sulfurein (BioDeep_00000270745)

Main id: BioDeep_00000000826

Secondary id: BioDeep_00000184067

PANOMIX_OTCML-2023


代谢物信息卡片


(2Z)-2-[[3,4-bis(oxidanyl)phenyl]methylidene]-6-oxidanyl-1-benzofuran-3-one

化学式: C15H10O5 (270.0528)
中文名称: SULFURETIN, 硫黄菊素
谱图信息: 最多检出来源 Viridiplantae(natural_products) 12.21%

分子结构信息

SMILES: c12c(cc(cc1)O)O/C(=C/c1ccc(c(c1)O)O)/C2=O
InChI: InChI=1S/C15H10O5/c16-9-2-3-10-13(7-9)20-14(15(10)19)6-8-1-4-11(17)12(18)5-8/h1-7,16-18H/b14-6+

描述信息

Sulfuretin is a member of 1-benzofurans.
Sulfuretin is a natural product found in Calanticaria bicolor, Dipteryx lacunifera, and other organisms with data available.
Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2].
Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2].

同义名列表

32 个代谢物同义名

(2Z)-2-[[3,4-bis(oxidanyl)phenyl]methylidene]-6-oxidanyl-1-benzofuran-3-one; 3(2H)-BENZOFURANONE, 2-((3,4-DIHYDROXYPHENYL)METHYLENE)-6-HYDROXY-, (2Z)-; 3(2H)-Benzofuranone, 2-[(3,4-dihydroxyphenyl)methylene]-6-hydroxy-, (2Z)-; 3(2H)-Benzofuranone, 2-((3,4-dihydroxyphenyl)methylene)-6-hydroxy-, (Z)-; (2Z)-2-[(3,4-dihydroxyphenyl)methylidene]-6-hydroxy-1-benzofuran-3-one; (Z)-2-[(3,4-dihydroxyphenyl)methylene]-6-hydroxy-2H-benzofuran-3-one; (Z)-2-((3,4-Dihydroxyphenyl)methylene)-6-hydroxy-2H-benzofuran-3-one; (2Z)-2-(3,4-Dihydroxybenzylidene)-6-hydroxy-1-benzofuran-3(2H)-one #; (2Z)-2-[(3,4-dihydroxyphenyl)methylidene]-6-hydroxy-3-benzofuranone; (2Z)-2-(3,4-Dihydroxybenzylidene)-6-hydroxy-1-benzofuran-3(2H)-one; (2Z)-2-[(3,4-dihydroxyphenyl)methylene]-6-hydroxy-benzofuran-3-one; (z)-2-(3,4-dihydroxybenzylidene)-6-hydroxybenzofuran-3(2h)-one; 3(2H)-BENZOFURANONE, 2-(3,4-DIHYDROXYBENZYLIDENE)-6-HYDROXY-; (2Z)-2-(3,4-dihydroxybenzylidene)-6-hydroxy-coumaran-3-one; 2-(3,4-dihydroxybenzylidene)-6-hydroxy-3(2H)-benzofuranone; 3,4,6-Trihydroxyaurone; 3,4,6-Trihydroxybenzalcoumaranone; Benzofran-3-one, 2-[3,4-dihydroxybenzylidene]-6-hydroxy-; 3,4,6-TRIHYDROXYBENZALCOUMARANONE; ISOLIQUIRITIGENIN METABOLITE M3; RGNXWPVNPFAADO-NSIKDUERSA-N; Aurone, 6,3,4-trihydroxy-; 3,4,6-trihydroxyaurone; 3,4,6-Trihydroxyaurone; 6,3,4-Trihydroxyaurone; aurone sulfuretin; SULFURETIN [MI]; MEGxp0_001715; ACon1_000213; Sulphuretin; Sulfuretin; sulfurein; Sulphuretin



数据库引用编号

15 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(1)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

20 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 13 ADIG, AIMP2, CAT, CTNNB1, FABP4, MAPK3, MAPK8, NFE2L2, NFKBIA, PIK3CA, PPARG, PTGS2, SRARP
Peripheral membrane protein 2 GORASP1, PTGS2
Endoplasmic reticulum membrane 2 HMOX1, PTGS2
Nucleus 12 ADIG, AIMP2, CTNNB1, FABP4, HMOX1, MAPK3, MAPK8, NFE2L2, NFKBIA, NKRF, PPARG, SRARP
cytosol 12 AIMP2, CAT, CTNNB1, FABP4, HMOX1, IL1B, MAPK3, MAPK8, NFE2L2, NFKBIA, PIK3CA, PPARG
centrosome 2 CTNNB1, NFE2L2
nucleoplasm 8 CTNNB1, HMOX1, MAPK3, MAPK8, NFE2L2, NFKBIA, NKRF, PPARG
RNA polymerase II transcription regulator complex 2 NFE2L2, PPARG
Cell membrane 1 CTNNB1
Cytoplasmic side 2 GORASP1, HMOX1
lamellipodium 2 CTNNB1, PIK3CA
Golgi apparatus membrane 1 GORASP1
Synapse 2 CTNNB1, MAPK8
cell cortex 1 CTNNB1
cell junction 1 CTNNB1
cell surface 1 ADIPOQ
glutamatergic synapse 2 CTNNB1, MAPK3
Golgi apparatus 3 GORASP1, MAPK3, NFE2L2
Golgi membrane 2 GORASP1, INS
presynaptic membrane 1 CTNNB1
Cytoplasm, cytosol 3 AIMP2, IL1B, NFE2L2
Lysosome 1 IL1B
plasma membrane 5 CTNNB1, MAPK3, NFE2L2, NFKBIA, PIK3CA
Membrane 5 ADIG, AIMP2, CAT, CTNNB1, HMOX1
axon 1 MAPK8
basolateral plasma membrane 1 CTNNB1
caveola 2 MAPK3, PTGS2
extracellular exosome 4 BMP3, CAT, CTNNB1, FABP4
endoplasmic reticulum 3 ADIPOQ, HMOX1, PTGS2
extracellular space 5 ADIPOQ, BMP3, HMOX1, IL1B, INS
perinuclear region of cytoplasm 4 CTNNB1, HMOX1, PIK3CA, PPARG
Schaffer collateral - CA1 synapse 1 CTNNB1
adherens junction 1 CTNNB1
apicolateral plasma membrane 1 CTNNB1
bicellular tight junction 1 CTNNB1
intercalated disc 1 PIK3CA
mitochondrion 2 CAT, MAPK3
protein-containing complex 3 CAT, CTNNB1, PTGS2
intracellular membrane-bounded organelle 2 CAT, PPARG
Microsome membrane 1 PTGS2
Secreted 5 ADIG, ADIPOQ, BMP3, IL1B, INS
extracellular region 6 ADIG, ADIPOQ, BMP3, CAT, IL1B, INS
Single-pass membrane protein 1 ADIG
mitochondrial outer membrane 1 HMOX1
mitochondrial matrix 1 CAT
transcription regulator complex 1 CTNNB1
Z disc 1 CTNNB1
beta-catenin destruction complex 1 CTNNB1
nucleolus 1 NKRF
Wnt signalosome 1 CTNNB1
Early endosome 1 MAPK3
apical part of cell 1 CTNNB1
cell-cell junction 1 CTNNB1
postsynaptic membrane 1 CTNNB1
Cell junction, focal adhesion 1 MAPK3
Cytoplasm, cytoskeleton 1 CTNNB1
focal adhesion 3 CAT, CTNNB1, MAPK3
cis-Golgi network 1 GORASP1
Cell junction, adherens junction 1 CTNNB1
flotillin complex 1 CTNNB1
Peroxisome 1 CAT
collagen trimer 1 ADIPOQ
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
collagen-containing extracellular matrix 1 ADIPOQ
secretory granule 1 IL1B
fascia adherens 1 CTNNB1
lateral plasma membrane 1 CTNNB1
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Late endosome 1 MAPK3
receptor complex 1 PPARG
neuron projection 1 PTGS2
chromatin 2 NFE2L2, PPARG
mediator complex 1 NFE2L2
cell periphery 1 CTNNB1
cytoskeleton 1 MAPK3
Cytoplasm, cytoskeleton, cilium basal body 1 CTNNB1
Nucleus, nucleolus 1 NKRF
spindle pole 1 CTNNB1
postsynaptic density, intracellular component 1 CTNNB1
microvillus membrane 1 CTNNB1
nuclear envelope 1 MAPK3
Endomembrane system 1 CTNNB1
endosome lumen 1 INS
Lipid droplet 2 ADIG, FABP4
Membrane, caveola 1 MAPK3
euchromatin 1 CTNNB1
pseudopodium 1 MAPK3
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 2 CAT, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 3 INS, MAPK3, PTGS2
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
transport vesicle 1 INS
beta-catenin-TCF complex 1 CTNNB1
Secreted, extracellular exosome 1 IL1B
Endoplasmic reticulum-Golgi intermediate compartment membrane 2 GORASP1, INS
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
Single-pass type IV membrane protein 1 HMOX1
presynaptic active zone cytoplasmic component 1 CTNNB1
protein-DNA complex 2 CTNNB1, NFE2L2
basal dendrite 1 MAPK8
aminoacyl-tRNA synthetase multienzyme complex 1 AIMP2
catenin complex 1 CTNNB1
catalase complex 1 CAT
beta-catenin-TCF7L2 complex 1 CTNNB1
I-kappaB/NF-kappaB complex 1 NFKBIA
beta-catenin-ICAT complex 1 CTNNB1
Scrib-APC-beta-catenin complex 1 CTNNB1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA


文献列表

  • Young Hye Seo, Tuy An Trinh, Seung Mok Ryu, Hyo Seon Kim, Goya Choi, Byeong Cheol Moon, Sang Hee Shim, Dae Sik Jang, Dongho Lee, Ki Sung Kang, Jun Lee. Chemical Constituents from the Aerial Parts of Elsholtzia ciliata and Their Protective Activities on Glutamate-Induced HT22 Cell Death. Journal of natural products. 2020 10; 83(10):3149-3155. doi: 10.1021/acs.jnatprod.0c00756. [PMID: 32991171]
  • Miroslav Novakovic, Iris Djordjevic, Nina Todorovic, Snezana Trifunovic, Boban Andjelkovic, Boris Mandic, Milka Jadranin, Ivan Vuckovic, Vlatka Vajs, Slobodan Milosavljevic, Vele Tesevic. New aurone epoxide and auronolignan from the heartwood of Cotinus coggygria Scop. Natural product research. 2019 Oct; 33(19):2837-2844. doi: 10.1080/14786419.2018.1508141. [PMID: 30513208]
  • Jinfeng Yang, Yong Soo Kwon, Myong Jo Kim. Antimicrobial activity and active compounds of a Rhus verniciflua Stokes extract. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2018 Nov; 73(11-12):457-463. doi: 10.1515/znc-2018-0054. [PMID: 30183668]
  • Suji Kim, No-Joon Song, Gahee Bahn, Seo-Hyuk Chang, Ui Jeong Yun, Jin-Mo Ku, Dong-Gyu Jo, Kye Won Park. Atf3 induction is a therapeutic target for obesity and metabolic diseases. Biochemical and biophysical research communications. 2018 10; 504(4):903-908. doi: 10.1016/j.bbrc.2018.09.048. [PMID: 30224057]
  • Pingdong Jiang, Hui Sun. Sulfuretin alleviates atopic dermatitis-like symptoms in mice via suppressing Th2 cell activity. Immunologic research. 2018 10; 66(5):611-619. doi: 10.1007/s12026-018-9025-4. [PMID: 30159861]
  • Ramakanta Lamichhane, Se-Gun Kim, Sona Kang, Kyung-Hee Lee, Prakash Raj Pandeya, Hyun-Ju Jung. Exploration of Underlying Mechanism of Anti-adipogenic Activity of Sulfuretin. Biological & pharmaceutical bulletin. 2017 Sep; 40(9):1366-1373. doi: 10.1248/bpb.b17-00049. [PMID: 28579594]
  • Kangsan Roh, Suji Kim, Hee Kang, Jin-Mo Ku, Kye Won Park, Sukchan Lee. Sulfuretin has therapeutic activity against acquired lymphedema by reducing adipogenesis. Pharmacological research. 2017 Jul; 121(?):230-239. doi: 10.1016/j.phrs.2017.05.003. [PMID: 28483479]
  • Hongxia Chen, Chengzhang Wang, Hao Zhou, Ran Tao, Jianzhong Ye, Wenjun Li. Antioxidant capacity and identification of the constituents of ethyl acetate fraction from Rhus verniciflua Stokes by HPLC-MS. Natural product research. 2017 Jul; 31(13):1573-1577. doi: 10.1080/14786419.2016.1277353. [PMID: 28100074]
  • Tae Gyu Nam, Bong Han Lee, Hyo-Kyoung Choi, Ahmad Rois Mansur, Sang Gil Lee, Dae-Ok Kim. Rhus verniciflua Stokes Extract and Its Flavonoids Protect PC-12 Cells against H2O2-Induced Cytotoxicity. Journal of microbiology and biotechnology. 2017 Jun; 27(6):1090-1097. doi: 10.4014/jmb.1612.12018. [PMID: 28376611]
  • Nguyen Phuong Thao, Bui Thi Thuy Luyen, Bui Huu Tai, Nguyen Manh Cuong, Youn Chul Kim, Chau Van Minh, Young Ho Kim. Chemical constituents of Miliusa balansae leaves and inhibition of nitric oxide production in lipopolysaccharide-induced RAW 264.7 cells. Bioorganic & medicinal chemistry letters. 2015 Sep; 25(18):3859-63. doi: 10.1016/j.bmcl.2015.07.056. [PMID: 26238320]
  • Guan Chen, Cheng-Bin Cui, Ai-Di Qi, Chang-Wei Li, Zun-Wei Tao, Rong Ren. Polyanthumin, a novel cyclobutane chalcone trimmer from Memecylon polyanthum. Journal of Asian natural products research. 2015; 17(2):170-7. doi: 10.1080/10286020.2014.945439. [PMID: 25434469]
  • Jun-Hyeong Lee, Mikyung Kim, Kyung-Hwa Chang, Cheol Yi Hong, Chun-Soo Na, Mi-Sook Dong, Dongho Lee, Moo-Yeol Lee. Antiplatelet effects of Rhus verniciflua stokes heartwood and its active constituents--fisetin, butein, and sulfuretin--in rats. Journal of medicinal food. 2015 Jan; 18(1):21-30. doi: 10.1089/jmf.2013.3116. [PMID: 25372471]
  • Myeong Hyeon Park, In Sook Kim, Sun-A Kim, Chun-Soo Na, Cheol Yi Hong, Mi-Sook Dong, Hye Hyun Yoo. Inhibitory effect of Rhus verniciflua Stokes extract on human aromatase activity; butin is its major bioactive component. Bioorganic & medicinal chemistry letters. 2014 Apr; 24(7):1730-3. doi: 10.1016/j.bmcl.2014.02.039. [PMID: 24630560]
  • Eun Ha Lee, Dae-Geun Song, Joo Young Lee, Cheol-Ho Pan, Byung Hun Um, Sang Hoon Jung. Inhibitory effect of the compounds isolated from Rhus verniciflua on aldose reductase and advanced glycation endproducts. Biological & pharmaceutical bulletin. 2008 Aug; 31(8):1626-30. doi: 10.1248/bpb.31.1626. [PMID: 18670102]
  • Ai-Lin Liu, Hai-Di Wang, Simon MingYuen Lee, Yi-Tao Wang, Guan-Hua Du. Structure-activity relationship of flavonoids as influenza virus neuraminidase inhibitors and their in vitro anti-viral activities. Bioorganic & medicinal chemistry. 2008 Aug; 16(15):7141-7. doi: 10.1016/j.bmc.2008.06.049. [PMID: 18640042]
  • Jian-fei Chao, Zhi-qi Yin, Wen-cai Ye, Shou-xun Zhao. [Chemical constituents from branch of Broussonetia papyrifera]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2006 Jul; 31(13):1078-80. doi: ". [PMID: 17048607]
  • Monica Sanchez-Gonzalez, John P N Rosazza. Biocatalytic synthesis of butein and sulfuretin by Aspergillus alliaceus. Journal of agricultural and food chemistry. 2006 Jun; 54(13):4646-50. doi: 10.1021/jf060900k. [PMID: 16787010]
  • Jongwon Choi, Byung-Jae Yoon, Yong Nam Han, Kyung-Tae Lee, Joohun Ha, Hyun-Ju Jung, Hee-Juhn Park. Antirheumatoid arthritis effect of Rhus verniciflua and of the active component, sulfuretin. Planta medica. 2003 Oct; 69(10):899-904. doi: 10.1055/s-2003-45097. [PMID: 14648391]
  • O Kayser, W R Waters, K M Woods, S J Upton, J S Keithly, A F Kiderlen. Evaluation of in vitro activity of aurones and related compounds against Cryptosporidium parvum. Planta medica. 2001 Nov; 67(8):722-5. doi: 10.1055/s-2001-18357. [PMID: 11731913]
  • J M Pinedo, F Gonzalez de Canales, J L Hinojosa, P Llamas, B M Hausen. Contact dermatitis to sesquiterpene lactones in Inula viscosa Aiton. Contact dermatitis. 1987 Nov; 17(5):322-3. doi: 10.1111/j.1600-0536.1987.tb01492.x. [PMID: 3325222]