Proscillaridin (BioDeep_00000000871)

 

Secondary id: BioDeep_00000182666

natural product PANOMIX_OTCML-2023 Chemicals and Drugs Toxin Antitumor activity


代谢物信息卡片


5-[(3S,8R,9S,10R,13R,14S,17R)-14-hydroxy-10,13-dimethyl-3-[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy-1,2,3,6,7,8,9,11,12,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl]pyran-2-one

化学式: C30H42O8 (530.288)
中文名称: 原海葱甙A
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 33.33%

分子结构信息

SMILES: C1[C@]2(C)[C@@]3([H])CC[C@]4(C)[C@@]([H])(C5=COC(=O)C=C5)CC[C@]4(O)[C@]3([H])CCC2=C[C@@H](O[C@H]2[C@H](O)[C@H](O)[C@@H](O)[C@H](C)O2)C1
InChI: InChI=1S/C30H42O8/c1-16-24(32)25(33)26(34)27(37-16)38-19-8-11-28(2)18(14-19)5-6-22-21(28)9-12-29(3)20(10-13-30(22,29)35)17-4-7-23(31)36-15-17/h4,7,14-16,19-22,24-27,32-35H,5-6,8-13H2,1-3H3/t16-,19-,20+,21-,22+,24-,25+,26+,27-,28-,29+,30-/m0/s1

描述信息

Proscillaridin is an organic molecular entity.
Proscillaridin is a cardiac glycoside that is derived from plants of the genus Scilla and in Drimia maritima (Scilla maritima). Studies suggest the potential cytotoxic and anticancer property of proscillaridin, based on evidence of the drug potently disrupting topoisomerase I and II activity at nanomolar drug concentrations and triggering cell death and blocking cell proliferation of glioblastoma cell lines.
Proscillaridin is a natural product found in Drimia indica with data available.
A cardiotonic glycoside isolated from Scilla maritima var. alba (Squill).
C - Cardiovascular system > C01 - Cardiac therapy > C01A - Cardiac glycosides > C01AB - Scilla glycosides
D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides
D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides
C78274 - Agent Affecting Cardiovascular System > C78322 - Cardiotonic Agent
D002317 - Cardiovascular Agents
D004791 - Enzyme Inhibitors
Proscillaridin A is a potent poison of topoisomerase I/II activity with IC50 values of 30 nM and 100 nM, respectively[1].
Proscillaridin A is a potent poison of topoisomerase I/II activity with IC50 values of 30 nM and 100 nM, respectively[1].

同义名列表

85 个代谢物同义名

5-[(3S,8R,9S,10R,13R,14S,17R)-14-hydroxy-10,13-dimethyl-3-[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy-1,2,3,6,7,8,9,11,12,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl]pyran-2-one; BUFA-4,20,22-TRIENOLIDE, 3-((6-DEOXY-.ALPHA.-L-MANNOPYRANOSYL)OXY)-14-HYDROXY-, (3.BETA.)-; Bufa-4,20,22-trienolide, 3-((6-deoxy-alpha-L-mannopyranosyl)oxy)-14-hydroxy-, (3-beta)-; Bufa-4,20,22-trienolide, 3-((6-deoxy-alpha-L-mannopyranosyl)oxy)-14-hydroxy-, (3beta)-; (3beta)-3-[(6-deoxy-alpha-L-mannopyranosyl)oxy]-14-hydroxybufa-4,20,22-trienolide; 3-beta-((6-Deoxy-alpha-L-mannopyranosyl)oxy)-14-hydroxybufa-4,20,22-trienolide; Bufa-4,20,22-trienolide,3-[(6-deoxy-a-L-mannopyranosyl)oxy]-14-hydroxy-, (3b)-; Bufa-4,20,22-trienolide, 3-beta-((6-deoxy-alpha-L-mannosyl)oxy)-14-hydroxy-; 3-O-(alpha-L-rhamnopyranosyl)-3beta,14beta-dihydroxybufa-4,20,22-trienolide; ((6-Deoxy-.alpha.-L-mannopyranosyl)oxy)-14-hydroxybufa-4,20,22-trienolide; ((6-Deoxy-alpha-L-mannopyranosyl)oxy)-14-hydroxybufa-4,20,22-trienolide; 3-beta-Rhamnosido-14-beta-hydroxy-delta(sup 4,20,22)-bufatrienolide; 3-beta,14-beta-Dihydroxybufa-4,20,22-trienolide 3-rhamnoside; 14-Hydroxy-3-beta-(rhamnosyloxy)bufa-4,20,22-trienolide; 14-Hydroxy-3beta-(rhamnosyloxy)bufa-4,20,22-trienolide; Rhamnopyranoside, scillarenin-3, alpha-L-; Scillarenin, 3-alpha-L-rhamnopyranoside; Scillarenin, 3alpha-L-rhamnopyranoside; Proscillaridin [USAN:INN:BAN:JAN]; Proscillaridin (JAN/USAN/INN); Scillarenin-rhamnose [German]; Scillarenin 3-beta-rhamnoside; Proscillaridinum [INN-Latin]; Scillarenin 3beta-rhamnoside; Proscillaridine [INN-French]; Proscilaridina [INN-Spanish]; MYEJFUXQJGHEQK-ALRJYLEOSA-N; Scillarenin 3-O-rhamnoside; PROSCILLARIDIN [WHO-DD]; Rhamnoside, Scillarenin; Proscillaridina [DCIT]; PROSCILLARIDIN [MART.]; Scillarenin Rhamnoside; Proscilardyna [Polish]; PROSCILLARIDIN [USAN]; Transvaalin, degluco-; PROSCILLARIDIN [JAN]; PROSCILLARIDIN [INN]; Desglucotransvaaline; Desgluco-transvaalin; Scillarenin-rhamnose; PROSCILLARIDIN [MI]; Desglucotransvaalin; Herzo proscillan; Proscillaridin A; Proscillaridinum; Proscillaridina; UNII-KC6BL281EN; Proscillaridine; Proscilaridina; Tox21_110442_1; Proscillaridin; Proscilardyna; Scilla didier; Tox21_110442; Talusin (TN); Scillacrist; Digitalysat; Proslladin; Purosin-TC; Sandoscill; KC6BL281EN; Cardiovite; Proscillan; Stellarid; Procardin; Caradrine; Solestril; Prostosin; Talucard; Procilan; Tradenal; Wirnesin; Scillase; Protasin; Caradrin; Carmazon; Cardion; Talusin; Proszin; Urgilan; Coratol; Simeon; Herzo; Proscillaridin



数据库引用编号

39 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

39 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 13 ABCB1, AKT1, BCL2, BCL2L1, CASP3, CDC42, EGFR, FADD, MAPK8, MCL1, MTOR, SMAD4, STAT3
Peripheral membrane protein 1 MTOR
Endosome membrane 1 EGFR
Endoplasmic reticulum membrane 4 BCL2, CDC42, EGFR, MTOR
Mitochondrion membrane 1 BCL2L1
Nucleus 11 AKT1, BCL2, CASP3, EGFR, MAPK8, MCL1, MTOR, PARP1, SMAD4, STAT3, TOP1
autophagosome 1 MAP1LC3A
cytosol 15 AKT1, BCL2, BCL2L1, CASP3, CDC42, DIABLO, FADD, MAP1LC3A, MAPK8, MCL1, MTOR, PARP1, PXN, SMAD4, STAT3
dendrite 1 MTOR
nuclear body 1 PARP1
phagocytic vesicle 2 CDC42, MTOR
centrosome 3 BCL2L1, CDC42, SMAD4
nucleoplasm 10 AKT1, ATP2B1, CASP3, MAPK8, MCL1, MTOR, PARP1, SMAD4, STAT3, TOP1
RNA polymerase II transcription regulator complex 2 SMAD4, STAT3
Cell membrane 5 ABCB1, AKT1, ATP2B1, CDC42, EGFR
Lipid-anchor 2 CDC42, MAP1LC3A
Cytoplasmic side 3 BCL2L1, CDC42, MTOR
lamellipodium 2 AKT1, PXN
ruffle membrane 1 EGFR
Early endosome membrane 1 EGFR
Multi-pass membrane protein 2 ABCB1, ATP2B1
Golgi apparatus membrane 1 MTOR
Synapse 2 ATP2B1, MAPK8
cell cortex 2 AKT1, PXN
cell junction 1 EGFR
cell surface 2 ABCB1, EGFR
glutamatergic synapse 6 AKT1, ATP2B1, CASP3, CDC42, EGFR, MAP1LC3A
Golgi membrane 3 CDC42, EGFR, MTOR
lysosomal membrane 1 MTOR
mitochondrial inner membrane 1 BCL2L1
neuronal cell body 2 CASP3, CDC42
postsynapse 1 AKT1
presynaptic membrane 1 ATP2B1
Cytoplasm, cytosol 3 BCL2L1, DIABLO, PARP1
Lysosome 1 MTOR
endosome 1 EGFR
plasma membrane 8 ABCB1, AKT1, ATP2B1, CDC42, EGFR, FADD, PXN, STAT3
synaptic vesicle membrane 2 ATP2B1, BCL2L1
Membrane 10 ABCB1, AKT1, ATP2B1, BCL2, CDC42, DIABLO, EGFR, MCL1, MTOR, PARP1
apical plasma membrane 2 ABCB1, EGFR
axon 1 MAPK8
basolateral plasma membrane 2 ATP2B1, EGFR
extracellular exosome 3 ABCB1, ATP2B1, CDC42
Lysosome membrane 1 MTOR
endoplasmic reticulum 2 BCL2, BCL2L1
extracellular space 2 EGFR, IL6
perinuclear region of cytoplasm 1 EGFR
Schaffer collateral - CA1 synapse 1 CDC42
mitochondrion 5 BCL2, BCL2L1, DIABLO, MCL1, PARP1
protein-containing complex 5 AKT1, BCL2, CDC42, EGFR, PARP1
intracellular membrane-bounded organelle 2 ATP2B1, MAP1LC3A
Microsome membrane 1 MTOR
filopodium 1 CDC42
postsynaptic density 1 CASP3
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 1 EGFR
Secreted 1 IL6
extracellular region 1 IL6
cytoplasmic side of plasma membrane 2 DIABLO, FADD
Mitochondrion outer membrane 3 BCL2, BCL2L1, MTOR
Single-pass membrane protein 3 BCL2, BCL2L1, MCL1
mitochondrial outer membrane 4 BCL2, BCL2L1, MCL1, MTOR
Mitochondrion matrix 1 BCL2L1
mitochondrial matrix 1 BCL2L1
transcription regulator complex 3 PARP1, SMAD4, STAT3
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 2 BCL2L1, CDC42
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 2 ATP2B1, BCL2L1
Nucleus membrane 2 BCL2, BCL2L1
Bcl-2 family protein complex 3 BCL2, BCL2L1, MCL1
nuclear membrane 3 BCL2, BCL2L1, EGFR
CD40 receptor complex 1 DIABLO
dendritic spine 1 CDC42
perikaryon 1 TOP1
microtubule cytoskeleton 1 AKT1
nucleolus 2 PARP1, TOP1
midbody 1 CDC42
P-body 1 TOP1
apical part of cell 1 CDC42
cell-cell junction 3 AKT1, CDC42, PXN
spindle midzone 1 CDC42
vesicle 1 AKT1
Apical cell membrane 1 ABCB1
Membrane raft 1 EGFR
pore complex 1 BCL2
Cell junction, focal adhesion 1 PXN
Cytoplasm, cytoskeleton 2 MAP1LC3A, PXN
Cytoplasm, cytoskeleton, spindle 1 CDC42
focal adhesion 3 CDC42, EGFR, PXN
microtubule 1 MAP1LC3A
spindle 1 AKT1
intracellular vesicle 1 EGFR
Nucleus, PML body 1 MTOR
PML body 1 MTOR
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 2 AKT1, DIABLO
secretory granule 1 CDC42
lateral plasma membrane 1 ATP2B1
Late endosome 1 MAP1LC3A
receptor complex 1 EGFR
neuron projection 1 CDC42
ciliary basal body 1 AKT1
chromatin 3 PARP1, SMAD4, STAT3
microtubule associated complex 1 PXN
Cytoplasmic vesicle, autophagosome membrane 1 MAP1LC3A
autophagosome membrane 1 MAP1LC3A
cell projection 1 ATP2B1
mitotic spindle 1 CDC42
Chromosome 2 PARP1, TOP1
cytoskeleton 1 PXN
cytoplasmic ribonucleoprotein granule 1 CDC42
Nucleus, nucleolus 2 PARP1, TOP1
nuclear replication fork 1 PARP1
chromosome, telomeric region 1 PARP1
Cytoplasm, cell cortex 1 PXN
Basolateral cell membrane 1 ATP2B1
organelle membrane 1 MAP1LC3A
site of double-strand break 1 PARP1
fibrillar center 1 TOP1
nuclear envelope 2 MTOR, PARP1
Endomembrane system 2 MAP1LC3A, MTOR
leading edge membrane 1 CDC42
myosin complex 1 MCL1
Nucleus, nucleoplasm 2 MCL1, TOP1
Cell projection, dendrite 1 CDC42
Presynaptic cell membrane 1 ATP2B1
cell body 1 FADD
myelin sheath 1 BCL2
stress fiber 1 PXN
basal plasma membrane 1 EGFR
synaptic membrane 1 EGFR
endoplasmic reticulum lumen 1 IL6
male germ cell nucleus 1 TOP1
immunological synapse 1 ATP2B1
clathrin-coated endocytic vesicle membrane 1 EGFR
heteromeric SMAD protein complex 1 SMAD4
SMAD protein complex 1 SMAD4
protein-DNA complex 2 PARP1, TOP1
external side of apical plasma membrane 1 ABCB1
basal dendrite 1 MAPK8
CD95 death-inducing signaling complex 1 FADD
death-inducing signaling complex 2 CASP3, FADD
ripoptosome 1 FADD
Cytoplasmic vesicle, phagosome 1 MTOR
site of DNA damage 1 PARP1
activin responsive factor complex 1 SMAD4
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
Autolysosome 1 MAP1LC3A
interleukin-6 receptor complex 1 IL6
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
BAD-BCL-2 complex 1 BCL2
photoreceptor ribbon synapse 1 ATP2B1
Golgi transport complex 1 CDC42
storage vacuole 1 CDC42
[Isoform Bcl-X(L)]: Mitochondrion inner membrane 1 BCL2L1


文献列表

  • Umesh Chandra Dash, Sandeep Kumar Swain, Atala Bihari Jena, Jagnehswar Dandapat, Atish Kumar Sahoo. The ameliorative effect of Piper trioicum in attenuating cognitive deficit in scopolamine induced neurotoxicity in experimental rats. Journal of ethnopharmacology. 2023 Jul; ?(?):116911. doi: 10.1016/j.jep.2023.116911. [PMID: 37451488]
  • S Aishwarya, K Gunasekaran, A Anita Margret. Computational gene expression profiling in the exploration of biomarkers, non-coding functional RNAs and drug perturbagens for COVID-19. Journal of biomolecular structure & dynamics. 2022 05; 40(8):3681-3696. doi: 10.1080/07391102.2020.1850360. [PMID: 33228475]
  • Shuo Fang, Hai Tao, Kezhou Xia, Weichun Guo. Proscillaridin A induces apoptosis and inhibits the metastasis of osteosarcoma in vitro and in vivo. Biochemical and biophysical research communications. 2020 01; 521(4):880-886. doi: 10.1016/j.bbrc.2019.11.012. [PMID: 31708095]
  • Francisco Triana-Martínez, Pilar Picallos-Rabina, Sabela Da Silva-Álvarez, Federico Pietrocola, Susana Llanos, Verónica Rodilla, Enrica Soprano, Pablo Pedrosa, Alba Ferreirós, Marta Barradas, Fernanda Hernández-González, Marta Lalinde, Neus Prats, Cristina Bernadó, Patricia González, María Gómez, Maria P Ikonomopoulou, Pablo J Fernández-Marcos, Tomás García-Caballero, Pablo Del Pino, Joaquín Arribas, Anxo Vidal, Miguel González-Barcia, Manuel Serrano, María I Loza, Eduardo Domínguez, Manuel Collado. Identification and characterization of Cardiac Glycosides as senolytic compounds. Nature communications. 2019 10; 10(1):4731. doi: 10.1038/s41467-019-12888-x. [PMID: 31636264]
  • Elnaz Gozalpour, Martijn J Wilmer, Albert Bilos, Rosalinde Masereeuw, Frans G M Russel, Jan B Koenderink. Heterogeneous transport of digitalis-like compounds by P-glycoprotein in vesicular and cellular assays. Toxicology in vitro : an international journal published in association with BIBRA. 2016 Apr; 32(?):138-45. doi: 10.1016/j.tiv.2015.12.009. [PMID: 26708294]
  • Hesham R El-Seedi, Robert Burman, Ahmed Mansour, Zaki Turki, Loutfy Boulos, Joachim Gullbo, Ulf Göransson. The traditional medical uses and cytotoxic activities of sixty-one Egyptian plants: discovery of an active cardiac glycoside from Urginea maritima. Journal of ethnopharmacology. 2013 Feb; 145(3):746-57. doi: 10.1016/j.jep.2012.12.007. [PMID: 23228916]
  • Heidrun Weidemann. 'The Lower Threshold' phenomenon in tumor cells toward endogenous digitalis-like compounds: Responsible for tumorigenesis?. Journal of carcinogenesis. 2012; 11(?):2. doi: 10.4103/1477-3163.92999. [PMID: 22438768]
  • Jenny Felth, Linda Rickardson, Josefin Rosén, Malin Wickström, Mårten Fryknäs, Magnus Lindskog, Lars Bohlin, Joachim Gullbo. Cytotoxic effects of cardiac glycosides in colon cancer cells, alone and in combination with standard chemotherapeutic drugs. Journal of natural products. 2009 Nov; 72(11):1969-74. doi: 10.1021/np900210m. [PMID: 19894733]
  • Yutaka Komiyama, Xian Hui Dong, Noriko Nishimura, Hiroya Masaki, Masamichi Yoshika, Midori Masuda, Hakuo Takahashi. A novel endogenous digitalis, telocinobufagin, exhibits elevated plasma levels in patients with terminal renal failure. Clinical biochemistry. 2005 Jan; 38(1):36-45. doi: 10.1016/j.clinbiochem.2004.08.005. [PMID: 15607315]
  • R Schneider, R Antolovic, H Kost, B Sich, U Kirch, M Tepel, W Zidek, W Schoner. Proscillaridin A immunoreactivity: its purification, transport in blood by a specific binding protein and its correlation with blood pressure. Clinical and experimental hypertension (New York, N.Y. : 1993). 1998 Jul; 20(5-6):593-9. doi: 10.3109/10641969809053237. [PMID: 9682915]
  • S Li, C Eim, U Kirch, R E Lang, W Schoner. Bovine adrenals and hypothalamus are a major source of proscillaridin A- and ouabain-immunoreactivities. Life sciences. 1998; 62(11):1023-33. doi: 10.1016/s0024-3205(98)00023-x. [PMID: 9515560]
  • B Sich, U Kirch, M Tepel, W Zidek, W Schoner. Pulse pressure correlates in humans with a proscillaridin A immunoreactive compound. Hypertension (Dallas, Tex. : 1979). 1996 May; 27(5):1073-8. doi: 10.1161/01.hyp.27.5.1073. [PMID: 8621199]
  • A T Nguyen, P A Doris. Role of endogenous cardiac glycosides in the spontaneously hypertensive rat--antagonism by active immunization. American journal of hypertension. 1996 Jan; 9(1):81-5. doi: 10.1016/0895-7061(95)00291-x. [PMID: 8834711]
  • T Tanase, N Murakami, A Nagatsu, S Nagai, J Sakakibara, H Ando, Y Hotta, K Takeya, M Asano. [Studies on cardiac ingredients of plants. X. Preparation of nitrates of tetrahydroproscillaridin and their pharmacological activities]. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan. 1992 Nov; 112(11):792-803. doi: 10.1248/yakushi1947.112.11_792. [PMID: 1336548]
  • T Tanase, N Murakami, S Nagai, T Ueda, J Sakakibara, H Ando, Y Hotta, K Takeya. Studies on cardiac ingredients of plants. IX. Chemical transformation of proscillaridin by utilizing its 1,4-cycloadducts as key compounds and biological activities of their derivatives. Chemical & pharmaceutical bulletin. 1992 Feb; 40(2):327-32. doi: 10.1248/cpb.40.327. [PMID: 1318790]
  • N Murakami, Y Sato, T Tanase, S Nagai, T Ueda, J Sakakibara, H Ando, Y Hotta, K Takeya, M Asano. [Studies on cardiac ingredients of plants. VIII. Preparation of nitrates of proscillaridin and their pharmacological activities]. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan. 1991 Aug; 111(8):436-44. doi: 10.1248/yakushi1947.111.8_436. [PMID: 1665512]
  • N Murakami, T Tanase, S Nagai, Y Sato, T Ueda, J Sakakibara, H Ando, Y Hotta, K Takeya. Studies on cardiac ingredients of plants. VII: Chemical transformation of proscillaridin by means of the Diels-Alder reaction and biological activities of its derivatives. Chemical & pharmaceutical bulletin. 1991 Aug; 39(8):1962-6. doi: 10.1248/cpb.39.1962. [PMID: 1839142]
  • K Kojima, K Yamamoto, Y Terauchi, A Kagemoto, S Naruto, Y Nakanishi. Determination of proscillaridin in plasma by radioimmunoassay. Journal of pharmacobio-dynamics. 1986 Aug; 9(8):665-71. doi: 10.1248/bpb1978.9.665. [PMID: 3783410]
  • H D Lehmann. [Effect of plant glycosides on resistance and capacitance vessels]. Arzneimittel-Forschung. 1984; 34(4):423-9. doi: . [PMID: 6540100]
  • K Burkert, H Beckmann. [Plasma concentration and elimination behavior of the cardiac glycoside meproscillarin in patients with liver cirrhosis]. Zeitschrift fur Gastroenterologie. 1983 Jan; 21(1):34-40. doi: NULL. [PMID: 6845784]
  • U Peters. Pharmacokinetic review of digitalis glycosides. European heart journal. 1982 Dec; 3 Suppl D(?):65-78. doi: NULL. [PMID: 6761129]
  • J Bonelli. [Therapy of chronic cardiac insufficiency with cardiac glycosides]. Wiener medizinische Wochenschrift (1946). 1982 Oct; 132(19):442-9. doi: NULL. [PMID: 7179995]
  • M Rupp, H Brass, D Glöckler. [Problems of glycoside therapy in kidney insufficiency and uremia]. Die Medizinische Welt. 1981 Jan; 32(4):115-22. doi: NULL. [PMID: 7207142]
  • H Beckmann, G G Belz, E Quellhorst. [Meproscillarin in patients with renal failure and concomitant heart failure (author's transl)]. Medizinische Klinik. 1979 Nov; 74(47):1761-6. doi: NULL. [PMID: 522817]
  • B Bergdahl. Disposition rate of proscillaridin A in man after multiple oral doses. Arzneimittel-Forschung. 1979; 29(2):343-5. doi: . [PMID: 582147]
  • D S Regal. [Effect of proscillaridin on adenosine triphosphatase in kidney tissue in the rat. Electron microscopy demonstration and significance for calcium metabolism]. Zentralblatt fur Veterinarmedizin. Reihe A. 1978 Nov; 25(9):704-17. doi: . [PMID: 153691]
  • J Bonelli. [Modern cardiac glycoside therapy]. Wiener medizinische Wochenschrift (1946). 1978; 128(22):689-96. doi: NULL. [PMID: 735108]
  • K E Andersson, B Bergdahl, H Dencker, G Wettrell. Proscillaridin activity in portal and peripheral venous blood after oral administration to man. European journal of clinical pharmacology. 1977 Apr; 11(4):277-81. doi: 10.1007/bf00607677. [PMID: 862648]
  • B Bergdahl, K E Andersson. Stability in vitro of methylproscillaridin. European journal of clinical pharmacology. 1977 Apr; 11(4):267-71. doi: 10.1007/bf00607675. [PMID: 16755]
  • K E Andersson, B Bergdahl, G Wettrell. Biliary excretion and enterochepatic recycling of proscillaridin A after oral adminstration to man. European journal of clinical pharmacology. 1977 Apr; 11(4):273-6. doi: 10.1007/bf00607676. [PMID: 862647]
  • K E Andersson, B Bergdahl, H Dencker, G Wettrell. Activities of proscillaridin A in thoracic duct lymph after single oral doses in man. Acta pharmacologica et toxicologica. 1977 Feb; 40(2):280-4. doi: 10.1111/j.1600-0773.1977.tb02079.x. [PMID: 576557]
  • K E Andersson, B Bergdah, A Bertler, A Redfors. On the absorption of proscillaridin A after single oral doses to normal and achlorhydric subjects. Acta pharmacologica et toxicologica. 1977 Jan; 40(1):153-60. doi: 10.1111/j.1600-0773.1977.tb02063.x. [PMID: 576356]
  • G Neugebauer. [Influence of high intravenous doses of D-penicillamine on toxic actions of cardiac glycosides in the guinea pig. Short communication (author's transl)]. Arzneimittel-Forschung. 1977; 27(11):2073-4. doi: NULL. [PMID: 580003]
  • G G Belz, H Schreiter, G K Wolf. Pharmacokinetics and pharmacodynamics of methyl proscillaridin in healthy man. European journal of clinical pharmacology. 1976 Jun; 10(2):101-8. doi: 10.1007/bf00609467. [PMID: 786669]
  • G G Belz, H Nübling, G Belz. Plasma concentrations during repeated intravenous and oral methyl-proscillaridin application in man. Arzneimittel-Forschung. 1976 Feb; 26(2):277-8. doi: NULL. [PMID: 947212]
  • R Staud, N Rietbrock, H P Fassbender. Excretion of methylproscillaridin in patients with a biliary fistula. European journal of clinical pharmacology. 1975 Dec; 9(2-3):99-103. doi: 10.1007/bf00614004. [PMID: 1233271]
  • K E Andersson, A Bertler, A Redfors. On the pharmacokinetics of proscillaridin A in man. European journal of clinical pharmacology. 1975 Aug; 8(6):421-5. doi: 10.1007/bf00562316. [PMID: 1233243]
  • N Rietbrock, R Staud. Metabolism and excretion of methylproscillaridin by man. European journal of clinical pharmacology. 1975 Aug; 8(6):427-32. doi: 10.1007/bf00562317. [PMID: 1233244]
  • G G Belz, H Nübling, M Strauch. [Effect and plasma level of methylproscillaridin and beta-acetyldigitoxin following long term administration in man]. Verhandlungen der Deutschen Gesellschaft fur Kreislaufforschung. 1975; 41(?):315-9. doi: NULL. [PMID: 821263]
  • H Nishida. [Studies on direct effects of proscillaridin A on the electrolyte excretion and transport ATPase in dog kidneys (author's transl)]. [Hokkaido igaku zasshi] The Hokkaido journal of medical science. 1974 Jul; 49(4):302-6. doi: . [PMID: 4281758]