Data] CBA60_Lycorine_pos_20eV.txt Lycorine is a natural alkaloid extracted from the Amaryllidaceae plant. Lycorine is a potent and orally active SCAP inhibitor with a Kd value 15.24 nM. Lycorine downregulates the SCAP protein level without changing its transcription[2]. Lycorine is also a melanoma vasculogenic inhibitor[3]. Lycorine can be used for the study of prostate cancer and metabolic diseases[2].
Lycorine is a natural alkaloid extracted from the Amaryllidaceae plant. Lycorine is a potent and orally active SCAP inhibitor with a Kd value 15.24 nM. Lycorine downregulates the SCAP protein level without changing its transcription[2]. Lycorine is also a melanoma vasculogenic inhibitor[3]. Lycorine can be used for the study of prostate cancer and metabolic diseases[2].
Lycorine is a natural alkaloid extracted from the Amaryllidaceae plant. Lycorine is a potent and orally active SCAP inhibitor with a Kd value 15.24 nM. Lycorine downregulates the SCAP protein level without changing its transcription[2]. Lycorine is also a melanoma vasculogenic inhibitor[3]. Lycorine can be used for the study of prostate cancer and metabolic diseases[2].

   

Haematoxylin

Benz(b)indeno(1,2-d)pyran-3,4,6a,9,10(6H)-pentol, 7,11b-dihydro-, (6aS,11bR)-

C16H14O6 (302.079)


An organic heterotetracyclic compound 7,11b-dihydroindeno[2,1-c]chromene carrying five hydroxy substituents at positions 3, 4, 6a, 9 and 10. The most important and most used dye in histology, histochemistry, histopathology and in cytology. Hematoxylin appears as white to yellowish crystals that redden on exposure to light. (NTP, 1992) (+)-haematoxylin is a haematoxylin. It is an enantiomer of a (-)-haematoxylin. Hematoxylin is a natural product found in Haematoxylum brasiletto and Haematoxylum campechianum with data available. A dye obtained from the heartwood of logwood (Haematoxylon campechianum Linn., Leguminosae) used as a stain in microscopy and in the manufacture of ink. D004396 - Coloring Agents

   

Protodioscin

2-[(4-hydroxy-6-{[6-hydroxy-7,9,13-trimethyl-6-(3-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl)-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-16-yl]oxy}-2-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

C51H84O22 (1048.5454)


Protodioscin is a spirostanyl glycoside that consists of the trisaccharide alpha-L-Rha-(1->4)-[alpha-L-Rha-(1->2)]-beta-D-Glc attached to position 3 of 26-(beta-D-glucopyranosyloxy)-3beta,22-dihydroxyfurost-5-ene via a glycosidic linkage. Found in several plant species including yams, asparagus and funugreek. It has a role as a metabolite. It is a steroid saponin, a trisaccharide derivative, a beta-D-glucoside, a pentacyclic triterpenoid and a cyclic hemiketal. It is functionally related to a diosgenin. It derives from a hydride of a spirostan. Protodioscin is a natural product found in Dracaena draco, Borassus flabellifer, and other organisms with data available. See also: Fenugreek seed (part of). Asparasaponin I is found in fenugreek. Asparasaponin I is a bitter principle from white asparagus shoots (Asparagus officinalis) and fenugreek (Trigonella foenum-graecum From Asparagus officinalis (asparagus) Protodioscin, a major steroidal saponin in Trigonella foenum-graecum Linn., has been shown to exhibit multiple biological actions, such as anti-hyperlipidemia, anti-cancer, sexual effects and cardiovascular properties. Protodioscin, a major steroidal saponin in Trigonella foenum-graecum Linn., has been shown to exhibit multiple biological actions, such as anti-hyperlipidemia, anti-cancer, sexual effects and cardiovascular properties.

   

Ursolic acid

(1S,2R,4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O3 (456.3603)


Ursolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. Ursolic acid (UA), a pentacyclic triterpene acid, has been isolated from many kinds of medicinal plants, such as Eriobotrya japonica, Rosmarinns officinalis, Melaleuca leucadendron, Ocimum sanctum and Glechoma hederaceae. UA has been reported to produce antitumor activities and antioxidant activity, and is reported to have an antioxidant activity. UA may play an important role in regulating the apoptosis induced by high glucose presumably through scavenging of ROS (reactive oxygen species). It has been found recently that ursolic acid treatment affects growth and apoptosis in cancer cells. (PMID: 15994040, 17516235, 17213663). Ursolic acid is a pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite and a geroprotector. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It derives from a hydride of an ursane. Ursolic acid is a natural product found in Gladiolus italicus, Freziera, and other organisms with data available. Ursolic Acid is a pentacyclic triterpenoid found in various fruits, vegetables and medicinal herbs, with a variety of potential pharmacologic activities including anti-inflammatory, antioxidative, antiviral, serum lipid-lowering, and antineoplastic activities. Upon administration, ursolic acid may promote apoptosis and inhibit cancer cell proliferation through multiple mechanisms. This may include the regulation of mitochondrial function through various pathways including the ROCK/PTEN and p53 pathways, the suppression of the nuclear factor-kappa B (NF-kB) pathways, and the increase in caspase-3, caspase-8 and caspase-9 activities. See also: Holy basil leaf (part of); Jujube fruit (part of); Lagerstroemia speciosa leaf (part of). D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors A pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent Found in wax of apples, pears and other fruits. V. widely distributed in plants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

   

Sinomenine

(1R,9S,10R)-3-Hydroxy-4,12-dimethoxy-17-methyl-17-azatetracyclo[7.5.3.01,10.02,7]heptadeca-2(7),3,5,11-tetraen-13-one

C19H23NO4 (329.1627)


Sinomenine is a morphinane alkaloid. Sinomenine is a natural product found in Sinomenium acutum, Stephania cephalantha, and other organisms with data available. Sinomenine is an alkaloid isolated from the root of Sinomenium acutum with immunomodulatory and potential anti-angiogenic and activities. Although the mechanism of action remains to be fully elucidated, sinomenine appears to inhibit endothelial proliferation mediated through basic fibroblast growth factor (bFGF), which may contribute to its anti-angiogenic effect. In Chinese medicine, this agent has a long track-record in treating arthritis, which is accounted by its ability to inhibit proliferation of synovial fibroblasts and lymphocytes. In addition, sinomenine has been shown to suppress expressions of genes involved in inflammation and apoptosis, such as interleukin-6, a pleiotropic inflammatory cytokine and JAK3 (Janus kinase 3), Daxx (death-associated protein 6), plus HSP27 (heat shock 27kDa protein 1), respectively. D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor C308 - Immunotherapeutic Agent > C2139 - Immunostimulant D018501 - Antirheumatic Agents Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.366 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.360 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.362 Sinomenine, an alkaloid extracted from?Sinomenium acutum, is a blocker of the NF-κB activation[1]. Sinomenine also is an activator of μ-opioid receptor[2]. Sinomenine, an alkaloid extracted from?Sinomenium acutum, is a blocker of the NF-κB activation[1]. Sinomenine also is an activator of μ-opioid receptor[2]. Sinomenine, an alkaloid extracted from?Sinomenium acutum, is a blocker of the NF-κB activation[1]. Sinomenine also is an activator of μ-opioid receptor[2].

   

Gynosaponin S

2-{[2-(16-hydroxy-2,6,6,10,11-pentamethyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl)-6-methylhept-5-en-2-yl]oxy}-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C48H82O18 (946.5501)


Gypenoside XVII is a ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 3 and 20 have been converted to the corresponding beta-D-glucopyranoside and beta-D-glucopyranosyl-(1->6)-beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite. It is a 12beta-hydroxy steroid, a beta-D-glucoside, a disaccharide derivative, a ginsenoside and a tetracyclic triterpenoid. It derives from a hydride of a dammarane. Gypenoside XVII is a natural product found in Panax vietnamensis, Gynostemma pentaphyllum, and other organisms with data available. Gynosaponin S is found in tea. Gynosaponin S is a constituent of Panax species. Constituent of Panax subspecies Gynosaponin S is found in tea. Gypenoside XVII, a novel phytoestrogen belonging to the gypenosides, can activate estrogen receptors. Gypenoside XVII, a novel phytoestrogen belonging to the gypenosides, can activate estrogen receptors.

   

Acacetin

4H-1-BENZOPYRAN-4-ONE, 5,7-DIHYDROXY-2-(4-METHOXYPHENYL)-

C16H12O5 (284.0685)


5,7-dihydroxy-4-methoxyflavone is a monomethoxyflavone that is the 4-methyl ether derivative of apigenin. It has a role as an anticonvulsant and a plant metabolite. It is a dihydroxyflavone and a monomethoxyflavone. It is functionally related to an apigenin. It is a conjugate acid of a 5-hydroxy-2-(4-methoxyphenyl)-4-oxo-4H-chromen-7-olate. Acacetin is a natural product found in Verbascum lychnitis, Odontites viscosus, and other organisms with data available. Acacetin (5,7-Dihydroxy-4'-methoxyflavone) is an orally active flavonoid derived from Dendranthema morifolium. Acacetin docks in the ATP binding pocket of PI3Kγ. Acacetin causes cell cycle arrest and induces apoptosis and autophagy in cancer cells. Acacetin has potent anti-cancer and anti-inflammatory activity and has the potential for pain-related diseases research[1][2]. Acacetin (5,7-Dihydroxy-4'-methoxyflavone) is an orally active flavonoid derived from Dendranthema morifolium. Acacetin docks in the ATP binding pocket of PI3Kγ. Acacetin causes cell cycle arrest and induces apoptosis and autophagy in cancer cells. Acacetin has potent anti-cancer and anti-inflammatory activity and has the potential for pain-related diseases research[1][2].

   

Dendrobine

7,5-(Epoxymethano)-1H-cyclopent[cd]indol-9-one,decahydro-1,7b-dimethyl-6-(1-methylethyl)-, (2aS,4aS,5R,6S,7R,7aS,7bR)-

C16H25NO2 (263.1885)


Dendrobine is a member of indoles. Dendroban-12-one is a natural product found in Dendrobium chrysanthum, Dendrobium linawianum, and Dendrobium nobile with data available. Dendrobine is an alkaloid isolated from Dendrobium nobile. Dendrobine possesses antiviral activity against influenza A viruses, with IC50s of 3.39 μM, 2.16 μM and 5.32 μM for A/FM-1/1/47 (H1N1), A/Puerto Rico/8/34 H274Y (H1N1) and A/Aichi/2/68 (H3N2), respectively[1]. Dendrobine is an alkaloid isolated from Dendrobium nobile. Dendrobine possesses antiviral activity against influenza A viruses, with IC50s of 3.39 μM, 2.16 μM and 5.32 μM for A/FM-1/1/47 (H1N1), A/Puerto Rico/8/34 H274Y (H1N1) and A/Aichi/2/68 (H3N2), respectively[1].

   

Vitexin 6'-O-malonyl 2'-O-xyloside

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-4H-chromen-4-one

C21H20O10 (432.1056)


Vitexin 6-o-malonyl 2-o-xyloside, also known as apigenin 8-C-glucoside or 8-glycosyl-apigenin, is a member of the class of compounds known as flavonoid 8-c-glycosides. Flavonoid 8-c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to 8-position of a 2-phenylchromen-4-one flavonoid backbone. Vitexin 6-o-malonyl 2-o-xyloside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Vitexin 6-o-malonyl 2-o-xyloside can be synthesized from apigenin. Vitexin 6-o-malonyl 2-o-xyloside is also a parent compound for other transformation products, including but not limited to, vitexin 2-O-beta-L-rhamnoside, 7-O-methylvitexin 2-O-beta-L-rhamnoside, and vitexin 2-O-beta-D-glucoside. Vitexin 6-o-malonyl 2-o-xyloside can be found in common beet, which makes vitexin 6-o-malonyl 2-o-xyloside a potential biomarker for the consumption of this food product. Vitexin, also known as apigenin 8-C-glucoside or 8-glycosylapigenin, belongs to the class of organic compounds known as flavonoid 8-C-glycosides. Flavonoid 8-C-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to 8-position of a 2-phenylchromen-4-one flavonoid backbone. Vitexin is also described as an apigenin flavone glucoside. Vitexin has been found in passion flower, chasteberry, bamboo leaves, millet and Hawthorn. Vitexin has shown a wide range of pharmacological effects, such as antioxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects (PMID: 27693342). Vitexin has also been shown to directly inhibit thyroid peroxidase and potentially contributes to goiter (PMID: 1696490). It is sometimes called a goitrogen. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA68_Vitexin_neg_10eV.txt [Raw Data] CBA68_Vitexin_neg_30eV.txt [Raw Data] CBA68_Vitexin_pos_20eV.txt [Raw Data] CBA68_Vitexin_neg_50eV.txt [Raw Data] CBA68_Vitexin_neg_40eV.txt [Raw Data] CBA68_Vitexin_pos_40eV.txt [Raw Data] CBA68_Vitexin_pos_30eV.txt [Raw Data] CBA68_Vitexin_pos_10eV.txt [Raw Data] CBA68_Vitexin_neg_20eV.txt Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].

   

Ginsenoside Rg3

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-2-[[(3S,5R,8R,9R,10R,12R,13R,14R,17S)-12-hydroxy-17-[(2S)-2-hydroxy-6-methylhept-5-en-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]-6-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O13 (784.4973)


(20S)-ginsenoside Rg3 is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy group at position 3 has been converted to the corresponding beta-D-glucopyranosyl-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. It has a role as an apoptosis inducer, an antineoplastic agent, a plant metabolite and an angiogenesis modulating agent. It is a ginsenoside, a tetracyclic triterpenoid and a glycoside. It is functionally related to a (20S)-protopanaxadiol. It derives from a hydride of a dammarane. Ginsenoside Rg3 is a natural product found in Panax ginseng, Panax notoginseng, and other organisms with data available. (20R)-Ginsenoside Rg3 is found in tea. (20R)-Ginsenoside Rg3 is isolated from Panax ginseng (ginseng). D000970 - Antineoplastic Agents 20(S)-Ginsenoside Rg3 is the main component of Panax ginseng C. A. Meyer. Ginsenoside Rg3 inhibits Na+ and hKv1.4 channel with IC50s of 32.2±4.5 and 32.6±2.2 μM, respectively. 20(S)-Ginsenoside Rg3 also inhibits Aβ levels, NF-κB activity, and COX-2 expression. 20(S)-Ginsenoside Rg3 is the main component of Panax ginseng C. A. Meyer. Ginsenoside Rg3 inhibits Na+ and hKv1.4 channel with IC50s of 32.2±4.5 and 32.6±2.2 μM, respectively. 20(S)-Ginsenoside Rg3 also inhibits Aβ levels, NF-κB activity, and COX-2 expression.

   

Morroniside

Methyl (1S,3R,4aS,8S,8aS)-3-hydroxy-1-methyl-8-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4,4a,8,8a-tetrahydro-1H,3H-pyrano[3,4-c]pyran-5-carboxylate

C17H26O11 (406.1475)


Morroniside is a glycoside. Morroniside is a natural product found in Lonicera japonica, Tripterospermum japonicum, and other organisms with data available. Morroniside has neuroprotective effect by inhibiting neuron apoptosis and MMP2/9 expression. Morroniside has neuroprotective effect by inhibiting neuron apoptosis and MMP2/9 expression.

   

codonolactone

[4aS-(4aalpha,8abeta,9abeta)]-4a,5,6,7,8,8a,9,9a-Octahydro-9a-hydroxy-3,8a-dimethyl-5-methylenenaphtho[2,3-b]furan-2(4H)-one

C15H20O3 (248.1412)


Atractylenolide III is a naphthofuran. It has a role as a metabolite. Atractylenolide III is a natural product found in Codonopsis canescens, Codonopsis subglobosa, and other organisms with data available. A natural product found in Atractylodes lancea. Atractylenolide-III is the main component of Atractylodes rhizome and has the activity of inducing apoptosis in lung cancer cells. Atractylenolide-III is the main component of Atractylodes rhizome and has the activity of inducing apoptosis in lung cancer cells.

   

trans-3,3',4',5,5',7-Hexahydroxyflavanone

4H-1-Benzopyran-4-one, 2,3-dihydro-3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-, (2R-trans)-

C15H12O8 (320.0532)


(+)-dihydromyricetin is an optically active form of dihydromyricetin having (2R,3R)-configuration. It has a role as a metabolite, an antioxidant and an antineoplastic agent. It is a secondary alpha-hydroxy ketone and a dihydromyricetin. It is an enantiomer of a (-)-dihydromyricetin. Dihydromyricetin is under investigation in clinical trial NCT03606694 (Effect of Dihydromirycetin on Glycemic Control, Insulin Sensitivity and Insulin Secretion in Type 2 Diabetes Mellitus). Dihydromyricetin is a naturally occurring flavonoid found in the many plant species and is thought to be the active ingredient of several traditional Japanese, Chinese, and Korean medicines that are used to treat fever, parasite infections, liver diseases, and hangovers. Dihydromyricetin preparations have not been linked to instances of serum enzyme elevations or clinically apparent liver injury with jaundice. Dihydromyricetin is a natural product found in Vitis rotundifolia, Catha edulis, and other organisms with data available. (±)-trans-3,3,4,5,5,7-Hexahydroxyflavanone is found in tea. (±)-trans-3,3,4,5,5,7-Hexahydroxyflavanone is a constituent of Camellia sinensis (Chinese green tea). Constituent of Camellia sinensis (Chinese green tea). (±)-Dihydromyricetin is found in tea. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM.

   

Farrerol

(2S)-2,3-Dihydro-5,7-dihydroxy-2- (4-hydroxyphenyl)-6,8-dimethyl-4H-1-benzopyran-4-one

C17H16O5 (300.0998)


Farrerol is an organic molecular entity. It has a role as a metabolite. (S)-2,3-Dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-6,8-dimethyl-4-benzopyrone is a natural product found in Rhododendron spinuliferum, Wikstroemia canescens, and other organisms with data available. Farrerol is a bioactive constituent of Rhododendron, with broad activities such as anti-oxidative, anti-inflammatory, anti-tumor, neuroprotective and hepatoprotective effects[1][2][3][4][5][6]. Farrerol is a bioactive constituent of Rhododendron, with broad activities such as anti-oxidative, anti-inflammatory, anti-tumor, neuroprotective and hepatoprotective effects[1][2][3][4][5][6].

   

Isotetrandrine

(1S,14S)-9,20,21,25-tetramethoxy-15,30-dimethyl-7,23-dioxa-15,30-diazaheptacyc lo[22.6.2.2<3,6>.1<8,12>.1<14,18>.0<22,36>.0<27,31>]hexatriaconta-3(33),4,6(34 ),8(35),9,11,18(36),19,21,24,26,31-dodecaene

C38H42N2O6 (622.3043)


(+)-Tetrandrine is a member of isoquinolines and a bisbenzylisoquinoline alkaloid. Tetrandrine is a natural product found in Pachygone dasycarpa, Cyclea barbata, and other organisms with data available. Tetrandrine is a natural, bis-benzylisoquinoline alkaloid isolated from the root of the plant Radix stephania tetrandrae. Tetrandrine non-selectively inhibits calcium channel activity and induces G1 blockade of the G1 phase of the cell cycle and apoptosis in various cell types, resulting in immunosuppressive, anti-proliferative and free radical scavenging effects. This agent also increases glucose utilization by enhancing hepatocyte glycogen synthesis, resulting in the lowering of plasma glucose. (NCI04) C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C308 - Immunotherapeutic Agent > C574 - Immunosuppressant D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D000970 - Antineoplastic Agents C93038 - Cation Channel Blocker Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Tetrandrine (NSC-77037; d-Tetrandrine) is a bis-benzyl-isoquinoline alkaloid, which inhibits voltage-gated Ca2+ current (ICa) and Ca2+-activated K+ current. Tetrandrine (NSC-77037; d-Tetrandrine) is a bis-benzyl-isoquinoline alkaloid, which inhibits voltage-gated Ca2+ current (ICa) and Ca2+-activated K+ current.

   

Dauricine

Phenol, 4-((1,2,3,4-tetrahydro-6,7-dimethoxy-2-methyl-1-isoquinolinyl)methyl)-2-(4-((1,2,3,4-tetrahydro-6,7-dimethoxy-2-methyl-1-isoquinolinyl)methyl)phenoxy)-, (R-(R*,R*))-

C38H44N2O6 (624.3199)


Dauricine is a bisbenzylisoquinoline alkaloid resulting from the formal oxidative dimerisation of 4-{[(1R)-6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-1-yl]methyl}phenol by attachment of the phenolic oxygen of one molecule to the benzene ring of the second (ortho to the phenolic hydroxy group of the latter). It has a role as a plant metabolite. It is a tertiary amino compound, a member of phenols, an aromatic ether, a member of isoquinolines and a bisbenzylisoquinoline alkaloid. Dauricine is a natural product found in Nelumbo nucifera, Menispermum canadense, and Menispermum dauricum with data available. A bisbenzylisoquinoline alkaloid resulting from the formal oxidative dimerisation of 4-{[(1R)-6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-1-yl]methyl}phenol by attachment of the phenolic oxygen of one molecule to the benzene ring of the second (ortho to the phenolic hydroxy group of the latter). D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Dauricine, a bisbenzylisoquinoline alkaloid in Menispermum dauricum, possesses anti-inflammatory activity. Dauricine inhibits cell proliferation and invasion, and induces apoptosis by suppressing NF-κB activation in a dose- and time-dependent manner in colon cancer[1]. Dauricine, a bisbenzylisoquinoline alkaloid in Menispermum dauricum, possesses anti-inflammatory activity. Dauricine inhibits cell proliferation and invasion, and induces apoptosis by suppressing NF-κB activation in a dose- and time-dependent manner in colon cancer[1].

   

Brazilin

(1R,10S)-8-oxatetracyclo[8.7.0.0?,?.0??,??]heptadeca-2(7),3,5,12,14,16-hexaene-5,10,14,15-tetrol

C16H14O5 (286.0841)


Brazilin is a organic heterotetracyclic compound that is a red pigment obtained from the wood of Caesalpinia echinata (Brazil-wood) or Caesalpinia sappan (sappan-wood). It has a role as a plant metabolite, a histological dye, an antineoplastic agent, a biological pigment, an anti-inflammatory agent, an apoptosis inducer, an antioxidant, an antibacterial agent, a NF-kappaB inhibitor and a hepatoprotective agent. It is an organic heterotetracyclic compound, a member of catechols and a tertiary alcohol. Brazilin is a natural product found in Guilandina bonduc, Biancaea decapetala, and other organisms with data available. A organic heterotetracyclic compound that is a red pigment obtained from the wood of Caesalpinia echinata (Brazil-wood) or Caesalpinia sappan (sappan-wood). Brazilin is a red dye precursor obtained from the heartwood of several species of tropical hardwoods. Brazilin inhibits the cells proliferation, promotes apoptosis, and induces autophagy through the AMPK/mTOR pathway. Brazilin shows chondroprotective and anti-inflammatory activities[1][2][3]. Brazilin is a red dye precursor obtained from the heartwood of several species of tropical hardwoods. Brazilin inhibits the cells proliferation, promotes apoptosis, and induces autophagy through the AMPK/mTOR pathway. Brazilin shows chondroprotective and anti-inflammatory activities[1][2][3].

   

Resveratrol

(E)-5-(2-(4-hydroxyphenyl)ethenyl)-1,3-benzenediol(E)-5-(2-(4-hydroxyphenyl)ethenyl)-1,3-benzenediol

C14H12O3 (228.0786)


Resveratrol is a stilbenol that is stilbene in which the phenyl groups are substituted at positions 3, 5, and 4 by hydroxy groups. It has a role as a phytoalexin, an antioxidant, a glioma-associated oncogene inhibitor and a geroprotector. It is a stilbenol, a polyphenol and a member of resorcinols. Resveratrol (3,5,4-trihydroxystilbene) is a polyphenolic phytoalexin. It is a stilbenoid, a derivate of stilbene, and is produced in plants with the help of the enzyme stilbene synthase. It exists as cis-(Z) and trans-(E) isomers. The trans- form can undergo isomerisation to the cis- form when heated or exposed to ultraviolet irradiation. In a 2004 issue of Science, Dr. Sinclair of Harvard University said resveratrol is not an easy molecule to protect from oxidation. It has been claimed that it is readily degraded by exposure to light, heat, and oxygen. However, studies find that Trans-resveratrol undergoes negligible oxidation in normal atmosphere at room temperature. Resveratrol is a plant polyphenol found in high concentrations in red grapes that has been proposed as a treatment for hyperlipidemia and to prevent fatty liver, diabetes, atherosclerosis and aging. Resveratrol use has not been associated with serum enzyme elevations or with clinically apparent liver injury. Resveratrol is a natural product found in Vitis rotundifolia, Vitis amurensis, and other organisms with data available. Resveratrol is a phytoalexin derived from grapes and other food products with antioxidant and potential chemopreventive activities. Resveratrol induces phase II drug-metabolizing enzymes (anti-initiation activity); mediates anti-inflammatory effects and inhibits cyclooxygenase and hydroperoxidase functions (anti-promotion activity); and induces promyelocytic leukemia cell differentiation (anti-progression activity), thereby exhibiting activities in three major steps of carcinogenesis. This agent may inhibit TNF-induced activation of NF-kappaB in a dose- and time-dependent manner. (NCI05) Resveratrol is a metabolite found in or produced by Saccharomyces cerevisiae. A stilbene and non-flavonoid polyphenol produced by various plants including grapes and blueberries. It has anti-oxidant, anti-inflammatory, cardioprotective, anti-mutagenic, and anti-carcinogenic properties. It also inhibits platelet aggregation and the activity of several DNA HELICASES in vitro. Resveratrol is a polyphenolic phytoalexin. It is also classified as a stilbenoid, a derivate of stilbene, and is produced in plants with the help of the enzyme stilbene synthase. The levels of resveratrol found in food vary greatly. Red wine contains between 0.2 and 5.8 mg/L depending on the grape variety, while white wine has much less. The reason for this difference is that red wine is fermented with grape skins, allowing the wine to absorb the resveratrol, whereas white wine is fermented after the skin has been removed. Resveratrol is also sold as a nutritional supplement. A number of beneficial health effects, such as anti-cancer, antiviral, neuroprotective, anti-aging, anti-inflammatory, and life-prolonging effects have been reported for resveratrol. The fact that resveratrol is found in the skin of red grapes and as a constituent of red wine may explain the "French paradox". This paradox is based on the observation that the incidence of coronary heart disease is relatively low in southern France despite high dietary intake of saturated fats. Resveratrol is thought to achieve these cardioprotective effects by a number of different routes: (1) inhibition of vascular cell adhesion molecule expression; (2) inhibition of vascular smooth muscle cell proliferation; (3) stimulation of endothelial nitric oxide synthase (eNOS) activity; (4) inhibition of platelet aggregation; and (5) inhibition of LDL peroxidation (PMID: 17875315, 14676260, 9678525). Resveratrol is a biomarker for the consumption of grapes and raisins. A stilbenol that is stilbene in which the phenyl groups are substituted at positions 3, 5, and 4 by hydroxy groups. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors C1892 - Chemopreventive Agent > C54630 - Phase II Enzymes Inducer D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9638; ORIGINAL_PRECURSOR_SCAN_NO 9635 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9646; ORIGINAL_PRECURSOR_SCAN_NO 9641 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4381; ORIGINAL_PRECURSOR_SCAN_NO 4379 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9607; ORIGINAL_PRECURSOR_SCAN_NO 9606 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9642; ORIGINAL_PRECURSOR_SCAN_NO 9638 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4383; ORIGINAL_PRECURSOR_SCAN_NO 4379 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4396; ORIGINAL_PRECURSOR_SCAN_NO 4394 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4381; ORIGINAL_PRECURSOR_SCAN_NO 4376 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9641; ORIGINAL_PRECURSOR_SCAN_NO 9638 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4375; ORIGINAL_PRECURSOR_SCAN_NO 4373 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9614; ORIGINAL_PRECURSOR_SCAN_NO 9611 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4398; ORIGINAL_PRECURSOR_SCAN_NO 4397 IPB_RECORD: 1781; CONFIDENCE confident structure IPB_RECORD: 321; CONFIDENCE confident structure Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7].

   

Astragaloside

[(2S,3R,4S,5R)-4,5-dihydroxy-2-[[(1S,3R,6S,8R,9S,11S,12S,14S,15R,16R)-14-hydroxy-15-[(2R,5S)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-9-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-pentacyclo[9.7.0.01,3.03,8.012,16]octadecanyl]oxy]oxan-3-yl] acetate

C43H70O15 (826.4714)


Astragaloside II is a triterpenoid saponin that is cycloastragenol glycosylated at positions 3 and 6 by 2-O-acetyl-beta-D-xylosyl and beta-D-glucosyl residues respectively. It has a role as a plant metabolite. It is a beta-D-glucoside, a monosaccharide derivative, a member of oxolanes, a pentacyclic triterpenoid and a triterpenoid saponin. It is functionally related to a cycloastragenol. Astragaloside II is a natural product found in Euphorbia glareosa, Astragalus hoantchy, and other organisms with data available. See also: Astragalus propinquus root (part of). A triterpenoid saponin that is cycloastragenol glycosylated at positions 3 and 6 by 2-O-acetyl-beta-D-xylosyl and beta-D-glucosyl residues respectively. Astragaloside II is a natural compound isolated from Astragalus membranaceus. Astragaloside II is a natural compound isolated from Astragalus membranaceus.

   

Asperuloside

(2aS-(2aalpha,4aalpha,5alpha,7balpha))-5-(beta-D-glucopyranosyloxy)-2a,4a,5,7b-tetrahydro-1-oxo-1H-2,6-dioxacyclopent(cd)inden-4-ylmethyl acetate

C18H22O11 (414.1162)


Asperuloside is a iridoid monoterpenoid glycoside isolated from Galium verum. It has a role as a metabolite. It is an iridoid monoterpenoid, a beta-D-glucoside, a monosaccharide derivative, an acetate ester and a gamma-lactone. Asperuloside is a natural product found in Lasianthus curtisii, Galium spurium, and other organisms with data available. See also: Galium aparine whole (part of). A iridoid monoterpenoid glycoside isolated from Galium verum. Asperuloside is an iridoid isolated from Hedyotis diffusa, with anti-inflammatory activity. Asperuloside inhibits inducible nitric oxide synthase (iNOS), suppresses NF-κB and MAPK signaling pathways[1]. Asperuloside is an iridoid isolated from Hedyotis diffusa, with anti-inflammatory activity. Asperuloside inhibits inducible nitric oxide synthase (iNOS), suppresses NF-κB and MAPK signaling pathways[1].

   

Plantamoside

[(2R,3R,4R,5R,6R)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-tetrahydropyran-3-yl] (E)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C29H36O16 (640.2003)


Plantamajoside is a hydroxycinnamic acid. Plantamajoside is a natural product found in Primulina eburnea, Plantaginaceae, and other organisms with data available. Plantamajoside is a phenylpropanoid glycoside isolated from Plantago asiatica L.(Plantaginaceae). Plantamajoside has protective effects on LPS-induced acute lung injury (ALI) mice model. Plantamajoside has the potential for the treatment of pulmonary inflammation[1]. Plantamajoside is a phenylpropanoid glycoside isolated from Plantago asiatica L.(Plantaginaceae). Plantamajoside has protective effects on LPS-induced acute lung injury (ALI) mice model. Plantamajoside has the potential for the treatment of pulmonary inflammation[1].

   

Esculentic acid (Diplazium)

(1S,2R,4aS,6aS,6bR,8aR,9R,10R,11R,12aR,12bR,14bS)-10,11-dihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O5 (488.3502)


Asiatic acid is a pentacyclic triterpenoid that is ursane substituted by a carboxy group at position 28 and hydroxy groups at positions 2, 3 and 23 (the 2alpha,3beta stereoisomer). It is isolated from Symplocos lancifolia and Vateria indica and exhibits anti-angiogenic activity. It has a role as an angiogenesis modulating agent and a metabolite. It is a monocarboxylic acid, a triol and a pentacyclic triterpenoid. It derives from a hydride of an ursane. From Centella asiatica and other plants; shows a variety of bioactivities. Asiatic acid is a natural product found in Psidium guajava, Combretum fruticosum, and other organisms with data available. See also: Holy basil leaf (part of); Lagerstroemia speciosa leaf (part of); Centella asiatica flowering top (part of). Esculentic acid (Diplazium) is found in green vegetables. Esculentic acid (Diplazium) is a constituent of the edible fern Diplazium esculentum C1907 - Drug, Natural Product > C28269 - Phytochemical > C1905 - Triterpenoid Compound C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2]. Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2].

   

Andrographolide

2(3H)-Furanone, 3-(2-(decahydro-6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylene-1-naphthalenyl)ethylidene)dihydro-4-hydroxy-, (1R-(1-alpha(E(S*)),4a-beta,5-alpha,6-alpha,8a-alpha))-

C20H30O5 (350.2093)


Andrographolide is a labdane diterpenoid isolated from the leaves and roots of Andrographis paniculata that exhibits anti-HIV, anti-inflammatory and antineoplastic properties. It has a role as a metabolite, an anti-inflammatory drug, an anti-HIV agent and an antineoplastic agent. It is a gamma-lactone, a primary alcohol, a secondary alcohol, a labdane diterpenoid and a carbobicyclic compound. Andrographolide (HMPL-004) is a botanical product extracted from a herb that occurs naturally in China. The herb has an extensive history of use in TCM for the treatment of upper respiratory tract infections and other inflammatory and infectious diseases. Andrographolide is a natural product found in Andrographis paniculata, Ginkgo biloba, and Cymbopogon schoenanthus with data available. Andrographolide is a labdane diterpenoid that is produced by the Andrographis paniculata plant, which has a broad range of therapeutic applications including anti-inflammatory and anti-platelet aggregation activities and potential antineoplastic properties. Since andrographolide has multiple therapeutic activities there are several proposed mechanisms of action for this agent. The anti-inflammatory effects of this agent appear to be related to the inhibition of nitric oxide (NO) production by macrophages. This agent may activate the NO/cyclic GMP pathway and inhibit both the phospholipase C gamma 2 (PLC gamma2)/protein kinase C (PKC) and PI3K/AKT-MAPK signaling pathways in activated platelets to inhibit platelet aggregation. In activated platelets, these three signaling pathways are downstream of integrin activation mediated by collagen binding and influence the association of fibrinogen with its receptors. Additionally, andrographolide may exert its anti-cancer activity through the induction of cell cycle arrest at G0/G1 phase and the stimulation of lymphocyte proliferation and activation. These processes could result in decreased proliferation of and increased immunocytotoxicity against tumor cells. A labdane diterpenoid isolated from the leaves and roots of Andrographis paniculata that exhibits anti-HIV, anti-inflammatory and antineoplastic properties. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78275 - Agent Affecting Blood or Body Fluid > C1327 - Antiplatelet Agent D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Origin: Plant; SubCategory_DNP: Diterpenoids, Andrographolide diterpenoids relative retention time with respect to 9-anthracene Carboxylic Acid is 0.941 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.939 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.936 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.938 Andrographolide is a NF-κB inhibitor, which inhibits NF-κB activation through covalent modification of a cysteine residue on p50 in endothelial cells without affecting IκBα degradation or p50/p65 nuclear translocation. Andrographolide has antiviral effects. Andrographolide is a NF-κB inhibitor, which inhibits NF-κB activation through covalent modification of a cysteine residue on p50 in endothelial cells without affecting IκBα degradation or p50/p65 nuclear translocation. Andrographolide has antiviral effects.

   

Pinosylvin

3-06-00-05577 (Beilstein Handbook Reference)

C14H12O2 (212.0837)


Pinosylvin is a stilbenol. Pinosylvin is a natural product found in Alnus pendula, Calligonum leucocladum, and other organisms with data available. Pinosylvin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=22139-77-1 (retrieved 2024-07-12) (CAS RN: 22139-77-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Pinosylvin is a?pre-infectious stilbenoid toxin?isolated from the heartwood of Pinus species, has anti-bacterial activities[1]. Pinosylvin is a resveratrol analogue, can induce cell apoptosis and autophapy in leukemia cells[2]. Pinosylvin is a?pre-infectious stilbenoid toxin?isolated from the heartwood of Pinus species, has anti-bacterial activities[1]. Pinosylvin is a resveratrol analogue, can induce cell apoptosis and autophapy in leukemia cells[2].

   

Atractydin

2-((1E,7E)-Nona-1,7-dien-3,5-diyn-1-yl)furan-1-yl)furan

C13H10O (182.0732)


Atractylodin is a member of furans. Atractylodin is a natural product found in Atractylodes japonica, Atractylodes macrocephala, and other organisms with data available. Atractylodin (Atractydin) is an active component of the essential oil contained in the rhizomes of Atractylodes lancea and A. chinensis. Atractylodin is natural insecticide and is active against Tribolium castaneum[1][2]. Atractylodin is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Atractylodin (Atractydin) is an active component of the essential oil contained in the rhizomes of Atractylodes lancea and A. chinensis. Atractylodin is natural insecticide and is active against Tribolium castaneum[1][2]. Atractylodin is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.

   

Liquiritigenin

4H-1-Benzopyran-4-one, 2,3-dihydro-7-hydroxy-2-(4-hydroxyphenyl)-, (2S)-

C15H12O4 (256.0736)


Liquiritigenin is a dihydroxyflavanone compound having the two hydroxy substituents at the 4- and 7-positions. Isolated from the root of Glycyrrhizae uralensis, it is a selective agonist for oestrogen receptor beta. It has a role as a hormone agonist and a plant metabolite. 5-deoxyflavanone is a solid. This compound belongs to the flavanones. These are compounds containing a flavan-3-one moiety, whose structure is characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. MF101 is a novel estrogen receptor beta (ERβ) selective agonist and unlike currently available hormone therapies, does not activate the estrogen receptor alpha (ERα), known to be implicated in tumor formation. MF101 is an oral drug designed for the treatment of hot flashes and night sweats in peri-menopausal and menopausal women. Liquiritigenin is a natural product found in Dracaena draco, Pterocarpus marsupium, and other organisms with data available. See also: Glycyrrhiza Glabra (part of); Glycyrrhiza uralensis Root (part of); Pterocarpus marsupium wood (part of). Isolated from Glycyrrhiza, Medicago, Myroxylon, Cicer and all Leguminosae subspecies Several glycosides, particularly the rutinoside and neohesperidoside, are important in influencing citrus fruit flavour [DFC]. Liquiritigenin is found in many foods, some of which are sorrel, roselle, pepper (c. annuum), and black crowberry. Liquiritigenin is found in alfalfa. Liquiritigenin is isolated from Glycyrrhiza, Medicago, Myroxylon, Cicer, and all Leguminosae species. Several glycosides, particularly rutinoside and neohesperidoside, are important in influencing citrus fruit flavour. A dihydroxyflavanone compound having the two hydroxy substituents at the 4- and 7-positions. Isolated from the root of Glycyrrhizae uralensis, it is a selective agonist for oestrogen receptor beta. Liquiritigenin, a flavanone isolated from Glycyrrhiza uralensis, is a highly selective estrogen receptor β (ERβ) agonist with an EC50 of 36.5 nM for activation of the ERE tk-Luc. Liquiritigenin, a flavanone isolated from Glycyrrhiza uralensis, is a highly selective estrogen receptor β (ERβ) agonist with an EC50 of 36.5 nM for activation of the ERE tk-Luc.

   

Nookatone

2(3H)-Naphthalenone, 4,4a,5,6,7,8-hexahydro-4,4a-dimethyl-6-(1-methylethenyl)-, [4R-(4.alpha.,4a.alpha.,6.beta.)]-

C15H22O (218.1671)


Nootkatone is a natural organic compound and is the most important and expensive aromatic of grapefruit. It is a sesquiterpene and a ketone. Nootkatone was previously thought to be one of the main chemical components of the smell and flavour of grapefruits. In its solid form it is usually found as crystals. As a liquid, it is viscous and yellow. Nootkatone is typically extracted from grapefruit, but can also be manufactured with genetically modified organisms, or through the chemical or biochemical oxidation of valencene. It is also found in Alaska yellow cedar trees and vetiver grass. (+)-nootkatone is a sesquiterpenoid that is 4,4a,5,6,7,8-hexahydronaphthalen-2(3H)-one which is substituted by methyl groups at positions 4 and 4a, and by an isopropenyl group at position 6 (the 4R,4aS,6R stereoisomer). It has a role as a plant metabolite, a fragrance and an insect repellent. It is a sesquiterpenoid, an enone and a carbobicyclic compound. Nootkatone is a natural product found in Teucrium asiaticum, Teucrium oxylepis, and other organisms with data available. Constituent of grapefruit oil and juice. Flavouring ingredient. Nootkatone is found in many foods, some of which are citrus, sweet orange, lime, and lemon. Nootkatone is an organic compound, a sesquiterpenoid, which means that it is a C15 derivative that also contains an oxygen-containing functional group (a ketone). It is the most valuable aroma compound of grapefruit.[2] Nootkatone was originally isolated from the wood of the Alaskan yellow cedar, Cupressus nootkatensis. The species name, nootkatensis, is derived from the language of the Nuu-Chah-Nulth people of Canada (formerly referred to as the Nootka people).[3] Nootkatone, a neuroprotective agent from Vitis vinifera, has antioxidant and anti-inflammatory effects[1]. Nootkatone improves cognitive impairment in lipopolysaccharide-induced mouse model of Alzheimer's disease[2]. Nootkatone, a neuroprotective agent from Vitis vinifera, has antioxidant and anti-inflammatory effects[1]. Nootkatone improves cognitive impairment in lipopolysaccharide-induced mouse model of Alzheimer's disease[2].

   

Pristimerin

2-Picenecarboxylic acid, 1,2,3,4,4a,5,6,6a,11,12b,13,14,14a,14b-tetradecahydro-10-hydroxy-2,4a,6a,9,12b,14a-hexamethyl-11-oxo-, methyl ester, (2R,4aS,6aS,12bR,14aS,14bR)-

C30H40O4 (464.2926)


Pristimerin is a carboxylic ester. Pristimerin is a quinone methide triterpenoid researched for its anti-cancer potential. Pristimerin is a natural product found in Reissantia buchananii, Crossopetalum gaumeri, and other organisms with data available. Pristimerin is a potent and reversible monoacylglycerol lipase (MGL) inhibitor with an IC50 of 93 nM. Pristimerin is a potent and reversible monoacylglycerol lipase (MGL) inhibitor with an IC50 of 93 nM. Pristimerin is a potent and reversible monoacylglycerol lipase (MGL) inhibitor with an IC50 of 93 nM.

   

Silicristin

(2R,3R)-3,5,7-trihydroxy-2-[(2R,3S)-7-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1-benzofuran-5-yl]-2,3-dihydro-4H-chromen-4-one

C25H22O10 (482.1213)


Silychristin is a flavonolignan isolated from Silybum marianum and has been shown to exhibit inhibitory activities against lipoxygenase and prostaglandin synthetase. It has a role as a radical scavenger, a lipoxygenase inhibitor, a prostaglandin antagonist and a metabolite. It is a flavonolignan, a member of 1-benzofurans, a polyphenol, an aromatic ether and a secondary alpha-hydroxy ketone. Silicristin is a natural product found in Cunila, Anastatica hierochuntica, and other organisms with data available. Isolated from fruits of Silybum marianum (milk thistle). Silicristin is found in coffee and coffee products and green vegetables. Silicristin is found in coffee and coffee products. Silicristin is isolated from fruits of Silybum marianum (milk thistle). C26170 - Protective Agent > C2081 - Hepatoprotective Agent Silychristin is an abundant flavonolignan present in the fruits of Silybum marianum, with antioxidant properties. Silychristin is a potent inhibitor of the thyroid hormone transporter MCT8, and elicits a strong inhibition of T3 uptake with an IC50 of 110 nM[1][2]. Silychristin is an abundant flavonolignan present in the fruits of Silybum marianum, with antioxidant properties. Silychristin is a potent inhibitor of the thyroid hormone transporter MCT8, and elicits a strong inhibition of T3 uptake with an IC50 of 110 nM[1][2].

   

Spinosin B

[(2R,3S,4S,5R,6S)-6-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-2-[5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4-oxochromen-6-yl]-6-(hydroxymethyl)oxan-3-yl]oxy-3,4,5-trihydroxyoxan-2-yl]methyl (E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C38H40O18 (784.2215)


6-Feruloylspinosin is a natural product found in Ziziphus spina-christi and Ziziphus jujuba with data available. Spinosin B is found in fruits. Spinosin B is isolated from Zizyphus jujuba (Chinese date). Isolated from Zizyphus jujuba (Chinese date). Spinosin B is found in fruits. 6'''-Feruloylspinosin is a flavonoid isolated from seeds of Ziziphus jujuba. 6'''-Feruloylspinosin can across the blood-brain barrier and enhance the expression of GABAAα1, GABAAα5, and GABABR1 mRNA in rat hippocampal neurons[1]. 6'''-Feruloylspinosin is a flavonoid isolated from seeds of Ziziphus jujuba. 6'''-Feruloylspinosin can across the blood-brain barrier and enhance the expression of GABAAα1, GABAAα5, and GABABR1 mRNA in rat hippocampal neurons[1]. 6'''-Feruloylspinosin is a flavonoid isolated from seeds of Ziziphus jujuba. 6'''-Feruloylspinosin can across the blood-brain barrier and enhance the expression of GABAAα1, GABAAα5, and GABABR1 mRNA in rat hippocampal neurons[1].

   

Genipin

methyl (1R,4aS,7aS)-1-hydroxy-7-(hydroxymethyl)-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-4-carboxylate

C11H14O5 (226.0841)


Genipin is found in beverages. Genipin is a constituent of Genipa americana (genipap) Genipin is an aglycone derived from an iridoid glycoside called geniposide present in fruit of Gardenia jasminoides. Genipin is an excellent natural cross-linker for proteins, collagen, gelatin, and chitosan cross-linking. It has a low acute toxicity, with LD50 i.v. 382 mg/kg in mice, therefore, much less toxic than glutaraldehyde and many other commonly used synthetic cross-linking regents. It is also used for pharmaceutical purposes, such as choleretic action for liver diseases control Genipin is an iridoid monoterpenoid. It has a role as an uncoupling protein inhibitor, a hepatotoxic agent, an apoptosis inhibitor, an antioxidant, an anti-inflammatory agent and a cross-linking reagent. Genipin is a natural product found in Gardenia jasminoides, Rothmannia globosa, and other organisms with data available. D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics Constituent of Genipa americana (genipap) Genipin ((+)-Genipin) is a natural crosslinking reagent derived from Gardenia jasminoides Ellis fruits. Genipin inhibits UCP2 (uncoupling protein 2) in cells. Genipin has a variety of bioactivities, including modulation on proteins, antitumor, anti-inflammation, immunosuppression, antithrombosis, and protection of hippocampal neurons. Genipin also can be used for type 2 diabetes research[1][2]. Genipin ((+)-Genipin) is a natural crosslinking reagent derived from Gardenia jasminoides Ellis fruits. Genipin inhibits UCP2 (uncoupling protein 2) in cells. Genipin has a variety of bioactivities, including modulation on proteins, antitumor, anti-inflammation, immunosuppression, antithrombosis, and protection of hippocampal neurons. Genipin also can be used for type 2 diabetes research[1][2]. Genipin ((+)-Genipin) is a natural crosslinking reagent derived from Gardenia jasminoides Ellis fruits. Genipin inhibits UCP2 (uncoupling protein 2) in cells. Genipin has a variety of bioactivities, including modulation on proteins, antitumor, anti-inflammation, immunosuppression, antithrombosis, and protection of hippocampal neurons. Genipin also can be used for type 2 diabetes research[1][2].

   

Columbianetin

2H-Furo[2,3-h]-1-benzopyran-2-one, 8,9-dihydro-8-(1-hydroxy-1-methylethyl)-, (S)-(+)-

C14H14O4 (246.0892)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins (S)-columbianetin is the (S)-(+)-enantiomer of columbianetin. It is an enantiomer of a (R)-columbianetin. Columbianetin is a natural product found in Campylotropis hirtella, Prangos tschimganica, and other organisms with data available. (+)-Columbianetin is an isomer of Columbianetin. Columbianetin is a phytoalexin associated with celery (Apium graveolens) resistance to pathogens during storage. Columbianetin exhibits excellent anti-fungal and anti-inflammatory activity[1][2]. (+)-Columbianetin is an isomer of Columbianetin. Columbianetin is a phytoalexin associated with celery (Apium graveolens) resistance to pathogens during storage. Columbianetin exhibits excellent anti-fungal and anti-inflammatory activity[1][2]. (+)-Columbianetin is an isomer of Columbianetin. Columbianetin is a phytoalexin associated with celery (Apium graveolens) resistance to pathogens during storage. Columbianetin exhibits excellent anti-fungal and anti-inflammatory activity[1][2]. (+)-Columbianetin is an isomer of Columbianetin. Columbianetin is a phytoalexin associated with celery (Apium graveolens) resistance to pathogens during storage. Columbianetin exhibits excellent anti-fungal and anti-inflammatory activity[1][2].

   

8-Epixanthatin

2H-CYCLOHEPTA(B)FURAN-2-ONE, 3,3A,4,7,8,8A-HEXAHYDRO-7-METHYL-3-METHYLENE-6-((1E)-3-OXO-1-BUTEN-1-YL)-, (3AR,7S,8AS)-

C15H18O3 (246.1256)


Xanthatin is a sesquiterpene lactone. Xanthatin is a natural product found in Xanthium spinosum, Dittrichia graveolens, and other organisms with data available. 8-Epixanthatin is found in fats and oils. 8-Epixanthatin is a constituent of Helianthus annuus (sunflower). Constituent of Helianthus annuus (sunflower). 8-Epixanthatin is found in fats and oils. D000970 - Antineoplastic Agents

   

Palmitic acid

hexadecanoic acid

C16H32O2 (256.2402)


Palmitic acid, also known as palmitate or hexadecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, palmitic acid is considered to be a fatty acid lipid molecule. Palmitic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Palmitic acid can be found in a number of food items such as sacred lotus, spinach, shallot, and corn salad, which makes palmitic acid a potential biomarker for the consumption of these food products. Palmitic acid can be found primarily in most biofluids, including feces, sweat, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. Palmitic acid exists in all living species, ranging from bacteria to humans. In humans, palmitic acid is involved in several metabolic pathways, some of which include alendronate action pathway, rosuvastatin action pathway, simvastatin action pathway, and cerivastatin action pathway. Palmitic acid is also involved in several metabolic disorders, some of which include hypercholesterolemia, familial lipoprotein lipase deficiency, ethylmalonic encephalopathy, and carnitine palmitoyl transferase deficiency (I). Moreover, palmitic acid is found to be associated with schizophrenia. Palmitic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Palmitic acid, or hexadecanoic acid in IUPAC nomenclature, is the most common saturated fatty acid found in animals, plants and microorganisms. Its chemical formula is CH3(CH2)14COOH, and its C:D is 16:0. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Palmitic acid can also be found in meats, cheeses, butter, and dairy products. Palmitate is the salts and esters of palmitic acid. The palmitate anion is the observed form of palmitic acid at physiologic pH (7.4) . Palmitic acid is the first fatty acid produced during lipogenesis (fatty acid synthesis) and from which longer fatty acids can be produced. Palmitate negatively feeds back on acetyl-CoA carboxylase (ACC) which is responsible for converting acetyl-ACP to malonyl-ACP on the growing acyl chain, thus preventing further palmitate generation (DrugBank). Palmitic acid, or hexadecanoic acid, is one of the most common saturated fatty acids found in animals, plants, and microorganisms. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Excess carbohydrates in the body are converted to palmitic acid. Palmitic acid is the first fatty acid produced during fatty acid synthesis and is the precursor to longer fatty acids. As a consequence, palmitic acid is a major body component of animals. In humans, one analysis found it to make up 21–30\\\% (molar) of human depot fat (PMID: 13756126), and it is a major, but highly variable, lipid component of human breast milk (PMID: 352132). Palmitic acid is used to produce soaps, cosmetics, and industrial mould release agents. These applications use sodium palmitate, which is commonly obtained by saponification of palm oil. To this end, palm oil, rendered from palm tree (species Elaeis guineensis), is treated with sodium hydroxide (in the form of caustic soda or lye), which causes hydrolysis of the ester groups, yielding glycerol and sodium palmitate. Aluminium salts of palmitic acid and naphthenic acid were combined during World War II to produce napalm. The word "napalm" is derived from the words naphthenic acid and palmitic acid (Wikipedia). Palmitic acid is also used in the determination of water hardness and is a surfactant of Levovist, an intravenous ultrasonic contrast agent. Hexadecanoic acid is a straight-chain, sixteen-carbon, saturated long-chain fatty acid. It has a role as an EC 1.1.1.189 (prostaglandin-E2 9-reductase) inhibitor, a plant metabolite, a Daphnia magna metabolite and an algal metabolite. It is a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a hexadecanoate. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. Palmitic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Palmitic Acid is a saturated long-chain fatty acid with a 16-carbon backbone. Palmitic acid is found naturally in palm oil and palm kernel oil, as well as in butter, cheese, milk and meat. Palmitic acid, or hexadecanoic acid is one of the most common saturated fatty acids found in animals and plants, a saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. It occurs in the form of esters (glycerides) in oils and fats of vegetable and animal origin and is usually obtained from palm oil, which is widely distributed in plants. Palmitic acid is used in determination of water hardness and is an active ingredient of *Levovist*TM, used in echo enhancement in sonographic Doppler B-mode imaging and as an ultrasound contrast medium. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. A straight-chain, sixteen-carbon, saturated long-chain fatty acid. Palmitic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57-10-3 (retrieved 2024-07-01) (CAS RN: 57-10-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Aromadendrin

4H-1-Benzopyran-4-one, 2,3-dihydro-3,5,7-trihydroxy-2-(4-hydroxyphenyl)-, (2R-trans)-

C15H12O6 (288.0634)


(+)-dihydrokaempferol is a tetrahydroxyflavanone having hydroxy groupa at the 3-, 4-, 5- and 7-positions. It has a role as a metabolite. It is a tetrahydroxyflavanone, a member of dihydroflavonols, a secondary alpha-hydroxy ketone and a member of 4-hydroxyflavanones. It is functionally related to a kaempferol. It is a conjugate acid of a (+)-dihydrokaempferol 7-oxoanion. Aromadendrin is a natural product found in Smilax corbularia, Ventilago leiocarpa, and other organisms with data available. See also: Acai fruit pulp (part of). Isolated from Citrus subspecies and many other plants. Aromadendrin is found in many foods, some of which are thistle, coriander, adzuki bean, and almond. Aromadendrin is found in citrus. Aromadendrin is isolated from Citrus species and many other plant A tetrahydroxyflavanone having hydroxy groupa at the 3-, 4-, 5- and 7-positions. Dihydrokaempferol is isolated from Bauhinia championii (Benth). Dihydrokaempferol induces apoptosis and inhibits Bcl-2 and Bcl-xL expression. Dihydrokaempferol is a good candidate for new antiarthritic agents[1]. Dihydrokaempferol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=480-20-6 (retrieved 2024-09-18) (CAS RN: 480-20-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Shikonin

5,8-dihydroxy-2-[(1R)-1-hydroxy-4-methylpent-3-en-1-yl]-1,4-dihydronaphthalene-1,4-dione

C16H16O5 (288.0998)


Shikonin is a hydroxy-1,4-naphthoquinone. Shikonin is a natural product found in Echium plantagineum, Arnebia hispidissima, and other organisms with data available. See also: Arnebia guttata root (part of); Arnebia euchroma root (part of); Lithospermum erythrorhizon root (part of). D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Shikonin is a major component of a Chinese herbal medicine named zicao. Shikonin is a potent TMEM16A chloride channel inhibitor with an IC50 of 6.5 μM[1]. Shikonin is a specific pyruvate kinase M2 (PKM2) inhibitor[2] and can also inhibit TNF-α and NF-κB pathway[3]. Shikonin decreases exosome secretion through the inhibition of glycolysis[4]. Shikonin inhibits AIM2 inflammasome activation[7]. Shikonin is a major component of a Chinese herbal medicine named zicao. Shikonin is a potent TMEM16A chloride channel inhibitor with an IC50 of 6.5 μM[1]. Shikonin is a specific pyruvate kinase M2 (PKM2) inhibitor[2] and can also inhibit TNF-α and NF-κB pathway[3]. Shikonin decreases exosome secretion through the inhibition of glycolysis[4]. Shikonin inhibits AIM2 inflammasome activation[7].

   

Carnosic_acid

4a(2H)-Phenanthrenecarboxylic acid, 1,3,4,9,10,10a-hexahydro-5,6-dihydroxy-1,1-dimethyl-7-(1-methylethyl)-, (4aR,10aS)-rel-

C20H28O4 (332.1987)


Carnosic acid is an abietane diterpenoid that is abieta-8,11,13-triene substituted by hydroxy groups at positions 11 and 12 and a carboxy group at position 20. It is isolated from rosemary (Rosmarinus officinalis) and common sage (Salvia officinalis) and exhibits anti-angiogenic, antineoplastic, antioxidant and anti-HIV activity. It has a role as an antineoplastic agent, an antioxidant, a HIV protease inhibitor, an angiogenesis modulating agent, an apoptosis inducer, a plant metabolite, an anti-inflammatory agent and a food preservative. It is an abietane diterpenoid, a carbotricyclic compound, a member of catechols and a monocarboxylic acid. It is a conjugate acid of a carnosate. Carnosic acid is a natural product found in Salvia tomentosa, Illicium verum, and other organisms with data available. See also: Rosemary (part of). An abietane diterpenoid that is abieta-8,11,13-triene substituted by hydroxy groups at positions 11 and 12 and a carboxy group at position 20. It is isolated from rosemary (Rosmarinus officinalis) and common sage (Salvia officinalis) and exhibits anti-angiogenic, antineoplastic, antioxidant and anti-HIV activity. D020011 - Protective Agents > D000975 - Antioxidants D000890 - Anti-Infective Agents

   

Dmask

2-Butenoic acid, 3-methyl-, 1-(1,4-dihydro-5,8-dihydroxy-1,4-dioxo-2-naphthalenyl)-4-methyl-3-pentenyl ester, (+)-

C21H22O6 (370.1416)


Dmask is a natural product found in Arnebia hispidissima with data available. Beta,beta-Dimethylacrylshikonin is a hydroxy-1,4-naphthoquinone. beta,beta-Dimethylacrylshikonin is a natural product found in Alkanna cappadocica, Lithospermum erythrorhizon, and other organisms with data available. (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1].

   

IsoRhy

SPIRO(3H-INDOLE-3,1(5H)-INDOLIZINE)-7-ACETIC ACID, 6-ETHYL-1,2,2,3,6,7,8,8A-OCTAHYDRO-.ALPHA.-(METHOXYMETHYLENE)-2-OXO-, METHYL ESTER, (.ALPHA.E,1S,6R,7S,8AS)-

C22H28N2O4 (384.2049)


Isorhynchophylline is a member of indolizines. It has a role as a metabolite. Isorhynchophylline is a natural product found in Uncaria tomentosa, Mitragyna inermis, and other organisms with data available. See also: Cats Claw (part of). A natural product found in Uncaria macrophylla. Isorhynchophylline is an alkaloid compound isolated from Uncaria. It can lower blood pressure, relax blood vessels, and protect nerves from damage caused by local ischemia. Isorhynchophylline is an alkaloid compound isolated from Uncaria. It can lower blood pressure, relax blood vessels, and protect nerves from damage caused by local ischemia.

   

Yamogenin

(2R,4S,5S,6aR,6bS,8aS,8bR,9S,11aS,12aS,12bS)-5,6a,8a,9-tetramethyl-1,3,3,4,4,5,5,6,6a,6b,6,7,8,8a,8b,9,11a,12,12a,12b-icosahydrospiro[naphtho[2,1:4,5]indeno[2,1-b]furan-10,2-pyran]-4-ol

C27H42O3 (414.3134)


Yamogenin is a triterpenoid. Yamogenin is a natural product found in Cordyline australis, Solanum spirale, and other organisms with data available. See also: Dioscorea polystachya tuber (part of). Diosgenin, a steroidal saponin, can inhibit STAT3 signaling pathway[1]. Diosgenin is an exogenous activator of Pdia3/ERp57[2]. Diosgenin inhibits aortic atherosclerosis progression by suppressing macrophage miR-19b expression[5]. Diosgenin, a steroidal saponin, can inhibit STAT3 signaling pathway[1]. Diosgenin is an exogenous activator of Pdia3/ERp57[2]. Diosgenin inhibits aortic atherosclerosis progression by suppressing macrophage miR-19b expression[5].

   

Ajugasterone C

(2S,3R,5R,9R,10R,11R,13R,14S,17S)-17-[(2R,3R)-2,3-dihydroxy-6-methyl-heptan-2-yl]-2,3,11,14-tetrahydroxy-10,13-dimethyl-2,3,4,5,9,11,12,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-6-one

C27H44O7 (480.3087)


Ajugasterone C is a steroid. Ajugasterone C is a natural product found in Zoanthus, Cyanotis arachnoidea, and other organisms with data available. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Yatansin

2H-3,11c-beta-(Epoxymethano)phenanthro(10,1-bc)pyran-3-alpha(3a-beta-H)-carboxylic acid, 1,4,5,6a-beta,7,7a-alpha,10,11,11a,11b-alpha-decahydro-8,11a-beta-dimethyl-5,10-dioxo-1-beta,2-alpha,4-beta,9-tetrahydroxy-, methyl ester, 4-(3-methylcrotonate)

C26H32O11 (520.1945)


Brusatol is a triterpenoid. Brusatol is a natural product found in Brucea javanica and Brucea mollis with data available. Brusatol (NSC?172924) is a unique inhibitor of the Nrf2 pathway that sensitizes a broad spectrum of cancer cells to Cisplatin and other chemotherapeutic agents. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Brusatol can be developed into an adjuvant chemotherapeutic agent[1]. Brusatol increases cellular apoptosis[2]. Brusatol (NSC?172924) is a unique inhibitor of the Nrf2 pathway that sensitizes a broad spectrum of cancer cells to Cisplatin and other chemotherapeutic agents. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Brusatol can be developed into an adjuvant chemotherapeutic agent[1]. Brusatol increases cellular apoptosis[2].

   

Ginsenoside K

(2s,3r,4s,5s,6r)-2-[(2s)-2-[(3s,5r,8r,9r,10r,12r,13r,14r,17s)-3,12-dihydroxy-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthren-17-yl]-6-methylhept-5-en-2-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C36H62O8 (622.4444)


Ginsenoside C-K is a ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy group at position 20 has been converted to the corresponding beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite, an antineoplastic agent, a hepatoprotective agent, an anti-allergic agent and an anti-inflammatory agent. It is a beta-D-glucoside, a 12beta-hydroxy steroid, a ginsenoside, a tetracyclic triterpenoid, a 3beta-hydroxy steroid and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. ginsenoside C-K is a natural product found in Panax ginseng and Fusarium sacchari with data available. A ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy group at position 20 has been converted to the corresponding beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. Ginsenoside C-K, a bacterial metabolite of G-Rb1, exhibits anti-inflammatory effects by reducing iNOS and COX-2. Ginsenoside C-K exhibits an inhibition against the activity of CYP2C9 and CYP2A6 in human liver microsomes with IC50s of 32.0±3.6 μM and 63.6±4.2 μM, respectively. Ginsenoside K. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=39262-14-1 (retrieved 2024-10-17) (CAS RN: 39262-14-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Sanggenon C

2-((1S,2R,3S)-2-(2,4-dihydroxybenzoyl)-2,4-dihydroxy-5-methyl-1,2,3,6-tetrahydro-[1,1-biphenyl]-3-yl)-1,3,8,10a-tetrahydroxy-5a-(3-methylbut-2-en-1-yl)-5a,10a-dihydro-11H-benzofuro[3,2-b]chromen-11-one

C40H36O12 (708.2207)


Sanggenon C is a diarylheptanoid. Sanggenone C is a natural product found in Morus cathayana with data available. Sanggenon C is a flavanone Diels-Alder adduct compound, which is isolated from Cortex Mori (Sang Bai Pi). Sanggenon C exerts protective effects against cardiac hypertrophy and fibrosis via suppression of the calcineurin/NFAT2 pathway. Sanggenon C inhibits inducible nitric oxide synthase expression in RAW264.7 cells, and tumor necrosis factor-α-stimulated cell adhesion and vascular cell adhesion molecule-1 expression, by suppressing NF-κB activity[1]. Sanggenon C possesses antioxidant, anti-inflammatory activities and inhibits Pancreatic lipase (PL) with the an IC50 of 3.00?μM[2]. Sanggenon C, a flavonoid, exerts protective effects against cardiac hypertrophy and fibrosis via suppression of the calcineurin/NFAT2 pathway. Sanggenon C inhibits mitochondrial fission to induce apoptosis by blocking the ERK signaling pathway. Sanggenon C inhibits inducible nitric oxide synthase expression in RAW264.7 cells, and TNF-α-stimulated cell adhesion and VCAM-1 expression, by suppressing NF-κB activity. Sanggenon C possesses antioxidant, anti-inflammatory and antitumor activities[1][2]. Sanggenon C is a flavanone Diels-Alder adduct compound, which is isolated from Cortex Mori (Sang Bai Pi). Sanggenon C exerts protective effects against cardiac hypertrophy and fibrosis via suppression of the calcineurin/NFAT2 pathway. Sanggenon C inhibits inducible nitric oxide synthase expression in RAW264.7 cells, and tumor necrosis factor-α-stimulated cell adhesion and vascular cell adhesion molecule-1 expression, by suppressing NF-κB activity[1]. Sanggenon C possesses antioxidant, anti-inflammatory activities and inhibits Pancreatic lipase (PL) with the an IC50 of 3.00?μM[2].

   

Jintan

(2S,3S,4S,5R,6R)-6-[(2S,3R,4S,5S,6S)-2-[[(3S,4aR,6aR,6bS,8aS,11S,12aR,14aR,14bS)-11-carboxy-4,4,6a,6b,8a,11,14b-heptamethyl-14-oxo-2,3,4a,5,6,7,8,9,10,12,12a,14a-dodecahydro-1H-picen-3-yl]oxy]-6-carboxy-4,5-dihydroxyoxan-3-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid;azane

C42H61O16.NH4 (839.4303)


Monoammonium glycyrrhizinate is an organic molecular entity. An oleanolic acid from GLYCYRRHIZA that has some antiallergic, antibacterial, and antiviral properties. It is used topically for allergic or infectious skin inflammation and orally for its aldosterone effects in electrolyte regulation. D000893 - Anti-Inflammatory Agents Ammonium glycyrrhizinate (Monoammonium glycyrrhizinate) has various pharmacological actions such as anti-inflammatory, antiallergic, antigastriculcer, and antihepatitis activities. Ammonium glycyrrhizinate (Monoammonium glycyrrhizinate) has various pharmacological actions such as anti-inflammatory, antiallergic, antigastriculcer, and antihepatitis activities.

   

Senegin III

6-deoxy-alpha-L-mannopyranosyl-(1->3)-[beta-D-galactopyranosyl-(1->4)-beta-D-xylopyranosyl-(1->4)-6-deoxy-alpha-L-mannopyranosyl-(1->2)]-6-deoxy-1-O-[(2beta,3beta)-3-(beta-D-glucopyranosyloxy)-2,23,27-trihydroxy-23,28-dioxoolean-12-en-28-yl]-4-O-[3-(4-methoxyphenyl)prop-2-enoyl]-beta-D-galactopyranose

C75H112O35 (1572.6984)


A triterpenoid saponin isolated from Polygala senega var latifolia and has been shown to exhibit hypoglycemic activity. Senegin III is a triterpenoid saponin isolated from Polygala senega var latifolia and has been shown to exhibit hypoglycemic activity. It has a role as a hypoglycemic agent and a plant metabolite. It is a cinnamate ester, a hydroxy monocarboxylic acid, a pentacyclic triterpenoid and a triterpenoid saponin. It is functionally related to a 4-methoxycinnamic acid. It derives from a hydride of an oleanane. Senegin III is a natural product found in Polygala fallax, Polygala senega, and other organisms with data available. Onjisaponin B is a natural product derived from Polygala tenuifolia. Onjisaponin B enhances autophagy and accelerates the degradation of mutant α-synuclein and huntingtin in PC-12 cells, and exbibits potential therapeutic effects on Parkinson disease and Huntington disease[1]. Onjisaponin B is a natural product derived from Polygala tenuifolia. Onjisaponin B enhances autophagy and accelerates the degradation of mutant α-synuclein and huntingtin in PC-12 cells, and exbibits potential therapeutic effects on Parkinson disease and Huntington disease[1].

   

beta-Elemene

(1S,2S,4R)-1-ethenyl-1-methyl-2,4-bis(prop-1-en-2-yl)cyclohexane

C15H24 (204.1878)


(-)-beta-elemene is the (-)-enantiomer of beta-elemene that has (1S,2S,4R)-configuration. It has a role as an antineoplastic agent. beta-Elemene is a natural product found in Xylopia sericea, Eupatorium cannabinum, and other organisms with data available. Beta-elemene is one of the isomers of elemene, a lipid soluble sesquiterpene and the active component isolated from the Chinese medicinal herb Rhizoma zedoariae with potential antineoplastic and chemopreventive activities. Although the exact mechanism of action through which beta-elemene exerts its effect has yet to be fully elucidated, this agent appears to induce apoptosis through different mechanisms of action and induces cell cycle arrest at different stages based on the tumor cell type involved. Beta-elemene may sensitize cancer cells to other chemotherapeutic agents. See also: Cannabis sativa subsp. indica top (part of). Beta-elemene, also known as B-elemen or 2,4-diisopropenyl-1-methyl-1-vinylcyclohexane, is a member of the class of compounds known as elemane sesquiterpenoids. Elemane sesquiterpenoids are sesquiterpenoids with a structure based on the elemane skeleton. Elemane is a monocyclic compound consisting of a cyclohexane ring substituted with a methyl group, an ethyl group, and two 1-methylethyl groups at the 1-, 1-, 2-, and 4-position, respectively. Beta-elemene is a fresh, herbal, and waxy tasting compound and can be found in a number of food items such as lovage, anise, spearmint, and orange mint, which makes beta-elemene a potential biomarker for the consumption of these food products. Beta-elemene can be found primarily in saliva. beta-Elemene belongs to the class of organic compounds known as elemane sesquiterpenoids. These are sesquiterpenoids with a structure based on the elemane skeleton. Elemane is a monocyclic compound consisting of a cyclohexane ring substituted with a methyl group, an ethyl group, and two 1-methylethyl groups at the 1-, 1-, 2-, and 4-position, respectively. beta-Elemene can be found in herbs, spices, and root vegetables, which makes beta-elemene a potential biomarker for the consumption of these food products. It is a constituent of sweet flag, juniper oils, and Mentha species. β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma aromatica with an antitumor activity. β-Elemene can induce cell apoptosis. β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma aromatica with an antitumor activity. β-Elemene can induce cell apoptosis.

   

Conessine

((2S,5S,12S,16S,1R,9R,13R)-6,7,13-trimethyl-7-azapentacyclo[10.8.0.0<2,9>.0<5, 9>.0<13,18>]icos-18-en-16-yl)dimethylamine

C24H40N2 (356.3191)


Conessine is a steroid alkaloid that is con-5-enine substituted by a N,N-dimethylamino group at position 3. It has been isolated from the plant species of the family Apocynaceae. It has a role as an antibacterial agent, an antimalarial, a H3-receptor antagonist and a plant metabolite. It is a steroid alkaloid and a tertiary amino compound. It is functionally related to a conanine. Conessine is a natural product found in Holarrhena floribunda, Funtumia elastica, and Holarrhena pubescens with data available. A steroid alkaloid that is con-5-enine substituted by a N,N-dimethylamino group at position 3. It has been isolated from the plant species of the family Apocynaceae. Annotation level-1 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 12 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.501 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.499 Conessine, a steroidal alkaloid, is a potent and selective histamine H3 receptor antagonist with Kis of 5.4, 6.0, 5.7 and 25 nM for human, dog, guinea pig, and rat H H3 receptor, respectively. Anti-malarial activity[1]. Conessine, a steroidal alkaloid, is a potent and selective histamine H3 receptor antagonist with Kis of 5.4, 6.0, 5.7 and 25 nM for human, dog, guinea pig, and rat H H3 receptor, respectively. Anti-malarial activity[1]. Conessine, a steroidal alkaloid, is a potent and selective histamine H3 receptor antagonist with Kis of 5.4, 6.0, 5.7 and 25 nM for human, dog, guinea pig, and rat H H3 receptor, respectively. Anti-malarial activity[1].

   

(-)-3-Isothujone

Bicyclo(3.1.0)hexan-3-one, 4-methyl-1-(1-methylethyl)-, (1-alpha,4-alpha,5-alpha)-(+-)-

C10H16O (152.1201)


(-)-3-Isothujone is found in alcoholic beverages. Ingredient of absinthe. Presence in food and beverages regulated by legislation.Thujone is a ketone and a monoterpene that occurs naturally in two diastereomeric forms: (-)-alpha-thujone and (+)-beta-thujone. It has a menthol odor. In addition to (-)-alpha-thujone and (+)-beta-thujone, there are their enantiomeric forms, (+)-alpha-thujone and (-)-beta-thujone. (Wikipedia (-)-alpha-thujone is the (1S,4R,5R)-stereoisomer of alpha-thujone. It is an enantiomer of a (+)-alpha-thujone. alpha-Thujone is a natural product found in Xylopia sericea, Rhododendron mucronulatum, and other organisms with data available. See also: Artemisia absinthium whole (part of). A thujane monoterpenoid that is thujane substituted by an oxo group at position 3. Ingredient of absinthe. Presence in food and beverages regulated by legislation α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3].

   

Epinepetalactone

Cyclopenta(c)pyran-1(4aH)-one, 5,6,7,7a-tetrahydro-4,7-dimethyl-, (4aS-(4aalpha,7alpha,7aalpha))-

C10H14O2 (166.0994)


Cis-trans-nepetalactone is a cyclopentapyran that is (4aS,7aR)-1,4a,5,6,7,7a-hexahydrocyclopenta[c]pyran substituted at position 1 by an oxo group and at positions 4 and 7 by methyl groups, respectively (the 4aS,7S,7aR-diastereomer). An iridoid monoterpenoid isolated from several Nepeta plant species. It is an aphid sex pheromone and cat attractant, and exhibits antibacterial, antifungal, and analgesic properties. It has a role as a pheromone, a plant metabolite, an insect attractant, an analgesic, an insect repellent, an antibacterial agent and an antifungal agent. It is an iridoid monoterpenoid and a cyclopentapyran. Nepetalactone cis-trans-form is a natural product found in Nepeta cataria, Nepeta tuberosa, and Nepeta racemosa with data available. (5S,8S,9R)-Nepetalactone is found in herbs and spices. (5S,8S,9R)-Nepetalactone is a constituent of catnip from the catmint plant Nepeta cataria Constituent of catnip from the catmint plant Nepeta cataria. (5S,8S,9R)-Nepetalactone is found in tea and herbs and spices. 4aα,7α,7aα-Nepetalactone exhibits antibacterial activity, and inhibits Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhi and Enterococcus faecalis.

   

Zingiberene

(S-(R*,S*))-5-(1,5-Dimethylhexen-4-yl)-2-methyl-1,3-cyclohexa-1,3-diene

C15H24 (204.1878)


Zingiberene is 2-Methylcyclohexa-1,3-diene in which a hydrogen at the 5 position is substituted (R configuration) by a 6-methyl-hept-5-en-2-yl group (S configuration). It is a sesquiterpene found in the dried rhizomes of Indonesian ginger, Zingiber officinale. It is a sesquiterpene and a cyclohexadiene. It is an enantiomer of an ent-zingiberene. Zingiberene is a natural product found in Chaerophyllum azoricum, Helichrysum odoratissimum, and other organisms with data available. Constituent of ginger oiland is) also from wild thyme (Thymus serpyllum), long pepper (Piper longum) and kua (Curcuma zedoaria). Zingiberene is found in many foods, some of which are cloves, pepper (spice), ginger, and turmeric. Zingiberene is found in anise. Zingiberene is a constituent of ginger oil. Also from wild thyme (Thymus serpyllum), long pepper (Piper longum) and kua (Curcuma zedoaria)

   

Narciclasine

(1,3)Dioxolo(4,5-j)phenanthridin-6(2H)-one, 3,4,4a,5-tetrahydro-2,3,4,7-tetrahydroxy-, (2S-(2-alpha,3-beta,4-beta,4a-beta))-

C14H13NO7 (307.0692)


Narciclasine is a member of phenanthridines. It has a role as a metabolite. Narciclasine is a natural product found in Lycoris sanguinea, Lycoris squamigera, and other organisms with data available. A natural product found in Narcissus pseudonarcissus. Narciclasine is a plant growth modulator. Narciclasine modulates the Rho/Rho kinase/LIM kinase/cofilin signaling pathway, greatly increasing GTPase RhoA activity as well as inducing actin stress fiber formation in a RhoA-dependent manner.

   

3-Methylbenzaldehyde

3-methylbenzaldehyde;3-Methylbenzaldehyde, stab. with 0.1\\% hydroquinone

C8H8O (120.0575)


3-Methylbenzaldehyde, also known as 3-tolylaldehyde, belongs to the class of organic compounds known as benzoyl derivatives. These are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). 3-Methylbenzaldehyde exists in all living organisms, ranging from bacteria to humans. 3-Methylbenzaldehyde is a sweet, benzaldehyde, and cherry tasting compound. 3-Methylbenzaldehyde has been detected, but not quantified, in several different foods, such as sweet cherries, alcoholic beverages, garden tomato, coffee and coffee products, and tea. This could make 3-methylbenzaldehyde a potential biomarker for the consumption of these foods. A tolualdehyde compound with the methyl substituent at the 3-position. M-tolualdehyde is a tolualdehyde compound with the methyl substituent at the 3-position. It has a role as a plant metabolite. 3-Methylbenzaldehyde is a natural product found in Aloe africana, Cichorium endivia, and other organisms with data available. Flavouring ingredient. Component of FEMA 3068; see further under 4-Methylbenzaldehyde BHW21-S. 3-Methylbenzaldehyde is found in many foods, some of which are coffee and coffee products, nuts, tea, and garden tomato. A tolualdehyde compound with the methyl substituent at the 3-position. m-Tolualdehyde (3-Methylbenzaldehyde) is a tolualdehyde compound with the methyl substituent at the 3-position. m-Tolualdehyde can be used as a food additive. m-Tolualdehyde (3-Methylbenzaldehyde) is a tolualdehyde compound with the methyl substituent at the 3-position. m-Tolualdehyde can be used as a food additive.

   

beta-Thujaplicin

2-Hydroxy-4-(1-methylethyl)-2,4,6-cycloheptatrien-1-one

C10H12O2 (164.0837)


Beta-thujaplicin is a monoterpenoid that is cyclohepta-2,4,6-trien-1-one substituted by a hydroxy group at position 2 and an isopropyl group at position 4. Isolated from Thuja plicata and Chamaecyparis obtusa, it exhibits antimicrobial activities. It has a role as an antifungal agent, an antibacterial agent, an antiplasmodial drug, an antineoplastic agent and a plant metabolite. It is an enol, a cyclic ketone and a monoterpenoid. It derives from a hydride of a cyclohepta-1,3,5-triene. Hinokitiol is a natural product found in Chamaecyparis obtusa, Thujopsis dolabrata, and other organisms with data available. A monoterpenoid that is cyclohepta-2,4,6-trien-1-one substituted by a hydroxy group at position 2 and an isopropyl group at position 4. Isolated from Thuja plicata and Chamaecyparis obtusa, it exhibits antimicrobial activities. D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents beta-Thujaplicin is found in fruits. beta-Thujaplicin occurs in Juniperus communis (juniper Occurs in Juniperus communis (juniper). beta-Thujaplicin is found in fruits. D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents Acquisition and generation of the data is financially supported in part by CREST/JST. Hinokitiol is a component of essential oils isolated from Chymacyparis obtusa, reduces Nrf2 expression, and decreases DNMT1 and UHRF1 mRNA and protein expression, with anti-infective, anti-oxidative, and anti-tumor activities. Hinokitiol is a component of essential oils isolated from Chymacyparis obtusa, reduces Nrf2 expression, and decreases DNMT1 and UHRF1 mRNA and protein expression, with anti-infective, anti-oxidative, and anti-tumor activities.

   

Trigonelline (N'-methylnicotinate)

Pyridinium, 3-carboxy-1-methyl-, hydroxide, inner salt

C7H7NO2 (137.0477)


Trigonelline, also known as caffearin or gynesine, belongs to the class of organic compounds known as alkaloids and derivatives. These are naturally occurring chemical compounds that contain mostly basic nitrogen atoms. This group also includes some related compounds with neutral and even weakly acidic properties. Also some synthetic compounds of similar structure are attributed to alkaloids. In addition to carbon, hydrogen and nitrogen, alkaloids may also contain oxygen, sulfur and more rarely other elements such as chlorine, bromine, and phosphorus. It is also found in coffee, where it may help to prevent dental caries by preventing the bacteria Streptococcus mutans from adhering to teeth. Trigonelline is an alkaloid with chemical formula C7H7NO2 and CAS number 535-83-1. Trigonelline is a product of the metabolism of niacin (vitamin B3) which is excreted in the urine. High amounts of trigonelline have been found in arabica coffee, fenugreeks, and common peas. Another foods such as yellow bell peppers, orange bellpeppers and muskmelons also contain trigonelline but in lower concentrations. Trigonelline has also been detected but not quantified in several different foods, such as rices, triticales, alfalfa, cereals and cereal products, and ryes. Trigonelline in the urine is a biomarker for the consumption of coffee, legumes and soy products. Alkaloid from fenugreek (Trigonella foenum-graecum) (Leguminosae), and very many other subspecies; also present in coffee beans and many animals. Trigonelline is an alkaloid with chemical formula C7H7NO2 and CAS number 535-83-1. It is found in coffee, where it may help to prevent dental caries by preventing the bacteria Streptococcus mutans from adhering to teeth.; Trigonelline is an alkaloid with chemical formula C7H7NO2. It is an inner salt formed by the addition of a methyl group to the nitrogen atom of niacin. Trigonelline is a product of the metabolism of niacin (vitamin B3) which is excreted in the urine. Trigonelline in the urine is a biomarker for the consumption of coffee, legumes and soy products. N-methylnicotinate is an iminium betaine that is the conjugate base of N-methylnicotinic acid, arising from deprotonation of the carboxy group. It has a role as a plant metabolite, a food component and a human urinary metabolite. It is an iminium betaine and an alkaloid. It is functionally related to a nicotinate. It is a conjugate base of a N-methylnicotinic acid. Trigonelline is a natural product found in Hypoestes phyllostachya, Schumanniophyton magnificum, and other organisms with data available. See also: Fenugreek seed (part of). Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; ML_ID 52 KEIO_ID T060 Trigonelline is an alkaloid with potential antidiabetic activity that can be isolated from Trigonella foenum-graecum L or Leonurus artemisia. Trigonelline is a potent Nrf2 inhibitor that blocks Nrf2-dependent proteasome activity, thereby enhancing apoptosis in pancreatic cancer cells. Trigonelline also has anti-HSV-1, antibacterial, and antifungal activity and induces ferroptosis. Trigonelline is an alkaloid with potential antidiabetic activity that can be isolated from Trigonella foenum-graecum L or Leonurus artemisia. Trigonelline is a potent Nrf2 inhibitor that blocks Nrf2-dependent proteasome activity, thereby enhancing apoptosis in pancreatic cancer cells. Trigonelline also has anti-HSV-1, antibacterial, and antifungal activity and induces ferroptosis.

   

Harmine

InChI=1/C13H12N2O/c1-8-13-11(5-6-14-8)10-4-3-9(16-2)7-12(10)15-13/h3-7,15H,1-2H

C13H12N2O (212.095)


Harmine is a harmala alkaloid in which the harman skeleton is methoxy-substituted at C-7. It has a role as a metabolite, an anti-HIV agent and an EC 1.4.3.4 (monoamine oxidase) inhibitor. It derives from a hydride of a harman. Harmine is a natural product found in Thalictrum foetidum, Acraea andromacha, and other organisms with data available. Alkaloid isolated from seeds of PEGANUM HARMALA; ZYGOPHYLLACEAE. It is identical to banisterine, or telepathine, from Banisteria caapi and is one of the active ingredients of hallucinogenic drinks made in the western Amazon region from related plants. It has no therapeutic use, but (as banisterine) was hailed as a cure for postencephalitic PARKINSON DISEASE in the 1920s. D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens Harmine is found in fruits. Harmine is an alkaloid from Passiflora edulis (passionfruit A harmala alkaloid in which the harman skeleton is methoxy-substituted at C-7. D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors C471 - Enzyme Inhibitor > C667 - Monoamine Oxidase Inhibitor CONFIDENCE Reference Standard (Level 1); NaToxAq - Natural Toxins and Drinking Water Quality - From Source to Tap (https://natoxaq.ku.dk) [Raw Data] CB043_Harmine_pos_40eV_CB000020.txt [Raw Data] CB043_Harmine_pos_50eV_CB000020.txt [Raw Data] CB043_Harmine_pos_10eV_CB000020.txt [Raw Data] CB043_Harmine_pos_30eV_CB000020.txt [Raw Data] CB043_Harmine_pos_20eV_CB000020.txt CONFIDENCE standard compound; INTERNAL_ID 2884 [Raw Data] CB043_Harmine_neg_50eV_000013.txt [Raw Data] CB043_Harmine_neg_30eV_000013.txt [Raw Data] CB043_Harmine_neg_10eV_000013.txt [Raw Data] CB043_Harmine_neg_20eV_000013.txt [Raw Data] CB043_Harmine_neg_40eV_000013.txt Harmine is a natural dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor with anticancer and anti-inflammatory activities. Harmine has a high affinity of 5-HT2A serotonin receptor, with an Ki of 397 nM[1]. Harmine is a natural dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor with anticancer and anti-inflammatory activities. Harmine has a high affinity of 5-HT2A serotonin receptor, with an Ki of 397 nM[1]. Harmine is a natural dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor with anticancer and anti-inflammatory activities. Harmine has a high affinity of 5-HT2A serotonin receptor, with an Ki of 397 nM[1].

   

Trehalose

(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-3,4,5-triol

C12H22O11 (342.1162)


Trehalose, also known as mycose, is a 1-alpha (disaccharide) sugar found extensively but not abundantly in nature. It is thought to be implicated in anhydrobiosis - the ability of plants and animals to withstand prolonged periods of desiccation. The sugar is thought to form a gel phase as cells dehydrate, which prevents disruption of internal cell organelles by effectively splinting them in position. Rehydration then allows normal cellular activity to be resumed without the major, generally lethal damage that would normally follow a dehydration/reyhdration cycle. Trehalose is a non-reducing sugar formed from two glucose units joined by a 1-1 alpha bond giving it the name of alpha-D-glucopyranoglucopyranosyl-1,1-alpha-D-glucopyranoside. The bonding makes trehalose very resistant to acid hydrolysis, and therefore stable in solution at high temperatures even under acidic conditions. The bonding also keeps non-reducing sugars in closed-ring form, such that the aldehyde or ketone end-groups do not bind to the lysine or arginine residues of proteins (a process called glycation). The enzyme trehalase, present but not abundant in most people, breaks it into two glucose molecules, which can then be readily absorbed in the gut. Trehalose is an important components of insects circulating fluid. It acts as a storage form of insect circulating fluid and it is important in respiration. Trehalose has also been found to be a metabolite of Burkholderia, Escherichia and Propionibacterium (PMID:12105274; PMID:25479689) (krishikosh.egranth.ac.in/bitstream/1/84382/1/88571\\\\%20P-1257.pdf). Alpha,alpha-trehalose is a trehalose in which both glucose residues have alpha-configuration at the anomeric carbon. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite and a geroprotector. Cabaletta has been used in trials studying the treatment of Oculopharyngeal Muscular Dystrophy. Trehalose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Trehalose is a natural product found in Cora pavonia, Selaginella nothohybrida, and other organisms with data available. Trehalose is a metabolite found in or produced by Saccharomyces cerevisiae. Occurs in fungi. EU and USA approved sweetener Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 149 D-(+)-Trehalose,which is widespread, can be used as a food ingredient and pharmaceutical excipient. D-(+)-Trehalose,which is widespread, can be used as a food ingredient and pharmaceutical excipient.

   

sulfurein

(2Z)-2-[[3,4-bis(oxidanyl)phenyl]methylidene]-6-oxidanyl-1-benzofuran-3-one

C15H10O5 (270.0528)


Sulfuretin is a member of 1-benzofurans. Sulfuretin is a natural product found in Calanticaria bicolor, Dipteryx lacunifera, and other organisms with data available. Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2]. Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2].

   

Withaferin_A

(4S,4aR,5aR,6aS,6bS,9R,9aS,11aS,11bR)-4-hydroxy-9-((S)-1-((R)-5-(hydroxymethyl)-4-methyl-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-9a,11b-dimethyl-5a,6,6a,6b,7,8,9,9a,10,11,11a,11b-dodecahydrocyclopenta[1,2]phenanthro[8a,9-b]oxiren-1(4H)-one

C28H38O6 (470.2668)


Withaferin A is a withanolide that is 5,6:22,26-diepoxyergosta-2,24-diene-1,26-dione substituted by hydroxy groups at positions 4 and 27 (the 4beta,5beta,6beta,22R stereoisomer). Isolated from Physalis longifolia, it exhibits cytotoxic activity. It has a role as an antineoplastic agent and an apoptosis inducer. It is a delta-lactone, a 4-hydroxy steroid, an enone, an ergostanoid, a secondary alcohol, a withanolide, a 27-hydroxy steroid, a primary alcohol and an epoxy steroid. Ashwagandha is a popular Ayurvedic herb used as a general tonic, to increase energy and reduce stress. Ashwagandha has not been implicated in causing serum enzyme elevations during therapy, but recently has been implicated in rare cases of clinically apparent liver injury. Withaferin A is a natural product found in Vassobia breviflora, Withania somnifera, and other organisms with data available. A withanolide that is 5,6:22,26-diepoxyergosta-2,24-diene-1,26-dione substituted by hydroxy groups at positions 4 and 27 (the 4beta,5beta,6beta,22R stereoisomer). Isolated from Physalis longifolia, it exhibits cytotoxic activity. Withaferin A is a steroidal lactone isolated from Withania somnifera, inhibits NF-kB activation and targets vimentin, with potent antiinflammatory and anticancer activities. Withaferin A is an inhibitor of endothelial protein C receptor (EPCR) shedding. Withaferin A is a steroidal lactone isolated from Withania somnifera, inhibits NF-kB activation and targets vimentin, with potent antiinflammatory and anticancer activities. Withaferin A is an inhibitor of endothelial protein C receptor (EPCR) shedding.

   

Combretastatin_A-4

phenol, 2-methoxy-5-((1z)-2-(3,4,5-trimethoxyphenyl)ethenyl)-,1-(dihydrogen phosphate)

C18H20O5 (316.1311)


Combretastatin A4 is a stilbenoid. Combretastatin A4 is a natural product found in Combretum caffrum with data available. Combretastatin A-4 is an inhibitor of microtubule polymerization derived from the South African willow bush which causes mitotic arrest and selectively targets and reduces or destroys existing blood vessels, causing decreased tumor blood supply. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D000970 - Antineoplastic Agents Combretastatin A4 is a microtubule-targeting agent that binds β-tubulin with Kd of 0.4 μM.

   

Proscillaridin

5-[(3S,8R,9S,10R,13R,14S,17R)-14-hydroxy-10,13-dimethyl-3-[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy-1,2,3,6,7,8,9,11,12,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl]pyran-2-one

C30H42O8 (530.288)


Proscillaridin is an organic molecular entity. Proscillaridin is a cardiac glycoside that is derived from plants of the genus Scilla and in Drimia maritima (Scilla maritima). Studies suggest the potential cytotoxic and anticancer property of proscillaridin, based on evidence of the drug potently disrupting topoisomerase I and II activity at nanomolar drug concentrations and triggering cell death and blocking cell proliferation of glioblastoma cell lines. Proscillaridin is a natural product found in Drimia indica with data available. A cardiotonic glycoside isolated from Scilla maritima var. alba (Squill). C - Cardiovascular system > C01 - Cardiac therapy > C01A - Cardiac glycosides > C01AB - Scilla glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides C78274 - Agent Affecting Cardiovascular System > C78322 - Cardiotonic Agent D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors Proscillaridin A is a potent poison of topoisomerase I/II activity with IC50 values of 30 nM and 100 nM, respectively[1]. Proscillaridin A is a potent poison of topoisomerase I/II activity with IC50 values of 30 nM and 100 nM, respectively[1].

   

Deoxyelephantopin

[(3S,4R,8R,9E,12R)-10-methyl-5-methylidene-6,14-dioxo-7,13-dioxatricyclo[10.2.1.04,8]pentadeca-1(15),9-dien-3-yl] 2-methylprop-2-enoate

C19H20O6 (344.126)


Deoxyelephantopin is a sesquiterpenoid. Deoxyelephantopin is a natural product found in Elephantopus scaber with data available. Isodeoxyelephantopin is a terpene lactone. Deoxyelephantopin, a natural bioactive sesquiterpene lactone from Elephantopus scaber, has shown promising anticancer effects against a broad spectrum of cancers. Deoxyelephantopin inhibits NF-κB, MAPK, PI3K/Akt, and β-catenin signaling[1]. Deoxyelephantopin, a natural bioactive sesquiterpene lactone from Elephantopus scaber, has shown promising anticancer effects against a broad spectrum of cancers. Deoxyelephantopin inhibits NF-κB, MAPK, PI3K/Akt, and β-catenin signaling[1].

   

Isochamaejasmin

(2S,3R)-3-[(2R,3S)-5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-2,3-dihydrochromen-3-yl]-5,7-dihydroxy-2-(4-hydroxyphenyl)-2,3-dihydrochromen-4-one

C30H22O10 (542.1213)


Chamaejasmin is a natural product found in Brackenridgea zanguebarica, Stellera chamaejasme, and other organisms with data available. Isochamaejasmin is a biflavonoid that consists of two units of 5,7,4-trihydroxyflavanone joined together at position 3 and 3. It has a role as a plant metabolite. It is a biflavonoid and a hydroxyflavone. Isochamaejasmin is a natural product found in Brackenridgea zanguebarica, Stellera chamaejasme, and Ormocarpum kirkii with data available.

   

Catalposide

beta-D-Glucopyranoside, 1a,1b,2,5a,6,6a-hexahydro-6-((4-hydroxybenzoyl)oxy)-1a-(hydroxymethyl)oxireno(4,5)cyclopenta(1,2-c)pyran-2-yl, (1aS-(1a-alpha,1b-beta,2-beta,5a-beta,6-beta,6a-alpha))-

C22H26O12 (482.1424)


Catalposide is a glycoside.

   

Zerumbone

(2E,6E,10E)-2,6,9,9-tetramethylcycloundeca-2,6,10-trien-1-one

C15H22O (218.1671)


Zerumbone is a sesquiterpenoid and cyclic ketone that is (1E,4E,8E)-alpha-humulene which is substituted by an oxo group at the carbon atom attached to two double bonds. It is obtained by steam distillation from a type of edible ginger, Zingiber zerumbet Smith, grown particularly in southeast Asia. It has a role as an anti-inflammatory agent, a plant metabolite and a glioma-associated oncogene inhibitor. It is a sesquiterpenoid and a cyclic ketone. It derives from a hydride of an alpha-humulene. Zerumbone is a natural product found in Curcuma amada, Curcuma longa, and other organisms with data available. Zerumbone is found in herbs and spices. Zerumbone is a constituent of the rhizomes of wild ginger (Zingiber zerumbet) Constituent of the rhizomes of wild ginger (Zingiber zerumbet). Zerumbone is found in herbs and spices. Zerumbone is a monocyclic sesquiterpene compound isolated from the rhizomes of Zingiber zerumbet Smith. Zerumbone potently inhibits the activation of Epstein-Barr virus with an IC50 of 0.14 mM. Zerumbone has anti-cancer, antioxidant, anti-inflammatory and anti-proliferative activity[1][2]. Zerumbone is a monocyclic sesquiterpene compound isolated from the rhizomes of Zingiber zerumbet Smith. Zerumbone potently inhibits the activation of Epstein-Barr virus with an IC50 of 0.14 mM. Zerumbone has anti-cancer, antioxidant, anti-inflammatory and anti-proliferative activity[1][2].

   

Lactupicrin

Benzeneacetic acid, 4-hydroxy-, 2,3,3a,4,5,7,9a,9b-octahydro-9-(hydroxymethyl)-6-methyl-3-methylene-2,7-dioxoazuleno(4,5-b)furan-4-yl ester, (3aR-(3aalpha,4alpha,9aalpha,9bbeta))-

C23H22O7 (410.1365)


Lactucopicrin is an azulenofuran, a cyclic terpene ketone, an enone, a member of phenols, a sesquiterpene lactone and a primary alcohol. It has a role as a plant metabolite, a sedative and an antimalarial. It is functionally related to a 4-hydroxyphenylacetic acid and a lactucin. Lactupicrin is a natural product found in Cichorium endivia, Cichorium spinosum, and other organisms with data available. Constituent of Lactuca sativa (lettuce), Cichorium intybus (chicory) and Cichorium endivia (endive). Lactupicrin is found in many foods, some of which are endive, romaine lettuce, chicory, and lettuce. Lactupicrin is found in chicory. Lactupicrin is a constituent of Lactuca sativa (lettuce), Cichorium intybus (chicory) and Cichorium endivia (endive) Lactupicrin (Lactucopicrin) is a characteristic bitter sesquiterpene lactone that can relieve pain. Lactupicrin exhibits atheroprotective effect[1][2]. Lactupicrin (Lactucopicrin) is a characteristic bitter sesquiterpene lactone that can relieve pain. Lactupicrin exhibits atheroprotective effect[1][2].

   

Fustin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-2,3-dihydro-3,7-dihydroxy-, (2R,3R)-rel-

C15H12O6 (288.0634)


Fustin is a natural product found in Acacia vestita, Acacia carneorum, and other organisms with data available. See also: Cotinus coggygria whole (part of); Toxicodendron succedaneum whole (part of). A dihydroflavonol that is the 2,3-dihydro derivative of fisetin. Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) is a potent amyloid β (Aβ) inhibitor. Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) increases the expression of acetylcholine (ACh) levels, choline acetyltransferase (ChAT) activity, and ChAT gene induced by Aβ (1-42). Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) decreases in acetyl cholinesterase (AChE) activity and AChE gene expression induced by Aβ (1-42). Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) increases muscarinic M1 receptor gene expression and muscarinic M1 receptor binding activity. Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) can be used for Alzheimer's disease research[1].

   

2',4',6'-Trihydroxyacetophenone

2 inverted exclamation mark ,4 inverted exclamation mark ,6 inverted exclamation mark -Trihydroxyacetophenone

C8H8O4 (168.0423)


2,4,6-trihydroxyacetophenone is a benzenetriol that is acetophenone in which the hydrogens at positions 2, 4, and 6 on the phenyl group are replaced by hydroxy groups. It is used as a matrix in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of acidic glycans and glycopeptides. It has a role as a MALDI matrix material and a plant metabolite. It is a methyl ketone, a benzenetriol and an aromatic ketone. 2,4,6-Trihydroxyacetophenone is a natural product found in Artemisia gypsacea, Daldinia eschscholtzii, and other organisms with data available. A benzenetriol that is acetophenone in which the hydrogens at positions 2, 4, and 6 on the phenyl group are replaced by hydroxy groups. It is used as a matrix in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of acidic glycans and glycopeptides. 2,4,6-Trihydroxyacetophenone is found in fruits. 2,4,6-Trihydroxyacetophenone is isolated from bark of Prunus domestica (plum Phloracetophenone (2,4,6-trihydroxyacetophenone) is the aglycone part of acetophenone glycoside obtained from Curcuma comosa Roxb, with cholesterol-lowering activity. Phloracetophenone enhances cholesterol 7α-hydroxylase (CYP7A1) activity[1]. Phloracetophenone stimulats bile secretion mediated through Mrp2[2]. Phloracetophenone (2,4,6-trihydroxyacetophenone) is the aglycone part of acetophenone glycoside obtained from Curcuma comosa Roxb, with cholesterol-lowering activity. Phloracetophenone enhances cholesterol 7α-hydroxylase (CYP7A1) activity[1]. Phloracetophenone stimulats bile secretion mediated through Mrp2[2].

   

Bovinocidin

2-(4-Nitrophenylamino)thiazole-4-carboxylicacid

C3H5NO4 (119.0219)


3-nitropropionic acid appears as golden crystals (from chloroform). (NTP, 1992) 3-nitropropanoic acid is a C-nitro compound that is propanoic acid in which one of the methyl hydrogens has been replaced by a nitro group. It has a role as a neurotoxin, an EC 1.3.5.1 [succinate dehydrogenase (quinone)] inhibitor, an antimycobacterial drug and a mycotoxin. It is functionally related to a propionic acid. It is a conjugate acid of a 3-nitropropanoate. It is a tautomer of a 3-aci-nitropropanoic acid. 3-Nitropropionic acid is a natural product found in Indigofera suffruticosa, Coscinoderma, and other organisms with data available. Bovinocidin is isolated from Aspergillus sp. and moulds contaminating foodBovinocidin belongs to the family of Beta Amino Acids and Derivatives. These are amino acids having a (-NH2) group attached to the beta carbon atom. D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D003292 - Convulsants Bovinocidin is isolated from Aspergillus sp. and moulds contaminating foo D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Isolated from Aspergillus species and moulds contaminating food. 3-Nitropropanoic acid (β-Nitropropionic acid) is an irreversible inhibitor of succinate dehydrogenase. 3-Nitropropanoic acid exhibits potent antimycobacterial activity with a MIC value of 3.3 μM[1][2].

   

Chalcone

(E)-1,3-diphenylprop-2-en-1-one

C15H12O (208.0888)


Chalcone is a member of the class of chalcones that is acetophenone in which one of the methyl hydrogens has been replaced by a benzylidene group. It has a role as a plant metabolite. It is a member of styrenes and a member of chalcones. Chalcone is a natural product found in Tilia tomentosa, Alpinia hainanensis, and other organisms with data available. An aromatic KETONE that forms the core molecule of CHALCONES. A member of the class of chalcones that is acetophenone in which one of the methyl hydrogens has been replaced by a benzylidene group. Annotation level-1 Acquisition and generation of the data is financially supported in part by CREST/JST. Chalcone is isolated from Glycyrrhiza uralensis and used to synthesize chalcone derivatives. Chalcone derivatives possess varied biological and pharmacological activity, including anti-inflammatory, antioxidative, antibacterial, anticancer, and anti-parasitic activities[1]. Chalcone is isolated from Glycyrrhiza uralensis and used to synthesize chalcone derivatives. Chalcone derivatives possess varied biological and pharmacological activity, including anti-inflammatory, antioxidative, antibacterial, anticancer, and anti-parasitic activities[1]. trans-Chalcone, isolated from Aronia melanocarpa skin, is a biphenolic core structure of flavonoids precursor. trans-Chalcone is a potent fatty acid synthase (FAS) and α-amylase inhibitor. trans-Chalcone causes cellcycle arrest and induces apoptosis in the breastcancer cell line MCF-7. trans-Chalcone has antifungal and anticancer activity[1][2][3]. trans-Chalcone, isolated from Aronia melanocarpa skin, is a biphenolic core structure of flavonoids precursor. trans-Chalcone is a potent fatty acid synthase (FAS) and α-amylase inhibitor. trans-Chalcone causes cellcycle arrest and induces apoptosis in the breastcancer cell line MCF-7. trans-Chalcone has antifungal and anticancer activity[1][2][3]. Chalcone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=94-41-7 (retrieved 2024-09-27) (CAS RN: 94-41-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Pyraclostrobin

Pyraclostrobine

C19H18ClN3O4 (387.0986)


D010575 - Pesticides > D005659 - Fungicides, Industrial > D000073739 - Strobilurins D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 375; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9757; ORIGINAL_PRECURSOR_SCAN_NO 9756 CONFIDENCE standard compound; INTERNAL_ID 375; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9779; ORIGINAL_PRECURSOR_SCAN_NO 9775 CONFIDENCE standard compound; INTERNAL_ID 375; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9794; ORIGINAL_PRECURSOR_SCAN_NO 9793 CONFIDENCE standard compound; INTERNAL_ID 375; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9828; ORIGINAL_PRECURSOR_SCAN_NO 9826 CONFIDENCE standard compound; INTERNAL_ID 375; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9794; ORIGINAL_PRECURSOR_SCAN_NO 9792 CONFIDENCE standard compound; INTERNAL_ID 375; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9842; ORIGINAL_PRECURSOR_SCAN_NO 9840 CONFIDENCE standard compound; INTERNAL_ID 2593 CONFIDENCE standard compound; INTERNAL_ID 8468 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2779 Pyraclostrobin is a highly effective and broad-spectrum strobilurin fungicide. Pyraclostrobin can induce oxidative DNA damage, mitochondrial dysfunction and autophagy through the activation of AMPK/mTOR signaling. Pyraclostrobin can be used to control crop diseases[1][2][3].

   

3-Indoleacetonitrile

2-(1H-indol-3-yl)acetonitrile

C10H8N2 (156.0687)


3-Indoleacetonitrile is a phytoalexin. Phytoalexins are antibiotics produced by plants that are under attack. Phytoalexins tend to fall into several classes including terpenoids, glycosteroids, and alkaloids; however, researchers often find it convenient to extend the definition to include all phytochemicals that are part of the plants defensive arsenal. Phytoalexins produced in plants act as toxins to the attacking organism. They may puncture the cell wall, delay maturation, disrupt metabolism, or prevent the reproduction of the pathogen in question. However, phytoalexins are often targeted to specific predators; a plant that has anti-insect phytoalexins may not have the ability to repel a fungal attack. 3-Indoleacetonitrile is common in cruciferous vegetables such as cabbage, cauliflower, broccoli, and Brussels sprouts. Dietary indoles in cruciferous vegetables induce cytochrome P450 enzymes and have prevented tumours in various animal models. Consumption of Brassica vegetables is associated with a reduced risk of cancer of the alimentary tract in animal models and human populations (PMID:15612779, 15884814, 2342128, 3014947, 3880668, 6334634, 6419397, 6426808, 6584878, 6725517, 6838646, 7123561). Myrosinase-induced hydrolysis product of indole glucosinolates, found in cabbage and other crucifers Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID I022 3-Indoleacetonitrile is an endogenous metabolite. 3-Indoleacetonitrile is an endogenous metabolite.

   

5-Aminoimidazole-4-carboxamide

5-Aminoimidazole-4-carboxamide ribotide

C4H6N4O (126.0542)


5-Aminoimidazole-4-carboxamide is an imidazole derivative which is a metabolite of the antineoplastic agents BIC and DIC. By itself, or as the ribonucleotide, it is used as a condensation agent in the preparation of nucleosides and nucleotides. Compounded with orotic acid, it is used to treat liver diseases. -- Pubchem. An imidazole derivative which is a metabolite of the antineoplastic agents BIC and DIC. By itself, or as the ribonucleotide, it is used as a condensation agent in the preparation of nucleosides and nucleotides. Compounded with orotic acid, it is used to treat liver diseases. -- Pubchem [HMDB] KEIO_ID A136 5-Amino-3H-imidazole-4-Carboxamide (AICA) is an important precursor for the synthesis of purines in general and of the nucleobases adenine and guanine in particular.

   

AICA-riboside

5-amino-1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1H-imidazole-4-carboxamide

C9H14N4O5 (258.0964)


AICA-riboside, also known as acadesine or AICAR, is an AMP-activated protein kinase activator which is used for the treatment of acute lymphoblastic leukemia and may have applications in treating other disorders such as diabetes. AICA-riboside is an adenosine regulating agent developed by PeriCor Therapeutics and licensed to Schering-Plough in 2007 for phase III studies. The drug is a potential first-in-class agent for prevention of reperfusion injury in CABG surgery. Schering began patient enrollment in phase III studies in May, 2009. The trial was terminated in late 2010 based on an interim futility analysis (Wikipedia). AICA-riboside is a minor constituent found in human milk (PMID: 7702711). C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite C - Cardiovascular system > C01 - Cardiac therapy D007004 - Hypoglycemic Agents

   

N-Acetylserotonin

N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]acetamide

C12H14N2O2 (218.1055)


N-Acetylserotonin (NAS), also known as normelatonin, is a naturally occurring chemical precursor and intermediate in the endogenous production of melatonin from serotonin. It also has biological activity in its own right, including acting as a melatonin receptor agonist, an agonist of the TrkB, and having antioxidant effects. N-Acetylserotonin is an intermediate in the metabolic pathway of melatonin and indoleamine in the pineal gland of mammalians. Serotonin-N-acetyltransferase (SNAT), which regulates the rate of melatonin biosynthesis in the pineal gland, catalyzes the acetylation of 5HT to N-acetylserotonin (NAS). A methyl group from S-adenosylmethionine is transferred to NAS by hydroxyindole-O-methyltransferase (HIOMT), and finally NAS is converted to 5-methoxy-N-acetyltryptamine, or melatonin. In most mammalian species the content of NAS (and melatonin) in the pineal gland shows clear circadian changes with the highest level occurring during the dark period. This elevation of the contents of NAS (and melatonin) in the dark period is due to the increase of SNAT activity and the elevation of SNAT gene expression. Experimental studies show that N-acetylserotonin possess free radical scavenging activity. Acute administration of irreversible and reversible selective MAO-A inhibitors and high doses (or chronic administration of low doses) of relatively selective MAO-B inhibitors (but not of highly selective MAO-B inhibitors) suppressed MAO-A activity and stimulated N-acetylation of pineal serotonin into N-acetylserotonin, the immediate precursor of melatonin. N-acetylserotonin increase after MAO-A inhibitors might mediate their antidepressive and antihypertensive effects. N-Acetylserotonin is the product of the O-demethylation of melatonin mediated by cytochrome P-450 isoforms: Cytochrome p450, subfamily IIc, polypeptide 19 (CYP2C19, a clinically important enzyme that metabolizes a wide variety of drugs), with a minor contribution from Cytochrome p450, subfamily I, polypeptide (2CYP1A2, involved in O-deethylation of phenacetin). (PMID 15616152, 11103901, 10721079, 10591054). N-Acetylserotonin acts as a potent antioxidant, NAS effectiveness as an anti-oxidant has been found to be different depending on the experimental model used, it has been described as being between 5 and 20 times more effect than melatonin at protecting against oxidant damage. NAS has been shown to protect against lipid peroxidation in microsomes and mitochondria. NAS has also been reported to lower resting levels of ROS in peripheral blood lymphocytes and to exhibit anti-oxidant effects against t-butylated hydroperoxide- and diamide-induced ROS. N-acetyl serotonin, also known as N-acetyl-5-hydroxytryptamine or N-(2-(5-hydroxy-1h-indol-3-yl)ethyl)acetamide, is a member of the class of compounds known as hydroxyindoles. Hydroxyindoles are organic compounds containing an indole moiety that carries a hydroxyl group. N-acetyl serotonin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). N-acetyl serotonin can be found in a number of food items such as tronchuda cabbage, winter savory, rambutan, and poppy, which makes N-acetyl serotonin a potential biomarker for the consumption of these food products. N-acetyl serotonin can be found primarily in blood and urine, as well as in human kidney and liver tissues. In humans, N-acetyl serotonin is involved in the tryptophan metabolism. Moreover, N-acetyl serotonin is found to be associated with schizophrenia. N-Acetyl-5-hydroxytryptamine is a Melatonin precursor, and that it can potently activate TrkB receptor.

   

Cysteinylglycine

2-[(2R)-2-amino-3-sulfanylpropanamido]acetic acid

C5H10N2O3S (178.0412)


Cysteinylglycine is a naturally occurring dipeptide. It is derived from the breakdown of glutathione (a tripeptide). In plasma, cysteinylglycine is in a reduced, oxidized and protein-bound form (aminothiol) and interact via redox and disulphide exchange reactions, in a dynamic system referred to as redox thiol status. (PMID 8642471) Spermatozoa of sub fertile men contain significantly higher thiol concentrations as compared with those of fertile men. The detrimental effect on embryo quality of a high homocysteine (Hcy, another member of the thiol group) concentration in the ejaculate and in follicular fluid is intriguing and may suggest that Hcy is inversely associated with fertility outcome. (PMID 16556671) Rheumatoid arthritis (RA) is a chronic inflammatory disease which involves the synovial membrane of multiple diarthroidal joints causing damage to cartilage and bones. The damage process seems to be related to an overproduction of oxygen reactive species inducing an oxidative perturbation with an increase in some oxidized forms (disulfides and protein mixed disulfides) and a decrease in free thiols. (PMID 15895891) Imipenem (thienamycin formamidine), is a broad-spectrum beta-lactam antibiotic, always used in combination with cilastatin in order to avoid the premature breakdown of imipenem by renal tubular dipeptidase. As this dipeptidase also hydrolyzes the glutathione metabolite cysteinylglycine, the therapeutic association of imipenem and cilastatin causes plasma levels of cysteinylglycine to increase significantly, while cysteine levels are decreased and homocysteine levels are unaffected. Therefore, antibiotic treatment using imipenem-cilastatin induces important metabolic changes that should not remain unrecognized. (PMID 15843241) [HMDB]. Cysteinylglycine is found in many foods, some of which are chinese cabbage, wax apple, garden tomato (variety), and japanese pumpkin. Cysteinylglycine is a naturally occurring dipeptide composed of cysteine and glycine. It is derived from the breakdown of glutathione (a tripeptide). In plasma, cysteinylglycine is in a reduced, oxidized, and protein-bound form (aminothiol) and interacts via redox and disulphide exchange reactions in a dynamic system referred to as redox thiol status (PMID: 8642471). Spermatozoa of sub-fertile men contain significantly higher thiol concentrations as compared with those of fertile men. The detrimental effect on embryo quality of a high homocysteine (Hcy) concentration in the ejaculate and in the follicular fluid is intriguing and may suggest that Hcy is inversely associated with fertility outcome (PMID: 16556671). Rheumatoid arthritis (RA) is a chronic inflammatory disease which involves the synovial membrane of multiple diarthroidal joints causing damage to cartilage and bones. The damage process seems to be related to an overproduction of oxygen reactive species inducing an oxidative perturbation with an increase in some oxidized forms (disulfides and protein mixed disulfides) and a decrease in free thiols (PMID: 15895891). Imipenem (thienamycin formamidine) is a broad-spectrum beta-lactam antibiotic, always used in combination with cilastatin in order to avoid the premature breakdown of imipenem by renal tubular dipeptidase. As this dipeptidase also hydrolyzes the glutathione metabolite cysteinylglycine, the therapeutic association of imipenem and cilastatin causes plasma levels of cysteinylglycine to increase significantly, while cysteine levels are decreased and homocysteine levels are unaffected. Therefore, antibiotic treatment using imipenem-cilastatin induces important metabolic changes that should not remain unrecognized (PMID: 15843241). L-Cysteinylglycine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=19246-18-5 (retrieved 2024-07-02) (CAS RN: 19246-18-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

5,6-Dihydrothymine

Dihydro-5-methyl-2,4(1H,3H)-pyrimidinedione

C5H8N2O2 (128.0586)


Dihydrothymine (CAS: 696-04-8) is an intermediate breakdown product of thymine. Dihydropyrimidine dehydrogenase catalyzes the reduction of thymine into 5,6-dihydrothymine; then dihydropyrimidinase hydrolyzes 5,6-dihydrothymine into N-carbamyl-beta-alanine. Finally, beta-ureidopropionase catalyzes the conversion of N-carbamyl-beta-alanine into beta-alanine. When present at abnormally high levels, dihydrothymine can be toxic, although the mechanism of toxicity is not clear. In particular, patients with dihydropyrimidinase deficiency exhibit highly increased concentrations of 5,6-dihydrouracil and 5,6-dihydrothymine; and moderately increased concentrations of uracil and thymine can be detected in urine. Dihydropyrimidinase deficiency is a disorder that can cause neurological and gastrointestinal problems in some affected individuals. The most common neurological abnormalities that occur are intellectual disability, seizures, weak muscle tone (hypotonia), abnormally small head size (microcephaly), and autistic behaviours that affect communication and social interaction. Gastrointestinal problems that occur in dihydropyrimidinase deficiency include the backflow of acidic stomach contents into the esophagus (gastroesophageal reflux) and recurrent episodes of vomiting. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 5,6-Dihydro-5-methyluracil (Dihydrothymine), an intermediate breakdown product of thymine, comes from animal or plants. 5,6-Dihydro-5-methyluracil (Dihydrothymine) can be toxic when present at abnormally high levels[1].

   

3-Sulfinoalanine

(2R)-2-amino-3-[(R)-sulfino]propanoic acid

C3H7NO4S (153.0096)


3-Sulfinoalanine or cysteinesulfinic acid is a N-methyl-D-aspartate agonist. It is a product of cysteine dioxygenase or CDO [EC 1.13.11.20]. In humans cysteine catabolism is tightly regulated via regulation of cysteine dioxygenase (CDO) levels in the liver, with the turnover of CDO protein being dramatically decreased when intracellular cysteine levels increase. This occurs in response to changes in the intracellular cysteine concentration via changes in the rate of CDO ubiquitination and degradation. Expressed at high levels in the liver with lower levels in the kidney, brain, and lung, cysteine dioxygenase catalyzes the addition of molecular oxygen to the sulfhydryl group of cysteine, yielding cysteinesulfinic acid. The oxidative catabolism of cysteine to cysteinesulfinate by CDO represents an irreversible loss of cysteine from the free amino acid pool. Once generated, cysteinesulfinate is shuttled into several pathways including hypotaurine/taurine synthesis, sulfite/sulfate production, and the generation of pyruvate. [HMDB] 3-Sulfinoalanine or cysteinesulfinic acid is an N-methyl-D-aspartate agonist. It is a product of cysteine dioxygenase or CDO (EC 1.13.11.20). In humans, cysteine catabolism is tightly regulated via regulation of cysteine dioxygenase (CDO) levels in the liver, with the turnover of CDO protein being dramatically decreased when intracellular cysteine levels increase. This occurs in response to changes in the intracellular cysteine concentration via changes in the rate of CDO ubiquitination and degradation. Expressed at high levels in the liver with lower levels in the kidney, brain, and lung, cysteine dioxygenase catalyzes the addition of molecular oxygen to the sulfhydryl group of cysteine, yielding cysteinesulfinic acid. The oxidative catabolism of cysteine to cysteinesulfinate by CDO represents an irreversible loss of cysteine from the free amino acid pool. Once generated, cysteinesulfinate is shuttled into several pathways including hypotaurine/taurine synthesis, sulfite/sulfate production, and the generation of pyruvate. [Spectral] 3-Sulfino-L-alanine (exact mass = 153.00958) and L-Isoleucine (exact mass = 131.09463) and alpha-D-Glucose 6-phosphate (exact mass = 260.02972) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] 3-Sulfino-L-alanine (exact mass = 153.00958) and alpha-D-Glucose 6-phosphate (exact mass = 260.02972) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] 3-Sulfino-L-alanine (exact mass = 153.00958) and sn-Glycerol 3-phosphate (exact mass = 172.01367) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. KEIO_ID C015 L-Cysteinesulfinic acid is a potent agonist at several rat metabotropic glutamate receptors (mGluRs) with pEC50s of 3.92, 4.6, 3.9, 2.7, 4.0, and 3.94 for mGluR1, mGluR5, mGluR2, mGluR4, mGluR6, and mGluR8, respectively[1]. L-Cysteinesulfinic acid is a potent agonist at several rat metabotropic glutamate receptors (mGluRs) with pEC50s of 3.92, 4.6, 3.9, 2.7, 4.0, and 3.94 for mGluR1, mGluR5, mGluR2, mGluR4, mGluR6, and mGluR8, respectively[1].

   

Saccharopine

(2S)-2-{[(5S)-5-amino-5-carboxypentyl]amino}pentanedioic acid

C11H20N2O6 (276.1321)


Saccharopine is an intermediate in the degradation of lysine, formed by the condensation of lysine and alpha-ketoglutarate. The saccharopine pathway is the main route for lysine degradation in mammals, and its first two reactions are catalyzed by enzymatic activities known as lysine-oxoglutarate reductase (LOR) and saccharopine dehydrogenase (SDH), which reside on a single bifunctional polypeptide (LOR/SDH) (EC 1.5.1.8). The reactions involved with saccharopine dehydrogenases have very strict substrate specificity for L-lysine, 2-oxoglutarate, and NADPH. LOR/SDH has been detected in a number of mammalian tissues, mainly in the liver and kidney, contributing not only to the general nitrogen balance in the organism but also to the controlled conversion of lysine into ketone bodies. A tetrameric form has also been observed in human liver and placenta. LOR activity has also been detected in brain mitochondria during embryonic development, and this opens up the question of whether or not lysine degradation has any functional significance during brain development. As a result, there is now a new focus on the nutritional requirements for lysine in gestation and infancy. Finally, LOR and/or SDH deficiencies seem to be involved in a human autosomal genetic disorder known as familial hyperlysinemia, which is characterized by serious defects in the functioning of the nervous system and characterized by a deficiency in lysine-ketoglutarate reductase, saccharopine dehydrogenase, and saccharopine oxidoreductase activities. Saccharopinuria (high amounts of saccharopine in the urine) and saccharopinemia (an excess of saccharopine in the blood) are conditions present in some inherited disorders of lysine degradation (PMID: 463877, 10567240, 10772957, 4809305). If present in sufficiently high levels, saccharopine can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Saccharopine is an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). Many affected children with organic acidemias experience intellectual disability or delayed development. Amino acid from Saccharomyces cerevisiae and Neurospora crassaand is also found in mushrooms and seeds

   

1,1-Dimethylbiguanide

1-carbamimidamido-N,N-dimethylmethanimidamide

C4H11N5 (129.1014)


1,1-Dimethylbiguanide, commonly known as metformin, is a member of the class of guanidines that is biguanide the carrying two methyl substituents at position 1. It has a role as a hypoglycemic agent, a xenobiotic and an environmental contaminant. It derives from a biguanide. It is a conjugate base of a metformin(1+). Metformin is a biguanide hypoglycemic agent used in the treatment of non-insulin-dependent diabetes mellitus not responding to dietary modification. Metformin improves glycemic control by improving insulin sensitivity and decreasing intestinal absorption of glucose. Metformin is the most popular anti-diabetic drug in the United States and one of the most prescribed drugs in the country overall, with nearly 35 million prescriptions filled in 2006 for generic metformin alone. It is also used in the treatment of polycystic ovary syndrome. It is not associated with weight gain and is taken by mouth. It is sometimes used as an off-label augment to attenuate the risk of weight gain in people who take antipsychotics as well as phenelzine. 1,1-Dimethylbiguanide or Metformin is a biguanide hypoglycemic agent used in the treatment of non-insulin-dependent diabetes mellitus not responding to dietary modification. Metformin improves glycemic control by improving insulin sensitivity and decreasing intestinal absorption of glucose. Metformin is the most popular anti-diabetic drug in the United States and one of the most prescribed drugs in the country overall, with nearly 35 million prescriptions filled in 2006 for generic metformin alone. [HMDB] A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BA - Biguanides C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98234 - Biguanide Antidiabetic Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D007004 - Hypoglycemic Agents > D001645 - Biguanides CONFIDENCE standard compound; INTERNAL_ID 4124 CONFIDENCE standard compound; INTERNAL_ID 8678 CONFIDENCE standard compound; INTERNAL_ID 1127 C1892 - Chemopreventive Agent KEIO_ID M032 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Metformin (1,1-Dimethylbiguanide) inhibits the mitochondrial respiratory chain in the liver, leading to activation of AMPK, enhancing insulin sensitivity for type 2 diabetes research. Metformin can cross the blood-brain barrier and triggers autophagy[1].

   

Galactosylsphingosine

(2R,3R,4S,5R,6R)-2-{[(4E)-2-amino-3-hydroxyoctadec-4-en-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C24H47NO7 (461.3352)


Galactosylsphingosine (also known as psychosine), is an intermediate in the biosynthesis of cerebrosides. It is formed from the reaction of sphingosine with UDP-galactose and then reacts with fatty acid-coenzyme A to form the cerebroside. It is a galactoside metabolite of sphingosine and can function as a neurotoxin and a metabotoxin. A neurotoxin is a compound that disrupts or attacks neural cells and neural tissue. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of galactosylsphingosine are associated with globoid cell leukodystrophy (Krabbe disease), which is characterized by the dysfunction of galactosylceramidase. Galactosylsphingosine is a highly cytotoxic lipid capable of inducing cell death in a wide variety of cell types including oligodendrocytes. It is known to accumulate in the nervous system in the absence of galactosylceramidase. Galactosylsphingosine localizes to lipid rafts and perturbs membrane integrity. It also inhibits protein kinase C translocation to the plasma membrane (PMID: 24006512). Symptoms of Krabbe disease begin between the ages of 3 and 6 months with irritability, fevers, limb stiffness, seizures, feeding difficulties, vomiting, and slowing of mental and motor development. In the first stages of the disease, the symptoms are often mistaken with those of cerebral palsy. Other symptoms include muscle weakness, spasticity, deafness, optic atrophy, optic nerve enlargement, blindness, paralysis, and difficulty when swallowing. An intermediate in the biosynthesis of cerebrosides. It is formed by reaction of sphingosine with UDP-galactose and then itself reacts with fatty acid-Coenzyme A to form the cerebroside. [HMDB] KEIO_ID P067; [MS2] KO009195 KEIO_ID P067

   

Triethanolamine

Triethanolamine tartrate (1:1), (R-(r*,r*))-isomer

C6H15NO3 (149.1052)


Triethanolamine, also known as H3TEA or trolamine, belongs to the class of organic compounds known as 1,2-aminoalcohols. These are organic compounds containing an alkyl chain with an amine group bound to the C1 atom and an alcohol group bound to the C2 atom. A 2009 study stated that patch test reactions reveal a slight irritant potential instead of a true allergic response in several cases, and also indicated the risk of skin sensitization to TEOA seems to be very low. Triethanolamine is a drug. Triethanolamine is a potentially toxic compound. Triethanolamine aka Trolamine (abbr. as TEOA to distinguish it from TEA which is for triethylamine) is a viscous organic compound that is both a tertiary amine and a triol. TEOA is used to provide a sensitivity boost to silver-halide-based holograms, and also as a swelling agent to color shift holograms. Approximately 150,000 tonnes were produced in 1999. D - Dermatologicals > D03 - Preparations for treatment of wounds and ulcers > D03A - Cicatrizants Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID T022

   

N-Acetyltryptophan

(2S)-2-[(1-hydroxyethylidene)amino]-3-(1H-indol-3-yl)propanoic acid

C13H14N2O3 (246.1004)


N-Acetyl-L-tryptophan or N-Acetyltryptophan, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetyltryptophan can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetyltryptophan is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-tryptophan. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\\\% of all human proteins and 68\\\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetyltryptophan can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free tryptophan can also occur. Many N-acetylamino acids, including N-acetyltryptophan are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). N-Acetyltryptophan has also been used as a protein stabilizer. It prevents protein molecules from oxidative degradation by scavenging oxygen dissolved in protein solutions (PMID: 21903216 ). N-Acetyltryptophan has been identified as a catabolite of tryptophan generated by the gut microbiota. After absorption through the intestinal epithelium, tryptophan catabolites enter the bloodstream and are later excreted in the urine (PMID: 28916042). N-Acetyltryptophan is an inhibitor of cytochrome c release and an antagonist of the neurokinin 1 receptor (NK-1R). These inhibitory effects are thought have a useful role in neuroprotection. For instance, in mouse models of amyotrophic lateral sclerosis (ALS) the administration of N-Acetyltryptophan has been shown delay disease onset, extend survival, and ameliorate deterioration in motor performance ALS transgenic mice (PMID: 25986728). N-acetyltryptophan has been shown to significantly reduce blood-brain barrier permeability and improve functional outcome in rat models of traumatic brain injury (PMID: 29256408). N-Acetyltryptophan has also been shown to have a role in preventing hepatic ischemia-reperfusion injury. This is thought to occur through de-activation of the RIP2/caspase/IL-1beta signaling pathway (PMID: 31184936). D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors Ac-DL-Trp-OH is an endogenous metabolite. Ac-DL-Trp-OH is an endogenous metabolite. N-Acetyl-L-tryptophan is an endogenous metabolite.

   

Selegiline

methyl(1-phenylpropan-2-yl)(prop-2-yn-1-yl)amine

C13H17N (187.1361)


A selective, irreversible inhibitor of Type B monoamine oxidase. It is used in newly diagnosed patients with Parkinsons disease. It may slow progression of the clinical disease and delay the requirement for levodopa therapy. It also may be given with levodopa upon onset of disability. (From AMA Drug Evaluations Annual, 1994, p385) The compound without isomeric designation is Deprenyl. [PubChem] INTERNAL_ID 948; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5917; ORIGINAL_PRECURSOR_SCAN_NO 5916 CONFIDENCE standard compound; INTERNAL_ID 948; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5948; ORIGINAL_PRECURSOR_SCAN_NO 5946 CONFIDENCE standard compound; INTERNAL_ID 948; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5965; ORIGINAL_PRECURSOR_SCAN_NO 5963 CONFIDENCE standard compound; INTERNAL_ID 948; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5911; ORIGINAL_PRECURSOR_SCAN_NO 5909 CONFIDENCE standard compound; INTERNAL_ID 948; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5941; ORIGINAL_PRECURSOR_SCAN_NO 5940 CONFIDENCE standard compound; INTERNAL_ID 948; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5953; ORIGINAL_PRECURSOR_SCAN_NO 5952 CONFIDENCE standard compound; INTERNAL_ID 948; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5917; ORIGINAL_PRECURSOR_SCAN_NO 5916 N - Nervous system > N04 - Anti-parkinson drugs > N04B - Dopaminergic agents > N04BD - Monoamine oxidase b inhibitors D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors C471 - Enzyme Inhibitor > C667 - Monoamine Oxidase Inhibitor CONFIDENCE standard compound; EAWAG_UCHEM_ID 3275 CONFIDENCE standard compound; INTERNAL_ID 2119 D020011 - Protective Agents

   

Pantoprazole

6-(difluoromethoxy)-2-[(3,4-dimethoxypyridin-2-yl)methanesulfinyl]-1H-1,3-benzodiazole

C16H15F2N3O4S (383.0751)


Pantozol; Pantoprazole (brand names Pantopan in Italy; Protium; Protonix; Pantozol; Pantor; Pantoloc) is a proton pump inhibitor drug used for short-term treatment of erosion and ulceration of the esophagus caused by gastroesophageal reflux disease. Initial treatment is generally of eight weeks duration, after which another eight week course of treatment may be considered if necessary. It can be used as a maintenance therapy for long term use after initial response is obtained; Pantoprazole is a proton pump inhibitor drug used for short-term treatment of erosion and ulceration of the esophagus caused by gastroesophageal reflux disease. Initial treatment is generally of eight weeks duration, after which another eight week course of treatment may be considered if necessary. It can be used as a maintenance therapy for long term use after initial response is obtained. Pantoprazole is metabolized in the liver by the cytochrome P450 system. Metabolism mainly consists of demethylation by CYP2C19 followed by sulfation. Another metabolic pathway is oxidation by CYP3A4. Pantoprazole metabolites are not thought to have any pharmacological significance; Protium; Pantor; Pantoloc) is a proton pump inhibitor drug used for short-term treatment of erosion and ulceration of the esophagus caused by gastroesophageal reflux disease. Initial treatment is generally of eight weeks duration, after which another eight week course of treatment may be considered if necessary. It can be used as a maintenance therapy for long term use after initial response is obtained; Protonix; Pantoprazole (brand names Pantopan in Italy. Pantozol; Pantoprazole (brand names Pantopan in Italy; Protium; Protonix; Pantozol; Pantor; Pantoloc) is a proton pump inhibitor drug used for short-term treatment of erosion and ulceration of the esophagus caused by gastroesophageal reflux disease. Initial treatment is generally of eight weeks duration, after which another eight week course of treatment may be considered if necessary. It can be used as a maintenance therapy for long term use after initial response is obtained; Pantoprazole is a proton pump inhibitor drug used for short-term treatment of erosion and ulceration of the esophagus caused by gastroesophageal reflux disease. Initial treatment is generally of eight weeks duration, after which another eight week course of treatment may be considered if necessary. It can be used as a maintenance therapy for long term use after initial response is obtained. A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02B - Drugs for peptic ulcer and gastro-oesophageal reflux disease (gord) > A02BC - Proton pump inhibitors C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent > C29723 - Proton Pump Inhibitor D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents D004791 - Enzyme Inhibitors > D054328 - Proton Pump Inhibitors CONFIDENCE standard compound; INTERNAL_ID 8336 CONFIDENCE standard compound; INTERNAL_ID 2274

   

Sulfanilic acid

4-Sulfanilic acid, zinc (2:1) salt

C6H7NO3S (173.0147)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 652 KEIO_ID S073

   

Floxuridine

5-fluoro-1-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,2,3,4-tetrahydropyrimidine-2,4-dione

C9H11FN2O5 (246.0652)


An antineoplastic antimetabolite that is metabolized to fluorouracil when administered by rapid injection. Floxuridine is available as a sterile, nonpyrogenic, lyophilized powder for reconstitution. When administered by slow, continuous, intra-arterial infusion, it is converted to floxuridine monophosphate. It has been used to treat hepatic metastases of gastrointestinal adenocarcinomas and for palliation in malignant neoplasms of the liver and gastrointestinal tract. [PubChem] L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents Floxuridine (5-Fluorouracil 2'-deoxyriboside) is a?pyrimidine?analog?and known as an?oncology antimetabolite. Floxuridine inhibits Poly(ADP-Ribose) polymerase and induces DNA damage by activating the ATM and ATR checkpoint signaling pathways in vitro. Floxuridine is a extreamly potent inhibitor for S. aureus infection and induces cell apoptosis[1][2]. Floxuridine has antiviral effects against HSV and CMV[3].

   

Griseofulvin

(2S,6R)-7-chloro-2,4,6-trimethoxy-6-methyl-3H-spiro[1-benzofuran-2,1-cyclohexan]-2-ene-3,4-dione

C17H17ClO6 (352.0714)


Griseofulvin is only found in individuals that have used or taken this drug. It is an antifungal antibiotic. Griseofulvin may be given by mouth in the treatment of tinea infections. [PubChem]Griseofulvin is fungistatic, however the exact mechanism by which it inhibits the growth of dermatophytes is not clear. It is thought to inhibit fungal cell mitosis and nuclear acid synthesis. It also binds to and interferes with the function of spindle and cytoplasmic microtubules by binding to alpha and beta tubulin. It binds to keratin in human cells, then once it reaches the fungal site of action, it binds to fungal microtubes thus altering the fungal process of mitosis. D - Dermatologicals > D01 - Antifungals for dermatological use > D01B - Antifungals for systemic use > D01BA - Antifungals for systemic use D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AA - Antibiotics D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent Griseofulvin(Gris-PEG; Grifulvin) is a spirocyclic fungal natural product used in treatment of fungal dermatophytes; Antifungal drug.

   

Emodin

1,3,8-trihydroxy-6-methyl-anthracene-9,10-dione;3-METHYL-1,6,8-TRIHYDROXYANTHRAQUINONE

C15H10O5 (270.0528)


Emodin appears as orange needles or powder. (NTP, 1992) Emodin is a trihydroxyanthraquinone that is 9,10-anthraquinone which is substituted by hydroxy groups at positions 1, 3, and 8 and by a methyl group at position 6. It is present in the roots and barks of numerous plants (particularly rhubarb and buckthorn), moulds, and lichens. It is an active ingredient of various Chinese herbs. It has a role as a tyrosine kinase inhibitor, an antineoplastic agent, a laxative and a plant metabolite. It is functionally related to an emodin anthrone. It is a conjugate acid of an emodin(1-). Emodin has been investigated for the treatment of Polycystic Kidney. Emodin is a natural product found in Rumex dentatus, Rhamnus davurica, and other organisms with data available. Emodin is found in dock. Emodin is present in Cascara sagrada.Emodin is a purgative resin from rhubarb, Polygonum cuspidatum, the buckthorn and Japanese Knotweed (Fallopia japonica). The term may also refer to any one of a series of principles isomeric with the emodin of rhubarb. (Wikipedia) Emodin has been shown to exhibit anti-inflammatory, signalling, antibiotic, muscle building and anti-angiogenic functions (A3049, A7853, A7854, A7855, A7857). Purgative anthraquinone found in several plants, especially RHAMNUS PURSHIANA. It was formerly used as a laxative, but is now used mainly as a tool in toxicity studies. See also: Reynoutria multiflora root (part of); Frangula purshiana Bark (part of). A trihydroxyanthraquinone that is 9,10-anthraquinone which is substituted by hydroxy groups at positions 1, 3, and 8 and by a methyl group at position 6. It is present in the roots and barks of numerous plants (particularly rhubarb and buckthorn), moulds, and lichens. It is an active ingredient of various Chinese herbs. Emodin is found in dock. Emodin is present in Cascara sagrada.Emodin is a purgative resin from rhubarb, Polygonum cuspidatum, the buckthorn and Japanese Knotweed (Fallopia japonica). The term may also refer to any one of a series of principles isomeric with the emodin of rhubarb. (Wikipedia C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors D005765 - Gastrointestinal Agents > D002400 - Cathartics Present in Cascara sagrada CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8540; ORIGINAL_PRECURSOR_SCAN_NO 8539 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8561; ORIGINAL_PRECURSOR_SCAN_NO 8559 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5082; ORIGINAL_PRECURSOR_SCAN_NO 5079 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8572; ORIGINAL_PRECURSOR_SCAN_NO 8570 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5104; ORIGINAL_PRECURSOR_SCAN_NO 5099 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8558; ORIGINAL_PRECURSOR_SCAN_NO 8556 ORIGINAL_PRECURSOR_SCAN_NO 5094; CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5097 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8554; ORIGINAL_PRECURSOR_SCAN_NO 8550 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5096; ORIGINAL_PRECURSOR_SCAN_NO 5093 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8556; ORIGINAL_PRECURSOR_SCAN_NO 8554 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5090; ORIGINAL_PRECURSOR_SCAN_NO 5089 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5085; ORIGINAL_PRECURSOR_SCAN_NO 5082 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5097; ORIGINAL_PRECURSOR_SCAN_NO 5094 [Raw Data] CB029_Emodin_pos_50eV_CB000015.txt [Raw Data] CB029_Emodin_pos_10eV_CB000015.txt [Raw Data] CB029_Emodin_pos_20eV_CB000015.txt [Raw Data] CB029_Emodin_pos_30eV_CB000015.txt [Raw Data] CB029_Emodin_pos_40eV_CB000015.txt [Raw Data] CB029_Emodin_neg_50eV_000008.txt [Raw Data] CB029_Emodin_neg_20eV_000008.txt [Raw Data] CB029_Emodin_neg_40eV_000008.txt [Raw Data] CB029_Emodin_neg_30eV_000008.txt [Raw Data] CB029_Emodin_neg_10eV_000008.txt CONFIDENCE standard compound; ML_ID 38 Emodin (Frangula emodin), an anthraquinone derivative, is an anti-SARS-CoV compound. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 (ACE2) interaction[1]. Emodin inhibits casein kinase-2 (CK2). Anti-inflammatory and anticancer effects[2]. Emodin is a potent selective 11β-HSD1 inhibitor with the IC50 of 186 and 86 nM for human and mouse 11β-HSD1, respectively. Emodin ameliorates metabolic disorder in diet-induced obese mice[3]. Emodin (Frangula emodin), an anthraquinone derivative, is an anti-SARS-CoV compound. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 (ACE2) interaction[1]. Emodin inhibits casein kinase-2 (CK2). Anti-inflammatory and anticancer effects[2]. Emodin is a potent selective 11β-HSD1 inhibitor with the IC50 of 186 and 86 nM for human and mouse 11β-HSD1, respectively. Emodin ameliorates metabolic disorder in diet-induced obese mice[3].

   

Fumonisin B1

1,2,3-propanetricarboxylic acid, 1,-1-[1-(12-amino-4,9,11-trihydroxy-2-methyltridecyl)-2-(1-methylpentyl)-1,2-ethanediyl] ester

C34H59NO15 (721.3885)


Fumonisin B1 is from Fusarium moniliforme Fumonisin B1 is an inhibitor of ceramide synthase D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D037341 - Fumonisins D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D013723 - Teratogens D004791 - Enzyme Inhibitors From Fusarium moniliforme

   

Wortmannin

11-(acetyloxy)-1S,6bR,7,8,9aS,10,11R,11bR-octahydro-1-(methoxymethyl)-9a,11b-dimethyl-3H-furo[4,3,2-de]indeno[4,5-h]-2-benzopyran-3,6,9-trione

C23H24O8 (428.1471)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D007329 - Insulin Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C2152 - Phosphatidylinositide 3-Kinase Inhibitor D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor D011838 - Radiation-Sensitizing Agents

   

Acridine orange

N,N,N,n-tetramethyl-3,6-acridinediamine hydrochloride

C17H19N3 (265.1579)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes D009676 - Noxae > D009153 - Mutagens

   

5-Fluorouridine

1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-fluoro-1,2,3,4-tetrahydropyrimidine-2,4-dione

C9H11FN2O6 (262.0601)


5-Fluorouridine is a metabolite of fluorouracil. Fluorouracil (5-FU or f5U) (sold under the brand names Adrucil, Carac, Efudix, Efudex and Fluoroplex) is a drug that is a pyrimidine analog which is used in the treatment of cancer. It is a suicide inhibitor and works through irreversible inhibition of thymidylate synthase. It belongs to the family of drugs called antimetabolites. It is typically administered with leucovorin. (Wikipedia) 5-Fluorouridine, a metabolite of 5-fluorouracil (HY-90006), is a potent ribozyme self-cleavage inhibitor. 5-Fluorouridine incorporates into both total and poly A RNA and has antiproliferative activity. 5-Fluorouridine induces apoptosis[1][2][3].

   

Fumonisin B2

2-[2-({19-amino-6-[(3,4-dicarboxybutanoyl)oxy]-16,18-dihydroxy-5,9-dimethylicosan-7-yl}oxy)-2-oxoethyl]butanedioic acid

C34H59NO14 (705.3935)


Fumonisin B2 is from Fusarium moniliforme Fumonisin B2 is a fumonisin mycotoxin produced by the fungi Fusarium verticillioides and Fusarium moniliforme. It is a structural analog of fumonisin B1. Fumonisin B2 is more cytotoxic than fumonisin B1. Fumonisin B2 inhibits sphingosine acyltransferase D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D037341 - Fumonisins D009676 - Noxae > D002273 - Carcinogens From Fusarium moniliforme

   

Amodiaquine

4-[(7-chloroquinolin-4-yl)amino]-2-[(diethylamino)methyl]phenol

C20H22ClN3O (355.1451)


Amodiaquine is only found in individuals that have used or taken this drug. It is a 4-aminoquinoquinoline compound with anti-inflammatory properties. [PubChem]The mechanism of plasmodicidal action of amodiaquine is not completely certain. Like other quinoline derivatives, it is thought to inhibit heme polymerase activity. This results in accumulation of free heme, which is toxic to the parasites. The drug binds the free heme preventing the parasite from converting it to a form less toxic. This drug-heme complex is toxic and disrupts membrane function. P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials > P01BA - Aminoquinolines D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent

   

Dexamethasone Acetate

Dexamethasone-17-acetate

C24H31FO6 (434.2105)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3264 CONFIDENCE standard compound; INTERNAL_ID 2835

   

Butylate

N,N-bis(2-methylpropyl)(ethylsulfanyl)formamide

C11H23NOS (217.15)


   

Vernam

N,N-dipropyl(propylsulfanyl)formamide

C10H21NOS (203.1344)


   

Sirolimus

(1R,9S,12S,15R,16E,18R,19R,21R,23S,24E,26E,28E,30S,32S,35R)-1,18-dihydroxy-12-[(2R)-1-[(1S,3R,4R)-4-hydroxy-3-methoxycyclohexyl]propan-2-yl]-19,30-dimethoxy-15,17,21,23,29,35-hexamethyl-11,36-dioxa-4-azatricyclo[30.3.1.0^{4,9}]hexatriaconta-16,24,26,28-tetraene-2,3,10,14,20-pentone

C51H79NO13 (913.5551)


Sirolimus is a macrolide compound obtained from Streptomyces hygroscopicus that acts by selectively blocking the transcriptional activation of cytokines thereby inhibiting cytokine production. It is bioactive only when bound to immunophilins. Sirolimus is a potent immunosuppressant and possesses both antifungal and antineoplastic properties. [PubChem] L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01E - Protein kinase inhibitors > L01EG - Mammalian target of rapamycin (mtor) kinase inhibitors L - Antineoplastic and immunomodulating agents > L04 - Immunosuppressants > L04A - Immunosuppressants > L04AA - Selective immunosuppressants C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C61074 - Serine/Threonine Kinase Inhibitor COVID info from Guide to PHARMACOLOGY, clinicaltrial, clinicaltrials, clinical trial, clinical trials D000970 - Antineoplastic Agents > D000903 - Antibiotics, Antineoplastic > D020123 - Sirolimus C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C2201 - mTOR Inhibitor D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C308 - Immunotherapeutic Agent > C574 - Immunosuppressant C254 - Anti-Infective Agent > C258 - Antibiotic S - Sensory organs > S01 - Ophthalmologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Rapamycin (Sirolimus; AY 22989) is a potent and specific mTOR inhibitor with an IC50 of 0.1 nM in HEK293 cells. Rapamycin binds to FKBP12 and specifically acts as an allosteric inhibitor of mTORC1[1]. Rapamycin is an autophagy activator, an immunosuppressant[2]. Rapamycin (Sirolimus; AY 22989) is a potent and specific mTOR inhibitor with an IC50 of 0.1 nM in HEK293 cells. Rapamycin binds to FKBP12 and specifically acts as an allosteric inhibitor of mTORC1[1]. Rapamycin is an autophagy activator, an immunosuppressant[2]. Rapamycin (Sirolimus; AY 22989) is a potent and specific mTOR inhibitor with an IC50 of 0.1 nM in HEK293 cells. Rapamycin binds to FKBP12 and specifically acts as an allosteric inhibitor of mTORC1[1]. Rapamycin is an autophagy activator, an immunosuppressant[2].

   

Difenoconazole

1-({2-[2-chloro-4-(4-chlorophenoxy)phenyl]-4-methyl-1,3-dioxolan-2-yl}methyl)-1H-1,2,4-triazole

C19H17Cl2N3O3 (405.0647)


CONFIDENCE standard compound; INTERNAL_ID 585; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9954; ORIGINAL_PRECURSOR_SCAN_NO 9949 CONFIDENCE standard compound; INTERNAL_ID 585; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9970; ORIGINAL_PRECURSOR_SCAN_NO 9969 CONFIDENCE standard compound; INTERNAL_ID 585; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9848; ORIGINAL_PRECURSOR_SCAN_NO 9843 CONFIDENCE standard compound; INTERNAL_ID 585; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9912; ORIGINAL_PRECURSOR_SCAN_NO 9911 CONFIDENCE standard compound; INTERNAL_ID 585; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9893; ORIGINAL_PRECURSOR_SCAN_NO 9891 CONFIDENCE standard compound; INTERNAL_ID 585; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9949; ORIGINAL_PRECURSOR_SCAN_NO 9948 CONFIDENCE standard compound; INTERNAL_ID 2586 CONFIDENCE standard compound; INTERNAL_ID 8457 D016573 - Agrochemicals D010575 - Pesticides

   

P-Toluenesulfonamide

4-Toluenesulfonamide, mercury (+2) salt (2:1)

C7H9NO2S (171.0354)


CONFIDENCE standard compound; INTERNAL_ID 926; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4179; ORIGINAL_PRECURSOR_SCAN_NO 4178 CONFIDENCE standard compound; INTERNAL_ID 926; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4160; ORIGINAL_PRECURSOR_SCAN_NO 4155 CONFIDENCE standard compound; INTERNAL_ID 926; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4177; ORIGINAL_PRECURSOR_SCAN_NO 4175 CONFIDENCE standard compound; INTERNAL_ID 926; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4145; ORIGINAL_PRECURSOR_SCAN_NO 4142 CONFIDENCE standard compound; INTERNAL_ID 926; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4171; ORIGINAL_PRECURSOR_SCAN_NO 4169 CONFIDENCE standard compound; INTERNAL_ID 926; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4164; ORIGINAL_PRECURSOR_SCAN_NO 4159 C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3618 CONFIDENCE standard compound; INTERNAL_ID 4185 CONFIDENCE standard compound; INTERNAL_ID 2869 CONFIDENCE standard compound; INTERNAL_ID 8805 COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Diethylstilbestrol

4-[4-(4-hydroxyphenyl)hex-3-en-3-yl]phenol

C18H20O2 (268.1463)


Diethylstilbestrol is a synthetic estrogen that was developed to supplement a womans natural estrogen production. In 1971, the Food and Drug Administration (FDA) issued a Drug Bulletin advising physicians to stop prescribing DES to pregnant women because it was linked to a rare vaginal cancer in female offspring. Diethylstilbesterol is found in gram bean. Diethylstilbestrol is a synthetic nonsteroidal estrogen used in the treatment of menopausal and postmenopausal disorders. It was also used formerly as a growth promoter in animals. According to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985), diethylstilbestrol has been listed as a known carcinogen. (Merck, 11th ed). G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CC - Estrogens, combinations with other drugs G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CB - Synthetic estrogens, plain L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02A - Hormones and related agents > L02AA - Estrogens D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D009676 - Noxae > D002273 - Carcinogens

   

BUPROFEZIN

Pesticide5_Buprofezin_C16H23N3OS_(2Z)-2-(tert-Butylimino)-3-(1-methylethyl)-5-phenyl-1,3,5-thiadiazinan-4-one

C16H23N3OS (305.1562)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 402; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10057; ORIGINAL_PRECURSOR_SCAN_NO 10056 CONFIDENCE standard compound; INTERNAL_ID 402; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10079; ORIGINAL_PRECURSOR_SCAN_NO 10078 CONFIDENCE standard compound; INTERNAL_ID 402; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10113; ORIGINAL_PRECURSOR_SCAN_NO 10111 ORIGINAL_ACQUISITION_NO 10127; CONFIDENCE standard compound; INTERNAL_ID 402; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_PRECURSOR_SCAN_NO 10126 CONFIDENCE standard compound; INTERNAL_ID 402; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10127; ORIGINAL_PRECURSOR_SCAN_NO 10126 CONFIDENCE standard compound; INTERNAL_ID 402; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10097; ORIGINAL_PRECURSOR_SCAN_NO 10096 CONFIDENCE standard compound; INTERNAL_ID 402; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10129; ORIGINAL_PRECURSOR_SCAN_NO 10128

   

Doxazosin

1 (4-amino-6,7-Dimethoxy-2-quinazolinyl)-4-((2,3-dihydro-1,4-benzodioxin-2-yl)carbonyl)piperazine

C23H25N5O5 (451.1856)


Doxazosin is a quinazoline-derivative that selectively antagonizes postsynaptic α1-adrenergic receptors. It may be used to mild to moderate hypertension and in the management of symptomatic benign prostatic hyperplasia (BPH). α1-Receptors mediate contraction and hypertrophic growth of smooth muscle cells. Antagonism of these receptors leads to smooth muscle relaxation in the peripheral vasculature and prostate gland. C - Cardiovascular system > C02 - Antihypertensives > C02C - Antiadrenergic agents, peripherally acting > C02CA - Alpha-adrenoreceptor antagonists C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Benzenebutanoic acid

4-Phenylbutyric acid, calcium salt

C10H12O2 (164.0837)


Benzenebutanoic acid (also known as 4-phenylbutyrate, or 4-PBA) is the oral form of butyrate, which is known to be a transcriptional regulator. Sodium-4-PBA has been shown to induce fetal hemoglobin, and it has been used in clinical trials for sickle cell anemia and β-thalassemia. Because gene expression profiles became more differentiated, it is in phase I trials in several different malignant disorders. The potential for therapeutic benefit in cystic fibrosis (CF) resides in an additional mechanism, involving protein folding and the ER (endoplasmic reticulum) environment (PMID 12458151). 4-PBA is a drug that was developed to treat elevated blood ammonia in urea cycle disorders, a histone deacetylase inhibitor that promotes mutation ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) trafficking (PMID 16798551). 4-phenylbutyrate (4-PBA) is known to be a transcriptional regulator, and sodium-4-PBA has been shown to induce fetal hemoglobin, and it has been used in clinical trials for sickle cell anemia and β-thalassemia Because gene expression profiles became more differentiated, it is in phase I trials in several different malignant disorders. The potential for therapeutic benefit in cystic fibrosis (CF) resides in an additional mechanism, involving protein folding and the ER environment. 4-PBA is a drug that was developed to treat elevated blood ammonia in urea cycle disorders, a histone deacetylase inhibitor that promotes mutation ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) trafficking. (PMID 12458151) [HMDB] C471 - Enzyme Inhibitor > C1946 - Histone Deacetylase Inhibitor C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent D000970 - Antineoplastic Agents

   

Amiodarone

{2-[4-(2-butyl-1-benzofuran-3-carbonyl)-2,6-diiodophenoxy]ethyl}diethylamine

C25H29I2NO3 (645.0237)


Amiodarone is only found in individuals that have used or taken this drug. It is an antianginal and antiarrhythmic drug. It increases the duration of ventricular and atrial muscle action by inhibiting Na,K-activated myocardial adenosine triphosphatase. There is a resulting decrease in heart rate and in vascular resistance. [PubChem]The antiarrhythmic effect of amiodarone may be due to at least two major actions. It prolongs the myocardial cell-action potential (phase 3) duration and refractory period and acts as a noncompetitive a- and b-adrenergic inhibitor. CONFIDENCE standard compound; INTERNAL_ID 378; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9504; ORIGINAL_PRECURSOR_SCAN_NO 9502 CONFIDENCE standard compound; INTERNAL_ID 378; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9437; ORIGINAL_PRECURSOR_SCAN_NO 9432 CONFIDENCE standard compound; INTERNAL_ID 378; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9523; ORIGINAL_PRECURSOR_SCAN_NO 9522 CONFIDENCE standard compound; INTERNAL_ID 378; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9470; ORIGINAL_PRECURSOR_SCAN_NO 9468 CONFIDENCE standard compound; INTERNAL_ID 378; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9458; ORIGINAL_PRECURSOR_SCAN_NO 9457 CONFIDENCE standard compound; INTERNAL_ID 378; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9497; ORIGINAL_PRECURSOR_SCAN_NO 9495 C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BD - Antiarrhythmics, class iii D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065609 - Cytochrome P-450 CYP1A2 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065688 - Cytochrome P-450 CYP2C9 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065690 - Cytochrome P-450 CYP2D6 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065692 - Cytochrome P-450 CYP3A Inhibitors C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3067 CONFIDENCE standard compound; INTERNAL_ID 2733 D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

4-Hydroxytamoxifen

4-[(1Z)-1-{4-[2-(dimethylamino)ethoxy]phenyl}-2-phenylbut-1-en-1-yl]phenol

C26H29NO2 (387.2198)


4-Hydroxytamoxifen (Afimoxifene) is a metabolite of Tamoxifen. Afimoxifene (4-hydroxytamoxifen) is a selective estrogen receptor modulator which is the active metabolite of tamoxifen. Afimoxifene is a transdermal gel formulation and is being developed by Ascend Therapeutics, Inc. under the trademark TamoGel. (Wikipedia) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D020847 - Estrogen Receptor Modulators D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D000970 - Antineoplastic Agents C1892 - Chemopreventive Agent

   

Helixin C

(2R)-2-[(2R,3S,6R)-6-[[(2S,4R,5R,6R,7R,9R)-2-[(2R,5S)-5-[(2R,3S,5R)-5-[(2S,3S,5R,6R)-6-hydroxy-6-(hydroxymethyl)-3,5-dimethyloxan-2-yl]-3-methyloxolan-2-yl]-5-methyloxolan-2-yl]-7-methoxy-2,4,6-trimethyl-1,10-dioxaspiro[4.5]decan-9-yl]methyl]-3-methyloxan-2-yl]propanoic acid

C40H68O11 (724.4761)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D049990 - Membrane Transport Modulators D007476 - Ionophores

   

Sakuranin

[ S, (-) ] -5- (beta-D-Glucopyranosyloxy) -2,3-dihydro-2- (4-hydroxyphenyl) -7-methoxy-4H-1-benzopyran-4-one

C22H24O10 (448.1369)


A flavanone glycoside that is sakuranetin attached to a beta-D-glucopyranosyl residue at position 5 via a glycosidic linkage.

   

Salinomycin

AKOS032949878

C42H70O11 (750.4918)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic Same as: D08502

   

Legumelin

(1S,14S)-17,18-dimethoxy-7,7-dimethyl-2,8,21-trioxapentacyclo[12.8.0.0³,¹².0⁴,⁹.0¹⁵,²⁰]docosa-3(12),4(9),5,10,15,17,19-heptaen-13-one

C23H22O6 (394.1416)


Legumelin, also known as (-)-cis-deguelin, is a member of the class of compounds known as rotenones. Rotenones are rotenoids with a structure based on a 6a,12a-dihydrochromeno[3,4-b]chromen-12(6H)-one skeleton. Thus, legumelin is considered to be a flavonoid lipid molecule. Legumelin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Legumelin can be found in soy bean, which makes legumelin a potential biomarker for the consumption of this food product. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB.

   

Sebacic acid

Sebacic acid, monocadmium salt

C10H18O4 (202.1205)


Sebacic acid is a saturated, straight-chain naturally occurring dicarboxylic acid with 10 carbon atoms. Sebacic acid is a normal urinary acid. In patients with multiple acyl-CoA-dehydrogenase deficiency (MADD), also known as glutaric aciduria type II (GAII), a group of metabolic disorders due to deficiency of either electron transfer flavoprotein or electron transfer flavoprotein ubiquinone oxidoreductase, biochemical data shows an increase in urine sebacic acid excretion. Sebacic acid is found to be associated with carnitine-acylcarnitine translocase deficiency and medium chain acyl-CoA dehydrogenase deficiency, which are inborn errors of metabolism. Sebacic acid is a white flake or powdered crystal slightly soluble in water that has been proposed as an alternative energy substrate in total parenteral nutrition. Sebacic Acid was named from the Latin sebaceus (tallow candle) or sebum (tallow) in reference to its use in the manufacture of candles. Sebacic acid and its derivatives such as azelaic acid have a variety of industrial uses as plasticizers, lubricants, hydraulic fluids, cosmetics, candles, etc. It is used in the synthesis of polyamide and alkyd resins. It is also used as an intermediate for aromatics, antiseptics and painting materials (PMID: 10556649, 1738216, 8442769, 12706375). Sebacic acid is a saturated, straight-chain naturally occurring dicarboxylic acid with 10 carbon atoms. Sebacic acid is a normal urinary acid. In patients with multiple acyl-CoA-dehydrogenase deficiency (MADD) or glutaric aciduria type II (GAII) are a group of metabolic disorders due to deficiency of either electron transfer flavoprotein or electron transfer flavoprotein ubiquinone oxidoreductase, biochemical data shows an increase in urine sebacic acid excretion. CONFIDENCE standard compound; INTERNAL_ID 671; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4109; ORIGINAL_PRECURSOR_SCAN_NO 4104 CONFIDENCE standard compound; INTERNAL_ID 671; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4132; ORIGINAL_PRECURSOR_SCAN_NO 4130 CONFIDENCE standard compound; INTERNAL_ID 671; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4118; ORIGINAL_PRECURSOR_SCAN_NO 4114 CONFIDENCE standard compound; INTERNAL_ID 671; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4132; ORIGINAL_PRECURSOR_SCAN_NO 4129 CONFIDENCE standard compound; INTERNAL_ID 671; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4099; ORIGINAL_PRECURSOR_SCAN_NO 4095 CONFIDENCE standard compound; INTERNAL_ID 671; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4127; ORIGINAL_PRECURSOR_SCAN_NO 4123 Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID S017 Decanedioic acid, a normal urinary acid, is found to be associated with carnitine-acylcarnitine translocase deficiency and medium chain acyl-CoA dehydrogenase deficiency. Decanedioic acid, a normal urinary acid, is found to be associated with carnitine-acylcarnitine translocase deficiency and medium chain acyl-CoA dehydrogenase deficiency.

   

Magnolol

2-[2-hydroxy-5-(prop-2-en-1-yl)phenyl]-4-(prop-2-en-1-yl)phenol

C18H18O2 (266.1307)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Magnolol, a natural lignan isolated from the stem bark of Magnolia officinalis, is a dual agonist of both RXRα and PPARγ, with EC50 values of 10.4 μM and 17.7 μM, respectively. Magnolol, a natural lignan isolated from the stem bark of Magnolia officinalis, is a dual agonist of both RXRα and PPARγ, with EC50 values of 10.4 μM and 17.7 μM, respectively. Magnolol, a natural lignan isolated from the stem bark of Magnolia officinalis, is a dual agonist of both RXRα and PPARγ, with EC50 values of 10.4 μM and 17.7 μM, respectively.

   

(S,E)-Zearalenone

14,16-dihydroxy-3-methyl-3,4,5,6,7,8,9,10-octahydro-1H-2-benzoxacyclotetradecine-1,7-dione

C18H22O5 (318.1467)


CONFIDENCE standard compound; INTERNAL_ID 211; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4903; ORIGINAL_PRECURSOR_SCAN_NO 4902 CONFIDENCE standard compound; INTERNAL_ID 211; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4907; ORIGINAL_PRECURSOR_SCAN_NO 4903 CONFIDENCE standard compound; INTERNAL_ID 211; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4915; ORIGINAL_PRECURSOR_SCAN_NO 4913 CONFIDENCE standard compound; INTERNAL_ID 211; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4892; ORIGINAL_PRECURSOR_SCAN_NO 4888 CONFIDENCE standard compound; INTERNAL_ID 211; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4889; ORIGINAL_PRECURSOR_SCAN_NO 4888 CONFIDENCE standard compound; INTERNAL_ID 211; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4992; ORIGINAL_PRECURSOR_SCAN_NO 4988 Fungal metabolite of Fusarium subspecies and of Gibberella zeae. Potential food mycotoxin. Has weak estrogenic activity and causes physiol. changes when ingested by animals as foodstuffs contaminant. (S,E)-Zearalenone is found in corn. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Acquisition and generation of the data is financially supported in part by CREST/JST. D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2248 cis-Zearalenone is a metabolite of Fusarium species. Zearalenone is a mycotoxin produced mainly by fungi belonging to the genus Fusarium in foods and feeds. Possess oestrogenic activity in pigs, cattle and sheep, with low acute toxicity. Causes precocious development of mammae and other estrogenic effects in young gilts[1][2]. Zearalenone is a mycotoxin produced mainly by fungi belonging to the genus Fusarium in foods and feeds. Possess oestrogenic activity in pigs, cattle and sheep, with low acute toxicity. Causes precocious development of mammae and other estrogenic effects in young gilts[1][2].

   

C.I. Natural Red 20

InChI=1/C16H16O5/c1-8(2)3-4-10(17)9-7-13(20)14-11(18)5-6-12(19)15(14)16(9)21/h3,5-7,10,17-19H,4H2,1-2H3

C16H16O5 (288.0998)


Red dye component of alkanet root extract used for colouring sausage casings, margarine, confectionery and wine. This extract, formerly FEMA 2016, has been removed from the FEMA GRAS (Generally Recognized As Safe) list. Not permitted in Germany. Japan approved Red dye component of alkanet root extract used for colouring sausage casings, margarine, confectionery and wine. This extract, formerly FEMA 2016, has been removed from the FEMA GRAS list. Not permitted in Germany. Japan approved. C.I. Natural Red 20 is a naphthoquinone. C.I. Natural Red 20 is a natural product found in Boraginaceae, Lithospermum erythrorhizon, and other organisms with data available. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3]. (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3]. (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3]. (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3]. Shikonin is a major component of a Chinese herbal medicine named zicao. Shikonin is a potent TMEM16A chloride channel inhibitor with an IC50 of 6.5 μM[1]. Shikonin is a specific pyruvate kinase M2 (PKM2) inhibitor[2] and can also inhibit TNF-α and NF-κB pathway[3]. Shikonin decreases exosome secretion through the inhibition of glycolysis[4]. Shikonin inhibits AIM2 inflammasome activation[7]. Shikonin is a major component of a Chinese herbal medicine named zicao. Shikonin is a potent TMEM16A chloride channel inhibitor with an IC50 of 6.5 μM[1]. Shikonin is a specific pyruvate kinase M2 (PKM2) inhibitor[2] and can also inhibit TNF-α and NF-κB pathway[3]. Shikonin decreases exosome secretion through the inhibition of glycolysis[4]. Shikonin inhibits AIM2 inflammasome activation[7].

   

Medetomidine

Dexmedetomidine

C13H16N2 (200.1313)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Dexmedetomidine ((+)-Medetomidine) is a potent, selective and orally active agonist of α2-adrenoceptor, with a Ki of 1.08 nM. Dexmedetomidine shows 1620-fold selectivity against α1-adrenoceptor. Dexmedetomidine exhibits anxiolysis, sedation, and modest analgesia effects[1][2][3]. Medetomidine is an orally active α2-adrenoceptor agonist (Ki: 1.08 nM). Medetomidine has sedative and analgesic effects. Medetomidine can cause peripheral vasoconstriction through the activation of α2 adrenoceptors on blood vessels[1][2][3][4].

   

Dezocine

5,11-Methanobenzocyclodecen-3-ol, 13-amino-5,6,7,8,9,10,11,12-octahydro-5-methyl-, (5alpha,11alpha,13S*)

C16H23NO (245.178)


Dezocine is a partial opiate drug and is used for pain management. Dezocine is a very effective alternative to fentanyl when administered during outpatient laparoscopy, although is associated with an increased incidence of postoperative nausea. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics N - Nervous system > N02 - Analgesics > N02A - Opioids

   

6-Hydroxyflavone

6-Hydroxy-2-phenyl-4-benzopyrone

C15H10O3 (238.063)


6-Hydroxyflavone is a naturally occurring flavone, with anti-inflammatory activity. 6-Hydroxyflavone exhibits inhibitory effect towards bovine hemoglobin (BHb) glycation. 6-Hydroxyflavone can activate AKT, ERK 1/2, and JNK signaling pathways to effectively promote osteoblastic differentiation. 6-Hydroxyflavone inhibits the LPS-induced NO production[1] [2]. 6-Hydroxyflavone is a naturally occurring flavone, with anti-inflammatory activity. 6-Hydroxyflavone exhibits inhibitory effect towards bovine hemoglobin (BHb) glycation. 6-Hydroxyflavone can activate AKT, ERK 1/2, and JNK signaling pathways to effectively promote osteoblastic differentiation. 6-Hydroxyflavone inhibits the LPS-induced NO production[1] [2].

   

ORYZALIN

ORYZALIN

C12H18N4O6S (346.0947)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents D000890 - Anti-Infective Agents > D013424 - Sulfanilamides D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 3099 CONFIDENCE standard compound; INTERNAL_ID 2333 CONFIDENCE standard compound; INTERNAL_ID 8465

   

Machete

N-(butoxymethyl)-2-chloro-N-(2,6-diethylphenyl)acetamide

C17H26ClNO2 (311.1652)


CONFIDENCE standard compound; INTERNAL_ID 560; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10349; ORIGINAL_PRECURSOR_SCAN_NO 10345 CONFIDENCE standard compound; INTERNAL_ID 560; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10330; ORIGINAL_PRECURSOR_SCAN_NO 10326 CONFIDENCE standard compound; INTERNAL_ID 560; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10216; ORIGINAL_PRECURSOR_SCAN_NO 10211 CONFIDENCE standard compound; INTERNAL_ID 560; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10284; ORIGINAL_PRECURSOR_SCAN_NO 10281 CONFIDENCE standard compound; INTERNAL_ID 560; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10304; ORIGINAL_PRECURSOR_SCAN_NO 10299 CONFIDENCE standard compound; INTERNAL_ID 560; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10247; ORIGINAL_PRECURSOR_SCAN_NO 10245 D010575 - Pesticides > D006540 - Herbicides D009676 - Noxae > D002273 - Carcinogens D016573 - Agrochemicals

   

Sulfasalazine

2-hydroxy-5-[(E)-2-{4-[(pyridin-2-yl)sulfamoyl]phenyl}diazen-1-yl]benzoic acid

C18H14N4O5S (398.0685)


Sulfasalazine is only found in individuals that have used or taken this drug. It is a drug that is used in the management of inflammatory bowel diseases. Its activity is generally considered to lie in its metabolic breakdown product, 5-aminosalicylic acid (see mesalamine) released in the colon. (From Martindale, The Extra Pharmacopoeia, 30th ed, p907)The mode of action of Sulfasalazine or its metabolites, 5-aminosalicylic acid (5-ASA) and sulfapyridine (SP), is still under investigation, but may be related to the anti-inflammatory and/or immunomodulatory properties that have been observed in animal and in vitro models, to its affinity for connective tissue, and/or to the relatively high concentration it reaches in serous fluids, the liver and intestinal walls, as demonstrated in autoradiographic studies in animals. In ulcerative colitis, clinical studies utilizing rectal administration of Sulfasalazine, SP and 5-ASA have indicated that the major therapeutic action may reside in the 5-ASA moiety. The relative contribution of the parent drug and the major metabolites in rheumatoid arthritis is unknown. A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07E - Intestinal antiinflammatory agents > A07EC - Aminosalicylic acid and similar agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D005765 - Gastrointestinal Agents D000890 - Anti-Infective Agents D018501 - Antirheumatic Agents

   

Hypotaurine

2-aminoethane-1-sulfinic acid

C2H7NO2S (109.0197)


Hypotaurine belongs to the class of organic compounds known as sulfinic acids. Sulfinic acids are compounds containing a sulfinic acid functional group, with the general structure RS(=O)OH (R = organyl, not H). Hypotaurine exists in all living species, ranging from bacteria to humans. Within humans, hypotaurine participates in a number of enzymatic reactions. In particular, hypotaurine can be biosynthesized from cysteamine; which is catalyzed by the enzyme 2-aminoethanethiol dioxygenase. In addition, hypotaurine can be biosynthesized from 3-sulfinoalanine through its interaction with the enzyme cysteine sulfinic acid decarboxylase. In humans, hypotaurine is involved in taurine and hypotaurine metabolism. [Spectral] Hypotaurine (exact mass = 109.01975) and Cytosine (exact mass = 111.04326) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Hypotaurine is a product of enzyme cysteamine dioxygenase [EC 1.13.11.19] in taurine and hypotaurine metabolism pathway (KEGG). It may function as an antioxidant and a protective agent under physiological conditions (PMID 14992269). [HMDB] Hypotaurine (2-aminoethanesulfinic acid), an intermediate in taurine biosynthesis from cysteine in astrocytes, is an endogenous inhibitory amino acid of the glycine receptor. Antioxidant[1].

   

Cysteamine

Dihydrochloride, cysteamine

C2H7NS (77.0299)


Cysteamine is a product of the constitutive degradation of coenzyme A, a process that occurs in all tissues, although some tissues such as brain and heart may have exceptionally high coenzyme A turnover rates. Cysteamine has only one known function, and that is as a precursor for the formation of hypotaurine, which is subsequently oxidized to taurine. The rate of cysteamine production as a result of coenzyme A breakdown is not well understood but it is clear that cysteamine levels are not as dramatically affected by dietary habits as are cysteine levels. Cysteamine is generated from hypotaurine by cysteamine dioxygenase (EC:1.13.11.19), an enzyme that was recently identified in mammals (PMID: 17581819). Cysteamine is the simplest stable aminothiol found in the body. It is used in the treatment of disorders of cystine excretion. Cysteamine cleaves the disulfide bond with cysteine to produce molecules that can escape the metabolic defect in cystinosis and cystinuria. Cyst(e)amine may also serve as an endogenous regulator of immune system activity as well as a potential therapeutic agent for the treatment of Huntington disease. Cysteamine is also used as a radiation-protective agent that oxidizes in air to form cystamine. It can be given intravenously or orally to treat radiation sickness. -- Wikipedia [HMDB] Cysteamine is a product of the constitutive degradation of coenzyme A, a process that occurs in all tissues, although some tissues such as brain and heart may have exceptionally high coenzyme A turnover rates. Cysteamine has only one known function, and that is as a precursor for the formation of hypotaurine, which is subsequently oxidized to taurine. The rate of cysteamine production as a result of coenzyme A breakdown is not well understood but it is clear that cysteamine levels are not as dramatically affected by dietary habits as are cysteine levels. Cysteamine is generated from hypotaurine by cysteamine dioxygenase (EC:1.13.11.19), an enzyme that was recently identified in mammals (PMID:17581819). Cysteamine is the simplest stable aminothiol found in the body. It is used in the treatment of disorders of cystine excretion. Cysteamine cleaves the disulfide bond with cysteine to produce molecules that can escape the metabolic defect in cystinosis and cystinuria. Cyst(e)amine may also serve as an endogenous regulator of immune system activity as well as a potential therapeutic agent for the treatment of Huntington disease. Cysteamine is also used as a radiation-protective agent that oxidizes in air to form cystamine. It can be given intravenously or orally to treat radiation sickness. A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AA - Amino acids and derivatives C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent S - Sensory organs > S01 - Ophthalmologicals D065104 - Cystine Depleting Agents

   

Dimethylglycine

N-Methylsarcosine N,N-dimethyl-glycine

C4H9NO2 (103.0633)


Dimethylglycine (DMG) is an amino acid derivative found in the cells of all plants and animals and can be obtained in the diet in small amounts from grains and meat. The human body produces DMG when metabolizing choline into glycine. Dimethylglycine that is not metabolized in the liver is transported by the circulatory system to body tissue. Dimethylglycine was popular with Russian athletes and cosmonauts owing to its reputed ability to increase endurance and reduce fatigue. DMG is also a byproduct of homocysteine metabolism. Homocysteine and betaine are converted to methionine and N,N-dimethylglycine by betaine-homocysteine methyltransferase. DMG in the urine is a biomarker for the consumption of legumes. It is also a microbial metabolite (PMID: 25901889). Dimethylglycine (DMG) is an amino acid derivative found in the cells of all plants and animals and can be obtained in the diet in small amounts from grains and meat. The human body produces DMG when metabolizing choline into Glycine. Dimethylglycine that is not metabolized in the liver is transported by the circulatory system to body tissue. Dimethylglycine was popular with Russian athletes and cosmonauts owing to its reputed ability to increase endurance and reduce fatigue. DMG is also a byproduct of homocysteine metabolism. Homocysteine and betaine are converted to methionine and N, N-dimethylglycine by betaine-homocysteine methyltransferase. [HMDB]. Dimethylglycine in the urine is a biomarker for the consumption of legumes. N,N-Dimethylglycine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1118-68-9 (retrieved 2024-07-16) (CAS RN: 1118-68-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). N-Methylsarcosine is an amino acid building block for protein, found in a small amount in the body.

   

Deoxyuridine triphosphate

({[({[(2R,3S,5R)-5-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)-3-hydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphonic acid

C9H15N2O14P3 (467.9736)


Dutp, also known as 2-deoxyuridine 5-triphosphate or deoxy-utp, is a member of the class of compounds known as pyrimidine 2-deoxyribonucleoside triphosphates. Pyrimidine 2-deoxyribonucleoside triphosphates are pyrimidine nucleotides with a triphosphate group linked to the ribose moiety lacking a hydroxyl group at position 2. Dutp is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Dutp can be found in a number of food items such as bilberry, japanese chestnut, black radish, and lovage, which makes dutp a potential biomarker for the consumption of these food products. Dutp can be found primarily in prostate Tissue, as well as throughout most human tissues. Dutp exists in all living species, ranging from bacteria to humans. In humans, dutp is involved in the pyrimidine metabolism. Dutp is also involved in few metabolic disorders, which include beta ureidopropionase deficiency, dihydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and UMP synthase deficiency (orotic aciduria). Moreover, dutp is found to be associated with prostate cancer. Dutp is a non-carcinogenic (not listed by IARC) potentially toxic compound. Metabolism of organophosphates occurs principally by oxidation, by hydrolysis via esterases and by reaction with glutathione. Demethylation and glucuronidation may also occur. Oxidation of organophosphorus pesticides may result in moderately toxic products. In general, phosphorothioates are not directly toxic but require oxidative metabolism to the proximal toxin. The glutathione transferase reactions produce products that are, in most cases, of low toxicity. Paraoxonase (PON1) is a key enzyme in the metabolism of organophosphates. PON1 can inactivate some organophosphates through hydrolysis. PON1 hydrolyzes the active metabolites in several organophosphates insecticides as well as, nerve agents such as soman, sarin, and VX. The presence of PON1 polymorphisms causes there to be different enzyme levels and catalytic efficiency of this esterase, which in turn suggests that different individuals may be more susceptible to the toxic effect of organophosphate exposure (T3DB). Deoxyuridine triphosphate (dUTP) is a deoxynucleotide triphosphate (dNTP) that is chemically similar to uridine triphosphate (UTP) except that it has a deoxyribose sugar instead of a ribose sugar. DNA synthesis requires the availability of deoxynucleotide triphosphates (dTTP, dATP, dGTP, dCTP), whereas RNA synthesis requires the availability of nucleotide triphosphates (NTPs) such as TTP, ATP, GTP, and UTP. The conversion of nucleotide triphosphates (NTPs) into dNTPs can only be done in the diphosphate form. Typically, an NTP has one phosphate removed to become an NDP. This is then converted into a dNDP by an enzyme called ribonucleotide reductase and followed by the re-addition of phosphate to give a dNTP. dUTP is a substrate for several enzymes, including inosine triphosphate pyrophosphatase, deoxyuridine 5-triphosphate nucleotidohydrolase (mitochondrial), uridine-cytidine kinase 1, nucleoside diphosphate kinase 3, nucleoside diphosphate kinase B, nucleoside diphosphate kinase 6, nucleoside diphosphate kinase (mitochondrial), nucleoside diphosphate kinase homolog 5, nucleoside diphosphate kinase A, and nucleoside diphosphate kinase 7. While UTP is routinely incorporated into RNA, dUTP is not normally incorporated into DNA. Instead, if dUTP is misincorporated into DNA, it can cause DNA damage. Therefore, dUTP can be considered as a teratogen or a mutagen. The extent of DNA damage caused by dUTP is highly dependent on the levels of the dUTP pyrophosphatase (dUTPase) and uracil-DNA glycosylase (UDG), which limits the intracellular accumulation of dUTP. Additionally, loss of viability following thymidylate synthase (TS) inhibition occurs as a consequence of the accumulation of dUTP in some cell lines and subsequent misincorporation of uracil into DNA (PMID: 11487279).

   

Diethylnitrosamine

N-Nitrosodiethylamine (NDEA)

C4H10N2O (102.0793)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 3452 D009676 - Noxae > D000477 - Alkylating Agents N-Nitrosodiethylamine (Diethylnitrosamine) is a potent hepatocarcinogenic dialkylnitrosoamine. N-Nitrosodiethylamine is mainly present in tobacco smoke, water, cheddar cheese, cured, fried meals and many alcoholic beverages. N-Nitrosodiethylamine is responsible for the changes in the nuclear enzymes associated with DNA repair/replication. N-Nitrosodiethylamine results in various tumors in all animal species. The main target organs are the nasal cavity, trachea, lung, esophagus and liver.

   

Lysergide

(6aR,9R)-N,N-diethyl-7-methyl-6,6a,8,9-tetrahydro-4H-indolo[4,3-fg]quinoline-9-carboxamide

C20H25N3O (323.1998)


Lysergic acid diethylamide is an ergoline alkaloid arising from formal condensation of lysergic acid with diethylamine. It has a role as a hallucinogen, a serotonergic agonist and a dopamine agonist. It is an ergoline alkaloid, an organic heterotetracyclic compound and a monocarboxylic acid amide. It is functionally related to a lysergamide. D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist

   

Chloroquine

N(4)-(7-Chloro-4-quinolinyl)-N(1),N(1)-diethyl-1,4-pentanediamine

C18H26ClN3 (319.1815)


Chloroquine is only found in individuals that have used or taken this drug. It is a prototypical antimalarial agent with a mechanism that is not well understood. It has also been used to treat rheumatoid arthritis, systemic lupus erythematosus, and in the systemic therapy of amebic liver abscesses. [PubChem]The mechanism of plasmodicidal action of chloroquine is not completely certain. Like other quinoline derivatives, it is thought to inhibit heme polymerase activity. This results in accumulation of free heme, which is toxic to the parasites. nside red blood cells, the malarial parasite must degrade hemoglobin to acquire essential amino acids, which the parasite requires to construct its own protein and for energy metabolism. Digestion is carried out in a vacuole of the parasite cell.During this process, the parasite produces the toxic and soluble molecule heme. The heme moiety consists of a porphyrin ring called Fe(II)-protoporphyrin IX (FP). To avoid destruction by this molecule, the parasite biocrystallizes heme to form hemozoin, a non-toxic molecule. Hemozoin collects in the digestive vacuole as insoluble crystals.Chloroquine enters the red blood cell, inhabiting parasite cell, and digestive vacuole by simple diffusion. Chloroquine then becomes protonated (to CQ2+), as the digestive vacuole is known to be acidic (pH 4.7); chloroquine then cannot leave by diffusion. Chloroquine caps hemozoin molecules to prevent further biocrystallization of heme, thus leading to heme buildup. Chloroquine binds to heme (or FP) to form what is known as the FP-Chloroquine complex; this complex is highly toxic to the cell and disrupts membrane function. Action of the toxic FP-Chloroquine and FP results in cell lysis and ultimately parasite cell autodigestion. In essence, the parasite cell drowns in its own metabolic products. P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials > P01BA - Aminoquinolines COVID info from Guide to PHARMACOLOGY, DrugBank, clinicaltrial, clinicaltrials, clinical trial, clinical trials D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D018501 - Antirheumatic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Chelidonine

(1S,12S,13R)-24-methyl-5,7,18,20-tetraoxa-24-azahexacyclo[11.11.0.02,10.04,8.014,22.017,21]tetracosa-2,4(8),9,14(22),15,17(21)-hexaen-12-ol

C20H19NO5 (353.1263)


Chelidonine is an alkaloid fundamental parent, a benzophenanthridine alkaloid and an alkaloid antibiotic. Chelidonine is a natural product found in Sarcocapnos baetica, Sarcocapnos saetabensis, and other organisms with data available. Chelidonine is an isolate of Papaveraceae with acetylcholinesterase and butyrylcholinesterase inhibitory activity. See also: Chelidonium majus flowering top (part of). CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2255 Chelidonine, an isoquinoline alkaloid, can be isolated from Chelidonium majus L.. Chelidonine causes G2/M arrest and induces caspase-dependent and caspase-independent apoptosis, and prevents cell cycle progression of stem cells in Dugesia japonica. Chelidonine has cytotoxic activity against melanoma cell lines. with anticancer and antiviral activity[1][2][3]. Chelidonine, an isoquinoline alkaloid, can be isolated from Chelidonium majus L.. Chelidonine causes G2/M arrest and induces caspase-dependent and caspase-independent apoptosis, and prevents cell cycle progression of stem cells in Dugesia japonica. Chelidonine has cytotoxic activity against melanoma cell lines. with anticancer and antiviral activity[1][2][3].

   

Ribothymidine

1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methyl-1,2,3,4-tetrahydropyrimidine-2,4-dione

C10H14N2O6 (258.0852)


Ribothymidine is an endogenous methylated nucleoside found in human fluids; methylated purine bases are present in higher amounts in tumor-bearing patients compared to healthy controls.DNA hypermethylation is a common finding in malignant cells and has been explored as a therapeutic target for hypomethylating agents. When chemical bonds to DNA, the DNA becomes damaged and proper and complete replication cannot occur to make the normal intended cell. A DNA adduct is an abnormal piece of DNA covalently-bonded to a cancer-causing chemical. This has shown to be the start of a cancerous cell, or carcinogenesis. DNA adducts in scientific experiments are used as bio-markers and as such are themselves measured to reflect quantitatively, for comparison, the amount of cancer in the subject. (PMID: 3506820, 17044778, 17264127, 16799933) [HMDB] Ribothymidine is an endogenous methylated nucleoside found in human fluids; methylated purine bases are present in higher amounts in tumor-bearing patients compared to healthy controls.DNA hypermethylation is a common finding in malignant cells and has been explored as a therapeutic target for hypomethylating agents. When chemical bonds to DNA, the DNA becomes damaged and proper and complete replication cannot occur to make the normal intended cell. A DNA adduct is an abnormal piece of DNA covalently-bonded to a cancer-causing chemical. This has shown to be the start of a cancerous cell, or carcinogenesis. DNA adducts in scientific experiments are used as bio-markers and as such are themselves measured to reflect quantitatively, for comparison, the amount of cancer in the subject. (PMID:3506820, 17044778, 17264127, 16799933). 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids. 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids.

   

NA 28:8;O2

(5Z,8Z,11Z,14Z)-N-(3,4-dihydroxyphenethyl)icosa-5,8,11,14-tetraenamide

C28H41NO3 (439.3086)


   

3-Methylamino-L-alanine

(S)-2-AMINO-3-(METHYLAMINO)PROPANOIC ACID

C4H10N2O2 (118.0742)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists

   

Dimethyl sulfoxide

Research ind. corp. brand 1 OF dimethyl sulfoxide

C2H6OS (78.0139)


Dimethyl sulfoxide (DMSO) is a key dipolar aprotic solvent. It is less toxic than other members of this class: dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, HMPA. Dimethyl sulfoxide is the chemical compound (CH3)2SO. This colorless liquid is an important "dipolar aprotic solvent." It is readily miscible in a wide range of organic solvents as well as water. It has a distinctive property of penetrating the skin very readily, allowing the handler to taste it. Some describe it as an "oyster-like" taste, others claim it tastes like garlic. DMSO is also employed as a rinsing agent in the electronics industry and, in its deuterated form (DMSO-d6), is a useful solvent in NMR due to its ability to dissolve a wide range of chemical compounds and its minimal interference with the sample signals. In cryobiology DMSO has been used as a cryoprotectant and is still an important constituent of cryoprotectant vitrification mixtures used to preserve organs, tissues, and cell suspensions. It is particularly important in the freezing and long-term storage of embryonic stem cells and hematopoietic stem cell, which are often frozen in a mixture of 10\\% DMSO and 90\\% fetal calf serum. As part of an autologous bone marrow transplant the DMSO is re-infused along with the patients own hematopoietic stem cell. Dimethyl sulfoxide is a by-product of wood pulping. One of the leading suppliers of DMSO is the Gaylord company in the USA. DMSO is frequently used as solvent in a number of chemical reactions. In particular it is an excellent reaction solvent for SN2 alkylations: it is possible to alkylate indoles with very high yields using potassium hydroxide as the base and a similar reaction also occurs with phenols. DMSO can be reacted with methyl iodide to form a sulfoxonium ion which can be reacted with sodium hydride to form a sulfur ylide. The methyl groups of DMSO are somewhat acidic in character (pKa=35) due to the stabilization of the resultant anions by the sulfoxide group. M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain Found in broad bean Phaseolus vulgaris, alfalfa Medicago sativa and many other plants. Flavouring agent G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals D020011 - Protective Agents > D003451 - Cryoprotective Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants D012997 - Solvents Same as: D01043

   

Pergolide

(2R,4R,7R)-4-[(methylsulfanyl)methyl]-6-propyl-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),9,12,14-tetraene

C19H26N2S (314.1817)


Pergolide is a long-acting dopamine agonist approved in 1982 for the treatment of Parkinsons Disease. It is an ergot derivative that acts on the dopamine D2 and D3, alpha2- and alpha1-adrenergic, and 5-hydroxytryptamine (5-HT) receptors. It was indicated as adjunct therapy with levodopa/carbidopa in the symptomatic treatment of parkinsonian syndrome. It was later found that pergolide increased the risk of cardiac valvulopathy. The drug was withdrawn from the US market in March 2007 and from the Canadian market in August 2007. N - Nervous system > N04 - Anti-parkinson drugs > N04B - Dopaminergic agents > N04BC - Dopamine agonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist

   

O-Phosphotyrosine

(2S)-2-amino-3-[4-(phosphonooxy)phenyl]propanoic acid

C9H12NO6P (261.0402)


O-Phosphotyrosine is a phosphorylated amino acid that occurs in a number of proteins. Tyrosine phosphorylation and dephosphorylation plays a role in cellular signal transduction and possibly in cell growth control and carcinogenesis. Small amounts of free phosphotyrosine can be found in urine (PMID: 7693088). Levels of this amino acid appear to be elevated in mammalian urine during liver regeneration (PMID: 7516161). Phosphotyrosine is also able to induce platelet aggregation in vitro and it has been suggested that free phosphotyrosine in blood could be meaningful for in vivo platelet activation (PMID: 1282059). [HMDB] O-Phosphotyrosine is a phosphorylated amino acid that occurs in a number of proteins. Tyrosine phosphorylation and dephosphorylation plays a role in cellular signal transduction and possibly in cell growth control and carcinogenesis. Small amounts of free phosphotyrosine can be found in urine (PMID: 7693088). Levels of this amino acid appear to be elevated in mammalian urine during liver regeneration (PMID: 7516161). Phosphotyrosine is also able to induce platelet aggregation in vitro and it has been suggested that free phosphotyrosine in blood could be meaningful for in vivo platelet activation (PMID: 1282059).

   

Pterostilbene

Phenol, 4-[(1Z)-2-(3,5-dimethoxyphenyl)ethenyl]-

C16H16O3 (256.1099)


C26170 - Protective Agent > C275 - Antioxidant Pterostilbene is a stilbenoid isolated from blueberries and Pterocarpus marsupium[1]. Shows anti-oxidant, anti-inflammatory, anti-carcinogenic, anti-diabetic and anti-obesity properties[1][4]. Pterostilbene blocks ROS production[3], also exhibits inhibitory activity against various free radicals such as DPPH, ABTS, hydroxyl, superoxide and hydrogen peroxide[4]. Pterostilbene is a stilbenoid isolated from blueberries and Pterocarpus marsupium[1]. Shows anti-oxidant, anti-inflammatory, anti-carcinogenic, anti-diabetic and anti-obesity properties[1][4]. Pterostilbene blocks ROS production[3], also exhibits inhibitory activity against various free radicals such as DPPH, ABTS, hydroxyl, superoxide and hydrogen peroxide[4].

   

Riluzole

6-(trifluoromethoxy)-1,3-benzothiazol-2-amine

C8H5F3N2OS (234.0075)


Riluzole is only found in individuals that have used or taken this drug. It is a glutamate antagonist (receptors, glutamate) used as an anticonvulsant (anticonvulsants) and to prolong the survival of patients with amyotrophic lateral sclerosis. [PubChem]The mode of action of riluzole is unknown. Its pharmacological properties include the following, some of which may be related to its effect: 1) an inhibitory effect on glutamate release (activation of glutamate reuptake), 2) inactivation of voltage-dependent sodium channels, and 3) ability to interfere with intracellular events that follow transmitter binding at excitatory amino acid receptors. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents N - Nervous system Riluzole is an anticonvulsant agent and belongs to the family of use-dependent Na+ channel blocker which can also inhibit GABA uptake with an IC50 of 43 μM.

   

Terazosin

1-(4-Amino-6,7-dimethoxy-2-quinazolinyl)-4-((tetrahydro-2-furanyl)carbonyl)piperazine

C19H25N5O4 (387.1906)


Terazosin is a selective alpha1-antagonist used for treatment of symptoms of benign prostatic hyperplasia (BPH). It also acts to lower blood pressure, so it is a drug of choice for men with hypertension and prostate enlargement. It works by blocking the action of adrenaline on smooth muscle of the bladder and the blood vessel walls. G - Genito urinary system and sex hormones > G04 - Urologicals > G04C - Drugs used in benign prostatic hypertrophy > G04CA - Alpha-adrenoreceptor antagonists C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D000089162 - Genitourinary Agents > D064804 - Urological Agents

   

Zafirlukast

[3-[[2-methoxy-4-[[[(2-methylphenyl)sulfonyl]amino]carbonyl]phenyl]methyl]-1-methyl-1H-indol-5-yl]-carbamic acid, cyclopentyl ester

C31H33N3O6S (575.209)


Zafirlukast is an oral leukotriene receptor antagonist (LTRA) for the maintenance treatment of asthma, often used in conjunction with an inhaled steroid and/or long-acting bronchodilator. It is available as a tablet and is usually dosed twice daily. Another leukotriene receptor antagonist is montelukast (Singulair), which is usually taken just once daily. Zafirlukast blocks the action of the cysteinyl leukotrienes on the CysLT1 receptors, thus reducing constriction of the airways, build-up of mucus in the lungs and inflammation of the breathing passages. R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03D - Other systemic drugs for obstructive airway diseases > R03DC - Leukotriene receptor antagonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D020024 - Leukotriene Antagonists D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent

   

Vanillylmandelic acid (VMA)

(2S)-2-Hydroxy-2-(4-hydroxy-3-methoxyphenyl)acetic acid

C9H10O5 (198.0528)


Vanillylmandelic acid, also known as vanillylmandelate or VMA, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Vanillylmandelic acid is a sweet and vanilla tasting compound. Vanillylmandelic acid (VMA) is a chemical intermediate in the synthesis of artificial vanilla flavorings and is an end-stage metabolite of the catecholamines (dopamine, epinephrine, and norepinephrine). Vanillylmandelic acid exists in all living organisms, ranging from bacteria to plants to humans. Within humans, vanillylmandelic acid participates in a number of enzymatic reactions. In particular, vanillylmandelic acid can be biosynthesized from 3-methoxy-4-hydroxyphenylglycolaldehyde through its interaction with the enzyme aldehyde dehydrogenase. In addition, vanillylmandelic acid and pyrocatechol can be biosynthesized from 3,4-dihydroxymandelic acid and guaiacol through the action of the enzyme catechol O-methyltransferase. Urinary VMA is elevated in patients with tumors that secrete catecholamines. Urinary VMA tests may also be used to diagnose neuroblastomas, and to monitor treatment of these conditions. VMA urinalysis tests can be used to diagnose an adrenal gland tumor called pheochromocytoma, a tumor of catecholamine-secreting chromaffin cells. Vanillylmandelic acid (VMA) is produced in the liver and is a major product of norepinephrine and epinephrine metabolism excreted in the urine. Vanillylmandelic acid is one of the products of the catabolism of catecholamines (epinephrine, norepinephrine and dopamine). High levels of vanillylmandelic acid can indicate an adrenal gland tumor (pheochromocytoma) or another type of tumor that produces catecholamines. (WebMD) [HMDB] D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H056 Vanillylmandelic acid is the endproduct of epinephrine and norepinephrine metabolism. Vanillylmandelic acid can be used as an indication of the disorder in neurotransmitter metabolism as well. Vanillylmandelic acid has antioxidant activity towards DPPH radical with an IC50 value of 33 μM[1].

   

Honokiol

2-[4-hydroxy-3-(prop-2-en-1-yl)phenyl]-4-(prop-2-en-1-yl)phenol

C18H18O2 (266.1307)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D005765 - Gastrointestinal Agents D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents D018926 - Anti-Allergic Agents D004791 - Enzyme Inhibitors Honokiol is a bioactive, biphenolic phytochemical that possesses potent antioxidative, anti-inflammatory, antiangiogenic, and anticancer activities by targeting a variety of signaling molecules. It inhibits the activation of Akt. Honokiol can readily cross the blood brain barrier[1][2][3][4]. Honokiol is a bioactive, biphenolic phytochemical that possesses potent antioxidative, anti-inflammatory, antiangiogenic, and anticancer activities by targeting a variety of signaling molecules. It inhibits the activation of Akt. Honokiol can readily cross the blood brain barrier[1][2][3][4]. Honokiol is a bioactive, biphenolic phytochemical that possesses potent antioxidative, anti-inflammatory, antiangiogenic, and anticancer activities by targeting a variety of signaling molecules. It inhibits the activation of Akt. Honokiol can readily cross the blood brain barrier[1][2][3][4].

   

Methyl acetate

Ethyl ester OF monoacetic acid

C3H6O2 (74.0368)


Methyl acetate belongs to the class of organic compounds known as carboxylic acid esters. These are carboxylic acid derivatives in which the carbon atom from the carbonyl group is attached to an alkyl or an aryl moiety through an oxygen atom (forming an ester group). Methyl acetate is present in apple, grape, banana and other fruits. Methyl acetate is a flavouring ingredient and it is an ester that, in the laboratory, is synthesized from acetic acid and methanol in the presence of strong acids such as sulfuric acid in an esterification reaction. In the presence of strong bases such as sodium hydroxide or strong acids such as hydrochloric acid or sulfuric acid it is hydrolyzed back into methanol and acetic acid, especially at elevated temperature. Methyl acetate, also known as acetic acid methyl ester or methyl ethanoate, is a clear, flammable liquid with a characteristic, not unpleasant smell like certain glues or nail polish removers. Methyl acetate has characteristics very similar to its analog ethyl acetate. Methyl acetate is used as a solvent in glues, paints, and nail polish removers, in chemical reactions, and for extractions. Methyl acetate is a non-polar (lipophilic) to weakly polar (hydrophilic) aprotic solvent. Methyl acetate has a solubility of 25\\% in water at room temperature. At elevated temperature its solubility in water is much higher. Methyl acetate is not stable in the presence of strong aqueous bases or acids. The conversion of methyl acetate back into its components, by an acid, is a first-order reaction with respect to the ester. The reaction of methyl acetate and a base, for example sodium hydroxide, is a second-order reaction with respect to both reactants Methyl acetate is an ester that is synthesized from acetic acid and methanol in the presence of strong acids such as sulfuric acid in an esterification reaction. In the presence of strong bases such as sodium hydroxide or strong acids such as hydrochloric acid or sulfuric acid it is hydrolyzed back into methanol and acetic acid, especially at elevated temperature.; Methyl acetate, also known as acetic acid methyl ester or methyl ethanoate, is a clear, flammable liquid with a characteristic, not unpleasant smell like certain glues or nail polish removers. Methyl acetate has characteristics very similar to its analog ethyl acetate. Methyl acetate is used as a solvent in glues, paints, and nail polish removers, in chemical reactions, and for extractions. Methyl acetate is a non-polar (lipophilic) to weakly polar (hydrophilic) aprotic solvent. Methyl acetate has a solubility of 25\\% in water at room temperature. At elevated temperature its solubility in water is much higher. Methyl acetate is not stable in the presence of strong aqueous bases or acids. Methyl acetate is VOC exempt.; The conversion of methyl acetate back into its components, by an acid, is a first-order reaction with respect to the ester. The reaction of methyl acetate and a base, for example sodium hydroxide, is a second-order reaction with respect to both reactants. Methyl acetate is a flavouring agent and can be found in many foods, some of which are apple, grape, banana, orange mint, and ginger.

   

2,4(1H,3H)-Pyrimidinedione, 5-fluoro-1-(tetrahydro-2-furanyl)-, (R)-

2,4(1H,3H)-Pyrimidinedione, 5-fluoro-1-(tetrahydro-2-furanyl)-, (R)-

C8H9FN2O3 (200.0597)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite C471 - Enzyme Inhibitor > C2021 - Thymidylate Synthase Inhibitor D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents Same as: D01244 Tegafur (FT 207; NSC 148958) is a chemotherapeutic 5-FU proagent used in the treatment of cancers; is a component of tegafur-uracil.

   

Hexachlorobenzene

1,2,3,4,5,6-Hexachloro-benzene

C6Cl6 (281.8131)


Hexachlorobenzene is an Agricultural fungicid D016573 - Agrochemicals D010575 - Pesticides

   

13-L-Hydroperoxylinoleic acid

(9Z,11E)-(13S)-13-Hydroperoxyoctadeca-9,11-dienoic acid

C18H32O4 (312.23)


(9z,11e)-(13s)-13-hydroperoxyoctadeca-9,11-dienoate, also known as 13s-hydroperoxy-9z,11e-octadecadienoic acid or 13(S)-hpode, belongs to lineolic acids and derivatives class of compounds. Those are derivatives of lineolic acid. Lineolic acid is a polyunsaturated omega-6 18 carbon long fatty acid, with two CC double bonds at the 9- and 12-positions. Thus, (9z,11e)-(13s)-13-hydroperoxyoctadeca-9,11-dienoate is considered to be an octadecanoid lipid molecule (9z,11e)-(13s)-13-hydroperoxyoctadeca-9,11-dienoate is practically insoluble (in water) and a weakly acidic compound (based on its pKa). (9z,11e)-(13s)-13-hydroperoxyoctadeca-9,11-dienoate can be synthesized from octadeca-9,11-dienoic acid (9z,11e)-(13s)-13-hydroperoxyoctadeca-9,11-dienoate can also be synthesized into pinellic acid and 13(S)-HPODE methyl ester (9z,11e)-(13s)-13-hydroperoxyoctadeca-9,11-dienoate can be found in a number of food items such as lingonberry, lemon thyme, watermelon, and agave, which makes (9z,11e)-(13s)-13-hydroperoxyoctadeca-9,11-dienoate a potential biomarker for the consumption of these food products (9z,11e)-(13s)-13-hydroperoxyoctadeca-9,11-dienoate can be found primarily in blood. 13-L-Hydroperoxylinoleic acid (13(S)-HPODE) is one of the primary products of the major polyunsaturated fatty acids (linoleic acid and arachidonic acid) from the 15-lipoxygenase pathway (EC 1.13.11.31). 13(S)-HPODE is a rather unstable metabolite and is rapidly metabolized to more stable secondary products such as diverse forms of hydroxy fatty acids (via reduction of the hydroperoxy group), alkoxy radicals (via homolytic cleavage of the peroxy group), forms of dihydro(pero)xy fatty acids (via lipoxygenase-catalysed double and triple oxygenation), or epoxy leukotrienes (via a hydrogen abstraction from a doubly allylic methylene group and a homolytic cleavage of the hydroperoxy group) (PMID: 9082450). D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

Betaine aldehyde

N,N,N-Trimethyl-2-oxo-ethanaminium

[C5H12NO]+ (102.0919)


Betaine aldehyde, also known as BTL, belongs to the class of organic compounds known as tetraalkylammonium salts. These are organonitrogen compounds containing a quaternary ammonium substituted with four alkyl chains. Betaine aldehyde is an extremely weak basic (essentially neutral) compound (based on its pKa). In humans, betaine aldehyde is involved in betaine metabolism. Outside of the human body, betaine aldehyde has been detected, but not quantified in, several different foods, such as sourdoughs, summer savouries, loganberries, burbots, and celery stalks. This could make betaine aldehyde a potential biomarker for the consumption of these foods. Betaine aldehyde is an intermediate in the metabolism of glycine, serine, and threonine. The human aldehyde dehydrogenase (EC 1.2.1.3) facilitates the conversion of betaine aldehyde into glycine betaine. Betaine aldehyde is a substrate for choline dehydrogenase (PMID: 12467448, 7646513). Betaine aldehyde is an intermediate in the metabolism of glycine, serine and threonine. The human aldehyde dehydrogenase (EC 1.2.1.3) facilitates the conversion of betaine aldehyde to glycine betaine. Betaine aldehyde is a substrate for Choline dehydrogenase (mitochondrial). (PMID: 12467448, 7646513) [HMDB]. Betaine aldehyde is found in many foods, some of which are celery leaves, pummelo, star anise, and grape. COVID info from COVID-19 Disease Map KEIO_ID B044 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Leupeptin

2-(2-Acetamido-4-methylvaleramido)-N-(1-formyl-4-guanidinobutyl)-4-methylvaleramide

C20H38N6O4 (426.2954)


A tripeptide composed of N-acetylleucyl, leucyl and argininal residues joined in sequenceby peptide linkages. It is an inhibitor of the calpains, a family of calcium-activated proteases which promote cell death. D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015853 - Cysteine Proteinase Inhibitors D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D007976 - Leupeptins Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID L006; [MS2] KO009038 KEIO_ID L006

   

Sisomicin

NCGC00181169-01

C19H37N5O7 (447.2693)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01G - Aminoglycoside antibacterials D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D005839 - Gentamicins C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors C254 - Anti-Infective Agent > C258 - Antibiotic KEIO_ID S047; [MS3] KO009246 KEIO_ID S047; [MS2] KO009245 KEIO_ID S047

   

Tromethamine

Tris-magnesium(II)-potassium chloride buffer

C4H11NO3 (121.0739)


Tromethamine, also known as trometamol or tham, belongs to the class of organic compounds known as 1,2-aminoalcohols. These are organic compounds containing an alkyl chain with an amine group bound to the C1 atom and an alcohol group bound to the C2 atom. Tromethamine is a drug which is used for the prevention and correction of metabolic acidosis. Tromethamine exists as a solid, soluble (in water), and a very weakly acidic compound (based on its pKa). Tromethamine is also a parent compound for other transformation products, including but not limited to, bis-tris, bis-tris propane, and N-tris(hydroxymethyl)methylglycine. B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05B - I.v. solutions > B05BB - Solutions affecting the electrolyte balance B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05X - I.v. solution additives D010592 - Pharmaceutic Aids > D014677 - Pharmaceutical Vehicles > D005079 - Excipients D019995 - Laboratory Chemicals > D002021 - Buffers KEIO_ID A194

   

Quinoline

Quinoline Hydrochloride

C9H7N (129.0578)


Quinoline is an alkaloid from various plant species including Mentha species. Also present in cocoa, black tea and scotch whiskey. Quinoline is a flavouring ingredient Quinoline is a heterocyclic aromatic organic compound. It has the formula C9H7N and is a colourless hygroscopic liquid with a strong odour. Aged samples, if exposed to light, become yellow and later brown. Quinoline is only slightly soluble in cold water but dissolves readily in hot water and most organic solvents. Quinoline is found in alcoholic beverages. Quinoline is mainly used as a building block to other specialty chemicals. Approximately 4 tonnes are produced annually according to a report published in 2005.[citation needed] Its principal use is as a precursor to 8-hydroxyquinoline, which is a versatile chelating agent and precursor to pesticides. Its 2- and 4-methyl derivatives are precursors to cyanine dyes. Oxidation of quinoline affords quinolinic acid (pyridine-2,3-dicarboxylic acid), a precursor to the herbicide sold under the name "Assert" Alkaloid from various plant subspecies including Mentha subspeciesand is also present in cocoa, black tea and scotch whiskey. Flavouring ingredient CONFIDENCE standard compound; INTERNAL_ID 2526 KEIO_ID Q008

   

Tioconazole

1-{2-[(2-chlorothiophen-3-yl)methoxy]-2-(2,4-dichlorophenyl)ethyl}-1H-imidazole

C16H13Cl3N2OS (385.9814)


Tioconazole is an antifungal medication of the Imidazole class used to treat infections caused by a fungus or yeast. Tioconazole topical (skin) preparations are also available for ringworm, jock itch, athletes foot, and tinea versicolor or sun fungus. Tioconazole interacts with 14-alpha demethylase, a cytochrome P-450 enzyme that converts lanosterol to ergosterol, an essential component of the yeast membrane. In this way, tioconazole inhibits ergosterol synthesis, resulting in increased cellular permeability. G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AF - Imidazole derivatives D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AC - Imidazole and triazole derivatives D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D065088 - Steroid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D065088 - Steroid Synthesis Inhibitors > D058888 - 14-alpha Demethylase Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent KEIO_ID T123; [MS2] KO009265 KEIO_ID T123

   

2-Hydroxybutyric acid

DL-alpha-Hydroxybutyric acid barium salt

C4H8O3 (104.0473)


2-Hydroxybutyric acid (CAS: 600-15-7), also known as alpha-hydroxybutyrate, is an organic acid derived from alpha-ketobutyrate. alpha-Ketobutyrate is produced by amino acid catabolism (threonine and methionine) and glutathione anabolism (cysteine formation pathway) and is metabolized into propionyl-CoA and carbon dioxide (PMID: 20526369). 2-Hydroxybutyric acid is formed as a byproduct from the formation of alpha-ketobutyrate via a reaction catalyzed by lactate dehydrogenase (LDH) or alpha-hydroxybutyrate dehydrogenase (alphaHBDH). alpha-Hydroxybutyric acid is primarily produced in mammalian hepatic tissues that catabolize L-threonine or synthesize glutathione. Oxidative stress or detoxification of xenobiotics in the liver can dramatically increase the rate of hepatic glutathione synthesis. Under such metabolic stress conditions, supplies of L-cysteine for glutathione synthesis become limiting, so homocysteine is diverted from the transmethylation pathway (which forms methionine) into the transsulfuration pathway (which forms cystathionine). alpha-Ketobutyrate is released as a byproduct when cystathionine is cleaved into cysteine that is incorporated into glutathione. Chronic shifts in the rate of glutathione synthesis may be reflected by urinary excretion of 2-hydroxybutyrate. 2-Hydroxybutyrate is an early marker for both insulin resistance and impaired glucose regulation that appears to arise due to increased lipid oxidation and oxidative stress (PMID: 20526369). 2-Hydroxybutyric acid is often found in the urine of patients suffering from lactic acidosis and ketoacidosis. 2-Hydroxybutyric acid generally appears at high concentrations in situations related to deficient energy metabolism (e.g. birth asphyxia) and also in inherited metabolic diseases affecting the central nervous system during neonatal development, such as "cerebral" lactic acidosis, glutaric aciduria type II, dihydrolipoyl dehydrogenase (E3) deficiency, and propionic acidemia. More recently it has been noted that elevated levels of alpha-hydroxybutyrate in the plasma is a good marker for early-stage type II diabetes (PMID: 19166731). It was concluded from studies done in the mid-1970s that an increased NADH2/NAD ratio was the most important factor for the production of 2-hydroxybutyric acid (PMID: 168632). 2-Hydroxybutyric acid is an organic acid that is involved in propanoate metabolism. It is produced in mammalian tissues (principaly hepatic) that catabolize L-threonine or synthesize glutathione. Oxidative stress or detoxification demands can dramatically increase the rate of hepatic glutathione synthesis. Under such metabolic stress conditions, supplies of L-cysteine for glutathione synthesis become limiting, so homocysteine is diverted from the transmethylation pathway forming methionine into the transsulfuration pathway forming cystathionine. 2-Hydroxybutyrate is released as a by-product when cystathionine is cleaved to cysteine that is incorporated into glutathione. 2-Hydroxybutyric acid is often found in the urine of patients suffering from lactic acidosis and ketoacidosis. 2-Hydroxybutyric acid generally appears at high concentrations in situations related to deficient energy metabolism (e.g., birth asphyxia) and also in inherited metabolic diseases affecting the central nervous system during neonatal development, such as "cerebral" lactic acidosis, glutaric aciduria type II, dihydrolipoyl dehydrogenase (E3) deficiency, and propionic acidemia. More recently it has been noted that elevated levels of alpha-hydroxybutyrate in the plasma is a good marker for early stage type II diabetes (PMID: 19166731). It was concluded from studies done in the mid 1970s that an increased NADH2/NAD ratio was the most important factor for the production of 2-hydorxybutyric acid (PMID: 168632) [HMDB] 2-Hydroxybutyric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=565-70-8 (retrieved 2024-07-16) (CAS RN: 600-15-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (S)-2-Hydroxybutanoic acid is the S-enantiomer of?2-Hydroxybutanoic acid. 2-Hydroxybutanoic acid, a coproduct of protein metabolism, is an insulin resistance (IR) biomarker[1].

   

Baicalin

(2S,3S,4S,5R,6R)-6-[(5,6-dihydroxy-4-oxo-2-phenyl-4H-chromen-7-yl)oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C21H18O11 (446.0849)


Baicalin is a flavone, a type of flavonoid. It is found in several species in the genus Scutellaria, including Scutellaria lateriflora (blue skullcap). There are 10 mg/g baicalin in Scutellaria galericulata (common skullcap) leaves. Baicalin is the glucuronide of baicalein. It is a component of Chinese medicinal herb Huang-chin (Scutellaria baicalensis) and one of the chemical ingredients of Sho-Saiko-To, an herbal supplement. Acquisition and generation of the data is financially supported in part by CREST/JST. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D018501 - Antirheumatic Agents D004791 - Enzyme Inhibitors Baicalin, as a flavonoid glycoside, is an allosteric carnitine palmityl transferase 1 (CPT1) activator. Baicalin reduces the expression of NF-κB[1][2][3]. Baicalin, as a flavonoid glycoside, is an allosteric carnitine palmityl transferase 1 (CPT1) activator. Baicalin reduces the expression of NF-κB[1][2][3].

   

alpha-Mangostin

9H-Xanthen-9-one, 1,3,6-trihydroxy-7-methoxy-2,8-bis(3-methyl-2-buten-1-yl)-

C24H26O6 (410.1729)


Alpha-mangostin is a member of the class of xanthones that is 9H-xanthene substituted by hydroxy group at positions 1, 3 and 6, a methoxy group at position 7, an oxo group at position 9 and prenyl groups at positions 2 and 8. Isolated from the stems of Cratoxylum cochinchinense, it exhibits antioxidant, antimicrobial and antitumour activities. It has a role as an antineoplastic agent, an antimicrobial agent, an antioxidant and a plant metabolite. It is a member of xanthones, a member of phenols and an aromatic ether. Mangostin is a plant/plant extract used in some OTC (over-the-counter) products. It is not an approved drug. alpha-Mangostin is a natural product found in Garcinia merguensis, Garcinia cowa, and other organisms with data available. See also: Garcinia mangostana fruit rind (part of). A member of the class of xanthones that is 9H-xanthene substituted by hydroxy group at positions 1, 3 and 6, a methoxy group at position 7, an oxo group at position 9 and prenyl groups at positions 2 and 8. Isolated from the stems of Cratoxylum cochinchinense, it exhibits antioxidant, antimicrobial and antitumour activities. alpha-Mangostin is found in fruits. alpha-Mangostin is a pigment from Garcinia mangostana (mangosteen Pigment from Garcinia mangostana (mangosteen). alpha-Mangostin is found in fruits. alpha-Mangostin (α-Mangostin) is a dietary xanthone with broad biological activities, such as antioxidant, anti-allergic, antiviral, antibacterial, anti-inflammatory and anticancer effects. It is an inhibitor of mutant IDH1 (IDH1-R132H) with a Ki of 2.85 μM. alpha-Mangostin (α-Mangostin) is a dietary xanthone with broad biological activities, such as antioxidant, anti-allergic, antiviral, antibacterial, anti-inflammatory and anticancer effects. It is an inhibitor of mutant IDH1 (IDH1-R132H) with a Ki of 2.85 μM.

   

Anisomycin

Flagecidin;Wuningmeisu C

C14H19NO4 (265.1314)


An antibiotic isolated from various Streptomyces species. It interferes with protein and DNA synthesis by inhibiting peptidyl transferase or the 80S ribosome system. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic relative retention time with respect to 9-anthracene Carboxylic Acid is 0.392 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.387 Anisomycin is a potent protein synthesis inhibitor which interferes with protein and DNA synthesis by inhibiting peptidyl transferase or the 80S ribosome system[1]. Anisomycin is a JNK activator, which increases phospho-JNK[2][3]. Anisomycin is a bacterial antibiotic[4].

   

1,5-Dicaffeoylquinic acid

(1R,3R,4S,5R)-1,3-bis({[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy})-4,5-dihydroxycyclohexane-1-carboxylic acid

C25H24O12 (516.1268)


Cynarine is a hydroxycinnamic acid and a biologically active chemical constituent of artichoke. Chemically, it is an ester formed from quinic acid and two units of caffeic acid. 1,5-Dicaffeoylquinic acid is found in cardoon, globe artichoke, and fennel. 1,5-Dicaffeoylquinic acid is found in cardoon. Cynarine is a hydroxycinnamic acid and a biologically active chemical constituent of artichoke. Chemically, it is an ester formed from quinic acid and two units of caffeic acid. (Wikipedia C78276 - Agent Affecting Digestive System or Metabolism > C66913 - Cholagogues or Choleretic Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics [Raw Data] CBA70_Cynarin_neg_30eV.txt [Raw Data] CBA70_Cynarin_neg_20eV.txt [Raw Data] CBA70_Cynarin_pos_30eV.txt [Raw Data] CBA70_Cynarin_neg_50eV.txt [Raw Data] CBA70_Cynarin_pos_20eV.txt [Raw Data] CBA70_Cynarin_neg_40eV.txt [Raw Data] CBA70_Cynarin_neg_10eV.txt [Raw Data] CBA70_Cynarin_pos_10eV.txt [Raw Data] CBA70_Cynarin_pos_40eV.txt [Raw Data] CBA70_Cynarin_pos_50eV.txt Cynarin is an antichoke agent with a variety of biological activities including antioxidant, antihistamic and antiviral activities. Cynarin is an antichoke agent with a variety of biological activities including antioxidant, antihistamic and antiviral activities.

   

Lithospermic acid

Lithosperminc acid

C27H22O12 (538.1111)


Lithospermic acid ((+)-Lithospermic acid) is a plant-derived polycyclic phenolic carboxylic acid isolated from Salvia miltiorrhiza, and has the anti-oxidative and hepatoprotective activity on carbon tetrachloride (CCl4)-induced acute liver damage in vitro and in vivo[1]. Lithospermic acid ((+)-Lithospermic acid) is a plant-derived polycyclic phenolic carboxylic acid isolated from Salvia miltiorrhiza, and has the anti-oxidative and hepatoprotective activity on carbon tetrachloride (CCl4)-induced acute liver damage in vitro and in vivo[1].

   

(-)-Arctigenin

(3R,4R)-4-[(3,4-DIMETHOXYPHENYL)METHYL]DIHYDRO-3-[(4-HYDROXY-3-METHOXYPHENYL)METHYL]-2(3H)-FURANONE;2(3H)-FURANONE,4-[(3,4-DIMETHOXYPHENYL)METHYL]DIHYDRO-3-[(4-HYDROXY-3-METHOXYPHENYL)METHYL]-,(3R,4R);(-)-ARCTIGENIN;ARCTIGENIN;ARCTIGENIN(P)

C21H24O6 (372.1573)


(-)-Arctigenin is found in burdock. (-)-Arctigenin is isolated from Cnicus benedictus, Forsythia viridissima, Arctium lappa, Ipomoea cairica and others (CCD).Arctigenin is a lignan found in certain plants of the Asteraceae , including the Greater burdock (Arctium lappa) and Saussurea heteromalla. It has shown antiviral and anticancer effects. It is the aglycone of arctiin. (Wikipedia (-)-Arctigenin is a lignan. Arctigenin is a natural product found in Centaurea cineraria, Forsythia suspensa, and other organisms with data available. See also: Arctium lappa Root (part of); Arctium lappa fruit (part of); Pumpkin Seed (part of) ... View More ... Isolated from Cnicus benedictus, Forsythia viridissima, Arctium lappa, Ipomoea cairica and others (CCD) Arctigenin ((-)-Arctigenin), a biologically active lignan, can be used as an antitumor agent. Arctigenin exhibits potent antioxidant, anti-inflammatory and antiviral (influenza A virus) activities. Arctigenin can be used for the research of metabolic disorders, and central nervous system dysfunctions[1][2][3]. Arctigenin ((-)-Arctigenin), a biologically active lignan, can be used as an antitumor agent. Arctigenin exhibits potent antioxidant, anti-inflammatory and antiviral (influenza A virus) activities. Arctigenin can be used for the research of metabolic disorders, and central nervous system dysfunctions[1][2][3].

   

Tamarixetin

4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(3-hydroxy-4-methoxyphenyl)-

C16H12O7 (316.0583)


Tamarixetin is a monomethoxyflavone that is quercetin methylated at position O-4. Isolated from Cyperus teneriffae. It has a role as a metabolite and an antioxidant. It is a 7-hydroxyflavonol, a monomethoxyflavone and a tetrahydroxyflavone. It is functionally related to a quercetin. Tamarixetin is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available. See also: Trifolium pratense flower (part of). A monomethoxyflavone that is quercetin methylated at position O-4. Isolated from Cyperus teneriffae. Tamarixetin (4'-O-Methyl Quercetin) is a natural flavonoid derivative of quercetin, with anti-oxidative and anti-inflammatory effects. Tamarixetin protects against cardiac hypertrophy[1][2]. Tamarixetin (4'-O-Methyl Quercetin) is a natural flavonoid derivative of quercetin, with anti-oxidative and anti-inflammatory effects. Tamarixetin protects against cardiac hypertrophy[1][2].

   

Paeonol

1-(2-hydroxy-4-methoxyphenyl)ethan-1-one

C9H10O3 (166.063)


A polyphenol metabolite detected in biological fluids [PhenolExplorer] Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively. Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively.

   

Patulin

(2,4-Dihydroxy-2H-pyran-3(6H)-ylidene)acetic acid, 3,4-lactone

C7H6O4 (154.0266)


Patulin is found in pomes. Mycotoxin, found as a contaminant of foods, e.g. apple juice. Sometimes detd. in apple juice Patulin is a mycotoxin produced by a variety of molds, particularly Aspergillus and Penicillium. It is commonly found in rotting apples, and the amount of patulin in apple products is generally viewed as a measure of the quality of the apples used in production. It is not a particularly potent toxin, but a number of studies have shown that it is genotoxic, which has led to some theories that it may be a carcinogen, though animal studies have remained inconclusive. Patulin is also an antibiotic. Several countries have instituted patulin restrictions in apple products. The World Health Organization recommends a maximum concentration of 50 µg/L in apple juice Mycotoxin, found as a contaminant of foods, e.g. apple juice. Sometimes detd. in apple juice D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D009153 - Mutagens Patulin (Terinin) is a mycotoxin produced by fungi including the Aspergillus, Penicillium, and Byssochlamys species, is suspected to be clastogenic, mutagenic, teratogenic and cytotoxic. Patulin induces autophagy-dependent apoptosis through lysosomal-mitochondrial axis, and causes DNA damage[1][2][3][4].

   

Mangiferol

1,3,6,7-tetrahydroxy-2-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-9H-xanthen-9-one

C19H18O11 (422.0849)


Mangiferol, also known as alpizarin or chinomin, is a member of the class of compounds known as xanthones. Xanthones are polycyclic aromatic compounds containing a xanthene moiety conjugated to a ketone group at carbon 9. Xanthene is a tricyclic compound made up of two benzene rings linearly fused to each other through a pyran ring. Mangiferol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Mangiferol can be found in mango, which makes mangiferol a potential biomarker for the consumption of this food product. Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3]. Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3].

   

α-Muricholic acid

(4R)-4-[(1S,2R,5R,7R,8S,9S,10S,11S,14R,15R)-5,8,9-trihydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl]pentanoic acid

C24H40O5 (408.2876)


alpha-Muricholic acid is a hydroxylated bile acid present in normal human urine (PMID: 1629271), and in free glycine-conjugated, taurine-conjugated, and sulfated forms in human feces (PMID: 3667743). Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). a-Muricholic acid is an hydroxylated bile acid present in normal human urine (PMID 1629271), and free, glycine-conjugated, taurine-conjugated and sulphated forms in human feces (PMID 3667743). α-Muricholic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2393-58-0 (retrieved 2024-06-29) (CAS RN: 2393-58-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

1-Hydroxyisoquinoline

1,2-dihydroisoquinolin-1-one

C9H7NO (145.0528)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 70 COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Matrine

1H,5H,10H-DIPYRIDO(2,1-F:3,2,1-IJ)(1,6)NAPHTHYRIDIN-10-ONE, DODECAHYDRO-, (7AR-(7A.ALPHA.,13A.ALPHA.,13B.BETA.,13C.BETA.))-

C15H24N2O (248.1889)


Matrine is an alkaloid. Matrine is a natural product found in Daphniphyllum oldhamii, Sophora viciifolia, and other organisms with data available. Matrine is an alkaloid found in plants from the Sophora genus. It has a variety of pharmacological effects, including anti-cancer effects, and action as a kappa opioid receptor and μ-receptor agonist. Tetracyclic bis-quinolizidine alkaloids found in the family LEGUMINOSAE, mainly in the genus SOPHORA. See also: Matrine; salicylic acid (component of). Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.230 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.224 Sophoridine is a natural product found in Sophora viciifolia, Leontice leontopetalum, and other organisms with data available. Tetracyclic bis-quinolizidine alkaloids found in the family LEGUMINOSAE, mainly in the genus SOPHORA. INTERNAL_ID 2268; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2268 Matrine (Matridin-15-one) is an alkaloid found in plants from the Sophora genus that can act as a kappa opioid receptor and u-receptor agonist. Matrine has a variety of pharmacological effects, including anti-cancer, anti-oxidative stress, anti-inflammation and anti-apoptosis effects. Matrine is potential in the research of disease like human non-small cell lung cancer, hepatoma, papillary thyroid cancer and acute kidney injury (AKI)[1][2][3][4][5]. Matrine (Matridin-15-one) is an alkaloid found in plants from the Sophora genus that can act as a kappa opioid receptor and u-receptor agonist. Matrine has a variety of pharmacological effects, including anti-cancer, anti-oxidative stress, anti-inflammation and anti-apoptosis effects. Matrine is potential in the research of disease like human non-small cell lung cancer, hepatoma, papillary thyroid cancer and acute kidney injury (AKI)[1][2][3][4][5]. Matrine (Matridin-15-one) is an alkaloid found in plants from the Sophora genus that can act as a kappa opioid receptor and u-receptor agonist. Matrine has a variety of pharmacological effects, including anti-cancer, anti-oxidative stress, anti-inflammation and anti-apoptosis effects. Matrine is potential in the research of disease like human non-small cell lung cancer, hepatoma, papillary thyroid cancer and acute kidney injury (AKI)[1][2][3][4][5]. Sophoridine is a quinolizidine alkaloid isolated from Leguminous plant Sophora flavescens. Sophoridine induces apoptosis. Sophoridine has the potential to be a novel, potent and selective antitumor agent candidate for pancreatic cancer with well-tolerated toxicity[1]. Sophoridine is a quinolizidine alkaloid isolated from Leguminous plant Sophora flavescens. Sophoridine induces apoptosis. Sophoridine has the potential to be a novel, potent and selective antitumor agent candidate for pancreatic cancer with well-tolerated toxicity[1].

   

14,15-Epoxy-5,8,11-eicosatrienoic acid

14,15-Epoxy-5,8,11-eicosatrienoic acid, (2alpha(5Z,8Z,11Z),3alpha)-isomer

C20H32O3 (320.2351)


14,15-epoxy-5,8,11-eicosatrienoic acid is an epoxyeicosatrienoic acid (EET), a metabolite of arachidonic acid. The P450 eicosanoids epoxyeicosatrienoic acids (EETs) are endogenous lipid mediators produced by P450 epoxygenases and metabolized through multiple pathways including soluble epoxide hydrolase (sEH). The cytochrome P-450 (P450) monooxygenase pathway includes enzymes of the CYP1A, CYP2B, CYP2C, CYP2E, and CYP2J subfamilies that catalyze the formation of four regioisomeric products, 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid. EETs are produced in brain and perform important biological functions, including protection from ischemic injury. Both light flashes and direct glial stimulation produce vasodilatation mediated by EETs. EETs may be involved in the development of hypertension and endothelial dysfunction in DOCA-salt rats, but not in excessive collagen deposition or electrophysiological abnormalities. EETs have vasodilator and natriuretic effect. Blockade of EET formation is associated with salt-sensitive hypertension. Four regioisomeric cis-EET are primary products of arachidonic acid metabolism by cytochrome P450 epoxygenases. Upon hydration by soluble epoxide hydrolase (sEH), EET are metabolized to dihydroxyeicosatrienoic acids (DHET). These hydration products are more stable and less biologically active than EETs. (PMID: 17494091, 17468203, 17434916, 17406062, 17361113, 15581597). 14,15-epoxy-5,8,11-eicosatrienoic acid is an epoxyeicosatrienoic acid (EET), a metabolite of arachidonic acid. D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

Demethoxycurcumin

p-Hydroxy-curucumin

C20H18O5 (338.1154)


[Raw Data] CBA69_Demethoxycurcum_neg_50eV.txt [Raw Data] CBA69_Demethoxycurcum_neg_40eV.txt [Raw Data] CBA69_Demethoxycurcum_pos_10eV.txt [Raw Data] CBA69_Demethoxycurcum_pos_20eV.txt [Raw Data] CBA69_Demethoxycurcum_neg_10eV.txt [Raw Data] CBA69_Demethoxycurcum_pos_40eV.txt [Raw Data] CBA69_Demethoxycurcum_neg_30eV.txt [Raw Data] CBA69_Demethoxycurcum_pos_30eV.txt [Raw Data] CBA69_Demethoxycurcum_neg_20eV.txt [Raw Data] CBA69_Demethoxycurcum_pos_50eV.txt Demethoxycurcumin is the main active component of curcumin and has been shown to have anti-inflammatory and toxic effects on cancer cells. Demethoxycurcumin is the main active component of curcumin and has been shown to have anti-inflammatory and toxic effects on cancer cells.

   

Acetoacetate

Acetoacetic acid, calcium salt

C4H6O3 (102.0317)


Acetoacetic acid (AcAc) is a weak organic acid that can be produced in the human liver under certain conditions of poor metabolism leading to excessive fatty acid breakdown (diabetes mellitus leading to diabetic ketoacidosis). It is then partially converted into acetone by decarboxylation and excreted either in urine or through respiration. Persistent mild hyperketonemia is a common finding in newborns. Ketone bodies serve as an indispensable source of energy for extrahepatic tissues, especially the brain and lung of developing rats. Another important function of ketone bodies is to provide acetoacetyl-CoA and acetyl-CoA for synthesis of cholesterol, fatty acids, and complex lipids. During the early postnatal period, acetoacetate and beta-hydroxybutyrate are preferred over glucose as substrates for synthesis of phospholipids and sphingolipids in accord with requirements for brain growth and myelination. Thus, during the first two weeks of postnatal development, when the accumulation of cholesterol and phospholipids accelerates, the proportion of ketone bodies incorporated into these lipids increases. On the other hand, an increased proportion of ketone bodies are utilized for cerebroside synthesis during the period of active myelination. In the lung, AcAc serves better than glucose as a precursor for the synthesis of lung phospholipids. The synthesized lipids, particularly dipalmityl phosphatidylcholine, are incorporated into surfactant, and thus have a potential role in supplying adequate surfactant lipids to maintain lung function during the early days of life (PMID: 3884391). The acid is also present in the metabolism of those undergoing starvation or prolonged physical exertion as part of gluconeogenesis. When ketone bodies are measured by way of urine concentration, acetoacetic acid, along with beta-hydroxybutyric acid or acetone, is what is detected.

   

Naadp

Nicotinic acid adenine dinucleotide phosphate sodium salt

[C21H28N6O18P3]+ (745.0673)


   

Methyl isobutyl ketone

2-Methylpropyl methyl ketone

C6H12O (100.0888)


Methyl isobutyl ketone (MIBK) is an organic solvent. MIBK is among the top ten most popular organic solvents used in industry. MIBK is occasionally found as a volatile component of urine. MIBK in urine is considered as a biological marker of occupational exposure to this solvent. Olfactory perception is significant but adaptation may occur. The typical toxicity effects of MIBK in humans exposed at 50 to 100 ppm are mucous membrane irritation and weak effects on the central nervous system (CNS) such as headache. Visual dysfunction has been reported in workers exposed to a mixture of organic solvents containing MIBK. Memory impairment was detected in clinical observation on a 44-year-old man who had been exposed to MIBK at 100 ppm for more than 10 years. Regarding to the route of absorption, skin penetration of MIBK is substantial. (PMID: 12592578, 17485256, 16464817, 5556886). Present in orange, lemon, concord grape, vinegar, cheeses, cooked beef, roasted peanut and other foodstuffs. Flavouring ingredient

   

Lactucin

4-hydroxy-9-(hydroxymethyl)-6-methyl-3-methylidene-2H,3H,3aH,4H,5H,7H,9aH,9bH-azuleno[4,5-b]furan-2,7-dione

C15H16O5 (276.0998)


Lactucin is found in chicory. Lactucin is a constituent of Cichorium intybus (chicory) Lactucin is a bitter substance that forms a white crystalline solid and belongs to the group of sesquiterpene lactones. It is found in some varieties of lettuce and is an ingredient of lactucarium. It has been shown to have analgesic and sedative properties Constituent of Cichorium intybus (chicory)

   

Proanthocyanidin A2

(1R,5R,6R,13S,21R)-5,13-bis(3,4-dihydroxyphenyl)-4,12,14-trioxapentacyclo[11.7.1.0²,¹¹.0³,⁸.0¹⁵,²⁰]henicosa-2(11),3(8),9,15(20),16,18-hexaene-6,9,17,19,21-pentol

C30H24O12 (576.1268)


Isolated from cassia bark (Cinnamomum aromaticum). Proanthocyanidin A2 is found in many foods, some of which are herbs and spices, cinnamon, avocado, and lingonberry. Proanthocyanidin A2 is found in apple. Proanthocyanidin A2 is isolated from cassia bark (Cinnamomum aromaticum). Procyanidin A1 (Proanthocyanidin A1) is a procyanidin dimer, which inhibits degranulation downstream of protein kinase C activation or Ca2+ influx from an internal store in RBL-213 cells. Procyanidin A1 has antiallergic effects[1]. Procyanidin A1 (Proanthocyanidin A1) is a procyanidin dimer, which inhibits degranulation downstream of protein kinase C activation or Ca2+ influx from an internal store in RBL-213 cells. Procyanidin A1 has antiallergic effects[1]. Procyanidin A2 is a flavonoid found in grapes, with anti-cancer, antioxidant, antimicrobial and anti-inflammation activity[1][2]. Procyanidin A2 is a flavonoid found in grapes, with anti-cancer, antioxidant, antimicrobial and anti-inflammation activity[1][2].

   

Pepstatin

Pepstatinum

C34H63N5O9 (685.4626)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D010436 - Pepstatins C471 - Enzyme Inhibitor > C783 - Protease Inhibitor Pepstatin (Pepstatin A) is a specific, orally active aspartic protease inhibitor produced by actinomycetes, with IC50s of 4.5 nM, 6.2 nM, 150 nM, 290 nM, 520 nM and 260 nM for hemoglobin-pepsin, hemoglobin-proctase, casein-pepsin, casein-proctase, casein-acid protease and hemoglobin-acid protease, respectively. Pepstatin also inhibits HIV protease[1][2]. Pepstatin (Pepstatin A) is a specific, orally active aspartic protease inhibitor produced by actinomycetes, with IC50s of 4.5 nM, 6.2 nM, 150 nM, 290 nM, 520 nM and 260 nM for hemoglobin-pepsin, hemoglobin-proctase, casein-pepsin, casein-proctase, casein-acid protease and hemoglobin-acid protease, respectively. Pepstatin also inhibits HIV protease[1][2].

   

N-Carbamoylsarcosine

[Carbamoyl(methyl)amino]acetic acid

C4H8N2O3 (132.0535)


N-Carbamoylsarcosine is an intermediate in arginine and proline metabolism. It is also involved in a metabolic pathway for the degradation of creatinine. In this pathway, creatinine is not hydrolyzed back to creatine. Instead, it is deaminated to N-methylhydantoin, releasing an amonia molecule, by the action of creatinine deaminase (also known as creatinine iminohydrolase). N-methylhydantoin is then hydrolyzed to N-carbamoylsarcosine, by the action of N-methylhydantoin amidohydrolase, at the expense of one ATP molecule. N-carbamoylsarcosine is deaminated further to sarcosine by N-carbamoylsarcosine amidohydrolase, releasing a second ammonia molecule. In the last step of this pathway, sarcosine is hydrolyzed to glycine and formaldehyde, by either sarcosine dehydrogenase or sarcosine oxidase. [HMDB] N-Carbamoylsarcosine is an intermediate in arginine and proline metabolism. It is also involved in a metabolic pathway for the degradation of creatinine. In this pathway, creatinine is not hydrolyzed back to creatine. Instead, it is deaminated to N-methylhydantoin, releasing an amonia molecule, by the action of creatinine deaminase (also known as creatinine iminohydrolase). N-methylhydantoin is then hydrolyzed to N-carbamoylsarcosine, by the action of N-methylhydantoin amidohydrolase, at the expense of one ATP molecule. N-carbamoylsarcosine is deaminated further to sarcosine by N-carbamoylsarcosine amidohydrolase, releasing a second ammonia molecule. In the last step of this pathway, sarcosine is hydrolyzed to glycine and formaldehyde, by either sarcosine dehydrogenase or sarcosine oxidase.

   

ADP-Ribosyl-L-arginine

2-amino-5-[(E)-[amino({5-[({[({[5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-3,4-dihydroxyoxolan-2-yl}amino)methylidene]amino]pentanoic acid

C21H35N9O15P2 (715.1728)


ADP-Ribosyl-L-arginine is the substrate of the protein ADP-ribosylarginine hydrolase (EC-Number 3.2.2.19 ), removing ADP-ribose from arginine residues in ADP ribosylated proteins. Arginine residues in proteins act as acceptors, catalyzing the NAD (+)-dependent activation of the enzyme adenylate cyclase (EC 4.6.1.1). (MetaCyc) [HMDB] ADP-Ribosyl-L-arginine is the substrate of the protein ADP-ribosylarginine hydrolase (EC-Number 3.2.2.19 ), removing ADP-ribose from arginine residues in ADP ribosylated proteins. Arginine residues in proteins act as acceptors, catalyzing the NAD (+)-dependent activation of the enzyme adenylate cyclase (EC 4.6.1.1). (MetaCyc).

   

Cadmium

Cadmium, ion (CD2+)

Cd (113.9034)


Cadmium (group IIB of the periodic table of elements) is a heavy metal. It is not a naturally occurring metal in biological systems. Cadmium poses severe risks to human health. Physiologically, it exists as an ion in the body. Up to this day, it has not been shown that cadmium has any physiological function within the human body. Interest has therefore risen in its biohazardous potential. As first described by Friedrich Stromeyer (Gottingen, Germany) in 1817, cadmium intoxication can lead to kidney, bone, and pulmonary damage. Cadmium is widely used in industrial processes, e.g as an anticorrosive agent, as a stabilizer in PVC products, as a colour pigment, a neutron absorber in nuclear power plants, and in the fabrication of nickel cadmium batteries. Phosphate fertilizers also show a big cadmium load. Although some cadmium containing products can be recycled, a large share of the general cadmium pollution is caused by dumping and incinerating cadmium polluted waste. In Scandinavia for example, cadmium concentration in agricultural soil increases by 0.2 percent per year. Total global emission of cadmium amounts to 7000 t/year. The maximum permissible value for workers according to German law is 15 ug/l. For comparison: Non-smokers show an average cadmium blood concentration of 0.5 ug/l. Basically there are three possible ways of cadmium resorption: Gastrointestinal, pulmonary and dermal. The uptake through the human gastrointestinal is approximately 5 percent of an ingested amount of cadmium, depending on the exact dose and nutritional composition. The major source of inhalative cadmium intoxication is cigarette smoke. The human lung resorbes 40 to 60 percent of the cadmium in tobacco smoke. Little research has been done on dermal absorption of cadmium. Two mechanisms facilitate cadmium absorption by the skin: binding of a free cadmium ion to sulfhydryl radicals of cysteine in epidermal keratins, or an induction and complexing with metallothionein. Once taken up by the blood, the majority of cadmium is transported bound to proteins, such as Albumin and Metallothionein. The first organ reached after cadmium uptake into the GI-blood is the liver. Here cadmium induces the production of Metallothionein. After consecutive hepatocyte necrosis and apoptosis, Cd-Metallothionein complexes are washed into sinusoidal blood. From here, parts of the absorbed cadmium enter the entero-hepatical cycle via secretion into the biliary tract in form of Cadmium-glutathione conjugates. Enzymatically degraded to cadmium-cysteine complexes in the biliary tree, cadmium reenters the small intestines. The main organ for long-term cadmium accumulation is the kidney. Here the half life period for cadmium is approximately 10 years. A life long intake can therefore lead to a cadmium accumulation in the kidney, consequently resulting in tubulus cell necrosis. The blood concentration of cadmium serves as a reliable indicator for a recent exposition, while the urinary concentration reflects past exposure, body burden and renal accumulation. Excretion of Cadmium takes place via faeces and urine. (PMID: 16961932). Cadmium, also known as cadmium, ion (cd2+) or cadmium ion, is a member of the class of compounds known as homogeneous transition metal compounds. Homogeneous transition metal compounds are inorganic compounds containing only metal atoms,with the largest atom being a transition metal atom. Cadmium can be found in a number of food items such as capers, horseradish, malabar spinach, and wax apple, which makes cadmium a potential biomarker for the consumption of these food products. Cadmium can be found primarily in blood, cerebrospinal fluid (CSF), saliva, and urine. Moreover, cadmium is found to be associated with alzheimers disease, macular degeneration, multiple sclerosis, and parkinsons disease. Cadmium is formally rated as a carcinogenic (IARC 1) potentially toxic compound. Cadmium is a chemical element with symbol Cd and atomic number 48. This soft, bluish-white metal is chemically similar to the two other stable metals in group 12, zinc and mercury. Like zinc, it demonstrates oxidation state +2 in most of its compounds, and like mercury, it has a lower melting point than the transition metals in groups 3 through 11. Cadmium and its congeners in group 12 are often not considered transition metals, in that they do not have partly filled d or f electron shells in the elemental or common oxidation states. The average concentration of cadmium in Earths crust is between 0.1 and 0.5 parts per million (ppm). It was discovered in 1817 simultaneously by Stromeyer and Hermann, both in Germany, as an impurity in zinc carbonate . Acute inhalation of cadmium fumes results in metal fume fever, which is characterized by chills, fever, headache, weakness, dryness of the nose and throat, chest pain, and coughing. Ingestion of cadmium causes vomiting and diarrhea (L6) (T3DB).

   

L-Dopachrome

(2S)-2,3,5,6-Tetrahydro-5,6-dioxo-1H-indole-2-carboxylic acid

C9H7NO4 (193.0375)


Dopachrome is a cyclization product of L-DOPA and is an intermediate in the biosynthesis of melanin. Dopaquinone has an ortho-quinone ring, which is known to be neurotoxic and highly reactive with many other compounds (PMID: 413870). Dopachrome spontaneously gives rise to 5,6-dihydroxyindole (DHI) or it can be enzymatically metabolized by dopachrome tautomerase to give 5,6-dihydroxyindole-2-carboxylic acid (DHICA). DHI and its oxidation products are also toxic to cells. Many Parkinsons patients are treated with L-DOPA. However, long-term treatment with L-DOPA may actually worsen symptoms or may result in neurotic and psychotic symptoms. These may be due to dopachrome and dopaquinone accumulating in the brain of L-DOPA treated patients (PMID: 19131041, PMID: 12373519). The non-decarboxylative tautomerization of L-dopachrome to 5,6-dihydroxyindole-2-carboxylic acid in the melanin biosynthetic pathway is catalyzed by Tyrosinase-related protein-2, a melanocyte-specific enzyme. (PMID 11095412) [HMDB]

   

Thiocysteine

(2S)-2-amino-3-disulfanyl-propanoic acid

C3H7NO2S2 (152.9918)


The reactive species in the phosphofructokinase modulation system could be considered thiocysteine (R-S-S-) or cystine trisulfide (R-S-S-S-R) produced from cystine in the presence of gamma-Cystathionase (CST, EC 4.4.1.1). The desulfuration reaction of cystine in vivo produces thiocysteine containing a bound sulfur atom. Persulfide generated from L-cysteine inactivates tyrosine aminotransferase. Thiocysteine is the reactive (unstable) intermediate of thiocystine which functions as a persulfide in transferring its sulfane sulfur to thiophilic acceptors. Thiocystine conversion to unstable thiocysteine is accelerated by sulfhydryl compounds, or reagents that cleave sulfur-sulfur bonds to yield sulfhydryl groups. Thiocystine is proposed as the storage form of sulfane sulfur in biological systems. Liver cytosols contain factors that produce an inhibitor of tyrosine aminotransferase in 3 steps: initial oxidation of cysteine to form cystine; desulfurization of cystine catalyzed by cystathionase to form the persulfide, thiocysteine; and reaction of thiocysteine (or products of its decomposition) with proteins to form protein-bound sulfane. (PMID: 2903161, 454618, 7287665) [HMDB] The reactive species in the phosphofructokinase modulation system could be considered thiocysteine (R-S-S-) or cystine trisulfide (R-S-S-S-R) produced from cystine in the presence of gamma-Cystathionase (CST, EC 4.4.1.1). The desulfuration reaction of cystine in vivo produces thiocysteine containing a bound sulfur atom. Persulfide generated from L-cysteine inactivates tyrosine aminotransferase. Thiocysteine is the reactive (unstable) intermediate of thiocystine which functions as a persulfide in transferring its sulfane sulfur to thiophilic acceptors. Thiocystine conversion to unstable thiocysteine is accelerated by sulfhydryl compounds, or reagents that cleave sulfur-sulfur bonds to yield sulfhydryl groups. Thiocystine is proposed as the storage form of sulfane sulfur in biological systems. Liver cytosols contain factors that produce an inhibitor of tyrosine aminotransferase in 3 steps: initial oxidation of cysteine to form cystine; desulfurization of cystine catalyzed by cystathionase to form the persulfide, thiocysteine; and reaction of thiocysteine (or products of its decomposition) with proteins to form protein-bound sulfane. (PMID: 2903161, 454618, 7287665).

   

METHYLAZOXYMETHANOL

METHYLAZOXYMETHANOL

C2H6N2O2 (90.0429)


D009676 - Noxae > D000477 - Alkylating Agents D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D013723 - Teratogens

   

Nicotinamide riboside

3-carbamoyl-1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1lambda5-pyridin-1-ylium

C11H15N2O5+ (255.0981)


Nicotinamide riboside is involved in nicotinate and nicotinamide metabolism. Nicotinamide riboside was originally identified as a nutrient in milk. It is a useful compound for the elevation of NAD+ levels in humans. Nicotinamide riboside has recently been discovered to be an NAD(+) precursor that is converted into nicotinamide mononucleotide by specific nicotinamide riboside kinases, Nrk1 and Nrk2. It has been shown that exogenous nicotinamide riboside promotes Sir2-dependent repression of recombination, improves gene silencing, and extends the lifespan of certain animal models without calorie restriction (PMID: 17482543). Supplementation in mammalian cells and mouse tissues increases NAD(+) levels and activates SIRT1 and SIRT3, culminating in enhanced oxidative metabolism and protection against high-fat diet-induced metabolic abnormalities (PMID: 22682224). Recent data suggest that nicotinamide riboside may be the only vitamin precursor that supports neuronal NAD+ synthesis (PMID: 18429699). Nicotinamide riboside kinase has an essential role in the phosphorylation of nicotinamide riboside and the cancer drug tiazofurin (PMID: 15137942). Nicotinamide riboside is involved in nicotinate and nicotinamide metabolism. Nicotinamide riboside has been identified as a nutrient in milk. It is a useful compound for elevation of NAD+ levels in humans. Recent data suggest that nicotinamide riboside may be the only vitamin precursor that supports neuronal NAD+ synthesis (PMID: 18429699). Nicotinamide riboside kinase has an essential role for phosphorylation of nicotinamide riboside and the cancer drug tiazofurin (PMID 15137942). [HMDB] COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, COVID-19 Disease Map C26170 - Protective Agent > C275 - Antioxidant Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate

[(2R,3S)-2,3-dihydroxy-3-(1H-indol-3-yl)propoxy]phosphonic acid

C11H14NO6P (287.0559)


Indole-3-glycerol phosphate, also known as c1-(3-indolyl)-glycerol 3-phosphate, is a member of the class of compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. Indole-3-glycerol phosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Indole-3-glycerol phosphate can be found in a number of food items such as german camomile, lambsquarters, other soy product, and hazelnut, which makes indole-3-glycerol phosphate a potential biomarker for the consumption of these food products. Indole-3-glycerol phosphate may be a unique E.coli metabolite. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents

   

5-Aminoimidazole

1H-imidazol-5-amine

C3H5N3 (83.0483)


Because of its ability to mimic a low energy status of the cell, the cell-permeable nucleoside 5-aminoimidazole-4-carboxamide (AICA) riboside was proposed as an antineoplastic agent switching off major energy-consuming processes associated with the malignant phenotype (lipid production, DNA synthesis, cell proliferation, cell migration, etc.). Key to the antineoplastic action of AICA riboside is its conversion to ZMP, an AMP mimetic that at high concentrations activates the AMP-activated protein kinase (AMPK). (PMID: 16985054) [HMDB] Because of its ability to mimic a low energy status of the cell, the cell-permeable nucleoside 5-aminoimidazole-4-carboxamide (AICA) riboside was proposed as an antineoplastic agent switching off major energy-consuming processes associated with the malignant phenotype (lipid production, DNA synthesis, cell proliferation, cell migration, etc.). Key to the antineoplastic action of AICA riboside is its conversion to ZMP, an AMP mimetic that at high concentrations activates the AMP-activated protein kinase (AMPK). (PMID: 16985054).

   

20a,22b-Dihydroxycholesterol

(2R,3R)-2-[(1S,2R,10S,11S,14S,15S)-5-hydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-14-yl]-6-methylheptane-2,3-diol

C27H46O3 (418.3447)


20alpha,22beta-Dihydroxycholesterol is an intermediate in C21-Steroid hormone metabolism. 20alpha,22beta-Dihydroxycholesterol is the 8th to last step in the synthesis of 3alpha,11beta,21-Trihydroxy-20-oxo-5beta-pregnan-18-al and is converted from 20alpha-Hydroxycholesterol via the enzyme cytochrome P450 (EC 1.14.15.6). It is then converted to Pregnenolone via the enzyme cytochrome P450 (EC 1.14.15.6). [HMDB] 20alpha,22beta-Dihydroxycholesterol is an intermediate in C21-Steroid hormone metabolism. 20alpha,22beta-Dihydroxycholesterol is the 8th to last step in the synthesis of 3alpha,11beta,21-Trihydroxy-20-oxo-5beta-pregnan-18-al and is converted from 20alpha-Hydroxycholesterol via the enzyme cytochrome P450 (EC 1.14.15.6). It is then converted to Pregnenolone via the enzyme cytochrome P450 (EC 1.14.15.6).

   

Selenocystine

2-amino-3-[(2-amino-2-carboxyethyl)diselanyl]propanoic acid

C6H12N2O4Se2 (335.9127)


Selenocystine, also known as 3,3-diselenodialanine, belongs to the class of organic compounds known as alpha-amino acids. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxyl group (alpha carbon). More specifically, selenocystine is a diselenide consisting of two selenoamino acids that are attached together at their selenium atoms. This particular selenoamino acid is selenocysteine, the selenium analogue to cysteine (selenium being the element directly beneath sulphur in the periodic table); likewise, selenocystine is the selenium analogue to cystine. Since each constituent amino acid has a stereocentre, there are three different stereoisomers of selenocystine: D-selenocystine, L-selenocystine, and meso-selenocystine, the first two of which are optically active. Like other amino acids, L-selenocystine is the most common form within organisms; however, the D- and meso- forms have also been found (PMID: 30920149). Selenocystine is a solid that is moderately soluble in water. Due to the reactivity of selenocysteine, it is rarely encountered; rather, cells store selenium in the less reactive oxidized form of selenocystine or in a methylated form, such as selenomethionine (DOI: 10.1007/978-3-319-92405-2_3). When cells are grown in the absence of selenium, translation of selenoproteins terminates at the UGA codon, resulting in a truncated, non-functional enzyme. Unlike other amino acids present in biological proteins, selenocysteine is not coded for directly in the genetic code. Rather, the tRNA-bound seryl residue is converted to a selenocysteine residue by the pyridoxal phosphate-containing enzyme selenocysteine synthase (PMID: 17194211). Kurt Franke et al. indicated that there was evidence that selenium was in a form similar to that of cysteine, predating Thressa Stadtman’s discovery of the 21st amino acid by four decades (PMID: 26949981; J. Biol. Chem. 111:643). Selenocysteine may be denoted by the short forms Sec, U, or SeCys (Cys is used for cysteine), whereas selenocystine may be denoted by SeCys2. However, the literature sometimes uses SeCys for selenocystine and may cause confusion. Selenocystine has been found in animals, plants, and bacteria. It is being researched as treatment for cancer and for its antioxidant properties (PMID: 24763048, 24030774). Selenium, in its various forms such as selenocystine, is essential for many species, including humans, yet it is also toxic to all organisms; hence, it has come to be referred to as the “essential poison” (PMID: 26949981; 6679541). Selenocystine is a substrate for glutathione peroxidase 1. [HMDB] D000890 - Anti-Infective Agents > D000998 - Antiviral Agents L-Selenocystine is a diselenide-bridged amino acid. L-Selenocystine is a redox-active selenium compound that has both anti- and pro-oxidant actions. L-Selenocystine induces an unfolded protein response, ER stress, and large cytoplasmic vacuolization in HeLa cells and has cytostatic effects in a range of cancer cell types[1].

   

Sevoflurane

Fluoromethyl-2,2,2-trifluoro-1-(trifluoromethyl)ethyl ether

C4H3F7O (200.0072)


Sevoflurane is only found in individuals that have used or taken this drug. Sevoflurane (2,2,2-trifluoro-1-[trifluoromethyl]ethyl fluoromethyl ether), also called fluoromethyl, is a sweet-smelling, non-flammable, highly fluorinated methyl isopropyl ether used for induction and maintenance of general anesthesia. Together with desflurane, it is replacing isoflurane and halothane in modern anesthesiology. [Wikipedia]Sevoflurane induces a reduction in junctional conductance by decreasing gap junction channel opening times and increasing gap junction channel closing times. Sevoflurane also activates calcium dependent ATPase in the sarcoplasmic reticulum by increasing the fluidity of the lipid membrane. It also appears to bind the D subunit of ATP synthase and NADH dehydogenase and also binds to the GABA receptor, the large conductance Ca2+ activated potassium channel, the glutamate receptor, and the glycine receptor. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AB - Halogenated hydrocarbons COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Alendronic acid

(4-amino-1-hydroxy-1-phosphonobutyl)phosphonic acid

C4H13NO7P2 (249.0167)


Alendronate (Fosamax, Merck) is a bisphosphonate drug used for osteoporosis and several other bone diseases. It is marketed alone as well as in combination with vitamin D (2,800 U, under the name Fosavance). [HMDB] Alendronate (Fosamax, Merck) is a bisphosphonate drug used for osteoporosis and several other bone diseases. It is marketed alone as well as in combination with vitamin D (2,800 U, under the name Fosavance). M - Musculo-skeletal system > M05 - Drugs for treatment of bone diseases > M05B - Drugs affecting bone structure and mineralization > M05BA - Bisphosphonates C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D050071 - Bone Density Conservation Agents > D004164 - Diphosphonates

   

Brinzolamide

(R)-4-(Ethylamino)-3,4-dihydro-2-(3-methoxypropyl)-2H-thieno(3,2-e)-1,2-thiazine-6-sulfonamide 1,1-dioxide

C12H21N3O5S3 (383.0643)


Brinzolamide is a highly specific, non-competitive, reversible carbonic anhydrase inhibitor. Carbonic anhydrase (CA) is an enzyme found in many tissues of the body including the eye. It catalyzes the reversible reaction involving the hydration of carbon dioxide and the dehydration of carbonic acid. In humans, carbonic anhydrase exists as a number of isoenzymes, the most active being carbonic anhydrase II (CA-II). Inhibition of carbonic anhydrase in the ciliary processes of the eye decreases aqueous humor secretion, presumably by slowing the formation of bicarbonate ions with subsequent reduction in sodium and fluid transport. The result is a reduction in intraocular pressure. Brinzolamide is indicated in the treatment of elevated intraocular pressure in patients with ocular hypertension or open-angle glaucoma. S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EC - Carbonic anhydrase inhibitors C78283 - Agent Affecting Organs of Special Senses > C29705 - Anti-glaucoma Agent D004791 - Enzyme Inhibitors > D002257 - Carbonic Anhydrase Inhibitors C471 - Enzyme Inhibitor > C29577 - Carbonic Anhydrase Inhibitor

   

Tirofiban

(2S)-2-(butane-1-sulfonamido)-3-{4-[4-(piperidin-4-yl)butoxy]phenyl}propanoic acid

C22H36N2O5S (440.2345)


Tirofiban prevents the blood from clotting during episodes of chest pain or a heart attack, or while the patient is undergoing a procedure to treat a blocked coronary artery. It is a non-peptide reversible antagonist of the platelet glycoprotein (GP) IIb/IIIa receptor, and inhibits platelet aggregation. B - Blood and blood forming organs > B01 - Antithrombotic agents > B01A - Antithrombotic agents > B01AC - Platelet aggregation inhibitors excl. heparin COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78275 - Agent Affecting Blood or Body Fluid > C1327 - Antiplatelet Agent D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Rifapentine

(7S,9Z,11S,12R,13S,14R,15R,16R,17S,18S,21Z)-26-[(1E)-[(4-cyclopentylpiperazin-1-yl)imino]methyl]-2,15,17,23,27,29-hexahydroxy-11-methoxy-3,7,12,14,16,18,22-heptamethyl-6-oxo-8,30-dioxa-24-azatetracyclo[23.3.1.1^{4,7}.0^{5,28}]triaconta-1(28),2,4,9,19,21,23,25(29),26-nonaen-13-yl acetate

C47H64N4O12 (876.4521)


Rifapentine is only found in individuals that have used or taken this drug. It is an antibiotic drug used in the treatment of tuberculosis.Rifapentine has shown higher bacteriostatic and bactericidal activities especially against intracellular bacteria growing in human monocyte-derived macrophages. Rifapentine inhibits DNA-dependent RNA polymerase in susceptible strains of M. tuberculosis. Rifapentine acts via the inhibition of DNA-dependent RNA polymerase, leading to a suppression of RNA synthesis and cell death. J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AB - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007917 - Leprostatic Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D012294 - Rifamycins C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent

   

Sodium fluoride (NaF)

Procter and gamble brand OF sodium fluoride

FNa (41.9882)


A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AA - Caries prophylactic agents A - Alimentary tract and metabolism > A12 - Mineral supplements > A12C - Other mineral supplements > A12CD - Fluoride D020011 - Protective Agents > D002327 - Cariostatic Agents > D005459 - Fluorides Indirect food contaminant arising from its use in adhesives for aluminium foil D001697 - Biomedical and Dental Materials

   

Iopanoic acid

2-[(3-amino-2,4,6-triiodophenyl)methyl]butanoic acid

C11H12I3NO2 (570.8002)


CONFIDENCE standard compound; INTERNAL_ID 349; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5478; ORIGINAL_PRECURSOR_SCAN_NO 5476 CONFIDENCE standard compound; INTERNAL_ID 349; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5462; ORIGINAL_PRECURSOR_SCAN_NO 5461 CONFIDENCE standard compound; INTERNAL_ID 349; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5564; ORIGINAL_PRECURSOR_SCAN_NO 5559 CONFIDENCE standard compound; INTERNAL_ID 349; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5494; ORIGINAL_PRECURSOR_SCAN_NO 5489 CONFIDENCE standard compound; INTERNAL_ID 349; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5462; ORIGINAL_PRECURSOR_SCAN_NO 5460 CONFIDENCE standard compound; INTERNAL_ID 349; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5485; ORIGINAL_PRECURSOR_SCAN_NO 5483 V - Various > V08 - Contrast media > V08A - X-ray contrast media, iodinated > V08AC - Watersoluble, hepatotropic x-ray contrast media

   

Potassium iodide

Henning berlin brand OF potassium iodide

IK (165.8682)


Nutrient supplement; added to food as a source of iodine [DFC]. Potassium iodide is an inorganic compound with the chemical formula KI. The major uses of KI include use as a nutritional supplement in animal feeds and also the human diet. For the latter, it is the most common additive used to iodize" table salt (a public health measure to prevent iodine deficiency in populations which get little seafood). Kelp is a natural KI source. The iodide content can range from 89 ug/g to 8165 ug/g in Asian varieties R - Respiratory system > R05 - Cough and cold preparations > R05C - Expectorants, excl. combinations with cough suppressants > R05CA - Expectorants V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes Nutrient supplement; added to food as a source of iodine [DFC] C26170 - Protective Agent > C797 - Radioprotective Agent S - Sensory organs > S01 - Ophthalmologicals

   

Salannin

2H,3H-Cyclopenta(d)naphtho(1,8-bc:2,3-b)difuran-6-acetic acid, 3-(acetyloxy)-8-(3-furanyl)-2a,4,5,5a,6,6a,8,9,9a,10a,10b,10c-dodecahydro-2a,5a,6a,7-tetramethyl-5-((2-methyl-1-oxo-2-butenyl)oxy)-, methyl ester, (2aalpha,3beta,5beta(E), 5aalpha,6alpha,6aalpha,8beta,9abeta,10aalpha,10balpha,10cbeta)-(+)-

C34H44O9 (596.2985)


Salannin is a limonoid with insecticidal activity isolated from Azadirachta indica. It has a role as an insect growth regulator, an antifeedant and a plant metabolite. It is an acetate ester, a member of furans, a limonoid, an organic heteropentacyclic compound and a methyl ester. It is functionally related to a tiglic acid. Salannin is a natural product found in Azadirachta indica, Melia azedarach, and other organisms with data available. A limonoid with insecticidal activity isolated from Azadirachta indica.

   

calactin

Pecilocerin B

C29H40O9 (532.2672)


   

Gnidicin

thymeleatoxin

C36H36O10 (628.2308)


   

(+)-Mahanimbine

(+)-3,11-Dihydro-3,5-dimethyl-3-(4-methyl-3-pentenyl)pyrano[3,2-a]carbazole

C23H25NO (331.1936)


(±)-Mahanimbine is found in herbs and spices. (±)-Mahanimbine is an alkaloid from the stem bark of Murraya koenigii (curryleaf tree Alkaloid from the stem bark of Murraya koenigii (curryleaf tree). (±)-Mahanimbine is found in herbs and spices.

   

Inulicin

2H-Cyclohepta(b)furan-2-one, 3,3a,4,5,8,8a-hexahydro-4-hydroxy-6-(3-hydroxypropyl)-5,7-dimethyl-3-methylene-, 6-acetate, (+)-

C17H24O5 (308.1624)


Britannilactone 1-O-acetate is a natural product found in Pentanema britannicum and Inula japonica with data available. Inulicin (1-O-Acetylbritannilactone) is an active compound that inhibits VEGF-mediated activation of Src and FAK. Inulicin (1-O-Acetylbritannilactone) inhibits LPS-induced PGE2 production and COX-2 expression, and NF-κB activation and translocation. Inulicin (1-O-Acetylbritannilactone) is an active compound that inhibits VEGF-mediated activation of Src and FAK. Inulicin (1-O-Acetylbritannilactone) inhibits LPS-induced PGE2 production and COX-2 expression, and NF-κB activation and translocation.

   

Hinokiflavone

6-[4-(5,7-dihydroxy-4-oxo-4H-chromen-2-yl)phenoxy]-5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one

C30H18O10 (538.09)


Hinokiflavone is a novel modulator of pre-mRNA splicing activity in vitro and in cellulo. Hinokiflavone blocks splicing of pre-mRNA substrates by inhibiting spliceosome assembly, specifically preventing B complex formation. Hinokiflavone is a SUMO protease inhibitor, inhibiting sentrin-specific protease 1 (SENP1) activity[1]. Hinokiflavone is a novel modulator of pre-mRNA splicing activity in vitro and in cellulo. Hinokiflavone blocks splicing of pre-mRNA substrates by inhibiting spliceosome assembly, specifically preventing B complex formation. Hinokiflavone is a SUMO protease inhibitor, inhibiting sentrin-specific protease 1 (SENP1) activity[1].

   

Gartanin

1,3,5,8-Tetrahydroxy-2,4-bis(3-methyl-2-butenyl)-9H-xanthen-9-one, 9CI

C23H24O6 (396.1573)


Gartanin is a member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3, 5 and 8 and prenyl groups at positions 2 and 4. It has a role as an antineoplastic agent and a plant metabolite. It is a member of xanthones and a polyphenol. Gartanin is a natural product found in Morus insignis, Pentadesma butyracea, and other organisms with data available. A member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3, 5 and 8 and prenyl groups at positions 2 and 4. Constituent of the fruits of Garcinia mangostana (mangosteen). Gartanin is found in fruits and purple mangosteen. Gartanin is found in fruits. Gartanin is a constituent of the fruits of Garcinia mangostana (mangosteen) Gartanin is a natural xanthone of mangosteen, with antioxidant, anti-inflammatory, antifungal, neuroprotective and antineoplastic properties. Gartanin induces cell cycle arrest and autophagy and suppresses migration in human glioma cells[1][2]. Gartanin is a natural xanthone of mangosteen, with antioxidant, anti-inflammatory, antifungal, neuroprotective and antineoplastic properties. Gartanin induces cell cycle arrest and autophagy and suppresses migration in human glioma cells[1][2].

   

Norswertianin

9H-Xanthen-9-one, 1,2,6,8-tetrahydroxy- (9CI)

C13H8O6 (260.0321)


Norswertianin is a member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 2, 6 and 8. It has a role as a plant metabolite. It is a member of xanthones and a polyphenol. Norswertianin is a natural product found in Swertia japonica, Swertia ciliata, and other organisms with data available. A member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 2, 6 and 8.

   

Embelin

2,5-dihydroxy-3-undecylcyclohexa-2,5-diene-1,4-dione

C17H26O4 (294.1831)


Embelin (Embelic acid), a potent, nonpeptidic XIAP inhibitor (IC50=4.1 μM), inhibits cell growth, induces apoptosis, and activates caspase-9 in prostate cancer cells with high levels of XIAP. Embelin blocks NF-kappaB signaling pathway leading to suppression of NF-kappaB-regulated antiapoptotic and metastatic gene products. Embelin also induces autophagic and apoptotic cell death in human oral squamous cell carcinoma cells[1][2][3]. Embelin (Embelic acid), a potent, nonpeptidic XIAP inhibitor (IC50=4.1 μM), inhibits cell growth, induces apoptosis, and activates caspase-9 in prostate cancer cells with high levels of XIAP. Embelin blocks NF-kappaB signaling pathway leading to suppression of NF-kappaB-regulated antiapoptotic and metastatic gene products. Embelin also induces autophagic and apoptotic cell death in human oral squamous cell carcinoma cells[1][2][3].

   

1-(4-Hydroxy-3-methoxyphenyl)-3-decanone

2-08-00-00318 (Beilstein Handbook Reference)

C17H26O3 (278.1882)


1-(4-Hydroxy-3-methoxyphenyl)-3-decanone is found in alcoholic beverages. 1-(4-Hydroxy-3-methoxyphenyl)-3-decanone is from grains of paradise (Amomum melegueta) and ginger (Zingiber officinale).Paradol is the active flavor constituent of the seeds of Guinea pepper (Aframomum melegueta). The seed is also known as Grains of paradise. Paradol has been found to have antioxidative and antitumor promoting effects. It is used in flavors as an essential oil to give spiciness. (Wikipedia [6]-Paradol is a member of phenols, a ketone and a monomethoxybenzene. Paradol is a natural product found in Aframomum angustifolium, Aframomum melegueta, and Zingiber officinale with data available. From grains of paradise (Amomum melegueta) and ginger (Zingiber officinale) Paradol is a pungent phenolic substance found in ginger and other Zingiberaceae plants. Paradol is an effective inhibitor of tumor promotion in mouse skin carcinogenesis, binds to cyclooxygenase (COX)-2 active site. Paradol is a pungent phenolic substance found in ginger and other Zingiberaceae plants. Paradol is an effective inhibitor of tumor promotion in mouse skin carcinogenesis, binds to cyclooxygenase (COX)-2 active site.

   

justicidin A

justicidin A

C22H18O7 (394.1052)


   

LICARIN A

2-methoxy-4-[(2S,3S)-7-methoxy-3-methyl-5-[(E)-prop-1-enyl]-2,3-dihydro-1-benzofuran-2-yl]phenol

C20H22O4 (326.1518)


(-)-Licarin A is a natural product found in Magnolia dodecapetala, Magnolia kachirachirai, and other organisms with data available. Dehydrodiisoeugenol is a natural product found in Myristica fragrans with data available. Dehydrodiisoeugenol is isolated from Myristica fragrans Houtt, shows anti-inflammatory and anti-bacterial actions[1]. Dehydrodiisoeugenol inhibits LPS- stimulated NF-κB activation and cyclooxygenase (COX)-2 gene expression in murine macrophages[2]. Dehydrodiisoeugenol is isolated from Myristica fragrans Houtt, shows anti-inflammatory and anti-bacterial actions[1]. Dehydrodiisoeugenol inhibits LPS- stimulated NF-κB activation and cyclooxygenase (COX)-2 gene expression in murine macrophages[2]. Licarin A ((+)-Licarin A), a neolignan, significantly and dose-dependently reduces TNF-α production (IC50=12.6 μM) in dinitrophenyl-human serum albumin (DNP-HSA)-stimulated RBL-2H3 cells. Anti-allergic effects. Licarin A reduces TNF-α and PGD2 production, and COX-2 expression[1]. Licarin A ((+)-Licarin A), a neolignan, significantly and dose-dependently reduces TNF-α production (IC50=12.6 μM) in dinitrophenyl-human serum albumin (DNP-HSA)-stimulated RBL-2H3 cells. Anti-allergic effects. Licarin A reduces TNF-α and PGD2 production, and COX-2 expression[1].

   

Ginkgoic acid

2-hydroxy-6-[(8E)-pentadec-8-en-1-yl]benzoic acid

C22H34O3 (346.2508)


Constituent of Ginkgo biloba (ginkgo) and minor constituent of cashew nut shell. Ginkgoic acid is found in many foods, some of which are ginkgo nuts, nuts, cashew nut, and fats and oils. Ginkgoic acid is found in cashew nut. Ginkgoic acid is a constituent of Ginkgo biloba (ginkgo) and minor constituent of cashew nut shell. D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates Ginkgolic Acid is a natural compound that inhibits SUMOylation with an IC50 of 3.0 μM in in vitro assay. Ginkgolic Acid is a natural compound that inhibits SUMOylation with an IC50 of 3.0 μM in in vitro assay.

   

Tebufenpyrad

1H-Pyrazole-5-carboxamide, 4-chloro-N-((4-(1,1-dimethylethyl)phenyl)methyl)-3-ethyl-1-methyl-

C18H24ClN3O (333.1608)


CONFIDENCE standard compound; INTERNAL_ID 1210; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10181; ORIGINAL_PRECURSOR_SCAN_NO 10180 CONFIDENCE standard compound; INTERNAL_ID 1210; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10149; ORIGINAL_PRECURSOR_SCAN_NO 10147 CONFIDENCE standard compound; INTERNAL_ID 1210; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10181; ORIGINAL_PRECURSOR_SCAN_NO 10178 CONFIDENCE standard compound; INTERNAL_ID 1210; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10099; ORIGINAL_PRECURSOR_SCAN_NO 10097 CONFIDENCE standard compound; INTERNAL_ID 1210; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10204; ORIGINAL_PRECURSOR_SCAN_NO 10202 CONFIDENCE standard compound; INTERNAL_ID 1210; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10140; ORIGINAL_PRECURSOR_SCAN_NO 10138

   

Bisbenzimide

2-(4-ethoxyphenyl)-5-[6-(4-methylpiperazin-1-yl)-1H-1,3-benzodiazol-2-yl]-1H-1,3-benzodiazole

C27H28N6O (452.2324)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D020011 - Protective Agents > D011837 - Radiation-Protective Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes D011838 - Radiation-Sensitizing Agents Bisbenzimide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=23491-52-3 (retrieved 2024-08-14) (CAS RN: 23491-52-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

calpeptin

N-[4-methyl-1-oxo-1-(1-oxohexan-2-ylamino)pentan-2-yl]carbamic acid (phenylmethyl) ester

C20H30N2O4 (362.2205)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015853 - Cysteine Proteinase Inhibitors

   

Pifithrin-Beta

2-p-Tolyl-5,6,7,8-tetrahydrobenzo[d]imidazo[2,1-b]thiazole

C16H16N2S (268.1034)


   

Lucanthone

1-{[2-(diethylamino)ethyl]amino}-4-methyl-9H-thioxanthen-9-one

C20H24N2OS (340.1609)


Lucanthone is only found in individuals that have used or taken this drug. It is one of the schistosomicides, it has been replaced largely by hycanthone and more recently praziquantel. (From Martindale The Extrapharmacopoeia, 30th ed., p46). It is currently being tested as a radiation sensitizer.Recent data suggests that lucanthone inhibits post-radiation DNA repair in tumor cells. The ability of lucanthone to inhibit AP endonuclease and topoisomerase II probably account for the specific DNA repair inhibition in irradiated cells. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent

   

Levopimaric acid

.DELTA.6,8(14)-Abietadienoic acid

C20H30O2 (302.2246)


Origin: Plant; SubCategory_DNP: Diterpenoids, Pimarine diterpenoids

   

Mycolactone

Mycolactone

C44H70O9 (742.502)


   

Pyrrolnitrin

Pyrrolnitrin;3-Chloro-4-(3-chloro-2-nitrophenyl)pyrrole_HCD50

C10H6Cl2N2O2 (255.9806)


A member of the class of pyrroles carrying chloro and 3-chloro-2-nitrophenyl substituents at positions 3 and 4 respectively. D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AA - Antibiotics D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent Same as: D01094

   

Ammonium Chloride

Ammonium chloride-beta solid

NH4Cl (53.0032)


B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05X - I.v. solution additives > B05XA - Electrolyte solutions G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BA - Acidifiers C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent Same as: D01139

   

Sodium sulfate

Sodium sulphuric acid, anhydrous

Na2SO4 (141.9313)


A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AD - Osmotically acting laxatives A - Alimentary tract and metabolism > A12 - Mineral supplements > A12C - Other mineral supplements > A12CA - Sodium C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent D005765 - Gastrointestinal Agents > D002400 - Cathartics Acidity regulator Same as: D01732

   

Adrenoyl ethanolamide

(7Z,10Z,13Z,16Z)-N-(2-hydroxyethyl)docosa-7,10,13,16-tetraenamide

C24H41NO2 (375.3137)


Adrenoyl ethanolamide is a N-acylethanolamine. N-acylethanolamines (NAEs) constitute a class of lipid compounds naturally present in both animal and plant membranes as constituents of the membrane-bound phospholipid, N-acylphosphatidylethanolamine (NAPE). NAPE is composed of a third fatty acid moiety linked to the amino head group of the commonly occurring membrane phospholipid, phosphatidylethanolamine. NAEs are released from NAPE by phospholipase D-type hydrolases in response to a variety of stimuli. Transient NAE release and accumulation has been attributed a variety of biological activities, including neurotransmission, membrane protection, and immunomodulation in animals. N-oleoylethanolamine is an inhibitor of the sphingolipid signaling pathway, via specific ceramidase inhibition (ceramidase converts ceramide to sphingosine). N-oleoylethanolamine blocks the effects of TNF- and arachidonic acid on intracellular Ca concentration. (PMID: 12692337, 12056855, 12560208, 11997249) [HMDB] Adrenoyl ethanolamide is a N-acylethanolamine. N-acylethanolamines (NAEs) constitute a class of lipid compounds naturally present in both animal and plant membranes as constituents of the membrane-bound phospholipid, N-acylphosphatidylethanolamine (NAPE). NAPE is composed of a third fatty acid moiety linked to the amino head group of the commonly occurring membrane phospholipid, phosphatidylethanolamine. NAEs are released from NAPE by phospholipase D-type hydrolases in response to a variety of stimuli. Transient NAE release and accumulation has been attributed a variety of biological activities, including neurotransmission, membrane protection, and immunomodulation in animals. N-oleoylethanolamine is an inhibitor of the sphingolipid signaling pathway, via specific ceramidase inhibition (ceramidase converts ceramide to sphingosine). N-oleoylethanolamine blocks the effects of TNF- and arachidonic acid on intracellular Ca concentration. (PMID: 12692337, 12056855, 12560208, 11997249).

   

2-Ethylphenol

O-Ethylphenol

C8H10O (122.0732)


2-ethylphenol, also known as phlorol or 1-ethyl-2-hydroxybenzene, is a member of the class of compounds known as 1-hydroxy-4-unsubstituted benzenoids. 1-hydroxy-4-unsubstituted benzenoids are phenols that are unsubstituted at the 4-position. 2-ethylphenol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 2-ethylphenol can be found in arabica coffee, which makes 2-ethylphenol a potential biomarker for the consumption of this food product. Ethylphenol may refer to: 2-Ethylphenol 3-Ethylphenol 4-Ethylphenol .

   

1,3-Dichloro-2-propanol

1,3-Dichloro-1,3-dideoxyglycerol

C3H6Cl2O (127.9796)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D003432 - Cross-Linking Reagents D009676 - Noxae > D009153 - Mutagens

   

(Chloromethyl)oxirane

(RS)-3-Chloro-1,2-epoxypropane

C3H5ClO (92.0029)


(Chloromethyl)oxirane is used for cross-linking dextrose units in food starc It is used for cross-linking dextrose units in food starch.

   

N,N'-Diphenyl-p-phenylenediamine

N,N-DIPHENYL-1,4-PHENYLENEDIAMINE

C18H16N2 (260.1313)


D020011 - Protective Agents > D000975 - Antioxidants

   

Tetrachlorobisphenol A

2,6-dichloro-4-[2-(3,5-dichloro-4-hydroxyphenyl)propan-2-yl]phenol

C15H12Cl4O2 (363.9591)


CONFIDENCE standard compound; INTERNAL_ID 547; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5355; ORIGINAL_PRECURSOR_SCAN_NO 5350 CONFIDENCE standard compound; INTERNAL_ID 547; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5349; ORIGINAL_PRECURSOR_SCAN_NO 5347 CONFIDENCE standard compound; INTERNAL_ID 547; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5353; ORIGINAL_PRECURSOR_SCAN_NO 5351 CONFIDENCE standard compound; INTERNAL_ID 547; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5359; ORIGINAL_PRECURSOR_SCAN_NO 5357 CONFIDENCE standard compound; INTERNAL_ID 547; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5328; ORIGINAL_PRECURSOR_SCAN_NO 5327

   

Phenol-formaldehyde, cross-linked, tetraethylenepentamine activated

N-(2-Aminoethyl)-n-[2-[(2-aminoethyl)amino]ethyl]-1,2-ethanediamine

C8H23N5 (189.1953)


Phenol-formaldehyde, cross-linked, tetraethylenepentamine activated is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]")

   

Temsirolimus

(1R,2R,4S)-4-[(2R)-2-[(1R,9S,12S,15R,16E,18R,19R,21R,23S,24E,26E,28E,30S,32S,35R)-1,18-dihydroxy-19,30-dimethoxy-15,17,21,23,29,35-hexamethyl-2,3,10,14,20-pentaoxo-11,36-dioxa-4-azatricyclo[30.3.1.0⁴,⁹]hexatriaconta-16,24,26,28-tetraen-12-yl]propyl]-2-methoxycyclohexyl 3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate

C56H87NO16 (1029.6025)


Temsirolimus is an intravenous drug for the treatment of renal cell carcinoma (RCC), developed by Wyeth Pharmaceuticals and approved by the FDA in late May 2007, and was also approved by the European Medicines Agency (EMEA) on November 2007. It is a derivative of sirolimus and is sold as Torisel. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01E - Protein kinase inhibitors > L01EG - Mammalian target of rapamycin (mtor) kinase inhibitors C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C61074 - Serine/Threonine Kinase Inhibitor C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C2201 - mTOR Inhibitor D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors D000970 - Antineoplastic Agents > D000091203 - MTOR Inhibitors Same as: D06068 Temsirolimus is an inhibitor of mTOR with an IC50 of 1.76 μM. Temsirolimus activates autophagy and prevents deterioration of cardiac function in animal model[8]. Temsirolimus is an inhibitor of mTOR with an IC50 of 1.76 μM. Temsirolimus activates autophagy and prevents deterioration of cardiac function in animal model[8].

   

Trichlorostibine

Antimony(III) chloride

Cl3Sb (225.8104)


   

{4-[({2-[3-Fluoro-4-(Trifluoromethyl)phenyl]-4-Methyl-1,3-Thiazol-5-Yl}methyl)sulfanyl]-2-Methylphenoxy}acetic Acid

2-{4-[({2-[3-fluoro-4-(trifluoromethyl)phenyl]-4-methyl-1,3-thiazol-5-yl}methyl)sulphanyl]-2-methylphenoxy}acetic acid

C21H17F4NO3S2 (471.0586)


CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10481; ORIGINAL_PRECURSOR_SCAN_NO 10479 CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10494; ORIGINAL_PRECURSOR_SCAN_NO 10490 CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10524; ORIGINAL_PRECURSOR_SCAN_NO 10520 CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10518; ORIGINAL_PRECURSOR_SCAN_NO 10516 CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10469; ORIGINAL_PRECURSOR_SCAN_NO 10466 CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10519; ORIGINAL_PRECURSOR_SCAN_NO 10516 CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5241; ORIGINAL_PRECURSOR_SCAN_NO 5238 CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5267; ORIGINAL_PRECURSOR_SCAN_NO 5265 CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5258; ORIGINAL_PRECURSOR_SCAN_NO 5256 CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5274; ORIGINAL_PRECURSOR_SCAN_NO 5271 CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5266; ORIGINAL_PRECURSOR_SCAN_NO 5264 CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5246; ORIGINAL_PRECURSOR_SCAN_NO 5244 GW0742 is a potent PPARβ and PPARδ agonist, with an IC50 of 1 nM for human PPARδ in binding assay, and EC50s of 1 nM, 1.1 μM and 2 μM for human PPARδ, PPARα, and PPARγ, respectively.

   

6-ECDCA

6alpha-Ethyl-chenodeoxycholic acid

C26H44O4 (420.3239)


A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05A - Bile therapy > A05AA - Bile acids and derivatives C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids Same as: D09360

   

concanamycin a

[6-[2-[4-[(4E,6E,14E,16Z)-11-ethyl-10,12-dihydroxy-3,17-dimethoxy-7,9,13,15-tetramethyl-18-oxo-1-oxacyclooctadeca-4,6,14,16-tetraen-2-yl]-3-hydroxypentan-2-yl]-2-hydroxy-5-methyl-6-[(E)-prop-1-enyl]oxan-4-yl]oxy-4-hydroxy-2-methyloxan-3-yl] carbamate

C46H75NO14 (865.5187)


A concanamycin in which the lactone ring contains 4 double bonds and is substituted by 4 methyl groups, 2 hydroxy groups, 2 methoxy groups and an ethyl group. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D004791 - Enzyme Inhibitors

   

Nonadecanoic acid

nonadecanoic acid

C19H38O2 (298.2872)


Nonadecanoic acid, also known as n-nonadecanoic acid or nonadecylic acid or C19:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms, with nonadecanoic acid (its ester is called nonadecanoate) having 19 carbon atoms. Nonadecanoic acid is a very hydrophobic molecule, practically insoluble (in water). It is a solid with a melting point of 69.4°C. It can be found in bacteria, plants, and animals (including animal milk) (Nature 176:882; PMID: 14168161). It is secreted by termites (Rhinotermes marginalis) as part of its defence mechanism (Comp. Biochem. Physiol. B 71:731). Nonadecanoic acid is a C19 straight-chain fatty acid of plant or bacterial origin. An intermediate in the biodegradation of n-icosane, it has been shown to inhibit cancer growth. It has a role as a fungal metabolite. It is a straight-chain saturated fatty acid and a long-chain fatty acid. It is a conjugate acid of a nonadecanoate. Nonadecanoic acid is a natural product found in Staphisagria macrosperma, Malva sylvestris, and other organisms with data available. An odd-numbered long chain fatty acid, likely derived from bacterial or plant sources. Nonadecanoic acid has been found in ox fats and vegetable oils. It is also used by certain insects as a phermone. [HMDB]. A C19 straight-chain fatty acid of plant or bacterial origin. An intermediate in the biodegradation of n-icosane, it has been shown to inhibit cancer growth. Nonadecanoic acid is a 19-carbon long saturated fatty acid. Nonadecanoic acid is the major constituent of the substance secreted by Rhinotermes marginalis to defence[1]. Nonadecanoic acid is a 19-carbon long saturated fatty acid. Nonadecanoic acid is the major constituent of the substance secreted by Rhinotermes marginalis to defence[1].

   

Chavicol

laquo gammaraquo -(P-Hydroxyphenyl)-alpha -propylene

C9H10O (134.0732)


Chavicol is found in allspice. Chavicol is found in many essential oils, e.g. anise and Gardenia. Chavicol is used in perfumery and flavours. Found in many essential oils, e.g. anise and Gardenia. It is used in perfumery and flavours.

   

Ophiopogonin B

Ophiopogonin B

C39H62O12 (722.4241)


   

Schidigerasaponin D5

2-[4,5-dihydroxy-6-(hydroxymethyl)-2-(5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icosane-6,2-oxane]-16-yl)oxyoxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4347)


Schidigerasaponin D5 is a natural product found in Yucca gloriosa and Asparagus gobicus with data available. Melongoside E is found in fruits. Melongoside E is a constituent of aubergine (Solanum melongena). Constituent of aubergine (Solanum melongena). Melongoside E is found in fruits and eggplant. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM.

   

ZINC lactate

DTXSID70908362

C6H12O6Zn (243.9925)


   

Isofraxidin

7-hydroxy-6,8-dimethoxy-chromen-2-one;Isofraxidin

C11H10O5 (222.0528)


Isofraxidin is a hydroxycoumarin. Isofraxidin is a natural product found in Artemisia alba, Artemisia assoana, and other organisms with data available. Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2]. Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2].

   

Demethoxycurcumin

(1E,4Z,6E)-5-Hydroxy-1-(4-hydroxy-3-methoxy-phenyl)-7-(4-hydroxy-phenyl)-hepta-1,4,6-trien-3-one

C20H18O5 (338.1154)


Demethoxycurcumin is a beta-diketone that is curcumin in which one of the methoxy groups is replaced by hydrogen. It is found in Curcuma zedoaria and Etlingera elatior. It has a role as a metabolite, an antineoplastic agent and an anti-inflammatory agent. It is a polyphenol, a beta-diketone, an enone and a diarylheptanoid. Demethoxycurcumin is a natural product found in Curcuma amada, Curcuma aeruginosa, and other organisms with data available. Isolated from Curcuma zedoaria (zedoary), Curcuma longa (turmeric), Curcuma xanthorrhiza (Java turmeric). Demethoxycurcumin is found in many foods, some of which are beverages, herbs and spices, turmeric, and root vegetables. Demethoxycurcumin is found in beverages. Demethoxycurcumin is isolated from Curcuma zedoaria (zedoary), Curcuma longa (turmeric), Curcuma xanthorrhiza (Java turmeric). A beta-diketone that is curcumin in which one of the methoxy groups is replaced by hydrogen. It is found in Curcuma zedoaria and Etlingera elatior. Demethoxycurcumin is the main active component of curcumin and has been shown to have anti-inflammatory and toxic effects on cancer cells. Demethoxycurcumin is the main active component of curcumin and has been shown to have anti-inflammatory and toxic effects on cancer cells.

   

Vitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C21H20O10 (432.1056)


Vitexin is an apigenin flavone glycoside, which is found in the passion flower, bamboo leaves and pearl millet It has a role as a platelet aggregation inhibitor, an EC 3.2.1.20 (alpha-glucosidase) inhibitor, an antineoplastic agent and a plant metabolite. It is a C-glycosyl compound and a trihydroxyflavone. It is functionally related to an apigenin. It is a conjugate acid of a vitexin-7-olate. Vitexin is a natural product found in Itea chinensis, Salacia chinensis, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of); Cytisus scoparius flowering top (part of); Fenugreek seed (part of) ... View More ... An apigenin flavone glycoside, which is found in the passion flower, bamboo leaves and pearl millet Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].

   

Paeonol

2 inverted exclamation mark -Hydroxy-4 inverted exclamation mark -methoxyacetophenone

C9H10O3 (166.063)


Paeonol is a member of phenols and a member of methoxybenzenes. It has a role as a metabolite. Paeonol is a natural product found in Vincetoxicum paniculatum, Vincetoxicum glaucescens, and other organisms with data available. See also: Paeonia lactiflora root (part of); Paeonia X suffruticosa root (part of). A natural product found in Paeonia rockii subspeciesrockii. Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively. Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively.

   

Magnolol

5,5 inverted exclamation mark -Diallyl-2,2 inverted exclamation mark -biphenyldiol

C18H18O2 (266.1307)


Magnolol is a member of biphenyls. Magnolol is a natural product found in Magnolia garrettii, Illicium simonsii, and other organisms with data available. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Magnolol, a natural lignan isolated from the stem bark of Magnolia officinalis, is a dual agonist of both RXRα and PPARγ, with EC50 values of 10.4 μM and 17.7 μM, respectively. Magnolol, a natural lignan isolated from the stem bark of Magnolia officinalis, is a dual agonist of both RXRα and PPARγ, with EC50 values of 10.4 μM and 17.7 μM, respectively. Magnolol, a natural lignan isolated from the stem bark of Magnolia officinalis, is a dual agonist of both RXRα and PPARγ, with EC50 values of 10.4 μM and 17.7 μM, respectively.

   

Honokiol

InChI=1/C18H18O2/c1-3-5-13-7-9-18(20)16(11-13)14-8-10-17(19)15(12-14)6-4-2/h3-4,7-12,19-20H,1-2,5-6H

C18H18O2 (266.1307)


Honokiol is a member of biphenyls. Honokiol is a natural product found in Illicium simonsii, Illicium fargesii, and other organisms with data available. D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D005765 - Gastrointestinal Agents D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents D018926 - Anti-Allergic Agents D004791 - Enzyme Inhibitors Honokiol is a bioactive, biphenolic phytochemical that possesses potent antioxidative, anti-inflammatory, antiangiogenic, and anticancer activities by targeting a variety of signaling molecules. It inhibits the activation of Akt. Honokiol can readily cross the blood brain barrier[1][2][3][4]. Honokiol is a bioactive, biphenolic phytochemical that possesses potent antioxidative, anti-inflammatory, antiangiogenic, and anticancer activities by targeting a variety of signaling molecules. It inhibits the activation of Akt. Honokiol can readily cross the blood brain barrier[1][2][3][4]. Honokiol is a bioactive, biphenolic phytochemical that possesses potent antioxidative, anti-inflammatory, antiangiogenic, and anticancer activities by targeting a variety of signaling molecules. It inhibits the activation of Akt. Honokiol can readily cross the blood brain barrier[1][2][3][4].

   

L-Cysteinesulfinic acid

2-amino-3-sulfinopropanoic acid

C3H7NO4S (153.0096)


L-Cysteinesulfinic acid is a potent agonist at several rat metabotropic glutamate receptors (mGluRs) with pEC50s of 3.92, 4.6, 3.9, 2.7, 4.0, and 3.94 for mGluR1, mGluR5, mGluR2, mGluR4, mGluR6, and mGluR8, respectively[1]. L-Cysteinesulfinic acid is a potent agonist at several rat metabotropic glutamate receptors (mGluRs) with pEC50s of 3.92, 4.6, 3.9, 2.7, 4.0, and 3.94 for mGluR1, mGluR5, mGluR2, mGluR4, mGluR6, and mGluR8, respectively[1].

   

Dexmedetomidine

4-[(1S)-1-(2,3-dimethylphenyl)ethyl]-1H-imidazole

C13H16N2 (200.1313)


Dexmedetomidine is only found in individuals that have used or taken this drug. It is an agonist of receptors, adrenergic alpha-2 that is used in veterinary medicine for its analgesic and sedative properties. It is the racemate of dexmedetomidine. [PubChem]Dexmedetomidine is a specific and selective alpha-2 adrenoceptor agonist. By binding to the presynaptic alpha-2 adrenoceptors, it inhibits the release if norepinephrine, therefore, terminate the propagation of pain signals. Activation of the postsynaptic alpha-2 adrenoceptors inhibits the sympathetic activity decreases blood pressure and heart rate. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives D002491 - Central Nervous System Agents > D000700 - Analgesics Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Dexmedetomidine ((+)-Medetomidine) is a potent, selective and orally active agonist of α2-adrenoceptor, with a Ki of 1.08 nM. Dexmedetomidine shows 1620-fold selectivity against α1-adrenoceptor. Dexmedetomidine exhibits anxiolysis, sedation, and modest analgesia effects[1][2][3]. Medetomidine is an orally active α2-adrenoceptor agonist (Ki: 1.08 nM). Medetomidine has sedative and analgesic effects. Medetomidine can cause peripheral vasoconstriction through the activation of α2 adrenoceptors on blood vessels[1][2][3][4].

   

Vitexin

8-beta-D-Glucopyranosyl-5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

C21H20O10 (432.1056)


Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].

   

14R,15S-EpETrE

14,15-Epoxy-5,8,11-eicosatrienoic acid, (2alpha(5Z,8Z,11Z),3alpha)-isomer

C20H32O3 (320.2351)


14R,15S-EpETrE is the dominant extracellular metabolite of epoxygenase products of arachidonic acid released from human luteinised granulosa cells. Epoxyeicosatrienoic acids (EpETrEs) have been reported recently having vasodilatory effects and a role of P-450-dependent arachidonic acid monooxygenase metabolites is suggested in vasoregulation. The physiological role of this compound has not been totally established, although in other tissues EpETrEs are mainly involved in hormone production and in the vascular and renal systems. Some studies have implicated epoxygenase metabolites of arachidonic acid in the control of steroidogenesis in luteinised granulosa cells. (PMID: 12749593, 12361727, 1650001) [HMDB] 14R,15S-EpETrE is the dominant extracellular metabolite of epoxygenase products of arachidonic acid released from human luteinised granulosa cells. Epoxyeicosatrienoic acids (EpETrEs) have been reported recently having vasodilatory effects and a role of P-450-dependent arachidonic acid monooxygenase metabolites is suggested in vasoregulation. The physiological role of this compound has not been totally established, although in other tissues EpETrEs are mainly involved in hormone production and in the vascular and renal systems. Some studies have implicated epoxygenase metabolites of arachidonic acid in the control of steroidogenesis in luteinised granulosa cells. (PMID: 12749593, 12361727, 1650001). D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

(-)-Haematoxylin

8-oxatetracyclo[8.7.0.0²,⁷.0¹²,¹⁷]heptadeca-2,4,6,12(17),13,15-hexaene-5,6,10,14,15-pentol

C16H14O6 (302.079)


D004396 - Coloring Agents

   

(+)-Lithospermic acid

4-{3-[1-carboxy-2-(3,4-dihydroxyphenyl)ethoxy]-3-oxoprop-1-en-1-yl}-2-(3,4-dihydroxyphenyl)-7-hydroxy-2,3-dihydro-1-benzofuran-3-carboxylic acid

C27H22O12 (538.1111)


   

Astragaloside A

2-({14-hydroxy-15-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-[(3,4,5-trihydroxyoxan-2-yl)oxy]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4609)


Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells.

   

Loganoside

Methyl 6-hydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1H,4ah,5H,6H,7H,7ah-cyclopenta[c]pyran-4-carboxylic acid

C17H26O10 (390.1526)


Loganin is the main iridoid glycoside compound in Cornus officinalis and has anti-inflammatory and anti-shock effects. Loganin is the main iridoid glycoside compound in Cornus officinalis and has anti-inflammatory and anti-shock effects.

   

Aescin

6-{[9-(acetyloxy)-8-hydroxy-4,8a-bis(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-10-[(2-methylbut-2-enoyl)oxy]-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl]oxy}-4-hydroxy-3,5-bis({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})oxane-2-carboxylic acid

C55H86O24 (1130.5509)


   

Afimoxifene

4-(1-{4-[2-(dimethylamino)ethoxy]phenyl}-2-phenylbut-1-en-1-yl)phenol

C26H29NO2 (387.2198)


   

(6As,11bS)-7,11b-dihydro-6H-indeno[2,1-c]chromene-3,6a,9,10-tetrol

8-oxatetracyclo[8.7.0.0²,⁷.0¹²,¹⁷]heptadeca-2,4,6,12,14,16-hexaene-5,10,14,15-tetrol

C16H14O5 (286.0841)


Brazilin is a red dye precursor obtained from the heartwood of several species of tropical hardwoods. Brazilin inhibits the cells proliferation, promotes apoptosis, and induces autophagy through the AMPK/mTOR pathway. Brazilin shows chondroprotective and anti-inflammatory activities[1][2][3]. Brazilin is a red dye precursor obtained from the heartwood of several species of tropical hardwoods. Brazilin inhibits the cells proliferation, promotes apoptosis, and induces autophagy through the AMPK/mTOR pathway. Brazilin shows chondroprotective and anti-inflammatory activities[1][2][3].

   

Applaud

2-Tert-butylimino-3-isopropyl-5-phenyl-3,4,5,6-tetrahydro-2H-1,3,5-thiadiazin-4-one

C16H23N3OS (305.1562)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

concanamycin a

{[6-({2-[4-(11-ethyl-10,12-dihydroxy-3,17-dimethoxy-7,9,13,15-tetramethyl-18-oxo-1-oxacyclooctadeca-4,6,14,16-tetraen-2-yl)-3-hydroxypentan-2-yl]-2-hydroxy-5-methyl-6-(prop-1-en-1-yl)oxan-4-yl}oxy)-4-hydroxy-2-methyloxan-3-yl]oxy}methanimidate

C46H75NO14 (865.5187)


   

Dehydrodiisoeugenol

2-methoxy-4-[7-methoxy-3-methyl-5-(prop-1-en-1-yl)-2,3-dihydro-1-benzofuran-2-yl]phenol

C20H22O4 (326.1518)


   

Proscillaridin

5-{11-hydroxy-2,15-dimethyl-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-en-14-yl}-2H-pyran-2-one

C30H42O8 (530.288)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors

   

Estrogen

4-[(3E)-4-(4-hydroxyphenyl)hex-3-en-3-yl]phenol

C18H20O2 (268.1463)


A steroid hormone that stimulates or controls the development and maintenance of female sex characteristics in mammals by binding to oestrogen receptors. The oestrogens are named for their importance in the oestrous cycle. (ChEBI). Estrogen is found in date and apricot. G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CC - Estrogens, combinations with other drugs G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CB - Synthetic estrogens, plain L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02A - Hormones and related agents > L02AA - Estrogens D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D009676 - Noxae > D002273 - Carcinogens

   

Procyanidin A1

5,13-bis(3,4-dihydroxyphenyl)-4,12,14-trioxapentacyclo[11.7.1.0²,¹¹.0³,⁸.0¹⁵,²⁰]henicosa-2,8,10,15,17,19-hexaene-6,9,17,19,21-pentol

C30H24O12 (576.1268)


Procyanidin a1 is a member of the class of compounds known as biflavonoids and polyflavonoids. Biflavonoids and polyflavonoids are organic compounds containing at least two flavan/flavone units. These units are usually linked through CC or C-O-C bonds. Some examples include C2-O-C3, C2-O-C4, C3-C3, and C6-C8. Procyanidin a1 is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Procyanidin a1 can be found in bilberry, which makes procyanidin a1 a potential biomarker for the consumption of this food product. Procyanidin A1 (Proanthocyanidin A1) is a procyanidin dimer, which inhibits degranulation downstream of protein kinase C activation or Ca2+ influx from an internal store in RBL-213 cells. Procyanidin A1 has antiallergic effects[1]. Procyanidin A1 (Proanthocyanidin A1) is a procyanidin dimer, which inhibits degranulation downstream of protein kinase C activation or Ca2+ influx from an internal store in RBL-213 cells. Procyanidin A1 has antiallergic effects[1].

   

5,6-dihydrothymine

Dihydro-5-methyl-2,4(1H,3H)-pyrimidinedione

C5H8N2O2 (128.0586)


Dihydrothymine, also known as 5,6-dihydro-5-methyluracil or 5,6-dihydrothymine, (S)-isomer, is a member of the class of compounds known as hydropyrimidines. Hydropyrimidines are compounds containing a hydrogenated pyrimidine ring (i.e. containing less than the maximum number of double bonds.). Dihydrothymine is soluble (in water) and a very weakly acidic compound (based on its pKa). Dihydrothymine can be found in a number of food items such as hyssop, arrowroot, nopal, and red rice, which makes dihydrothymine a potential biomarker for the consumption of these food products. Dihydrothymine can be found primarily in blood, cerebrospinal fluid (CSF), saliva, and urine, as well as in human prostate tissue. Dihydrothymine exists in all living organisms, ranging from bacteria to humans. In humans, dihydrothymine is involved in the pyrimidine metabolism. Dihydrothymine is also involved in few metabolic disorders, which include beta ureidopropionase deficiency, dihydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and UMP synthase deficiency (orotic aciduria). Moreover, dihydrothymine is found to be associated with beta-ureidopropionase deficiency and dihydropyrimidinase deficiency. Dihydrothymine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Dihydrothymine is an intermediate in the metabolism of thymine . Dihydropyrimidine dehydrogenase catalyzes the reduction of thymine to 5, 6-dihydrothymine then dihydropyrimidinase hydrolyzes 5, 6-dihydrothymine to N-carbamyl-b-alanine. Finally, beta-ureidopropionase catalyzes the conversion of N-carbamyl-b-alanine to beta-alanine. Accumulation of dihydrothymine in the body has been shown to be toxic (T3DB). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 5,6-Dihydro-5-methyluracil (Dihydrothymine), an intermediate breakdown product of thymine, comes from animal or plants. 5,6-Dihydro-5-methyluracil (Dihydrothymine) can be toxic when present at abnormally high levels[1].

   

DL-beta-Hydroxybutyric acid

DL-beta-Hydroxybutyric acid

C4H8O3 (104.0473)


(R)-3-Hydroxybutanoic acid is a metabolite, and converted from acetoacetic acid catalyzed by 3-hydroxybutyrate dehydrogenase. (R)-3-Hydroxybutanoic acid has applications as a nutrition source and as a precursor for vitamins, antibiotics and pheromones[1][2].

   

Cholylglycine

N-(3Alpha,7Alpha,12Alpha-trihydroxy-5Beta-cholan-24-oyl)-glycine

C26H43NO6 (465.309)


D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1]. Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1].

   

C16:0

n-Hexadecanoic acid

C16H32O2 (256.2402)


COVID info from WikiPathways D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Ipomic acid

Decanedioic acid

C10H18O4 (202.1205)


Decanedioic acid, a normal urinary acid, is found to be associated with carnitine-acylcarnitine translocase deficiency and medium chain acyl-CoA dehydrogenase deficiency. Decanedioic acid, a normal urinary acid, is found to be associated with carnitine-acylcarnitine translocase deficiency and medium chain acyl-CoA dehydrogenase deficiency.

   

Resveratrol

3,4,5-Trihydroxystilbene

C14H12O3 (228.0786)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors C1892 - Chemopreventive Agent > C54630 - Phase II Enzymes Inducer D020011 - Protective Agents > D000975 - Antioxidants CONFIDENCE standard compound; EAWAG_UCHEM_ID 3241 C26170 - Protective Agent > C275 - Antioxidant D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7].

   

metformin

metformin

C4H11N5 (129.1014)


A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BA - Biguanides C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98234 - Biguanide Antidiabetic Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D007004 - Hypoglycemic Agents > D001645 - Biguanides CONFIDENCE standard compound; EAWAG_UCHEM_ID 2550 C1892 - Chemopreventive Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Metformin (1,1-Dimethylbiguanide) inhibits the mitochondrial respiratory chain in the liver, leading to activation of AMPK, enhancing insulin sensitivity for type 2 diabetes research. Metformin can cross the blood-brain barrier and triggers autophagy[1].

   

pantoprazole

pantoprazole

C16H15F2N3O4S (383.0751)


A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02B - Drugs for peptic ulcer and gastro-oesophageal reflux disease (gord) > A02BC - Proton pump inhibitors C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent > C29723 - Proton Pump Inhibitor D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents D004791 - Enzyme Inhibitors > D054328 - Proton Pump Inhibitors CONFIDENCE standard compound; EAWAG_UCHEM_ID 644

   

Alkannin

5,8-dihydroxy-2-[(1S)-1-hydroxy-4-methylpent-3-en-1-yl]-1,4-dihydronaphthalene-1,4-dione

C16H16O5 (288.0998)


Alkannin is a hydroxy-1,4-naphthoquinone. Alkannin is a natural product found in Arnebia hispidissima, Alkanna cappadocica, and other organisms with data available. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3]. (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3]. (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3]. (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3].

   

Embelin

2,5-Cyclohexadiene-1,4-dione, 2,5-dihydroxy-3-undecyl- (9CI)

C17H26O4 (294.1831)


Embelin is a member of the class of dihydroxy-1,4-benzoquinones that is 2,5-dihydroxy-1,4-benzoquinone which is substituted by an undecyl group at position 3. Isolated from Lysimachia punctata and Embelia ribes, it exhibits antimicrobial, antineoplastic and inhibitory activity towards hepatitis C protease. It has a role as a hepatitis C protease inhibitor, an antimicrobial agent, an antineoplastic agent and a plant metabolite. Embelin is a natural product found in Ardisia paniculata, Embelia tsjeriam-cottam, and other organisms with data available. A member of the class of dihydroxy-1,4-benzoquinones that is 2,5-dihydroxy-1,4-benzoquinone which is substituted by an undecyl group at position 3. Isolated from Lysimachia punctata and Embelia ribes, it exhibits antimicrobial, antineoplastic and inhibitory activity towards hepatitis C protease. Embelin (Embelic acid), a potent, nonpeptidic XIAP inhibitor (IC50=4.1 μM), inhibits cell growth, induces apoptosis, and activates caspase-9 in prostate cancer cells with high levels of XIAP. Embelin blocks NF-kappaB signaling pathway leading to suppression of NF-kappaB-regulated antiapoptotic and metastatic gene products. Embelin also induces autophagic and apoptotic cell death in human oral squamous cell carcinoma cells[1][2][3]. Embelin (Embelic acid), a potent, nonpeptidic XIAP inhibitor (IC50=4.1 μM), inhibits cell growth, induces apoptosis, and activates caspase-9 in prostate cancer cells with high levels of XIAP. Embelin blocks NF-kappaB signaling pathway leading to suppression of NF-kappaB-regulated antiapoptotic and metastatic gene products. Embelin also induces autophagic and apoptotic cell death in human oral squamous cell carcinoma cells[1][2][3].

   

Farrerol

(2S)-2,3-Dihydro-5,7-dihydroxy-2- (4-hydroxyphenyl)-6,8-dimethyl-4H-1-benzopyran-4-one

C17H16O5 (300.0998)


Farrerol is an organic molecular entity. It has a role as a metabolite. (S)-2,3-Dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-6,8-dimethyl-4-benzopyrone is a natural product found in Rhododendron spinuliferum, Wikstroemia canescens, and other organisms with data available. Farrerol is a natural product found in Daphne aurantiaca, Rhododendron farrerae, and Rhododendron dauricum with data available. Farrerol is a bioactive constituent of Rhododendron, with broad activities such as anti-oxidative, anti-inflammatory, anti-tumor, neuroprotective and hepatoprotective effects[1][2][3][4][5][6]. Farrerol is a bioactive constituent of Rhododendron, with broad activities such as anti-oxidative, anti-inflammatory, anti-tumor, neuroprotective and hepatoprotective effects[1][2][3][4][5][6].

   

Ana B

Benzoic acid, 2-hydroxy-6-(8-pentadecenyl)-, (Z)-

C22H34O3 (346.2508)


Ginkgoic acid is a hydroxybenzoic acid. It is functionally related to a salicylic acid. Ginkgolic acid is a natural product found in Amphipterygium adstringens, Anacardium occidentale, and other organisms with data available. D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates Ginkgolic Acid is a natural compound that inhibits SUMOylation with an IC50 of 3.0 μM in in vitro assay. Ginkgolic Acid is a natural compound that inhibits SUMOylation with an IC50 of 3.0 μM in in vitro assay.

   

Deguelin

(1S,14S)-17,18-dimethoxy-7,7-dimethyl-2,8,21-trioxapentacyclo[12.8.0.03,12.04,9.015,20]docosa-3(12),4(9),5,10,15,17,19-heptaen-13-one

C23H22O6 (394.1416)


Deguelin is a rotenone that is 13,13a-dihydro-3H-chromeno[3,4-b]pyrano[2,3-h]chromen-7(7aH)-one substituted by methoxy groups at positions 9 and 10, and by two methyl groups at position 3 (the 7aS,13aS-stereoisomer). It exists in abundant quantities in the bark, roots, and leaves of the Leguminosae family of plants and reported to exert anti-tumour effects in various cancers. It has a role as an apoptosis inducer, an antineoplastic agent, a plant metabolite, an angiogenesis inhibitor, an antiviral agent, a mitochondrial NADH:ubiquinone reductase inhibitor, an anti-inflammatory agent and an EC 2.7.11.1 (non-specific serine/threonine protein kinase) inhibitor. It is a member of rotenones, an aromatic ether, an organic heteropentacyclic compound and a diether. Deguelin is a natural product found in Tephrosia vogelii, Derris montana, and other organisms with data available. A rotenone that is 13,13a-dihydro-3H-chromeno[3,4-b]pyrano[2,3-h]chromen-7(7aH)-one substituted by methoxy groups at positions 9 and 10, and by two methyl groups at position 3 (the 7aS,13aS-stereoisomer). It exists in abundant quantities in the bark, roots, and leaves of the Leguminosae family of plants and reported to exert anti-tumour effects in various cancers. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB.

   

Mangiferin

1,3,6,7-Tetrahydroxy-2-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-9H-xanthen-9-one

C19H18O11 (422.0849)


Mangiferin is a C-glycosyl compound consisting of 1,3,6,7-tetrahydroxyxanthen-9-one having a beta-D-glucosyl residue at the 6-position. It has a role as a hypoglycemic agent, an antioxidant, an anti-inflammatory agent and a plant metabolite. It is a C-glycosyl compound and a member of xanthones. It is functionally related to a xanthone. It is a conjugate acid of a mangiferin(1-). Mangiferin is a natural product found in Salacia chinensis, Smilax bracteata, and other organisms with data available. See also: Mangifera indica bark (part of). A C-glycosyl compound consisting of 1,3,6,7-tetrahydroxyxanthen-9-one having a beta-D-glucosyl residue at the 6-position. Origin: Plant Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3]. Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3].

   

Baicalin

(2S,3S,4S,5R,6S)-6-((5,6-dihydroxy-4-oxo-2-phenyl-4H-chromen-7-yl)oxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxylic acid

C21H18O11 (446.0849)


Baicalin is the glycosyloxyflavone which is the 7-O-glucuronide of baicalein. It is an active ingredient of Chinese herbal medicine Scutellaria baicalensis. It has a role as a non-steroidal anti-inflammatory drug, an EC 3.4.21.26 (prolyl oligopeptidase) inhibitor, a prodrug, a plant metabolite, a ferroptosis inhibitor, a neuroprotective agent, an antineoplastic agent, a cardioprotective agent, an antiatherosclerotic agent, an antioxidant, an EC 2.7.7.48 (RNA-directed RNA polymerase) inhibitor, an anticoronaviral agent and an antibacterial agent. It is a glucosiduronic acid, a glycosyloxyflavone, a dihydroxyflavone and a monosaccharide derivative. It is functionally related to a baicalein. It is a conjugate acid of a baicalin(1-). Baicalin is a natural product found in Scutellaria amoena, Thalictrum baicalense, and other organisms with data available. See also: Scutellaria baicalensis Root (part of). The glycosyloxyflavone which is the 7-O-glucuronide of baicalein. It is an active ingredient of Chinese herbal medicine Scutellaria baicalensis. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D018501 - Antirheumatic Agents D004791 - Enzyme Inhibitors Baicalin, as a flavonoid glycoside, is an allosteric carnitine palmityl transferase 1 (CPT1) activator. Baicalin reduces the expression of NF-κB[1][2][3]. Baicalin, as a flavonoid glycoside, is an allosteric carnitine palmityl transferase 1 (CPT1) activator. Baicalin reduces the expression of NF-κB[1][2][3].

   

1,5-Dicaffeoylquinic acid

1,3-Dicaffeoylquinic acid (constituent of echinacea angustifolia root, echinacea pallida root, echinacea purpurea root and echinacea purpurea aerial parts)

C25H24O12 (516.1268)


1,3-dicaffeoylquinic acid is an alkyl caffeate ester obtained by the formal condensation of hydroxy groups at positions 1 and 3 of ()-quinic acid with two molecules of trans-caffeic acid. It has a role as a plant metabolite. It is a quinic acid and an alkyl caffeate ester. It is functionally related to a trans-caffeic acid and a (-)-quinic acid. It is a conjugate acid of a 1,3-dicaffeoylquinate. Cynarine is a natural product found in Saussurea involucrata, Helichrysum italicum, and other organisms with data available. See also: Cynara scolymus leaf (part of). Cynarine is a hydroxycinnamic acid and a biologically active chemical constituent of artichoke. Chemically, it is an ester formed from quinic acid and two units of caffeic acid. 1,5-Dicaffeoylquinic acid is found in cardoon, globe artichoke, and fennel. 1,5-Dicaffeoylquinic acid is found in cardoon. Cynarine is a hydroxycinnamic acid and a biologically active chemical constituent of artichoke. Chemically, it is an ester formed from quinic acid and two units of caffeic acid. (Wikipedia An alkyl caffeate ester obtained by the formal condensation of hydroxy groups at positions 1 and 3 of ()-quinic acid with two molecules of trans-caffeic acid. C78276 - Agent Affecting Digestive System or Metabolism > C66913 - Cholagogues or Choleretic Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics 1,3-Dicaffeoylquinic acid is a caffeoylquinic acid derivative that exhibits antioxidant activity and radical scavenging activity. 1,3-Dicaffeoylquinic acid is a caffeoylquinic acid derivative that exhibits antioxidant activity and radical scavenging activity. 1,3-Dicaffeoylquinic acid is a caffeoylquinic acid derivative that exhibits antioxidant activity and radical scavenging activity. Cynarin is an antichoke agent with a variety of biological activities including antioxidant, antihistamic and antiviral activities. Cynarin is an antichoke agent with a variety of biological activities including antioxidant, antihistamic and antiviral activities.

   

Hinokiflavone

4H-1-Benzopyran-4-one, 6-(4-(5,7-dihydroxy-4-oxo-4H-1-benzopyran-2-yl)phenoxy)-5,7-dihyd- roxy-2-(4-hydroxyphenyl)-

C30H18O10 (538.09)


Hinokiflavone is a biflavonoid that is apigenin substituted by a 4-(5,7-dihydroxy-4-oxo-4H-chromen-2-yl)phenoxy group at position 6. A diflavonyl ether, it is isolated from Rhus succedanea and has been found to possess significant cytotoxic potential. It has a role as a neuroprotective agent, an antineoplastic agent and a metabolite. It is a biflavonoid, an aromatic ether and a hydroxyflavone. It is functionally related to an apigenin. Hinokiflavone is a natural product found in Garcinia multiflora, Podocarpus elongatus, and other organisms with data available. A biflavonoid that is apigenin substituted by a 4-(5,7-dihydroxy-4-oxo-4H-chromen-2-yl)phenoxy group at position 6. A diflavonyl ether, it is isolated from Rhus succedanea and has been found to possess significant cytotoxic potential. Hinokiflavone is a novel modulator of pre-mRNA splicing activity in vitro and in cellulo. Hinokiflavone blocks splicing of pre-mRNA substrates by inhibiting spliceosome assembly, specifically preventing B complex formation. Hinokiflavone is a SUMO protease inhibitor, inhibiting sentrin-specific protease 1 (SENP1) activity[1]. Hinokiflavone is a novel modulator of pre-mRNA splicing activity in vitro and in cellulo. Hinokiflavone blocks splicing of pre-mRNA substrates by inhibiting spliceosome assembly, specifically preventing B complex formation. Hinokiflavone is a SUMO protease inhibitor, inhibiting sentrin-specific protease 1 (SENP1) activity[1].

   

Pterostilbene

trans-1-(3,5-Dimethoxyphenyl)-2-(4-hydroxyphenyl)ethylene

C16H16O3 (256.1099)


Pterostilbene is a stilbenol that consists of trans-stilbene bearing a hydroxy group at position 4 as well as two methoxy substituents at positions 3 and 5. It has a role as an antioxidant, an antineoplastic agent, a neurotransmitter, a plant metabolite, an apoptosis inducer, a neuroprotective agent, an anti-inflammatory agent, a radical scavenger and a hypoglycemic agent. It is a stilbenol, a member of methoxybenzenes and a diether. It derives from a hydride of a trans-stilbene. Pterostilbene is a natural product found in Vitis rupestris, Pterocarpus marsupium, and other organisms with data available. Pterostilbene is a naturally-derived stilbenoid structurally related to resveratrol, with potential antioxidant, anti-inflammatory, pro-apoptotic, antineoplastic and cytoprotective activities. Upon administration, pterostilbene exerts its anti-oxidant activity by scavenging reactive oxygen species (ROS), thereby preventing oxidative stress and ROS-induced cell damage. It may also activate the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated pathway and increase the expression of various antioxidant enzymes, such as superoxide dismutase (SOD). In addition, pterostilbene is able to inhibit inflammation by reducing the expression of various inflammatory mediators, such as interleukin (IL) 1beta, tumor necrosis factor alpha (TNF-a), inducible nitric oxide synthase (iNOS), cyclooxygenases (COX), and nuclear factor kappa B (NF-kB). It also inhibits or prevents the activation of many signaling pathways involved in carcinogenesis, and increases expression of various tumor suppressor genes while decreasing expression of certain tumor promoting genes. It also directly induces apoptosis in tumor cells. See also: Pterocarpus marsupium wood (part of). A stilbenol that consists of trans-stilbene bearing a hydroxy group at position 4 as well as two methoxy substituents at positions 3 and 5. C26170 - Protective Agent > C275 - Antioxidant Pterostilbene is a stilbenoid isolated from blueberries and Pterocarpus marsupium[1]. Shows anti-oxidant, anti-inflammatory, anti-carcinogenic, anti-diabetic and anti-obesity properties[1][4]. Pterostilbene blocks ROS production[3], also exhibits inhibitory activity against various free radicals such as DPPH, ABTS, hydroxyl, superoxide and hydrogen peroxide[4]. Pterostilbene is a stilbenoid isolated from blueberries and Pterocarpus marsupium[1]. Shows anti-oxidant, anti-inflammatory, anti-carcinogenic, anti-diabetic and anti-obesity properties[1][4]. Pterostilbene blocks ROS production[3], also exhibits inhibitory activity against various free radicals such as DPPH, ABTS, hydroxyl, superoxide and hydrogen peroxide[4].

   

Schidigerasaponin D5

2-[4,5-dihydroxy-6-(hydroxymethyl)-2-(5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icosane-6,2-oxane]-16-yl)oxyoxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4347)


Schidigerasaponin D5 is a natural product found in Yucca gloriosa and Asparagus gobicus with data available. Melongoside E is found in fruits. Melongoside E is a constituent of aubergine (Solanum melongena). Constituent of aubergine (Solanum melongena). Melongoside E is found in fruits and eggplant. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM.

   

Sirolimus

(3S,6R,7E,9R,10R,12R,14S,15E,17E,19E,21S,23S,26R,27R,34aS)-9,27-dihydroxy-3-{(1R)-2-[(1S,3R,4R)-4-hydroxy-3-(methyloxy)cyclohexyl]-1-methylethyl}-6,8,12,14,20,26-hexamethyl-10,21-bis(methyloxy)-9,10,12,13,14,21,22,23,24,25,26,27,32,33,34,34a-hexadecahydro-3H-23,27-epoxypyrido[2,1-c][1,4]oxazacyclohentriacontine-1,5,11,28,29(6H,31H)-pentone

C51H79NO13 (913.5551)


Sirolimus is a macrolide lactam isolated from Streptomyces hygroscopicus consisting of a 29-membered ring containing 4 trans double bonds, three of which are conjugated. It is an antibiotic, immunosupressive and antineoplastic agent. It has a role as an immunosuppressive agent, an antineoplastic agent, an antibacterial drug, a mTOR inhibitor, a bacterial metabolite, an anticoronaviral agent and a geroprotector. It is a cyclic acetal, a cyclic ketone, an ether, a secondary alcohol, an organic heterotricyclic compound, an antibiotic antifungal drug and a macrolide lactam. Sirolimus, also known as rapamycin, is a macrocyclic lactone antibiotic produced by bacteria Streptomyces hygroscopicus, which was isolated from the soil of the Vai Atari region of Rapa Nui (Easter Island). It was first isolated and identified as an antifungal agent with potent anticandida activity; however, after its potent antitumor and immunosuppressive activities were later discovered, it was extensively investigated as an immunosuppressive and antitumour agent. Its primary mechanism of action is the inhibition of the mammalian target of rapamycin (mTOR), which is a serine/threonine-specific protein kinase that regulates cell growth, proliferation, and survival. mTOR is an important therapeutic target for various diseases, as it was shown to regulate longevity and maintain normal glucose homeostasis. Targeting mTOR received more attention especially in cancer, as mTOR signalling pathways are constitutively activated in many types of human cancer. Sirolimus was first approved by the FDA in 1999 for the prophylaxis of organ rejection in patients aged 13 years and older receiving renal transplants. In November 2000, the drug was recognized by the European Agency as an alternative to calcineurin antagonists for maintenance therapy with corticosteroids. In May 2015, the FDA approved sirolimus for the treatment of patients with lymphangioleiomyomatosis. In November 2021, albumin-bound sirolimus for intravenous injection was approved by the FDA for the treatment of adults with locally advanced unresectable or metastatic malignant perivascular epithelioid cell tumour (PEComa). Sirolimus was also investigated in other cancers such as skin cancer, Kaposi’s Sarcoma, cutaneous T-cell lymphomas, and tuberous sclerosis. The topical formulation of sirolimus, marketed as HYFTOR, was approved by the FDA in April 2022: this marks the first topical treatment approved in the US for facial angiofibroma associated with tuberous sclerosis complex. Sirolimus is a mTOR Inhibitor Immunosuppressant and Kinase Inhibitor. The mechanism of action of sirolimus is as a mTOR Inhibitor and Protein Kinase Inhibitor. The physiologic effect of sirolimus is by means of Decreased Immunologic Activity. Sirolimus is macrocyclic antibiotic with potent immunosuppressive activity that is used alone or in combination with calcineurin inhibitors and corticosteroids to prevent cellular rejection after renal transplantation. Sirolimus therapy can be associated with mild serum enzyme elevations and it has been linked to rare instances of clinically apparent cholestatic liver injury. Sirolimus is a natural product found in Streptomyces rapamycinicus, Streptomyces hygroscopicus, and other organisms with data available. Sirolimus is a natural macrocyclic lactone produced by the bacterium Streptomyces hygroscopicus, with immunosuppressant properties. In cells, sirolimus binds to the immunophilin FK Binding Protein-12 (FKBP-12) to generate an immunosuppressive complex that binds to and inhibits the activation of the mammalian Target Of Rapamycin (mTOR), a key regulatory kinase. This results in inhibition of T lymphocyte activation and proliferation that occurs in response to antigenic and cytokine (IL-2, IL-4, and IL-15) stimulation and inhibition of antibody production. (NCI04) A macrolide compound obtained from Streptomyces hygroscopicus that acts by selectively blocking the transcriptional activation ... Sirolimus is a macrolide compound obtained from Streptomyces hygroscopicus that acts by selectively blocking the transcriptional activation of cytokines thereby inhibiting cytokine production. It is bioactive only when bound to immunophilins. Sirolimus is a potent immunosuppressant and possesses both antifungal and antineoplastic properties. [PubChem] A macrolide lactam isolated from Streptomyces hygroscopicus consisting of a 29-membered ring containing 4 trans double bonds, three of which are conjugated. It is an antibiotic, immunosupressive and antineoplastic agent. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01E - Protein kinase inhibitors > L01EG - Mammalian target of rapamycin (mtor) kinase inhibitors L - Antineoplastic and immunomodulating agents > L04 - Immunosuppressants > L04A - Immunosuppressants > L04AA - Selective immunosuppressants C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C61074 - Serine/Threonine Kinase Inhibitor COVID info from Guide to PHARMACOLOGY, clinicaltrial, clinicaltrials, clinical trial, clinical trials D000970 - Antineoplastic Agents > D000903 - Antibiotics, Antineoplastic > D020123 - Sirolimus C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C2201 - mTOR Inhibitor D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C308 - Immunotherapeutic Agent > C574 - Immunosuppressant C254 - Anti-Infective Agent > C258 - Antibiotic S - Sensory organs > S01 - Ophthalmologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Rapamycin (Sirolimus; AY 22989) is a potent and specific mTOR inhibitor with an IC50 of 0.1 nM in HEK293 cells. Rapamycin binds to FKBP12 and specifically acts as an allosteric inhibitor of mTORC1[1]. Rapamycin is an autophagy activator, an immunosuppressant[2]. Rapamycin (Sirolimus; AY 22989) is a potent and specific mTOR inhibitor with an IC50 of 0.1 nM in HEK293 cells. Rapamycin binds to FKBP12 and specifically acts as an allosteric inhibitor of mTORC1[1]. Rapamycin is an autophagy activator, an immunosuppressant[2]. Rapamycin (Sirolimus; AY 22989) is a potent and specific mTOR inhibitor with an IC50 of 0.1 nM in HEK293 cells. Rapamycin binds to FKBP12 and specifically acts as an allosteric inhibitor of mTORC1[1]. Rapamycin is an autophagy activator, an immunosuppressant[2].

   

Palmitic Acid

n-Hexadecanoic acid

C16H32O2 (256.2402)


COVID info from WikiPathways D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Asiatic Acid

(1S,2R,4aS,6aR,6aS,6bR,8aR,9R,10R,11R,12aR,14bS)-10,11-dihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-4a-carboxylic acid

C30H48O5 (488.3502)


Esculentic acid (diplazium) is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Esculentic acid (diplazium) is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Esculentic acid (diplazium) can be found in green vegetables, which makes esculentic acid (diplazium) a potential biomarker for the consumption of this food product. C1907 - Drug, Natural Product > C28269 - Phytochemical > C1905 - Triterpenoid Compound C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product relative retention time with respect to 9-anthracene Carboxylic Acid is 1.377 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.378 Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2]. Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2].

   

2-Hydroxybutyric acid

(±)-2-hydroxybutyric acid

C4H8O3 (104.0473)


A hydroxybutyric acid having a single hydroxyl group located at position 2; urinary secretion of 2-hydroxybutyric acid is increased with alcohol ingestion or vigorous physical exercise and is associated with lactic acidosis and ketoacidosis in humans and diabetes in animals. (S)-2-Hydroxybutanoic acid is the S-enantiomer of?2-Hydroxybutanoic acid. 2-Hydroxybutanoic acid, a coproduct of protein metabolism, is an insulin resistance (IR) biomarker[1].

   

Vanillylmandelic acid

dl-4-hydroxy-3-methoxymandelic acid

C9H10O5 (198.0528)


D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids An aromatic ether that is the 3-O-methyl ether of 3,4-dihydroxymandelic acid. Vanillylmandelic acid is the endproduct of epinephrine and norepinephrine metabolism. Vanillylmandelic acid can be used as an indication of the disorder in neurotransmitter metabolism as well. Vanillylmandelic acid has antioxidant activity towards DPPH radical with an IC50 value of 33 μM[1].

   

Acacetin

4H-1-BENZOPYRAN-4-ONE, 5,7-DIHYDROXY-2-(4-METHOXYPHENYL)-

C16H12O5 (284.0685)


5,7-dihydroxy-4-methoxyflavone is a monomethoxyflavone that is the 4-methyl ether derivative of apigenin. It has a role as an anticonvulsant and a plant metabolite. It is a dihydroxyflavone and a monomethoxyflavone. It is functionally related to an apigenin. It is a conjugate acid of a 5-hydroxy-2-(4-methoxyphenyl)-4-oxo-4H-chromen-7-olate. Acacetin is a natural product found in Verbascum lychnitis, Odontites viscosus, and other organisms with data available. A monomethoxyflavone that is the 4-methyl ether derivative of apigenin. 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one, also known as 4-methoxy-5,7-dihydroxyflavone or acacetin, is a member of the class of compounds known as 4-o-methylated flavonoids. 4-o-methylated flavonoids are flavonoids with methoxy groups attached to the C4 atom of the flavonoid backbone. Thus, 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one is considered to be a flavonoid lipid molecule. 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one can be synthesized from apigenin. 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one is also a parent compound for other transformation products, including but not limited to, acacetin-7-O-beta-D-galactopyranoside, acacetin-8-C-neohesperidoside, and isoginkgetin. 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one can be found in ginkgo nuts, orange mint, and winter savory, which makes 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one a potential biomarker for the consumption of these food products. Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.223 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.225 Acacetin (5,7-Dihydroxy-4'-methoxyflavone) is an orally active flavonoid derived from Dendranthema morifolium. Acacetin docks in the ATP binding pocket of PI3Kγ. Acacetin causes cell cycle arrest and induces apoptosis and autophagy in cancer cells. Acacetin has potent anti-cancer and anti-inflammatory activity and has the potential for pain-related diseases research[1][2]. Acacetin (5,7-Dihydroxy-4'-methoxyflavone) is an orally active flavonoid derived from Dendranthema morifolium. Acacetin docks in the ATP binding pocket of PI3Kγ. Acacetin causes cell cycle arrest and induces apoptosis and autophagy in cancer cells. Acacetin has potent anti-cancer and anti-inflammatory activity and has the potential for pain-related diseases research[1][2].

   

Hematoxylin

rel-7,11balpha*-Dihydrobenz [ b ] indeno [ 1,2-d ] pyran-3,4,6abeta,9,10 (6H) -pentol

C16H14O6 (302.079)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.308 D004396 - Coloring Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.309

   

Vitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]chromen-4-one

C21H20O10 (432.1056)


Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].

   

olmelin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-3-(4-methoxyphenyl)-

C16H12O5 (284.0685)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents Biochanin A is a naturally occurring fatty acid amide hydrolase (FAAH) inhibitor, which inhibits FAAH with IC50s of 1.8, 1.4 and 2.4 μM for mouse, rat, and human FAAH, respectively. Biochanin A is a naturally occurring fatty acid amide hydrolase (FAAH) inhibitor, which inhibits FAAH with IC50s of 1.8, 1.4 and 2.4 μM for mouse, rat, and human FAAH, respectively. Biochanin A is a naturally occurring fatty acid amide hydrolase (FAAH) inhibitor, which inhibits FAAH with IC50s of 1.8, 1.4 and 2.4 μM for mouse, rat, and human FAAH, respectively.

   

ampelopsin

4H-1-Benzopyran-4-one, 2,3-dihydro-3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-, (2R-trans)-

C15H12O8 (320.0532)


Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM.

   

Liquiritigenin

(S) -2,3-Dihydro-7-hydroxy-2- (4-hydroxyphenyl) -4H-1-benzopyran-4-one

C15H12O4 (256.0736)


Origin: Plant; Formula(Parent): C15H12O4; Bottle Name:Liquiritigenin; PRIME Parent Name:4,7-Dihydroxyflavanone; PRIME in-house No.:T0084, Pyrans Bottle Name:Liquiritigenin; Origin: Plant; Formula(Parent): C15H12O4; PRIME Parent Name:4,7-Dihydroxyflavanone; PRIME in-house No.:T0084, Pyrans Liquiritigenin, a flavanone isolated from Glycyrrhiza uralensis, is a highly selective estrogen receptor β (ERβ) agonist with an EC50 of 36.5 nM for activation of the ERE tk-Luc. Liquiritigenin, a flavanone isolated from Glycyrrhiza uralensis, is a highly selective estrogen receptor β (ERβ) agonist with an EC50 of 36.5 nM for activation of the ERE tk-Luc.

   

Rotenone

Pesticide4_Rotenone_C23H22O6_Furo[2,3:7,8][1]benzopyrano[2,3-c][1]benzopyran-6(6aH)-one, 1,2,12,12a-tetrahydro-8,9-dimethoxy-2-(1-methylethenyl)-, (2R,6aS,12aS)-

C23H22O6 (394.1416)


Origin: Plant, Pyrans relative retention time with respect to 9-anthracene Carboxylic Acid is 1.283 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.281 Acquisition and generation of the data is financially supported by the Max-Planck-Society D004791 - Enzyme Inhibitors > D014475 - Uncoupling Agents D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals IPB_RECORD: 2241; CONFIDENCE confident structure Rotenone is a mitochondrial electron transport chain complex I inhibitor. Rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. Rotenone is a mitochondrial electron transport chain complex I inhibitor. Rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. Rotenone is a mitochondrial electron transport chain complex I inhibitor. Rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production.

   

sulfurein

(2Z)-2-[[3,4-bis(oxidanyl)phenyl]methylidene]-6-oxidanyl-1-benzofuran-3-one

C15H10O5 (270.0528)


Sulfuretin is a member of 1-benzofurans. Sulfuretin is a natural product found in Calanticaria bicolor, Dipteryx lacunifera, and other organisms with data available. Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2]. Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2].

   

Psychosine

1-beta-galactosyl-sphing-4-enine

C24H47NO7 (461.3352)


A glycosylsphingoid consisting of sphingosine having a beta-D-galactosyl residue attached at the 1-position.

   

Dtxcid6021115

Rifapentine (Priftin)

C47H64N4O12 (876.4521)


J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AB - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007917 - Leprostatic Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D012294 - Rifamycins C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent

   

sulfasalazine

Sulfasalazine (Azulfidine)

C18H14N4O5S (398.0685)


A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07E - Intestinal antiinflammatory agents > A07EC - Aminosalicylic acid and similar agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D005765 - Gastrointestinal Agents D000890 - Anti-Infective Agents D018501 - Antirheumatic Agents CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4230; ORIGINAL_PRECURSOR_SCAN_NO 4229 CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4221; ORIGINAL_PRECURSOR_SCAN_NO 4220 CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4107; ORIGINAL_PRECURSOR_SCAN_NO 4106 CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4144; ORIGINAL_PRECURSOR_SCAN_NO 4143 CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4237; ORIGINAL_PRECURSOR_SCAN_NO 4236 CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4245; ORIGINAL_PRECURSOR_SCAN_NO 4244 CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8819; ORIGINAL_PRECURSOR_SCAN_NO 8816 CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8829; ORIGINAL_PRECURSOR_SCAN_NO 8824 CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8833; ORIGINAL_PRECURSOR_SCAN_NO 8830 CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8842; ORIGINAL_PRECURSOR_SCAN_NO 8838 CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8867; ORIGINAL_PRECURSOR_SCAN_NO 8863 CONFIDENCE standard compound; INTERNAL_ID 1047; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8846; ORIGINAL_PRECURSOR_SCAN_NO 8844

   

alpha-muricholic acid

3a,6b,7a-Trihydroxy-5b-cholan-24-oic acid

C24H40O5 (408.2876)


D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids [Analytical] Sample of 1 micorL methanol solution was flow injected.; [Mass_spectrometry] Sampling interval 1 Hz; In-suorce decay

   

Thujone

Bicyclo[3.1.0]hexan-3-one,4-methyl-1-(1-methylethyl)-

C10H16O (152.1201)


α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3].

   

Agnuside

((1S,4AR,5S,7AS)-5-HYDROXY-1-(((2S,3R,4S,5S,6R)-3,4,5-TRIHYDROXY-6-(HYDROXYMETHYL)TETRAHYDRO-2H-PYRAN-2-YL)OXY)-1,4A,5,7A-TETRAHYDROCYCLOPENTA[C]PYRAN-7-YL)METHYL 4-HYDROXYBENZOATE

C22H26O11 (466.1475)


Agnuside is a benzoate ester resulting from the formal condensation of the carboxy group of 4-hydroxybenzoic acid with the primary hydroxy group of aucubin. It is an iridoid glycoside found in several Vitex plants including Vitex agnus-castus. It has a role as a plant metabolite, an anti-inflammatory agent, a pro-angiogenic agent and a cyclooxygenase 2 inhibitor. It is a terpene glycoside, an iridoid monoterpenoid, a benzoate ester, a member of phenols, a beta-D-glucoside, a cyclopentapyran and a monosaccharide derivative. It is functionally related to an aucubin. Agnuside is a natural product found in Crescentia cujete, Vitex peduncularis, and other organisms with data available. See also: Chaste tree fruit (part of); Vitex negundo leaf (part of). A benzoate ester resulting from the formal condensation of the carboxy group of 4-hydroxybenzoic acid with the primary hydroxy group of aucubin. It is an iridoid glycoside found in several Vitex plants including Vitex agnus-castus. Agnuside is a compound isolated from Vitex negundo, down-regulates pro-inflammatory mediators PGE2 and LTB4, and reduces the expression of cytokines, with anti-arthritic activity[1]. Agnuside is used in the study of asthma, inflammation, and angiogenic diseases. Agnuside is an orally active compound that can be extracted from Vitex negundo[1][2][3][4]. Agnuside is a compound isolated from Vitex negundo, down-regulates pro-inflammatory mediators PGE2 and LTB4, and reduces the expression of cytokines, with anti-arthritic activity[1].

   

Cynaropicrin

2-PROPENOIC ACID, 2-(HYDROXYMETHYL)-, DODECAHYDRO-8-HYDROXY-3,6,9-TRIS(METHYLENE)-2-OXOAZULENO(4,5-B)FURAN-4-YL ESTER, (3AR-(3A.ALPHA.,4.ALPHA.,6A.ALPHA.,8.BETA.,9A.ALPHA.,9B.BETA.))-

C19H22O6 (346.1416)


Cynaropicrin is a sesquiterpene lactone. Cynaropicrin is a natural product found in Pleiotaxis rugosa, Pseudostifftia kingii, and other organisms with data available. See also: Cynara scolymus leaf (part of). D009676 - Noxae > D003603 - Cytotoxins Cynaropicrin is a sesquiterpene lactone which can inhibit tumor necrosis factor (TNF-α) release with IC50s of 8.24 and 3.18 μM for murine and human macrophage cells, respectively. Cynaropicrin also inhibits the increase of cartilage degradation factor (MMP13) and suppresses NF-κB signaling. Cynaropicrin is a sesquiterpene lactone which can inhibit tumor necrosis factor (TNF-α) release with IC50s of 8.24 and 3.18 μM for murine and human macrophage cells, respectively. Cynaropicrin also inhibits the increase of cartilage degradation factor (MMP13) and suppresses NF-κB signaling.

   

Harmine

Harmine

C13H12N2O (212.095)


Origin: Plant; SubCategory_DNP: Alkaloids derived from tryptophan, beta-Carboline alkaloids, Indole alkaloids D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors C471 - Enzyme Inhibitor > C667 - Monoamine Oxidase Inhibitor Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.622 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.620 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.613 Harmine is a natural dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor with anticancer and anti-inflammatory activities. Harmine has a high affinity of 5-HT2A serotonin receptor, with an Ki of 397 nM[1]. Harmine is a natural dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor with anticancer and anti-inflammatory activities. Harmine has a high affinity of 5-HT2A serotonin receptor, with an Ki of 397 nM[1]. Harmine is a natural dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor with anticancer and anti-inflammatory activities. Harmine has a high affinity of 5-HT2A serotonin receptor, with an Ki of 397 nM[1].

   

Chelidonin

Chelidonine

C20H19NO5 (353.1263)


Annotation level-1 http://casmi-contest.org/examples.shtml; CASMI2012 Example 1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.627 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.621 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2461; CONFIDENCE confident structure IPB_RECORD: 921; CONFIDENCE confident structure Chelidonine, an isoquinoline alkaloid, can be isolated from Chelidonium majus L.. Chelidonine causes G2/M arrest and induces caspase-dependent and caspase-independent apoptosis, and prevents cell cycle progression of stem cells in Dugesia japonica. Chelidonine has cytotoxic activity against melanoma cell lines. with anticancer and antiviral activity[1][2][3]. Chelidonine, an isoquinoline alkaloid, can be isolated from Chelidonium majus L.. Chelidonine causes G2/M arrest and induces caspase-dependent and caspase-independent apoptosis, and prevents cell cycle progression of stem cells in Dugesia japonica. Chelidonine has cytotoxic activity against melanoma cell lines. with anticancer and antiviral activity[1][2][3].

   

Mahanimbine

Mahanimbine

C23H25NO (331.1936)


   

6-Hydroxyflavone

4H-1-Benzopyran-4-one, 6-hydroxy-2-phenyl-

C15H10O3 (238.063)


6-Hydroxyflavone is a hydroxyflavonoid. 6-Hydroxyflavone is a natural product found in Scutellaria baicalensis with data available. 6-Hydroxyflavone is a naturally occurring flavone, with anti-inflammatory activity. 6-Hydroxyflavone exhibits inhibitory effect towards bovine hemoglobin (BHb) glycation. 6-Hydroxyflavone can activate AKT, ERK 1/2, and JNK signaling pathways to effectively promote osteoblastic differentiation. 6-Hydroxyflavone inhibits the LPS-induced NO production[1] [2]. 6-Hydroxyflavone is a naturally occurring flavone, with anti-inflammatory activity. 6-Hydroxyflavone exhibits inhibitory effect towards bovine hemoglobin (BHb) glycation. 6-Hydroxyflavone can activate AKT, ERK 1/2, and JNK signaling pathways to effectively promote osteoblastic differentiation. 6-Hydroxyflavone inhibits the LPS-induced NO production[1] [2].

   

N-Nitrosodiethylamine

InChI=1/C4H10N2O/c1-3-6(4-2)5-7/h3-4H2,1-2H

C4H10N2O (102.0793)


N-nitrosodiethylamine is a clear slightly yellow liquid. Boiling point 175-177 °C. Can reasonably be anticipated to be a carcinogen. Used as a gasoline and lubricant additive and as an antioxidant and stabilizer in plastics. N-nitrosodiethylamine is a nitrosamine that is N-ethylethanamine substituted by a nitroso group at the N-atom. It has a role as a mutagen, a hepatotoxic agent and a carcinogenic agent. N-Nitrosodiethylamine is a synthetic light-sensitive, volatile, clear yellow oil that is soluble in water, lipids, and other organic solvents. It is used as gasoline and lubricant additive, antioxidant, and stabilizer for industry materials. When heated to decomposition, N-nitrosodiethylamine emits toxic fumes of nitrogen oxides. N-Nitrosodiethylamine affects DNA integrity, probably by alkylation, and is used in experimental research to induce liver tumorigenesis. It is considered to be reasonably anticipated to be a human carcinogen. (NCI05) A nitrosamine derivative with alkylating, carcinogenic, and mutagenic properties. D009676 - Noxae > D000477 - Alkylating Agents N-Nitrosodiethylamine (Diethylnitrosamine) is a potent hepatocarcinogenic dialkylnitrosoamine. N-Nitrosodiethylamine is mainly present in tobacco smoke, water, cheddar cheese, cured, fried meals and many alcoholic beverages. N-Nitrosodiethylamine is responsible for the changes in the nuclear enzymes associated with DNA repair/replication. N-Nitrosodiethylamine results in various tumors in all animal species. The main target organs are the nasal cavity, trachea, lung, esophagus and liver.

   

Difenoconazole

Pesticide6_Difenoconazole Isomer 1*_C19H17Cl2N3O3_1H-1,2,4-Triazole, 1-[[2-[2-chloro-4-(4-chlorophenoxy)phenyl]-4-methyl-1,3-dioxolan-2-yl]methyl]-

C19H17Cl2N3O3 (405.0647)


D016573 - Agrochemicals D010575 - Pesticides EAWAG_UCHEM_ID 2934; CONFIDENCE standard compound CONFIDENCE standard compound; EAWAG_UCHEM_ID 2934

   

doxazosin

Doxazosin, (R)-

C23H25N5O5 (451.1856)


C - Cardiovascular system > C02 - Antihypertensives > C02C - Antiadrenergic agents, peripherally acting > C02CA - Alpha-adrenoreceptor antagonists C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; EAWAG_UCHEM_ID 3293

   

nigericin

Antibiotic K178

C40H68O11 (724.4761)


A polyether antibiotic which affects ion transport and ATPase activity in mitochondria. It is produced by Streptomyces hygroscopicus. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D049990 - Membrane Transport Modulators D007476 - Ionophores CONFIDENCE standard compound; EAWAG_UCHEM_ID 3682

   

metformin

metformin

C4H11N5 (129.1014)


A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BA - Biguanides C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98234 - Biguanide Antidiabetic Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D007004 - Hypoglycemic Agents > D001645 - Biguanides C1892 - Chemopreventive Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE Reference Standard (Level 1) Metformin (1,1-Dimethylbiguanide) inhibits the mitochondrial respiratory chain in the liver, leading to activation of AMPK, enhancing insulin sensitivity for type 2 diabetes research. Metformin can cross the blood-brain barrier and triggers autophagy[1].

   

Resveratrol

trans-resveratrol

C14H12O3 (228.0786)


Resveratrol, also known as 3,4,5-trihydroxystilbene or trans-resveratrol, is a member of the class of compounds known as stilbenes. Stilbenes are organic compounds containing a 1,2-diphenylethylene moiety. Stilbenes (C6-C2-C6 ) are derived from the common phenylpropene (C6-C3) skeleton building block. The introduction of one or more hydroxyl groups to a phenyl ring lead to stilbenoids. Thus, resveratrol is considered to be an aromatic polyketide lipid molecule. Resveratrol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Resveratrol is a bitter tasting compound and can be found in a number of food items such as broccoli, yellow wax bean, bilberry, and turnip, which makes resveratrol a potential biomarker for the consumption of these food products. Resveratrol can be found primarily in urine, as well as throughout most human tissues. Resveratrol exists in all eukaryotes, ranging from yeast to humans. Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a stilbenoid, a type of natural phenol, and a phytoalexin produced by several plants in response to injury or, when the plant is under attack by pathogens such as bacteria or fungi. Sources of resveratrol in food include the skin of grapes, blueberries, raspberries, mulberries . Resveratrol suppresses NF-kappaB (NF-kappaB) activation in HSV infected cells. Reports have indicated that HSV activates NF-kappaB during productive infection and this may be an essential aspect of its replication scheme [PMID: 9705914] (DrugBank). relative retention time with respect to 9-anthracene Carboxylic Acid is 0.738 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.740 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.730 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.733 Acquisition and generation of the data is financially supported by the Max-Planck-Society COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors C1892 - Chemopreventive Agent > C54630 - Phase II Enzymes Inducer D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS IPB_RECORD: 2101; CONFIDENCE confident structure IPB_RECORD: 2901; CONFIDENCE confident structure Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7].

   

Biochanin A

4-Methylgenistein (Biochanin A)

C16H12O5 (284.0685)


Annotation level-1 D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens relative retention time with respect to 9-anthracene Carboxylic Acid is 1.140 D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 1.141 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.139 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.137 IPB_RECORD: 2161; CONFIDENCE confident structure Biochanin A is a naturally occurring fatty acid amide hydrolase (FAAH) inhibitor, which inhibits FAAH with IC50s of 1.8, 1.4 and 2.4 μM for mouse, rat, and human FAAH, respectively. Biochanin A is a naturally occurring fatty acid amide hydrolase (FAAH) inhibitor, which inhibits FAAH with IC50s of 1.8, 1.4 and 2.4 μM for mouse, rat, and human FAAH, respectively. Biochanin A is a naturally occurring fatty acid amide hydrolase (FAAH) inhibitor, which inhibits FAAH with IC50s of 1.8, 1.4 and 2.4 μM for mouse, rat, and human FAAH, respectively.

   

Trehalose

D-(+)-Trehalose dihydrate,from Saccharomyces cerevisiae

C12H22O11 (342.1162)


Trehalose, also known as alpha,alpha-trehalose or D-(+)-trehalose, is a member of the class of compounds known as O-glycosyl compounds. O-glycosyl compounds are glycoside in which a sugar group is bonded through one carbon to another group via a O-glycosidic bond. Trehalose is soluble (in water) and a very weakly acidic compound (based on its pKa). Trehalose can be found in a number of food items such as european chestnut, chicory, wild celery, and shallot, which makes trehalose a potential biomarker for the consumption of these food products. Trehalose can be found primarily in feces and urine, as well as throughout most human tissues. Trehalose exists in all living species, ranging from bacteria to humans. In humans, trehalose is involved in the trehalose degradation. Acquisition and generation of the data is financially supported by the Max-Planck-Society D-(+)-Trehalose,which is widespread, can be used as a food ingredient and pharmaceutical excipient. D-(+)-Trehalose,which is widespread, can be used as a food ingredient and pharmaceutical excipient.

   

Diethylstilbestrol

Diethylstilbestrol (Stilbestrol)

C18H20O2 (268.1463)


G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CC - Estrogens, combinations with other drugs G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CB - Synthetic estrogens, plain L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02A - Hormones and related agents > L02AA - Estrogens D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D009676 - Noxae > D002273 - Carcinogens CONFIDENCE standard compound; INTERNAL_ID 4237 CONFIDENCE standard compound; INTERNAL_ID 4161

   

Magnolol

2-(2-hydroxy-5-prop-2-enyl-phenyl)-4-prop-2-enyl-phenol

C18H18O2 (266.1307)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Annotation level-1 Magnolol, a natural lignan isolated from the stem bark of Magnolia officinalis, is a dual agonist of both RXRα and PPARγ, with EC50 values of 10.4 μM and 17.7 μM, respectively. Magnolol, a natural lignan isolated from the stem bark of Magnolia officinalis, is a dual agonist of both RXRα and PPARγ, with EC50 values of 10.4 μM and 17.7 μM, respectively. Magnolol, a natural lignan isolated from the stem bark of Magnolia officinalis, is a dual agonist of both RXRα and PPARγ, with EC50 values of 10.4 μM and 17.7 μM, respectively.

   

Honokiol

InChI=1\C18H18O2\c1-3-5-13-7-9-18(20)16(11-13)14-8-10-17(19)15(12-14)6-4-2\h3-4,7-12,19-20H,1-2,5-6H

C18H18O2 (266.1307)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D005765 - Gastrointestinal Agents D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents D018926 - Anti-Allergic Agents D004791 - Enzyme Inhibitors Annotation level-1 Honokiol is a bioactive, biphenolic phytochemical that possesses potent antioxidative, anti-inflammatory, antiangiogenic, and anticancer activities by targeting a variety of signaling molecules. It inhibits the activation of Akt. Honokiol can readily cross the blood brain barrier[1][2][3][4]. Honokiol is a bioactive, biphenolic phytochemical that possesses potent antioxidative, anti-inflammatory, antiangiogenic, and anticancer activities by targeting a variety of signaling molecules. It inhibits the activation of Akt. Honokiol can readily cross the blood brain barrier[1][2][3][4]. Honokiol is a bioactive, biphenolic phytochemical that possesses potent antioxidative, anti-inflammatory, antiangiogenic, and anticancer activities by targeting a variety of signaling molecules. It inhibits the activation of Akt. Honokiol can readily cross the blood brain barrier[1][2][3][4].

   

Isofraxidin

Isofraxidin

C11H10O5 (222.0528)


Annotation level-1 Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2]. Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2].

   

Atractylenolide III

Atractylenolide III

C15H20O3 (248.1412)


Annotation level-1 Atractylenolide-III is the main component of Atractylodes rhizome and has the activity of inducing apoptosis in lung cancer cells. Atractylenolide-III is the main component of Atractylodes rhizome and has the activity of inducing apoptosis in lung cancer cells.

   

Griseofulvin

Griseofulvin

C17H17ClO6 (352.0714)


An oxaspiro compound produced by Penicillium griseofulvum. It is used by mouth as an antifungal drug for infections involving the scalp, hair, nails and skin that do not respond to topical treatment. D - Dermatologicals > D01 - Antifungals for dermatological use > D01B - Antifungals for systemic use > D01BA - Antifungals for systemic use D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AA - Antibiotics D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent CONFIDENCE Reference Standard (Level 1) relative retention time with respect to 9-anthracene Carboxylic Acid is 1.075 Griseofulvin(Gris-PEG; Grifulvin) is a spirocyclic fungal natural product used in treatment of fungal dermatophytes; Antifungal drug.

   

Mangostin

9H-Xanthen-9-one, 1,3,6-trihydroxy-7-methoxy-2,8-bis(3-methyl-2-butenyl)- (9CI)

C24H26O6 (410.1729)


relative retention time with respect to 9-anthracene Carboxylic Acid is 1.514 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.515 alpha-Mangostin (α-Mangostin) is a dietary xanthone with broad biological activities, such as antioxidant, anti-allergic, antiviral, antibacterial, anti-inflammatory and anticancer effects. It is an inhibitor of mutant IDH1 (IDH1-R132H) with a Ki of 2.85 μM. alpha-Mangostin (α-Mangostin) is a dietary xanthone with broad biological activities, such as antioxidant, anti-allergic, antiviral, antibacterial, anti-inflammatory and anticancer effects. It is an inhibitor of mutant IDH1 (IDH1-R132H) with a Ki of 2.85 μM.

   

Pergolide

Pergolide

C19H26N2S (314.1817)


N - Nervous system > N04 - Anti-parkinson drugs > N04B - Dopaminergic agents > N04BC - Dopamine agonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist relative retention time with respect to 9-anthracene Carboxylic Acid is 0.736 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.732 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.731

   

Genipin

NCGC00186010-03_C11H14O5_Cyclopenta[c]pyran-4-carboxylic acid, 1,4a,5,7a-tetrahydro-1-hydroxy-7-(hydroxymethyl)-, methyl ester, (1R,4aS,7aS)-

C11H14O5 (226.0841)


Genipin is an iridoid monoterpenoid. It has a role as an uncoupling protein inhibitor, a hepatotoxic agent, an apoptosis inhibitor, an antioxidant, an anti-inflammatory agent and a cross-linking reagent. Genipin is a natural product found in Gardenia jasminoides, Rothmannia globosa, and other organisms with data available. D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics relative retention time with respect to 9-anthracene Carboxylic Acid is 0.593 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.589 Genipin ((+)-Genipin) is a natural crosslinking reagent derived from Gardenia jasminoides Ellis fruits. Genipin inhibits UCP2 (uncoupling protein 2) in cells. Genipin has a variety of bioactivities, including modulation on proteins, antitumor, anti-inflammation, immunosuppression, antithrombosis, and protection of hippocampal neurons. Genipin also can be used for type 2 diabetes research[1][2]. Genipin ((+)-Genipin) is a natural crosslinking reagent derived from Gardenia jasminoides Ellis fruits. Genipin inhibits UCP2 (uncoupling protein 2) in cells. Genipin has a variety of bioactivities, including modulation on proteins, antitumor, anti-inflammation, immunosuppression, antithrombosis, and protection of hippocampal neurons. Genipin also can be used for type 2 diabetes research[1][2]. Genipin ((+)-Genipin) is a natural crosslinking reagent derived from Gardenia jasminoides Ellis fruits. Genipin inhibits UCP2 (uncoupling protein 2) in cells. Genipin has a variety of bioactivities, including modulation on proteins, antitumor, anti-inflammation, immunosuppression, antithrombosis, and protection of hippocampal neurons. Genipin also can be used for type 2 diabetes research[1][2].

   

Tetrandrine

(1S,14S)-9,20,21,25-tetramethoxy-15,30-dimethyl-7,23-dioxa-15,30-diazaheptacyc lo[22.6.2.2<3,6>.1<8,12>.1<14,18>.0<22,36>.0<27,31>]hexatriaconta-3(33),4,6(34 ),8(35),9,11,18(36),19,21,24,26,31-dodecaene

C38H42N2O6 (622.3043)


(+)-Tetrandrine is a member of isoquinolines and a bisbenzylisoquinoline alkaloid. Tetrandrine is a natural product found in Pachygone dasycarpa, Cyclea barbata, and other organisms with data available. Tetrandrine is a natural, bis-benzylisoquinoline alkaloid isolated from the root of the plant Radix stephania tetrandrae. Tetrandrine non-selectively inhibits calcium channel activity and induces G1 blockade of the G1 phase of the cell cycle and apoptosis in various cell types, resulting in immunosuppressive, anti-proliferative and free radical scavenging effects. This agent also increases glucose utilization by enhancing hepatocyte glycogen synthesis, resulting in the lowering of plasma glucose. (NCI04) C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C308 - Immunotherapeutic Agent > C574 - Immunosuppressant D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D000970 - Antineoplastic Agents C93038 - Cation Channel Blocker Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.689 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.683 Tetrandrine (NSC-77037; d-Tetrandrine) is a bis-benzyl-isoquinoline alkaloid, which inhibits voltage-gated Ca2+ current (ICa) and Ca2+-activated K+ current. Tetrandrine (NSC-77037; d-Tetrandrine) is a bis-benzyl-isoquinoline alkaloid, which inhibits voltage-gated Ca2+ current (ICa) and Ca2+-activated K+ current.

   

Emodin

9,10-Anthracenedione, 1,3,8-trihydroxy-6-methyl- (9CI)

C15H10O5 (270.0528)


C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors D005765 - Gastrointestinal Agents > D002400 - Cathartics CONFIDENCE isolated standard relative retention time with respect to 9-anthracene Carboxylic Acid is 1.288 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.291 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.286 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.293 Emodin (Frangula emodin), an anthraquinone derivative, is an anti-SARS-CoV compound. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 (ACE2) interaction[1]. Emodin inhibits casein kinase-2 (CK2). Anti-inflammatory and anticancer effects[2]. Emodin is a potent selective 11β-HSD1 inhibitor with the IC50 of 186 and 86 nM for human and mouse 11β-HSD1, respectively. Emodin ameliorates metabolic disorder in diet-induced obese mice[3]. Emodin (Frangula emodin), an anthraquinone derivative, is an anti-SARS-CoV compound. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 (ACE2) interaction[1]. Emodin inhibits casein kinase-2 (CK2). Anti-inflammatory and anticancer effects[2]. Emodin is a potent selective 11β-HSD1 inhibitor with the IC50 of 186 and 86 nM for human and mouse 11β-HSD1, respectively. Emodin ameliorates metabolic disorder in diet-induced obese mice[3].

   

riluzole

Riluzole (Rilutek)

C8H5F3N2OS (234.0075)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents N - Nervous system Riluzole is an anticonvulsant agent and belongs to the family of use-dependent Na+ channel blocker which can also inhibit GABA uptake with an IC50 of 43 μM.

   

zafirlukast

Zafirlukast (Accolate)

C31H33N3O6S (575.209)


R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03D - Other systemic drugs for obstructive airway diseases > R03DC - Leukotriene receptor antagonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D020024 - Leukotriene Antagonists D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent

   

tioconazole

tioconazole

C16H13Cl3N2OS (385.9814)


G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AF - Imidazole derivatives D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AC - Imidazole and triazole derivatives D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D065088 - Steroid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D065088 - Steroid Synthesis Inhibitors > D058888 - 14-alpha Demethylase Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent

   

2-Aminoethanesulfinic acid

2-Aminoethanesulfinic acid

C2H7NO2S (109.0197)


An aminosulfinic acid comprising ethylamine having the sulfo group at the 2-position. Hypotaurine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=300-84-5 (retrieved 2024-07-15) (CAS RN: 300-84-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Hypotaurine (2-aminoethanesulfinic acid), an intermediate in taurine biosynthesis from cysteine in astrocytes, is an endogenous inhibitory amino acid of the glycine receptor. Antioxidant[1].

   

L-Cysteinesulfinic acid

L-Cysteinesulfinic acid

C3H7NO4S (153.0096)


L-Cysteinesulfinic acid is a potent agonist at several rat metabotropic glutamate receptors (mGluRs) with pEC50s of 3.92, 4.6, 3.9, 2.7, 4.0, and 3.94 for mGluR1, mGluR5, mGluR2, mGluR4, mGluR6, and mGluR8, respectively[1]. L-Cysteinesulfinic acid is a potent agonist at several rat metabotropic glutamate receptors (mGluRs) with pEC50s of 3.92, 4.6, 3.9, 2.7, 4.0, and 3.94 for mGluR1, mGluR5, mGluR2, mGluR4, mGluR6, and mGluR8, respectively[1].

   

N-Acetylserotonin

N-Acetyl-5-hydroxytryptamine

C12H14N2O2 (218.1055)


An N-acylserotonin resulting from the formal condensation of the primary amino group of serotonin with the carboxy group of acetic acid. N-Acetyl-5-hydroxytryptamine is a Melatonin precursor, and that it can potently activate TrkB receptor.

   

3-Indoleacetonitrile

3-Indolylacetonitrile

C10H8N2 (156.0687)


3-Indoleacetonitrile is an endogenous metabolite. 3-Indoleacetonitrile is an endogenous metabolite.

   

N,N-dimethylglycine

N,N-Dimethylglycine hydrochloride

C4H9NO2 (103.0633)


An N-methylglycine that is glycine carrying two N-methyl substituents. N-Methylsarcosine is an amino acid building block for protein, found in a small amount in the body.

   

Saccharopine

L-Saccharopine

C11H20N2O6 (276.1321)


The N(6)-(1,3-dicarboxypropan-1-yl) derivative of L-lysine.

   

TRIETHANOLAMINE

Triethanolamine Condensate Polymer

C6H15NO3 (149.1052)


D - Dermatologicals > D03 - Preparations for treatment of wounds and ulcers > D03A - Cicatrizants

   

Hinokitiol

beta-thujaplicin

C10H12O2 (164.0837)


Origin: Plant; Formula(Parent): C10H12O2; Bottle Name:Hinokitiol; PRIME Parent Name:Hinokitiol; PRIME in-house No.:S0323; SubCategory_DNP: Monoterpenoids, Tropolone monoterpenoids D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents Hinokitiol is a component of essential oils isolated from Chymacyparis obtusa, reduces Nrf2 expression, and decreases DNMT1 and UHRF1 mRNA and protein expression, with anti-infective, anti-oxidative, and anti-tumor activities. Hinokitiol is a component of essential oils isolated from Chymacyparis obtusa, reduces Nrf2 expression, and decreases DNMT1 and UHRF1 mRNA and protein expression, with anti-infective, anti-oxidative, and anti-tumor activities.

   

Zearalenone

Zearalenone

C18H22O5 (318.1467)


A macrolide comprising a fourteen-membered lactone fused to 1,3-dihydroxybenzene; a potent estrogenic metabolite produced by some Giberella species. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins CONFIDENCE standard compound; INTERNAL_ID 5970 Origin: Microbe; Formula(Parent): C18H22O5; Bottle Name:zearalenone; PRIME Parent Name:Zearalenone; PRIME in-house No.:V0033 CONFIDENCE Reference Standard (Level 1) Zearalenone is a mycotoxin produced mainly by fungi belonging to the genus Fusarium in foods and feeds. Possess oestrogenic activity in pigs, cattle and sheep, with low acute toxicity. Causes precocious development of mammae and other estrogenic effects in young gilts[1][2]. Zearalenone is a mycotoxin produced mainly by fungi belonging to the genus Fusarium in foods and feeds. Possess oestrogenic activity in pigs, cattle and sheep, with low acute toxicity. Causes precocious development of mammae and other estrogenic effects in young gilts[1][2].

   

Sebacic acid

Sebacic acid

C10H18O4 (202.1205)


An alpha,omega-dicarboxylic acid that is the 1,8-dicarboxy derivative of octane. Decanedioic acid, a normal urinary acid, is found to be associated with carnitine-acylcarnitine translocase deficiency and medium chain acyl-CoA dehydrogenase deficiency. Decanedioic acid, a normal urinary acid, is found to be associated with carnitine-acylcarnitine translocase deficiency and medium chain acyl-CoA dehydrogenase deficiency.

   

Deprenyl

DEP_188.1433_10.1

C13H17N (187.1361)


D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors D020011 - Protective Agents CONFIDENCE Parent Substance with Reference Standard (Level 1); INTERNAL_ID 500

   

Calycosin

4H-1-Benzopyran-4-one, 7-hydroxy-3-(3-hydroxy-4-methoxyphenyl)-

C16H12O5 (284.0685)


Calycosin is a member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone which is substituted by an additional hydroxy group at the 3 position and a methoxy group at the 4 position. It has a role as a metabolite and an antioxidant. It is a member of 7-hydroxyisoflavones and a member of 4-methoxyisoflavones. It is functionally related to an isoflavone. It is a conjugate acid of a calycosin(1-). Calycosin is a natural product found in Thermopsis lanceolata, Hedysarum polybotrys, and other organisms with data available. A member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone which is substituted by an additional hydroxy group at the 3 position and a methoxy group at the 4 position. Calycosin is a natural compound with antioxidant and anti-inflammatory activity. Calycosin is a natural compound with antioxidant and anti-inflammatory activity.

   

Angelicin

Isopsoralen

C11H6O3 (186.0317)


D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D007364 - Intercalating Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D000927 - Anticonvulsants Origin: Plant, Coumarins Angelicin is a natural tricyclic aromatic hydrocarbon compound that is structurally related to psoralen and has anti-cancer, anti-inflammatory, anti-viral and other activities. Cytotoxic, IC50: 49.56 μM; inhibits MHV-68, IC50: 5.39 μg/ml (28.95 μM). Angelicin is a natural tricyclic aromatic hydrocarbon compound that is structurally related to psoralen and has anti-cancer, anti-inflammatory, anti-viral and other activities. Cytotoxic, IC50: 49.56 μM; inhibits MHV-68, IC50: 5.39 μg/ml (28.95 μM).

   

acetoacetic acid

3-Oxobutanoic acid, 9CI

C4H6O3 (102.0317)


A 3-oxo monocarboxylic acid that is butyric acid bearing a 3-oxo substituent. It is a weak organic acid and can be produced in the human liver under certain conditions of poor metabolism leading to excessive fatty acid breakdown (diabetes mellitus leading to diabetic ketoacidosis), it is then partially converted to acetone by decarboxylation and excreted either in urine or through respiration. Persistent mild hyperketonemia is a common finding in newborns. These compounds serve as an indispensable source of energy for extrahepatic tissues, especially the brain and lung of developing rats. Another important function of ketone bodies is to provide acetoacetyl-CoA and acetyl-CoA for synthesis of cholesterol, fatty acids, and complex lipids. During the early postnatal period, acetoacetate (AcAc) and beta-hydroxybutyrate are preferred over glucose as substrates for synthesis of phospholipids and sphingolipids in accord with requirements for brain growth and myelination. Thus, during the first 2 wk of postnatal development, when the accumulation of cholesterol and phospholipids accelerates, the proportion of ketone bodies incorporated into these lipids increases. On the other hand, an increased proportion of ketone bodies are utilized for cerebroside synthesis during the period of active myelination. In the lung, AcAc serves better than glucose as a precursor for the synthesis of lung phospholipids. The synthesized lipids, particularly dipalmityl phosphatidylcholine, are incorporated into surfactant, and thus have a potential role in supplying adequate surfactant lipids to maintain lung function during the early days of life. (PMID 3884391) The acid is also present in the metabolism of those undergoing starvation or prolonged physical exertion as part of gluconeogenesis. When ketone bodies are measured by way of urine concentration, acetoacetic acid, along with beta-hydroxybutyric acid or acetone, is what is detected. [HMDB]

   

Dihydrothymine

5,6-Dihydrothymine

C5H8N2O2 (128.0586)


A pyrimidone obtained by formal addition of hydrogen across the 5,6-position of thymine. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 5,6-Dihydro-5-methyluracil (Dihydrothymine), an intermediate breakdown product of thymine, comes from animal or plants. 5,6-Dihydro-5-methyluracil (Dihydrothymine) can be toxic when present at abnormally high levels[1].

   

Ribothymidine

1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methyl-1,2,3,4-tetrahydropyrimidine-2,4-dione

C10H14N2O6 (258.0852)


A methyluridine having a single methyl substituent at the 5-position on the uracil ring. 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids. 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids.

   

ALENDRONIC ACID

ALENDRONIC ACID

C4H13NO7P2 (249.0167)


M - Musculo-skeletal system > M05 - Drugs for treatment of bone diseases > M05B - Drugs affecting bone structure and mineralization > M05BA - Bisphosphonates C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D050071 - Bone Density Conservation Agents > D004164 - Diphosphonates

   

Methyl isobutyl ketone

Methyl isobutyl ketone

C6H12O (100.0888)


   

2-Aminoethanethiol

2-Aminoethanethiol

C2H7NS (77.0299)


A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AA - Amino acids and derivatives An amine that consists of an ethane skeleton substituted with a thiol group at C-1 and an amino group at C-2. C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent S - Sensory organs > S01 - Ophthalmologicals D065104 - Cystine Depleting Agents

   

5-Aminoimidazole-4-carboxamide

5-Aminoimidazole-4-carboxamide

C4H6N4O (126.0542)


An aminoimidazole in which the amino group is at C-5 with a carboxamido group at C-4. 5-Amino-3H-imidazole-4-Carboxamide (AICA) is an important precursor for the synthesis of purines in general and of the nucleobases adenine and guanine in particular.

   

5-Methyluridine

5-Methyluridine

C10H14N2O6 (258.0852)


CONFIDENCE standard compound; INTERNAL_ID 320 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids. 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids.

   

amiodarone

amiodarone

C25H29I2NO3 (645.0237)


C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BD - Antiarrhythmics, class iii D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065609 - Cytochrome P-450 CYP1A2 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065688 - Cytochrome P-450 CYP2C9 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065690 - Cytochrome P-450 CYP2D6 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065692 - Cytochrome P-450 CYP3A Inhibitors C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

dimethyl sulfoxide

dimethyl sulfoxide

C2H6OS (78.0139)


M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals A 2-carbon sulfoxide in which the sulfur atom has two methyl substituents. D020011 - Protective Agents > D003451 - Cryoprotective Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants D012997 - Solvents Same as: D01043

   

pantoprazole

pantoprazole

C16H15F2N3O4S (383.0751)


A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02B - Drugs for peptic ulcer and gastro-oesophageal reflux disease (gord) > A02BC - Proton pump inhibitors C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent > C29723 - Proton Pump Inhibitor D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents D004791 - Enzyme Inhibitors > D054328 - Proton Pump Inhibitors

   

terazosin

terazosin

C19H25N5O4 (387.1906)


G - Genito urinary system and sex hormones > G04 - Urologicals > G04C - Drugs used in benign prostatic hypertrophy > G04CA - Alpha-adrenoreceptor antagonists C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D000089162 - Genitourinary Agents > D064804 - Urological Agents

   

tegafur

tegafur

C8H9FN2O3 (200.0597)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite C471 - Enzyme Inhibitor > C2021 - Thymidylate Synthase Inhibitor D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents Same as: D01244 Tegafur (FT 207; NSC 148958) is a chemotherapeutic 5-FU proagent used in the treatment of cancers; is a component of tegafur-uracil.

   

Carnosic acid

(4aR,10aS)-5,6-dihydroxy-1,1-dimethyl-7-propan-2-yl-2,3,4,9,10,10a-hexahydrophenanthrene-4a-carboxylic acid

C20H28O4 (332.1987)


D020011 - Protective Agents > D000975 - Antioxidants D000890 - Anti-Infective Agents

   

Pristimerin

(2R,4aS,6aS,6aR,14aS,14bR)-10-hydroxy-11-keto-2,4a,6a,6a,9,14a-hexamethyl-1,3,4,5,6,13,14,14b-octahydropicene-2-carboxylic acid methyl ester

C30H40O4 (464.2926)


Pristimerin is a potent and reversible monoacylglycerol lipase (MGL) inhibitor with an IC50 of 93 nM. Pristimerin is a potent and reversible monoacylglycerol lipase (MGL) inhibitor with an IC50 of 93 nM. Pristimerin is a potent and reversible monoacylglycerol lipase (MGL) inhibitor with an IC50 of 93 nM.

   

patulin

patulin

C7H6O4 (154.0266)


D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins CONFIDENCE standard compound; INTERNAL_ID 5971 D009676 - Noxae > D009153 - Mutagens CONFIDENCE Reference Standard (Level 1) Patulin (Terinin) is a mycotoxin produced by fungi including the Aspergillus, Penicillium, and Byssochlamys species, is suspected to be clastogenic, mutagenic, teratogenic and cytotoxic. Patulin induces autophagy-dependent apoptosis through lysosomal-mitochondrial axis, and causes DNA damage[1][2][3][4].

   

fumonisin B2

1,1-[(1S,2R)-1-[(2S,9R,11S,12S)-12-amino-9,11-dihydroxy-2-methyltridecyl]-2-[(1R)-1-methylpentyl]-1,2-ethanediyl]ester-1,2,3-propanetricarboxylic acid

C34H59NO14 (705.3935)


A fumonisin that is (2S,3S,12S,14S,15R,16R)-2-amino-12,16-dimethylicosane-3,14,15-triol in which the hydroxy groups at positions 14 and 15 have each been esterified by condensation with the 1-carboxy group of 3-carboxyglutaric acid (giving a 3-carboxyglutarate ester group with R configuration in each case). D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D037341 - Fumonisins D009676 - Noxae > D002273 - Carcinogens CONFIDENCE standard compound; INTERNAL_ID 5969 CONFIDENCE Reference Standard (Level 1)

   

chloroquine

chloroquine

C18H26ClN3 (319.1815)


P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials > P01BA - Aminoquinolines COVID info from Guide to PHARMACOLOGY, DrugBank, clinicaltrial, clinicaltrials, clinical trial, clinical trials D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D018501 - Antirheumatic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Crocetin

(2E,4E,6E,8E,10E,12E,14E)-2,6,11,15-tetramethylhexadeca-2,4,6,8,10,12,14-heptaenedioic acid8,8-diapocarotene-8,8-dioic acid

C20H24O4 (328.1675)


Crocetin is a 20-carbon dicarboxylic acid which is a diterpenoid and natural carotenoid. Found in the crocus flower, it has been administered as an anti-fatigue dietary supplement. It has a role as a nutraceutical, a metabolite and an antioxidant. It is a carotenoic acid, a diterpenoid and a polyunsaturated dicarboxylic acid. It is a conjugate acid of a crocetin(2-). Vitamin A-analog that increases diffusivity of oxygen in aqueous solutions, including plasma. Crocetin is a natural product found in Verbascum lychnitis, Gardenia jasminoides, and other organisms with data available. A 20-carbon dicarboxylic acid which is a diterpenoid and natural carotenoid. Found in the crocus flower, it has been administered as an anti-fatigue dietary supplement. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Crocetin is a natural carotenoid dicarboxylic acid that is found in the crocus flower and Gardenia jasminoides (fruits).

   

4-hydroxytamoxifen

(E/Z)-4-hydroxy Tamoxifen

C26H29NO2 (387.2198)


CONFIDENCE standard compound; INTERNAL_ID 2716

   

kukoline

Sinomenine

C19H23NO4 (329.1627)


Origin: Plant; Formula(Parent): C19H23NO4; Bottle Name:Sinomenine; PRIME Parent Name:Sinomenine; PRIME in-house No.:V0298; SubCategory_DNP: Isoquinoline alkaloids, Morphine alkaloids D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor C308 - Immunotherapeutic Agent > C2139 - Immunostimulant D018501 - Antirheumatic Agents Sinomenine, an alkaloid extracted from?Sinomenium acutum, is a blocker of the NF-κB activation[1]. Sinomenine also is an activator of μ-opioid receptor[2]. Sinomenine, an alkaloid extracted from?Sinomenium acutum, is a blocker of the NF-κB activation[1]. Sinomenine also is an activator of μ-opioid receptor[2]. Sinomenine, an alkaloid extracted from?Sinomenium acutum, is a blocker of the NF-κB activation[1]. Sinomenine also is an activator of μ-opioid receptor[2].

   

Lactucin

Lactucin

C15H16O5 (276.0998)


An azulenofuran that is 3-methylidene-3,3a,4,5,9a,9b-hexahydroazuleno[4,5-b]furan-2,7-dione carrying additional hydroxy, methyl and hydroxymethyl substituents at positions 4, 6 and 9 respectively (the 3aR,4S,9aS,9bR-diastereomer). Found in chicory.

   

Macrofusine

fumonisin b1

C34H59NO15 (721.3885)


D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D037341 - Fumonisins D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D013723 - Teratogens D004791 - Enzyme Inhibitors CONFIDENCE standard compound; INTERNAL_ID 5968

   

N-Acetyl-D-tryptophan

(R)-2-Acetamido-3-(1H-indol-3-yl)propanoic acid

C13H14N2O3 (246.1004)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors

   

Deoxyuridine triphosphate

Deoxyuridine triphosphate

C9H15N2O14P3 (467.9736)


   

Tebufenpyrad

Pesticide4_Tebufenpyrad_C18H24ClN3O_1H-Pyrazole-5-carboxamide, 4-chloro-N-[[4-(1,1-dimethylethyl)phenyl]methyl]-3-ethyl-1-methyl-

C18H24ClN3O (333.1608)


   

N-Acetyl-DL-tryptophan

N-Acetyl-DL-tryptophan

C13H14N2O3 (246.1004)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors Ac-DL-Trp-OH is an endogenous metabolite. Ac-DL-Trp-OH is an endogenous metabolite.

   

Acadesine

5-amino-1-[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]imidazole-4-carboxamide

C9H14N4O5 (258.0964)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite C - Cardiovascular system > C01 - Cardiac therapy

   

Schidigerasaponin D5

2-{[4,5-dihydroxy-6-(hydroxymethyl)-2-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0^{2,9}.0^{4,8}.0^{13,18}]icosane]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4347)


Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM.

   

Zerumbone

(2E,6E,10E)-2,6,9,9-tetramethylcycloundeca-2,6,10-trien-1-one

C15H22O (218.1671)


Zerumbone is a monocyclic sesquiterpene compound isolated from the rhizomes of Zingiber zerumbet Smith. Zerumbone potently inhibits the activation of Epstein-Barr virus with an IC50 of 0.14 mM. Zerumbone has anti-cancer, antioxidant, anti-inflammatory and anti-proliferative activity[1][2]. Zerumbone is a monocyclic sesquiterpene compound isolated from the rhizomes of Zingiber zerumbet Smith. Zerumbone potently inhibits the activation of Epstein-Barr virus with an IC50 of 0.14 mM. Zerumbone has anti-cancer, antioxidant, anti-inflammatory and anti-proliferative activity[1][2].

   

Ginsenoside Rh2

(2R,3R,4S,5S,6R)-2-[[(3S,5R,8R,9R,10R,12R,13R,14R,17S)-12-hydroxy-17-[(1S)-1-hydroxy-1,5-dimethylhex-4-enyl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]-6-(hydroxymethyl)tetrahydropyran-3,4,5-tri

C36H62O8 (622.4444)


20(R)-Ginsenoside Rh2, a matrix metalloproteinase (MMP) inhibitor, acts as a cell antiproliferator. It has anticancer effects via blocking cell proliferation and causing G1 phase arrest. 20(R)-Ginsenoside Rh2 induces apoptosis, and has anti-inflammatory and antioxidative activity[1][2][3]. 20(R)-Ginsenoside Rh2 inhibits the replication and proliferation of mouse and human gammaherpesvirus 68 (MHV-68) with an IC50 of 2.77 μM for murine MHV-68[4]. 20(R)-Ginsenoside Rh2, a matrix metalloproteinase (MMP) inhibitor, acts as a cell antiproliferator. It has anticancer effects via blocking cell proliferation and causing G1 phase arrest. 20(R)-Ginsenoside Rh2 induces apoptosis, and has anti-inflammatory and antioxidative activity[1][2][3]. 20(R)-Ginsenoside Rh2 inhibits the replication and proliferation of mouse and human gammaherpesvirus 68 (MHV-68) with an IC50 of 2.77 μM for murine MHV-68[4]. Ginsenoside Rh2 induces the activation of caspase-8 and caspase-9. Ginsenoside Rh2 induces cancer cell apoptosis in a multi-path manner. Ginsenoside Rh2 induces the activation of caspase-8 and caspase-9. Ginsenoside Rh2 induces cancer cell apoptosis in a multi-path manner.

   

FA 4:1;O

(S)-Methylmalonic acid semialdehyde

C4H6O3 (102.0317)


   

ST 24:1;O5

(23S)-3alpha,12alpha,23-Trihydroxy-5beta-cholan-24-oic Acid

C24H40O5 (408.2876)


D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids β-Muricholic acid is a potent and orally active biliary cholesterol-desaturating agent. β-Muricholic acid prevents cholesterol gallstones. β-Muricholic acid inhibits lipid accumulation. β-Muricholic acid has the potential for the research of nonalcoholic fatty liver disease (NAFLD)[1][2].

   

5-Fluorouridine

1-[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-fluoro-pyrimidine-2,4-dione

C9H11FN2O6 (262.0601)


5-Fluorouridine, a metabolite of 5-fluorouracil (HY-90006), is a potent ribozyme self-cleavage inhibitor. 5-Fluorouridine incorporates into both total and poly A RNA and has antiproliferative activity. 5-Fluorouridine induces apoptosis[1][2][3].

   

Ammonium Chloride

Ammonium chloride ((NH4)Cl)

ClH4N (53.0032)


Dough conditioner, dough strengthener, flavour enhancer, leavening agent, processing aid and yeast food B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05X - I.v. solution additives > B05XA - Electrolyte solutions G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BA - Acidifiers C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent

   

Obeticholic acid

Obeticholic acid

C26H44O4 (420.3239)


A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05A - Bile therapy > A05AA - Bile acids and derivatives C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids

   

Floxuridine

Floxuridine

C9H11FN2O5 (246.0652)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents Floxuridine (5-Fluorouracil 2'-deoxyriboside) is a?pyrimidine?analog?and known as an?oncology antimetabolite. Floxuridine inhibits Poly(ADP-Ribose) polymerase and induces DNA damage by activating the ATM and ATR checkpoint signaling pathways in vitro. Floxuridine is a extreamly potent inhibitor for S. aureus infection and induces cell apoptosis[1][2]. Floxuridine has antiviral effects against HSV and CMV[3].

   

Sodium sulfate

Sodium sulfate

Na2O4S (141.9313)


A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AD - Osmotically acting laxatives A - Alimentary tract and metabolism > A12 - Mineral supplements > A12C - Other mineral supplements > A12CA - Sodium C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent D005765 - Gastrointestinal Agents > D002400 - Cathartics

   

Tetrachlorobisphenol A

Phenol,4,4-(1-methylethylidene)bis[2,6-dichloro-

C15H12Cl4O2 (363.9591)


   

Temsirolimus

42-[3-Hydroxy-2-(hydroxymethyl)-2-methylpropanoate]rapamycin

C56H87NO16 (1029.6025)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01E - Protein kinase inhibitors > L01EG - Mammalian target of rapamycin (mtor) kinase inhibitors C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C61074 - Serine/Threonine Kinase Inhibitor C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C2201 - mTOR Inhibitor D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors D000970 - Antineoplastic Agents > D000091203 - MTOR Inhibitors Same as: D06068 Temsirolimus is an inhibitor of mTOR with an IC50 of 1.76 μM. Temsirolimus activates autophagy and prevents deterioration of cardiac function in animal model[8]. Temsirolimus is an inhibitor of mTOR with an IC50 of 1.76 μM. Temsirolimus activates autophagy and prevents deterioration of cardiac function in animal model[8].

   

GW0742

{4-[({2-[3-Fluoro-4-(Trifluoromethyl)phenyl]-4-Methyl-1,3-Thiazol-5-Yl}methyl)sulfanyl]-2-Methylphenoxy}acetic Acid

C21H17F4NO3S2 (471.0586)


GW0742 is a potent PPARβ and PPARδ agonist, with an IC50 of 1 nM for human PPARδ in binding assay, and EC50s of 1 nM, 1.1 μM and 2 μM for human PPARδ, PPARα, and PPARγ, respectively.

   

Atractylenolide-III

Naphtho(2,3-b)furan-2(4H)-one, 4a,5,6,7,8,8a,9,9a-octahydro-9a-hydroxy-3,8a-dimethyl-5-methylene-, (4aS,8aR,9aS)-

C15H20O3 (248.1412)


Atractylenolide-III is the main component of Atractylodes rhizome and has the activity of inducing apoptosis in lung cancer cells. Atractylenolide-III is the main component of Atractylodes rhizome and has the activity of inducing apoptosis in lung cancer cells.

   

Hydrofol

4-02-00-01157 (Beilstein Handbook Reference)

C16H32O2 (256.2402)


COVID info from WikiPathways D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Atractylodin

Furan, 2-(1,7-nonadiene-3,5-diynyl)-, (E,E)-

C13H10O (182.0732)


Atractylodin (Atractydin) is an active component of the essential oil contained in the rhizomes of Atractylodes lancea and A. chinensis. Atractylodin is natural insecticide and is active against Tribolium castaneum[1][2]. Atractylodin is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Atractylodin (Atractydin) is an active component of the essential oil contained in the rhizomes of Atractylodes lancea and A. chinensis. Atractylodin is natural insecticide and is active against Tribolium castaneum[1][2]. Atractylodin is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.

   

Urson

(1S,2R,4aS,6aR,6aS,6bR,8aR,10S,12aR,14bS)-10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-4a-carboxylic acid

C30H48O3 (456.3603)


D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

   

Arctigenen

2(3H)-furanone, 4-((3,4-dimethoxyphenyl)methyl)dihydro-3-((4-hydroxy-3-methoxyphenyl)methyl)-, (3R-trans)-

C21H24O6 (372.1573)


Arctigenin ((-)-Arctigenin), a biologically active lignan, can be used as an antitumor agent. Arctigenin exhibits potent antioxidant, anti-inflammatory and antiviral (influenza A virus) activities. Arctigenin can be used for the research of metabolic disorders, and central nervous system dysfunctions[1][2][3]. Arctigenin ((-)-Arctigenin), a biologically active lignan, can be used as an antitumor agent. Arctigenin exhibits potent antioxidant, anti-inflammatory and antiviral (influenza A virus) activities. Arctigenin can be used for the research of metabolic disorders, and central nervous system dysfunctions[1][2][3].

   

peonol

InChI=1\C9H10O3\c1-6(10)8-4-3-7(12-2)5-9(8)11\h3-5,11H,1-2H

C9H10O3 (166.063)


Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively. Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively.

   

Zingiberene

(S-(R*,S*))-5-(1,5-Dimethylhexen-4-yl)-2-methyl-1,3-cyclohexa-1,3-diene

C15H24 (204.1878)


Zingiberene is 2-Methylcyclohexa-1,3-diene in which a hydrogen at the 5 position is substituted (R configuration) by a 6-methyl-hept-5-en-2-yl group (S configuration). It is a sesquiterpene found in the dried rhizomes of Indonesian ginger, Zingiber officinale. It is a sesquiterpene and a cyclohexadiene. It is an enantiomer of an ent-zingiberene. Zingiberene is a natural product found in Chaerophyllum azoricum, Helichrysum odoratissimum, and other organisms with data available.

   

(±)-β-Elemene

(1S,2S,4R)-1-ethenyl-1-methyl-2,4-di(prop-1-en-2-yl)cyclohexane

C15H24 (204.1878)


β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma aromatica with an antitumor activity. β-Elemene can induce cell apoptosis. β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma aromatica with an antitumor activity. β-Elemene can induce cell apoptosis.

   

Demethoxycurcumin

1,6-Heptadiene-3,5-dione, 1-(4-hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)-, (1E,6E)-

C20H18O5 (338.1154)


Demethoxycurcumin is the main active component of curcumin and has been shown to have anti-inflammatory and toxic effects on cancer cells. Demethoxycurcumin is the main active component of curcumin and has been shown to have anti-inflammatory and toxic effects on cancer cells.

   

CORFREE M1

4-02-00-02078 (Beilstein Handbook Reference)

C10H18O4 (202.1205)


Decanedioic acid, a normal urinary acid, is found to be associated with carnitine-acylcarnitine translocase deficiency and medium chain acyl-CoA dehydrogenase deficiency. Decanedioic acid, a normal urinary acid, is found to be associated with carnitine-acylcarnitine translocase deficiency and medium chain acyl-CoA dehydrogenase deficiency.

   

Liquiritigenin

4H-1-Benzopyran-4-one, 2,3-dihydro-7-hydroxy-2-(4-hydroxyphenyl)-, (S)-

C15H12O4 (256.0736)


Liquiritigenin, a flavanone isolated from Glycyrrhiza uralensis, is a highly selective estrogen receptor β (ERβ) agonist with an EC50 of 36.5 nM for activation of the ERE tk-Luc. Liquiritigenin, a flavanone isolated from Glycyrrhiza uralensis, is a highly selective estrogen receptor β (ERβ) agonist with an EC50 of 36.5 nM for activation of the ERE tk-Luc.

   

Marmesin

7H-Furo[3,2g][1]-benzopyran-7-one, (-2,3-dihydro-2-(1-hydroxy-1-hydroxymethylethyl)-, (R)

C14H14O4 (246.0892)


Nodakenetin is a marmesin with R-configuration. It has a role as a plant metabolite, a rat metabolite and a xenobiotic metabolite. It is an enantiomer of a (+)-marmesin. Nodakenetin is a natural product found in Zanthoxylum beecheyanum, Melicope barbigera, and other organisms with data available. A marmesin with R-configuration. (+)-marmesin is a marmesin. It is an enantiomer of a nodakenetin. Marmesin is a natural product found in Coronilla scorpioides, Clausena dunniana, and other organisms with data available. Nodakenetin, isolated from Angelica decursiva, possesses antioxidant anti-inflammatory activities. Nodakenetin has the potential to be an antiarthritic and nerve tonic[1][2]. Nodakenetin, isolated from Angelica decursiva, possesses antioxidant anti-inflammatory activities. Nodakenetin has the potential to be an antiarthritic and nerve tonic[1][2]. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity.

   

Inokiflavone

4H-1-Benzopyran-4-one, 6-(4-(5,7-dihydroxy-4-oxo-4H-1-benzopyran-2-yl)phenoxy)-5,7-dihyd- roxy-2-(4-hydroxyphenyl)-

C30H18O10 (538.09)


Hinokiflavone is a novel modulator of pre-mRNA splicing activity in vitro and in cellulo. Hinokiflavone blocks splicing of pre-mRNA substrates by inhibiting spliceosome assembly, specifically preventing B complex formation. Hinokiflavone is a SUMO protease inhibitor, inhibiting sentrin-specific protease 1 (SENP1) activity[1]. Hinokiflavone is a novel modulator of pre-mRNA splicing activity in vitro and in cellulo. Hinokiflavone blocks splicing of pre-mRNA substrates by inhibiting spliceosome assembly, specifically preventing B complex formation. Hinokiflavone is a SUMO protease inhibitor, inhibiting sentrin-specific protease 1 (SENP1) activity[1].

   

Devoton

Methyl acetate [UN1231] [Flammable liquid]

C3H6O2 (74.0368)


   

Phlorol

InChI=1\C8H10O\c1-2-7-5-3-4-6-8(7)9\h3-6,9H,2H2,1H

C8H10O (122.0732)


   

Paradol

2-08-00-00318 (Beilstein Handbook Reference)

C17H26O3 (278.1882)


Paradol is a pungent phenolic substance found in ginger and other Zingiberaceae plants. Paradol is an effective inhibitor of tumor promotion in mouse skin carcinogenesis, binds to cyclooxygenase (COX)-2 active site. Paradol is a pungent phenolic substance found in ginger and other Zingiberaceae plants. Paradol is an effective inhibitor of tumor promotion in mouse skin carcinogenesis, binds to cyclooxygenase (COX)-2 active site.

   

Chavicol

.gamma.-(p-Hydroxyphenyl)-.alpha.-propylene

C9H10O (134.0732)


   

Leucol

InChI=1\C9H7N\c1-2-6-9-8(4-1)5-3-7-10-9\h1-7

C9H7N (129.0578)


   

Angecin

2-Propenoic acid, 3-(4-hydroxy-5-benzofuranyl)-, .delta.-lactone

C11H6O3 (186.0317)


D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D007364 - Intercalating Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D000927 - Anticonvulsants Angelicin is a natural tricyclic aromatic hydrocarbon compound that is structurally related to psoralen and has anti-cancer, anti-inflammatory, anti-viral and other activities. Cytotoxic, IC50: 49.56 μM; inhibits MHV-68, IC50: 5.39 μg/ml (28.95 μM). Angelicin is a natural tricyclic aromatic hydrocarbon compound that is structurally related to psoralen and has anti-cancer, anti-inflammatory, anti-viral and other activities. Cytotoxic, IC50: 49.56 μM; inhibits MHV-68, IC50: 5.39 μg/ml (28.95 μM).

   

480-66-0

InChI=1\C8H8O4\c1-4(9)8-6(11)2-5(10)3-7(8)12\h2-3,10-12H,1H

C8H8O4 (168.0423)


Phloracetophenone (2,4,6-trihydroxyacetophenone) is the aglycone part of acetophenone glycoside obtained from Curcuma comosa Roxb, with cholesterol-lowering activity. Phloracetophenone enhances cholesterol 7α-hydroxylase (CYP7A1) activity[1]. Phloracetophenone stimulats bile secretion mediated through Mrp2[2]. Phloracetophenone (2,4,6-trihydroxyacetophenone) is the aglycone part of acetophenone glycoside obtained from Curcuma comosa Roxb, with cholesterol-lowering activity. Phloracetophenone enhances cholesterol 7α-hydroxylase (CYP7A1) activity[1]. Phloracetophenone stimulats bile secretion mediated through Mrp2[2].

   

Chinoinin

1,3,6,7-tetrahydroxy-2-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]-9-xanthenone

C19H18O11 (422.0849)


Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3]. Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3].

   

Phytodolor

2H-1- Benzopyran-2-one, 7-hydroxy-6,8-dimethoxy-

C11H10O5 (222.0528)


Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2]. Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits MMP-7 expression and cell invasion of human hepatoma cells. Isofraxidin inhibits the phosphorylation of ERK1/2 in hepatoma cells[1]. Isofraxidin attenuates the expression of iNOS and COX-2, Isofraxidinalso inhibits TLR4/myeloid differentiation protein-2 (MD-2) complex formation[2].

   

AI3-36442

(C16-C22) Alkylcarboxylic acid

C19H38O2 (298.2872)


Nonadecanoic acid is a 19-carbon long saturated fatty acid. Nonadecanoic acid is the major constituent of the substance secreted by Rhinotermes marginalis to defence[1]. Nonadecanoic acid is a 19-carbon long saturated fatty acid. Nonadecanoic acid is the major constituent of the substance secreted by Rhinotermes marginalis to defence[1].

   

Hexone

Methyl isobutyl ketone [UN1245] [Flammable liquid]

C6H12O (100.0888)


   

Yageine

InChI=1\C13H12N2O\c1-8-13-11(5-6-14-8)10-4-3-9(16-2)7-12(10)15-13\h3-7,15H,1-2H

C13H12N2O (212.095)


D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors C471 - Enzyme Inhibitor > C667 - Monoamine Oxidase Inhibitor Harmine is a natural dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor with anticancer and anti-inflammatory activities. Harmine has a high affinity of 5-HT2A serotonin receptor, with an Ki of 397 nM[1]. Harmine is a natural dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor with anticancer and anti-inflammatory activities. Harmine has a high affinity of 5-HT2A serotonin receptor, with an Ki of 397 nM[1]. Harmine is a natural dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor with anticancer and anti-inflammatory activities. Harmine has a high affinity of 5-HT2A serotonin receptor, with an Ki of 397 nM[1].

   

c0242

InChI=1\C8H8O\c1-7-3-2-4-8(5-7)6-9\h2-6H,1H

C8H8O (120.0575)


m-Tolualdehyde (3-Methylbenzaldehyde) is a tolualdehyde compound with the methyl substituent at the 3-position. m-Tolualdehyde can be used as a food additive. m-Tolualdehyde (3-Methylbenzaldehyde) is a tolualdehyde compound with the methyl substituent at the 3-position. m-Tolualdehyde can be used as a food additive.

   

Ginkgoic acid

2-hydroxy-6-[(Z)-pentadec-8-enyl]benzoic acid

C22H34O3 (346.2508)


D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates Ginkgolic Acid is a natural compound that inhibits SUMOylation with an IC50 of 3.0 μM in in vitro assay. Ginkgolic Acid is a natural compound that inhibits SUMOylation with an IC50 of 3.0 μM in in vitro assay.

   

Butanex

Acetamide, N-(butoxymethyl)-2-chloro-N-(2,6-diethylphenyl)-

C17H26ClNO2 (311.1652)


D010575 - Pesticides > D006540 - Herbicides D009676 - Noxae > D002273 - Carcinogens D016573 - Agrochemicals

   

SRT-501

InChI=1\C14H12O3\c15-12-5-3-10(4-6-12)1-2-11-7-13(16)9-14(17)8-11\h1-9,15-17H\b2-1

C14H12O3 (228.0786)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors C1892 - Chemopreventive Agent > C54630 - Phase II Enzymes Inducer D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7].

   

Sanchinoside R1

(2S,3R,4S,5S,6R)-2-[(1S)-1-[(3S,5R,6S,8R,9R,10R,12R,13R,14R,17S)-6-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-6-methylol-3-[(2S,3R,4S,5R)-3,4,5-trihydroxytetrahydropyran-2-yl]oxy-tetrahydropyran-2-yl]oxy-3,12-dihydroxy-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15

C47H80O18 (932.5344)


Notoginsenoside R1 (Sanchinoside R1), a saponin, is isolated from P. notoginseng. Notoginsenoside R1 exhibits anti-oxidation, anti-inflammatory, anti-angiogenic, and anti-apoptosis activities. Notoginsenoside R1 provides cardioprotection against ischemia/reperfusion (I/R) injury. Notoginsenoside R1 also provides neuroprotection in H2O2-induced oxidative damage in PC12 cells[1][2][3]. Notoginsenoside R1 (Sanchinoside R1), a saponin, is isolated from P. notoginseng. Notoginsenoside R1 exhibits anti-oxidation, anti-inflammatory, anti-angiogenic, and anti-apoptosis activities. Notoginsenoside R1 provides cardioprotection against ischemia/reperfusion (I/R) injury. Notoginsenoside R1 also provides neuroprotection in H2O2-induced oxidative damage in PC12 cells[1][2][3].

   

Cadmium

Cadmium, sponge

Cd (113.9034)


Cadmium (group IIB of the periodic table of elements) is a heavy metal posing severe risks to human health. Physiologically, it exists as an ion in the body. Up to this day, it could not be shown that cadmium has any physiological function within the human body. Interest has therefore risen in its biohazardous potential. As first described by Friedrich Stromeyer (Gottingen, Germany) in 1817, cadmium intoxication can lead to kidney, bone, and pulmonary damages.; Cadmium is regularly found in ores together with zinc, copper and lead. Therefore volcanic activity is one natural reason for a temporary increase in environmental cadmium concentrations. Cadmium is widely used in industrial processes, e.g as an anticorrosive agent, as a stabilizer in PVC products, as a colour pigment, a neutron absorber in nuclear power plants, and in the fabrication of nickel cadmium batteries. Phosphate fertilizers also show a big cadmium load. Although some cadmium containing products can be recycled, a large share of the general cadmium pollution is caused by dumping and incinerating cadmium polluted waste. In Scandinavia for example, cadmium concentration in agricultural soil increases by 0.2 percent per year. Total global emission of cadmium amounts to 7000 t/year.; The maximum permissible value for workers according to German law is 15 ug/l. For comparison: Non-smokers show an average cadmium blood concentration of 0.5 ug/l.; Basically there are three possible ways of cadmium resorption: Gastrointestinal, pulmonary and dermal. The uptake through the human gastrointestinal is approximately 5 percent of an ingested amount of cadmium, depending on the exact dose and nutritional composition. The major source of inhalative cadmium intoxication is cigarette smoke. The human lung resorbes 40 to 60 percent of the cadmium in tobacco smoke. Little research has been done on dermal absorption of cadmium. Two mechanisms facilitate cadmium absorption by the skin: binding of a free cadmium ion to sulfhydryl radicals of cysteine in epidermal keratins, or an induction and complexing with metallothionein. Once taken up by the blood, the majority of cadmium is transported bound to proteins, such as Albumin and Metallothionein.; The first organ reached after uptake into the GI-blood is the liver. Here cadmium induces the production of Metallothionein. After consecutive hepatocyte necrosis and apoptosis, Cd-Metallothionein complexes are washed into sinusoidal blood. From here, parts of the absorbed cadmium enter the entero-hepatical cycle via secretion into the biliary tract in form of Cadmium-glutathione conjugates. Enzymatically degraded to cadmium-cysteine complexes in the biliary tree, cadmium reenters the small intestines. The main organ for long-term cadmium accumulation is the kidney. Here the half life period for cadmium is approx. 10 years. A life long intake can therefore lead to a cadmium accumulation in the kidney, consequently resulting in tubulus cell necrosis. The blood concentration of cadmium serves as a reliable indicator for a recent exposition, while the urinary concentration reflects past exposure, body burden and renal accumulation. Excretion of Cadmium takes place via faeces and urine. (PMID: 16961932); Cadmium (pronounced /?kædmi?m/, KAD-mee-?m) is a chemical element with the symbol Cd and atomic number 48. The soft, bluish-white transition metal is chemically similar to the two other metals in group 12, zinc and mercury. Similar to zinc it prefers oxidation state +2 in most of its compounds and similar to mercury it shows a low melting point for a transition metal. Cadmium is a relatively abundant element. Cadmium was discovered in 1817 by Friedrich Strohmeyer as an impurity in zinc carbonate.; Cadmium is a common impurity in zinc ores, and it is most often isolated during the production of zinc. Some zinc ores concentrates from sulfidic zinc ores contain up to 1,4\\% of cadmium. In 1970s the output of cadmium was 6.5 pounds per ton of zinc. Z...

   

Antimony trichloride

Antimony trichloride

Cl3Sb (225.8104)


   

Notoginsenoside

.BETA.-D-GLUCOPYRANOSIDE, (3.BETA.,6.ALPHA.,12.BETA.)-20-(.BETA.-D-GLUCOPYRANOSYLOXY)-3,12-DIHYDROXYDAMMAR-24-EN-6-YL 2-O-.BETA.-D-XYLOPYRANOSYL-

C47H80O18 (932.5344)


Notoginsenoside R1 is a ginsenoside found in Panax notoginseng that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding beta-D-xylopyranosyl-(1->2)-beta-D-glucopyranoside and beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite, an antioxidant, a neuroprotective agent, an apoptosis inducer and a phytoestrogen. It is a beta-D-glucoside, a 12beta-hydroxy steroid, a 3beta-hydroxy steroid, a disaccharide derivative, a ginsenoside, a tetracyclic triterpenoid and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Notoginsenoside R1 is a natural product found in Panax ginseng, Panax notoginseng, and other organisms with data available. See also: Panax notoginseng root (part of). A ginsenoside found in Panax notoginseng that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding beta-D-xylopyranosyl-(1->2)-beta-D-glucopyranoside and beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. Notoginsenoside R1 (Sanchinoside R1), a saponin, is isolated from P. notoginseng. Notoginsenoside R1 exhibits anti-oxidation, anti-inflammatory, anti-angiogenic, and anti-apoptosis activities. Notoginsenoside R1 provides cardioprotection against ischemia/reperfusion (I/R) injury. Notoginsenoside R1 also provides neuroprotection in H2O2-induced oxidative damage in PC12 cells[1][2][3]. Notoginsenoside R1 (Sanchinoside R1), a saponin, is isolated from P. notoginseng. Notoginsenoside R1 exhibits anti-oxidation, anti-inflammatory, anti-angiogenic, and anti-apoptosis activities. Notoginsenoside R1 provides cardioprotection against ischemia/reperfusion (I/R) injury. Notoginsenoside R1 also provides neuroprotection in H2O2-induced oxidative damage in PC12 cells[1][2][3].

   

Trillin

(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-[(1S,2S,4S,5R,6R,7S,8R,9S,12S,13R,16S)-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icos-18-ene-6,2-oxane]-16-yl]oxyoxane-3,4,5-triol

C33H52O8 (576.3662)


Diosgenin 3-O-beta-D-glucoside is a sterol 3-beta-D-glucoside having diosgenin as the sterol component. It has a role as a metabolite. It is a sterol 3-beta-D-glucoside, a monosaccharide derivative, a hexacyclic triterpenoid and a spiroketal. It is functionally related to a diosgenin. It derives from a hydride of a spirostan. Disogluside is a natural product found in Allium rotundum, Allium narcissiflorum, and other organisms with data available. C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent A sterol 3-beta-D-glucoside having diosgenin as the sterol component. Diosgenin glucoside, a saponin compound extracted from Trillium tschonoskii, provides neuroprotection by regulating microglial M1 polarization. Diosgenin glucoside protects against spinal cord injury by regulating autophagy and alleviating apoptosis [1][2]. Diosgenin glucoside, a saponin compound extracted from Trillium tschonoskii, provides neuroprotection by regulating microglial M1 polarization. Diosgenin glucoside protects against spinal cord injury by regulating autophagy and alleviating apoptosis [1][2].

   

Protodioscin

.BETA.-D-GLUCOPYRANOSIDE, (3.BETA.,22.ALPHA.,25R)-26-(.BETA.-D-GLUCOPYRANOSYLOXY)-22-HYDROXYFUROST-5-EN-3-YL O-6-DEOXY-.ALPHA.-L-MANNOPYRANOSYL-(1->2)-O-(6-DEOXY-.ALPHA.-L-MANNOPYRANOSYL-(1->4))-

C51H84O22 (1048.5454)


Protodioscin is a spirostanyl glycoside that consists of the trisaccharide alpha-L-Rha-(1->4)-[alpha-L-Rha-(1->2)]-beta-D-Glc attached to position 3 of 26-(beta-D-glucopyranosyloxy)-3beta,22-dihydroxyfurost-5-ene via a glycosidic linkage. Found in several plant species including yams, asparagus and funugreek. It has a role as a metabolite. It is a steroid saponin, a trisaccharide derivative, a beta-D-glucoside, a pentacyclic triterpenoid and a cyclic hemiketal. It is functionally related to a diosgenin. It derives from a hydride of a spirostan. Protodioscin is a natural product found in Dracaena draco, Borassus flabellifer, and other organisms with data available. See also: Fenugreek seed (part of). A spirostanyl glycoside that consists of the trisaccharide alpha-L-Rha-(1->4)-[alpha-L-Rha-(1->2)]-beta-D-Glc attached to position 3 of 26-(beta-D-glucopyranosyloxy)-3beta,22-dihydroxyfurost-5-ene via a glycosidic linkage. Found in several plant species including yams, asparagus and funugreek. Protodioscin, a major steroidal saponin in Trigonella foenum-graecum Linn., has been shown to exhibit multiple biological actions, such as anti-hyperlipidemia, anti-cancer, sexual effects and cardiovascular properties. Protodioscin, a major steroidal saponin in Trigonella foenum-graecum Linn., has been shown to exhibit multiple biological actions, such as anti-hyperlipidemia, anti-cancer, sexual effects and cardiovascular properties.

   

GP-17

(3beta,12beta)-20-{[6-O-(beta-D-glucopyranosyl)-beta-D-glucopyranosyl]oxy}-12-hydroxydammar-24-en-3-yl beta-D-glucopyranoside

C48H82O18 (946.5501)


Gypenoside XVII is a ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 3 and 20 have been converted to the corresponding beta-D-glucopyranoside and beta-D-glucopyranosyl-(1->6)-beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite. It is a 12beta-hydroxy steroid, a beta-D-glucoside, a disaccharide derivative, a ginsenoside and a tetracyclic triterpenoid. It derives from a hydride of a dammarane. Gypenoside XVII is a natural product found in Panax vietnamensis, Gynostemma pentaphyllum, and other organisms with data available. A ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 3 and 20 have been converted to the corresponding beta-D-glucopyranoside and beta-D-glucopyranosyl-(1->6)-beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. Gypenoside XVII, a novel phytoestrogen belonging to the gypenosides, can activate estrogen receptors. Gypenoside XVII, a novel phytoestrogen belonging to the gypenosides, can activate estrogen receptors.

   

Ginsenoside

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-2-[[(3S,5R,8R,9R,10R,12R,13R,14R,17S)-12-hydroxy-17-[(2S)-2-hydroxy-6-methylhept-5-en-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]-6-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O13 (784.4973)


(20S)-ginsenoside Rg3 is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy group at position 3 has been converted to the corresponding beta-D-glucopyranosyl-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. It has a role as an apoptosis inducer, an antineoplastic agent, a plant metabolite and an angiogenesis modulating agent. It is a ginsenoside, a tetracyclic triterpenoid and a glycoside. It is functionally related to a (20S)-protopanaxadiol. It derives from a hydride of a dammarane. Ginsenoside Rg3 is a natural product found in Panax ginseng, Panax notoginseng, and other organisms with data available. A ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy group at position 3 has been converted to the corresponding beta-D-glucopyranosyl-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. D000970 - Antineoplastic Agents Ginsenoside F2 is a ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 3 and 20 have been converted to the corresponding beta-D-glucopyranosides, and in which a double bond has been introduced at the 24-25 position. It has a role as an apoptosis inducer, an antineoplastic agent and a plant metabolite. It is a ginsenoside, a tetracyclic triterpenoid, a 12beta-hydroxy steroid and a beta-D-glucoside. It derives from a hydride of a dammarane. ginsenoside F2 is a natural product found in Panax ginseng, Panax notoginseng, and Aralia elata with data available. A ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 3 and 20 have been converted to the corresponding beta-D-glucopyranosides, and in which a double bond has been introduced at the 24-25 position. 20(S)-Ginsenoside Rg3 is the main component of Panax ginseng C. A. Meyer. Ginsenoside Rg3 inhibits Na+ and hKv1.4 channel with IC50s of 32.2±4.5 and 32.6±2.2 μM, respectively. 20(S)-Ginsenoside Rg3 also inhibits Aβ levels, NF-κB activity, and COX-2 expression. 20(S)-Ginsenoside Rg3 is the main component of Panax ginseng C. A. Meyer. Ginsenoside Rg3 inhibits Na+ and hKv1.4 channel with IC50s of 32.2±4.5 and 32.6±2.2 μM, respectively. 20(S)-Ginsenoside Rg3 also inhibits Aβ levels, NF-κB activity, and COX-2 expression. Ginsenoside F2, a metabolite from Ginsenoside Rb1, induces apoptosis accompanied by protective autophagy in breast cancer stem cells[1]. Ginsenoside F2, a metabolite from Ginsenoside Rb1, induces apoptosis accompanied by protective autophagy in breast cancer stem cells[1].

   

Ampelopsin

4H-1-Benzopyran-4-one, 2,3-dihydro-3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-, (2R-trans)-

C15H12O8 (320.0532)


(+)-dihydromyricetin is an optically active form of dihydromyricetin having (2R,3R)-configuration. It has a role as a metabolite, an antioxidant and an antineoplastic agent. It is a secondary alpha-hydroxy ketone and a dihydromyricetin. It is an enantiomer of a (-)-dihydromyricetin. Dihydromyricetin is under investigation in clinical trial NCT03606694 (Effect of Dihydromirycetin on Glycemic Control, Insulin Sensitivity and Insulin Secretion in Type 2 Diabetes Mellitus). Dihydromyricetin is a naturally occurring flavonoid found in the many plant species and is thought to be the active ingredient of several traditional Japanese, Chinese, and Korean medicines that are used to treat fever, parasite infections, liver diseases, and hangovers. Dihydromyricetin preparations have not been linked to instances of serum enzyme elevations or clinically apparent liver injury with jaundice. Dihydromyricetin is a natural product found in Vitis rotundifolia, Catha edulis, and other organisms with data available. An optically active form of dihydromyricetin having (2R,3R)-configuration. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM.

   

Asiatic

(1S,2R,4aS,6aS,6bR,8aR,9R,10R,11R,12aR,12bR,14bS)-10,11-dihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O5 (488.3502)


Asiatic acid is a pentacyclic triterpenoid that is ursane substituted by a carboxy group at position 28 and hydroxy groups at positions 2, 3 and 23 (the 2alpha,3beta stereoisomer). It is isolated from Symplocos lancifolia and Vateria indica and exhibits anti-angiogenic activity. It has a role as an angiogenesis modulating agent and a metabolite. It is a monocarboxylic acid, a triol and a pentacyclic triterpenoid. It derives from a hydride of an ursane. From Centella asiatica and other plants; shows a variety of bioactivities. Asiatic acid is a natural product found in Psidium guajava, Combretum fruticosum, and other organisms with data available. See also: Holy basil leaf (part of); Lagerstroemia speciosa leaf (part of); Centella asiatica flowering top (part of). A pentacyclic triterpenoid that is ursane substituted by a carboxy group at position 28 and hydroxy groups at positions 2, 3 and 23 (the 2alpha,3beta stereoisomer). It is isolated from Symplocos lancifolia and Vateria indica and exhibits anti-angiogenic activity. C1907 - Drug, Natural Product > C28269 - Phytochemical > C1905 - Triterpenoid Compound C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2]. Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2].

   

Nootkatone

2(3H)-Naphthalenone, 4,4a,5,6,7,8-hexahydro-4,4a-dimethyl-6-(1-methylethenyl)-, [4R-(4.alpha.,4a.alpha.,6.beta.)]-

C15H22O (218.1671)


(+)-nootkatone is a sesquiterpenoid that is 4,4a,5,6,7,8-hexahydronaphthalen-2(3H)-one which is substituted by methyl groups at positions 4 and 4a, and by an isopropenyl group at position 6 (the 4R,4aS,6R stereoisomer). It has a role as a plant metabolite, a fragrance and an insect repellent. It is a sesquiterpenoid, an enone and a carbobicyclic compound. Nootkatone is a natural product found in Teucrium asiaticum, Teucrium oxylepis, and other organisms with data available. A sesquiterpenoid that is 4,4a,5,6,7,8-hexahydronaphthalen-2(3H)-one which is substituted by methyl groups at positions 4 and 4a, and by an isopropenyl group at position 6 (the 4R,4aS,6R stereoisomer). Nootkatone, a neuroprotective agent from Vitis vinifera, has antioxidant and anti-inflammatory effects[1]. Nootkatone improves cognitive impairment in lipopolysaccharide-induced mouse model of Alzheimer's disease[2]. Nootkatone, a neuroprotective agent from Vitis vinifera, has antioxidant and anti-inflammatory effects[1]. Nootkatone improves cognitive impairment in lipopolysaccharide-induced mouse model of Alzheimer's disease[2].

   

Silychristin

(2R,3R)-3,5,7-trihydroxy-2-[(2R,3S)-7-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1-benzofuran-5-yl]-2,3-dihydro-4H-chromen-4-one

C25H22O10 (482.1213)


A flavonolignan isolated from Silybum marianum and has been shown to exhibit inhibitory activities against lipoxygenase and prostaglandin synthetase. Silychristin is a flavonolignan isolated from Silybum marianum and has been shown to exhibit inhibitory activities against lipoxygenase and prostaglandin synthetase. It has a role as a radical scavenger, a lipoxygenase inhibitor, a prostaglandin antagonist and a metabolite. It is a flavonolignan, a member of 1-benzofurans, a polyphenol, an aromatic ether and a secondary alpha-hydroxy ketone. Silicristin is a natural product found in Cunila, Anastatica hierochuntica, and other organisms with data available. C26170 - Protective Agent > C2081 - Hepatoprotective Agent Silychristin is an abundant flavonolignan present in the fruits of Silybum marianum, with antioxidant properties. Silychristin is a potent inhibitor of the thyroid hormone transporter MCT8, and elicits a strong inhibition of T3 uptake with an IC50 of 110 nM[1][2]. Silychristin is an abundant flavonolignan present in the fruits of Silybum marianum, with antioxidant properties. Silychristin is a potent inhibitor of the thyroid hormone transporter MCT8, and elicits a strong inhibition of T3 uptake with an IC50 of 110 nM[1][2].

   

Xanthatin

2H-CYCLOHEPTA(B)FURAN-2-ONE, 3,3A,4,7,8,8A-HEXAHYDRO-7-METHYL-3-METHYLENE-6-((1E)-3-OXO-1-BUTEN-1-YL)-, (3AR,7S,8AS)-

C15H18O3 (246.1256)


Xanthatin is a sesquiterpene lactone. Xanthatin is a natural product found in Xanthium spinosum, Dittrichia graveolens, and other organisms with data available. D000970 - Antineoplastic Agents

   

Isoarnebin I

2-Butenoic acid, 3-methyl-, 1-(1,4-dihydro-5,8-dihydroxy-1,4-dioxo-2-naphthalenyl)-4-methyl-3-pentenyl ester, (+)-

C21H22O6 (370.1416)


Beta,beta-Dimethylacrylshikonin is a hydroxy-1,4-naphthoquinone. beta,beta-Dimethylacrylshikonin is a natural product found in Alkanna cappadocica, Lithospermum erythrorhizon, and other organisms with data available. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1].

   

Nepetalactone

Cyclopenta(c)pyran-1(4aH)-one, 5,6,7,7a-tetrahydro-4,7-dimethyl-, (4aS-(4aalpha,7alpha,7aalpha))-

C10H14O2 (166.0994)


Cis-trans-nepetalactone is a cyclopentapyran that is (4aS,7aR)-1,4a,5,6,7,7a-hexahydrocyclopenta[c]pyran substituted at position 1 by an oxo group and at positions 4 and 7 by methyl groups, respectively (the 4aS,7S,7aR-diastereomer). An iridoid monoterpenoid isolated from several Nepeta plant species. It is an aphid sex pheromone and cat attractant, and exhibits antibacterial, antifungal, and analgesic properties. It has a role as a pheromone, a plant metabolite, an insect attractant, an analgesic, an insect repellent, an antibacterial agent and an antifungal agent. It is an iridoid monoterpenoid and a cyclopentapyran. Nepetalactone cis-trans-form is a natural product found in Nepeta cataria, Nepeta tuberosa, and Nepeta racemosa with data available. A cyclopentapyran that is (4aS,7aR)-1,4a,5,6,7,7a-hexahydrocyclopenta[c]pyran substituted at position 1 by an oxo group and at positions 4 and 7 by methyl groups, respectively (the 4aS,7S,7aR-diastereomer). An iridoid monoterpenoid isolated from several Nepeta plant species. It is an aphid sex pheromone and cat attractant, and exhibits antibacterial, antifungal, and analgesic properties. 4aα,7α,7aα-Nepetalactone exhibits antibacterial activity, and inhibits Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhi and Enterococcus faecalis.

   

Isochamaejasmin

(2S,3R)-3-[(2R,3S)-5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-2,3-dihydrochromen-3-yl]-5,7-dihydroxy-2-(4-hydroxyphenyl)-2,3-dihydrochromen-4-one

C30H22O10 (542.1213)


Isochamaejasmin is a biflavonoid that consists of two units of 5,7,4-trihydroxyflavanone joined together at position 3 and 3. It has a role as a plant metabolite. It is a biflavonoid and a hydroxyflavone. Isochamaejasmin is a natural product found in Brackenridgea zanguebarica, Stellera chamaejasme, and Ormocarpum kirkii with data available. A biflavonoid that consists of two units of 5,7,4-trihydroxyflavanone joined together at position 3 and 3.

   

erumbone

(2E,6E,10E)-2,6,9,9-tetramethylcycloundeca-2,6,10-trien-1-one

C15H22O (218.1671)


Zerumbone is a sesquiterpenoid and cyclic ketone that is (1E,4E,8E)-alpha-humulene which is substituted by an oxo group at the carbon atom attached to two double bonds. It is obtained by steam distillation from a type of edible ginger, Zingiber zerumbet Smith, grown particularly in southeast Asia. It has a role as an anti-inflammatory agent, a plant metabolite and a glioma-associated oncogene inhibitor. It is a sesquiterpenoid and a cyclic ketone. It derives from a hydride of an alpha-humulene. Zerumbone is a natural product found in Curcuma amada, Curcuma longa, and other organisms with data available. A sesquiterpenoid and cyclic ketone that is (1E,4E,8E)-alpha-humulene which is substituted by an oxo group at the carbon atom attached to two double bonds. It is obtained by steam distillation from a type of edible ginger, Zingiber zerumbet Smith, grown particularly in southeast Asia. Zerumbone is a monocyclic sesquiterpene compound isolated from the rhizomes of Zingiber zerumbet Smith. Zerumbone potently inhibits the activation of Epstein-Barr virus with an IC50 of 0.14 mM. Zerumbone has anti-cancer, antioxidant, anti-inflammatory and anti-proliferative activity[1][2]. Zerumbone is a monocyclic sesquiterpene compound isolated from the rhizomes of Zingiber zerumbet Smith. Zerumbone potently inhibits the activation of Epstein-Barr virus with an IC50 of 0.14 mM. Zerumbone has anti-cancer, antioxidant, anti-inflammatory and anti-proliferative activity[1][2].

   

Lactopicrin

Benzeneacetic acid, 4-hydroxy-, 2,3,3a,4,5,7,9a,9b-octahydro-9-(hydroxymethyl)-6-methyl-3-methylene-2,7-dioxoazuleno(4,5-b)furan-4-yl ester, (3aR-(3aalpha,4alpha,9aalpha,9bbeta))-

C23H22O7 (410.1365)


Lactucopicrin is an azulenofuran, a cyclic terpene ketone, an enone, a member of phenols, a sesquiterpene lactone and a primary alcohol. It has a role as a plant metabolite, a sedative and an antimalarial. It is functionally related to a 4-hydroxyphenylacetic acid and a lactucin. Lactupicrin is a natural product found in Cichorium endivia, Cichorium spinosum, and other organisms with data available. Lactupicrin (Lactucopicrin) is a characteristic bitter sesquiterpene lactone that can relieve pain. Lactupicrin exhibits atheroprotective effect[1][2]. Lactupicrin (Lactucopicrin) is a characteristic bitter sesquiterpene lactone that can relieve pain. Lactupicrin exhibits atheroprotective effect[1][2].

   

leucoline

QUINOLINE

C9H7N (129.0578)


   

Potassium iodide

Potassium iodide

IK (165.8682)


R - Respiratory system > R05 - Cough and cold preparations > R05C - Expectorants, excl. combinations with cough suppressants > R05CA - Expectorants V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes C26170 - Protective Agent > C797 - Radioprotective Agent S - Sensory organs > S01 - Ophthalmologicals

   

Sodium fluoride

Sodium fluoride

FNa (41.9882)


A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AA - Caries prophylactic agents A - Alimentary tract and metabolism > A12 - Mineral supplements > A12C - Other mineral supplements > A12CD - Fluoride D020011 - Protective Agents > D002327 - Cariostatic Agents > D005459 - Fluorides D001697 - Biomedical and Dental Materials

   

METHYL ACETATE

METHYL ACETATE

C3H6O2 (74.0368)


   

SULFANILIC ACID

4-Aminobenzenesulfonic acid

C6H7NO3S (173.0147)


An aminobenzenesulfonic acid that is aniline sulfonated at the para-position.

   

Trometamol

tromethamine

C4H11NO3 (121.0739)


B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05B - I.v. solutions > B05BB - Solutions affecting the electrolyte balance B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05X - I.v. solution additives D010592 - Pharmaceutic Aids > D014677 - Pharmaceutical Vehicles > D005079 - Excipients D019995 - Laboratory Chemicals > D002021 - Buffers

   

sevoflurane

sevoflurane

C4H3F7O (200.0072)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AB - Halogenated hydrocarbons COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

amodiaquine

amodiaquine

C20H22ClN3O (355.1451)


P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials > P01BA - Aminoquinolines D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent

   

Phenylbutyric acid

4-PHENYLBUTYRIC ACID

C10H12O2 (164.0837)


C471 - Enzyme Inhibitor > C1946 - Histone Deacetylase Inhibitor C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent D000970 - Antineoplastic Agents

   

IOPANOIC ACID

IOPANOIC ACID

C11H12I3NO2 (570.8002)


V - Various > V08 - Contrast media > V08A - X-ray contrast media, iodinated > V08AC - Watersoluble, hepatotropic x-ray contrast media

   

Brinzolamide

Brinzolamide

C12H21N3O5S3 (383.0643)


S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EC - Carbonic anhydrase inhibitors C78283 - Agent Affecting Organs of Special Senses > C29705 - Anti-glaucoma Agent D004791 - Enzyme Inhibitors > D002257 - Carbonic Anhydrase Inhibitors C471 - Enzyme Inhibitor > C29577 - Carbonic Anhydrase Inhibitor

   
   

(R)-3-Hydroxybutyric acid

(R)-3-Hydroxybutanoic acid

C4H8O3 (104.0473)


The R-enantiomer of 3-hydroxybutyric acid. Involved in the synthesis and degradation of ketone bodies, it can be used as an energy source by the brain during hypoglycaemia, and for the synthesis of biodegradable plastics. It is a sex pheremone in the European spider Linyphia triangularis. (R)-3-Hydroxybutanoic acid is a metabolite, and converted from acetoacetic acid catalyzed by 3-hydroxybutyrate dehydrogenase. (R)-3-Hydroxybutanoic acid has applications as a nutrition source and as a precursor for vitamins, antibiotics and pheromones[1][2].

   

Tirofiban

Tirofiban

C22H36N2O5S (440.2345)


B - Blood and blood forming organs > B01 - Antithrombotic agents > B01A - Antithrombotic agents > B01AC - Platelet aggregation inhibitors excl. heparin COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78275 - Agent Affecting Blood or Body Fluid > C1327 - Antiplatelet Agent D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Dexmedetomidine

Dexmedetomidine

C13H16N2 (200.1313)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives D002491 - Central Nervous System Agents > D000700 - Analgesics Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Dexmedetomidine ((+)-Medetomidine) is a potent, selective and orally active agonist of α2-adrenoceptor, with a Ki of 1.08 nM. Dexmedetomidine shows 1620-fold selectivity against α1-adrenoceptor. Dexmedetomidine exhibits anxiolysis, sedation, and modest analgesia effects[1][2][3].

   

p-Allylphenol

p-Allylphenol

C9H10O (134.0732)


   

Acridine orange

N3,N3,N6,N6-Tetramethylacridine-3,6-diamine

C17H19N3 (265.1579)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes D009676 - Noxae > D009153 - Mutagens

   

L-BMAA

(S)-2-AMINO-3-(METHYLAMINO)PROPANOIC ACID

C4H10N2O2 (118.0742)


A non-proteinogenic L-alpha-amino acid that is L-alanine in which one of the methyl hydrogens is replaced by a methylamino group. A non-proteinogenic amino acid produced by cyanobacteria, it is a neurotoxin that has been postulated as a possible cause of neurodegenerative disorders of aging such as Alzheimers disease, amyotrophic lateral sclerosis, and the amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS-PDC) syndrome of Guam. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists

   

Nicotinamide riboside

Nicotinamide riboside

C11H15N2O5+ (255.0981)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, COVID-19 Disease Map C26170 - Protective Agent > C275 - Antioxidant Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

dezocine

dezocine

C16H23NO (245.178)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics N - Nervous system > N02 - Analgesics > N02A - Opioids

   

o-phospho-l-tyrosine

o-phospho-l-tyrosine

C9H12NO6P (261.0402)


   

betaine aldehyde

trimethyl-(2-oxoethyl)ammonium

C5H12NO+ (102.0919)


A quaternary ammonium ion that is nitrogen substituted by three methyl groups and a 2-oxoethyl group. It is an intermediate in the metabolism of amino acids like glycine, serine and threonine. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

1-Hydroxyisoquinoline

ISOQUINOLIN-1(2H)-ONE

C9H7NO (145.0528)


COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

2-Fluorobenzamide

N-Carbamoylsarcosine

C4H8N2O3 (132.0535)


   

4-aminoimidazole

4-aminoimidazole

C3H5N3 (83.0483)


   
   

(-)-Columbianetin

(-)-Columbianetin

C14H14O4 (246.0892)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins

   

CID 5281302

CID 5281302

C27H22O12 (538.1111)


Lithospermic acid ((+)-Lithospermic acid) is a plant-derived polycyclic phenolic carboxylic acid isolated from Salvia miltiorrhiza, and has the anti-oxidative and hepatoprotective activity on carbon tetrachloride (CCl4)-induced acute liver damage in vitro and in vivo[1]. Lithospermic acid ((+)-Lithospermic acid) is a plant-derived polycyclic phenolic carboxylic acid isolated from Salvia miltiorrhiza, and has the anti-oxidative and hepatoprotective activity on carbon tetrachloride (CCl4)-induced acute liver damage in vitro and in vivo[1].

   

Nomega-(ADP-D-ribosyl)-L-arginine

Nomega-(ADP-D-ribosyl)-L-arginine

C21H35N9O15P2 (715.1728)


   

Mycoin

4-Hydroxy-4H-furo[3,2-c]pyran-2(6H)-one

C7H6O4 (154.0266)


A furopyran and lactone that is (2H-pyran-3(6H)-ylidene)acetic acid which is substituted by hydroxy groups at positions 2 and 4 and in which the hydroxy group at position 4 has condensed with the carboxy group to give the corresponding bicyclic lactone. A mycotoxin produced by several species of Aspergillus and Penicillium, it has antibiotic properties but has been shown to be carcinogenic and mutagenic. D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D009153 - Mutagens Patulin (Terinin) is a mycotoxin produced by fungi including the Aspergillus, Penicillium, and Byssochlamys species, is suspected to be clastogenic, mutagenic, teratogenic and cytotoxic. Patulin induces autophagy-dependent apoptosis through lysosomal-mitochondrial axis, and causes DNA damage[1][2][3][4].

   

Sodium sulfate

Sodium sulfate

Na2SO4 (141.9313)


A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AD - Osmotically acting laxatives A - Alimentary tract and metabolism > A12 - Mineral supplements > A12C - Other mineral supplements > A12CA - Sodium C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent D005765 - Gastrointestinal Agents > D002400 - Cathartics Same as: D01732

   

LUCANTHONE

LUCANTHONE

C20H24N2OS (340.1609)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent

   

Tetrachlorodian

Phenol,4,4-(1-methylethylidene)bis[2,6-dichloro-

C15H12Cl4O2 (363.9591)


   

GW 0742

{4-[({2-[3-Fluoro-4-(Trifluoromethyl)phenyl]-4-Methyl-1,3-Thiazol-5-Yl}methyl)sulfanyl]-2-Methylphenoxy}acetic Acid

C21H17F4NO3S2 (471.0586)


GW0742 is a potent PPARβ and PPARδ agonist, with an IC50 of 1 nM for human PPARδ in binding assay, and EC50s of 1 nM, 1.1 μM and 2 μM for human PPARδ, PPARα, and PPARγ, respectively.

   

1-Chloro-2,3-epoxypropane

1-Chloro-2,3-epoxypropane

C3H5ClO (92.0029)


   

O-Ethylphenol

O-Ethylphenol

C8H10O (122.0732)


   

Butachlore

Butachlore

C17H26ClNO2 (311.1652)


D010575 - Pesticides > D006540 - Herbicides D009676 - Noxae > D002273 - Carcinogens D016573 - Agrochemicals

   
   

Acetyl-L-tryptophan

N-Acetyl-L-tryptophan

C13H14N2O3 (246.1004)


A N-acetyl-L-amino acid that is the N-acetyl derivative of L-tryptophan. D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors N-Acetyl-L-tryptophan is an endogenous metabolite.

   

Bisbenzimide

Hoechst 33342

C27H28N6O (452.2324)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D020011 - Protective Agents > D011837 - Radiation-Protective Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes D011838 - Radiation-Sensitizing Agents

   

Naadp

Nicotinic acid adenine dinucleotide phosphate

C21H28N6O18P3+ (745.0673)


   

HEXACHLOROBENZENE

HEXACHLOROBENZENE

C6Cl6 (281.8131)


D016573 - Agrochemicals D010575 - Pesticides

   

1,3-DICHLORO-2-PROPANOL

1,3-DICHLORO-2-PROPANOL

C3H6Cl2O (127.9796)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D003432 - Cross-Linking Reagents D009676 - Noxae > D009153 - Mutagens

   

4-Toluenesulfonamide

4-Toluenesulfonamide

C7H9NO2S (171.0354)


C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

1,11-Diamino-3,6,9-triazaundecane

1,11-Diamino-3,6,9-triazaundecane

C8H23N5 (189.1953)


   

1,4-Dianilinobenzene

N,N-DIPHENYL-1,4-PHENYLENEDIAMINE

C18H16N2 (260.1313)


D020011 - Protective Agents > D000975 - Antioxidants

   

brasilin

(+)-BRAZILIN

C16H14O5 (286.0841)


Brazilin is a red dye precursor obtained from the heartwood of several species of tropical hardwoods. Brazilin inhibits the cells proliferation, promotes apoptosis, and induces autophagy through the AMPK/mTOR pathway. Brazilin shows chondroprotective and anti-inflammatory activities[1][2][3]. Brazilin is a red dye precursor obtained from the heartwood of several species of tropical hardwoods. Brazilin inhibits the cells proliferation, promotes apoptosis, and induces autophagy through the AMPK/mTOR pathway. Brazilin shows chondroprotective and anti-inflammatory activities[1][2][3].

   

AICAR

AICAR

C9H14N4O5 (258.0964)


D007004 - Hypoglycemic Agents

   

20a,22b-Dihydroxycholesterol

20a,22b-Dihydroxycholesterol

C27H46O3 (418.3447)


   

Dopachrome

Dopachrome

C9H7NO4 (193.0375)


   

1-C-(Indol-3-yl)glycerol 3-phosphate

1-C-(Indol-3-yl)glycerol 3-phosphate

C11H14NO6P (287.0559)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents