dezocine (BioDeep_00001868456)

Main id: BioDeep_00000002716

 


代谢物信息卡片


dezocine

化学式: C16H23NO (245.178)
中文名称: 地佐辛
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC12CCCCCC(C1N)CC3=C2C=C(C=C3)O
InChI: InChI=1S/C16H23NO/c1-16-8-4-2-3-5-12(15(16)17)9-11-6-7-13(18)10-14(11)16/h6-7,10,12,15,18H,2-5,8-9,17H2,1H3/t12-,15-,16+/m0/s1

描述信息

D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents
C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist
D002491 - Central Nervous System Agents > D000700 - Analgesics
N - Nervous system > N02 - Analgesics > N02A - Opioids

同义名列表

2 个代谢物同义名

dezocine; Dezocine



数据库引用编号

11 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 6 AKT1, GFAP, GJA1, MAPK8, POMC, PTGS2
Peripheral membrane protein 2 GORASP1, PTGS2
Endoplasmic reticulum membrane 3 CD4, GJA1, PTGS2
Nucleus 3 AKT1, GJA1, MAPK8
cytosol 5 AKT1, CD3G, GFAP, GJA1, MAPK8
dendrite 2 OPRM1, PDYN
nucleoplasm 3 AKT1, GJA1, MAPK8
Cell membrane 8 AKT1, CD3G, CD4, CD8A, GJA1, OPRD1, OPRM1, TNF
Cytoplasmic side 1 GORASP1
lamellipodium 1 AKT1
Cell projection, axon 1 OPRM1
Multi-pass membrane protein 3 GJA1, OPRD1, OPRM1
Golgi apparatus membrane 2 GORASP1, MGAT1
Synapse 4 MAPK8, OPRM1, PDYN, TAC1
cell cortex 1 AKT1
cell junction 1 GJA1
cell surface 1 TNF
glutamatergic synapse 1 AKT1
Golgi apparatus 4 GJA1, GORASP1, MGAT1, OPRM1
Golgi membrane 3 GJA1, GORASP1, MGAT1
neuronal cell body 3 PDYN, TAC1, TNF
postsynapse 1 AKT1
presynaptic membrane 1 OPRD1
endosome 1 OPRM1
plasma membrane 9 AKT1, CD3G, CD4, CD8A, GJA1, OPRD1, OPRM1, PDYN, TNF
synaptic vesicle membrane 1 OPRD1
Membrane 5 AKT1, CD3G, MGAT1, OPRD1, OPRM1
apical plasma membrane 1 GJA1
axon 4 CCK, MAPK8, OPRM1, TAC1
caveola 1 PTGS2
extracellular exosome 1 MGAT1
endoplasmic reticulum 3 GJA1, OPRM1, PTGS2
extracellular space 7 CCK, CRP, IL10, IL6, POMC, TAC1, TNF
perinuclear region of cytoplasm 1 MGAT1
gap junction 1 GJA1
intercalated disc 1 GJA1
mitochondrion 1 GJA1
protein-containing complex 2 AKT1, PTGS2
intracellular membrane-bounded organelle 1 GJA1
Microsome membrane 1 PTGS2
Single-pass type I membrane protein 3 CD3G, CD4, CD8A
Secreted 6 CCK, CRP, IL10, IL6, PDYN, POMC
extracellular region 9 CCK, CD8A, CRP, IL10, IL6, PDYN, POMC, TAC1, TNF
astrocyte end-foot 1 GFAP
hippocampal mossy fiber to CA3 synapse 1 PDYN
[Isoform 2]: Secreted 1 CD8A
external side of plasma membrane 4 CD3G, CD4, CD8A, TNF
Extracellular vesicle 1 MGAT1
perikaryon 1 OPRM1
microtubule cytoskeleton 1 AKT1
Early endosome 1 CD4
cell-cell junction 1 AKT1
recycling endosome 1 TNF
Single-pass type II membrane protein 2 MGAT1, TNF
vesicle 1 AKT1
Cytoplasm, perinuclear region 1 MGAT1
Membrane raft 3 CD4, GJA1, TNF
focal adhesion 1 GJA1
spindle 1 AKT1
cis-Golgi network 1 GORASP1
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
secretory granule 1 POMC
Cell junction, gap junction 1 GJA1
connexin complex 1 GJA1
contractile muscle fiber 1 GJA1
fascia adherens 1 GJA1
intermediate filament 2 GFAP, GJA1
lateral plasma membrane 1 GJA1
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
receptor complex 1 CD8A
neuron projection 3 OPRD1, OPRM1, PTGS2
ciliary basal body 1 AKT1
cell projection 1 GFAP
phagocytic cup 1 TNF
Cell projection, dendrite 1 OPRM1
Golgi-associated vesicle membrane 1 GJA1
cell body 1 GFAP
intermediate filament cytoskeleton 1 GFAP
plasma membrane raft 1 CD8A
secretory granule lumen 1 POMC
endoplasmic reticulum lumen 3 CD4, IL6, PTGS2
axon terminus 2 OPRD1, PDYN
tight junction 1 GJA1
Endoplasmic reticulum-Golgi intermediate compartment membrane 2 GORASP1, MGAT1
postsynaptic density membrane 1 OPRD1
neuronal dense core vesicle 2 OPRD1, PDYN
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
clathrin-coated endocytic vesicle membrane 2 CD3G, CD4
basal dendrite 1 MAPK8
[Isoform 1]: Cell membrane 1 CD8A
dendrite membrane 1 OPRD1
cell-cell contact zone 1 GJA1
cytoplasmic side of lysosomal membrane 1 GFAP
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
T cell receptor complex 2 CD4, CD8A
alpha-beta T cell receptor complex 1 CD3G
interleukin-6 receptor complex 1 IL6
gamma-delta T cell receptor complex 1 CD3G
[Isoform 12]: Cytoplasm 1 OPRM1
spine apparatus 1 OPRD1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Boran Deng, Dingding Wang, Zifeng Xie, Yongqin Wang, Li Huang, Manlin Jiang, Tu Shen. Comparison of the analgesic effect of dezocine and esketamine in combination with sufentanil respectively after laparoscopic cholecystectomy: a prospective randomized controlled study. BMC anesthesiology. 2024 Feb; 24(1):51. doi: 10.1186/s12871-024-02430-y. [PMID: 38317099]
  • Yue-Xia Lu, Qin-Feng Cai. [Application value and safety of prostate peripheral nerve block combined with dezocine in transrectal prostate biopsy]. Zhonghua nan ke xue = National journal of andrology. 2022 Jun; 28(6):506-510. doi: . [PMID: 37477467]
  • Z-H Yang, R Shen, F-F Zhan, J-L Shao, Y-J Lu, L Wang. Effects of dezocine combined with dexmedetomidine on adverse reactions and inflammatory factors in patients undergoing HIPEC after intestinal surgery and its protective effect on the heart in the perioperative period. European review for medical and pharmacological sciences. 2022 05; 26(10):3437-3443. doi: 10.26355/eurrev_202205_28837. [PMID: 35647823]
  • Fang Zhu, Wei Duan, Chao Zhong, Bing Ji, Xinjun Liu. The protective effects of dezocine on interleukin-1β-induced inflammation, oxidative stress and apoptosis of human nucleus pulposus cells and the possible mechanisms. Bioengineered. 2022 01; 13(1):1399-1410. doi: 10.1080/21655979.2021.2017700. [PMID: 34974796]
  • Siqingaowa Han, Chen Zhang, Zhijie Chen, Xuanyu Sha, Wuliji Hasi. Rapid Detection of Dezocine in Biological Fluids Based on SERS Technology. Analytical sciences : the international journal of the Japan Society for Analytical Chemistry. 2021 Feb; 37(2):315-320. doi: 10.2116/analsci.20p259. [PMID: 32893251]
  • Jie Hu, Xin-Juan Su, Hui-Ling Si, Rui-Xiang Song, Fang Zhang, Xiang-Jun Qiu, Xing-Peng Chen. Simultaneous Determination of Celecoxib, Dezocine and Dexmedetomidine in Beagle Plasma Using UPLC-MS/MS Method and the Application in Pharmacokinetics. Drug design, development and therapy. 2021; 15(?):2529-2541. doi: 10.2147/dddt.s314562. [PMID: 34163139]
  • Yajing Dong, Zhi Liang, Zhe Xu, Wei Hao, Dandan Wang, Shuping Huo, Huayu Zhao. Effects of dezocine, morphine and nalbuphine on electropain threshold, temperature pain threshold and cardiac function in rats with myocardial ischemia. Annals of palliative medicine. 2020 Jul; 9(4):1556-1563. doi: 10.21037/apm-19-460. [PMID: 32762221]
  • Ronggang Zhu, Tingting Du, Hongzhu Gao. Effects of dezocine and ropivacaine infiltration anesthesia on cellular immune function indicators, anesthesia recovery time and pain factors in patients with open liver resection. Cellular and molecular biology (Noisy-le-Grand, France). 2020 Jun; 66(3):149-154. doi: . [PMID: 32538762]
  • Wei Zhou, Shuang-Long Li, Ti Zhao, Le Li, Wen-Bin Xing, Xiang-Jun Qiu, Wei Zhang. Effects of Dexmedetomidine on the Pharmacokinetics of Dezocine, Midazolam and Its Metabolite 1-Hydroxymidazolam in Beagles by UPLC-MS/MS. Drug design, development and therapy. 2020; 14(?):2595-2605. doi: 10.2147/dddt.s254055. [PMID: 32753841]
  • Qiang Jia, Fen Tian, Wei-Na Duan, Yi-Fan Jia, Hua-Xin Wang, Zhong-Yuan Xia. Effects of Dezocine-Remifentanil Intravenous Anaesthesia on Perioperative Signs, Serum TNF-&aipha; and IL-6 in Liver Cancer Patients undergoing Radiofrequency Ablation. Journal of the College of Physicians and Surgeons--Pakistan : JCPSP. 2019 Jan; 29(1):4-7. doi: 10.29271/jcpsp.2019.01.4. [PMID: 30630559]
  • Guang-Fen Zhang, Jie Guo, Li-Li Qiu, Shu-Ming Li, Man Zheng, Jiang-Yan Xia, Jian-Jun Yang. Effects of dezocine for the prevention of postoperative catheter-related bladder discomfort: a prospective randomized trial. Drug design, development and therapy. 2019; 13(?):1281-1288. doi: 10.2147/dddt.s199897. [PMID: 31114164]
  • Li Zhou, Youchuan Zhang, Haotian Sun, Ruchun Hu, Jin Wang, Guoyong Xu. Effect of preemptive dezocine before general anesthesia on postoperative analgesia in patients undergoing laparoscopic cholecystectomy: A prospective observational study. Medicine. 2018 Sep; 97(39):e12533. doi: 10.1097/md.0000000000012533. [PMID: 30278544]
  • Z-M Jia, H-N Hao, M-L Huang, D-F Ma, X-L Jia, B Ma. Influence of dexmedetomidine to cognitive function during recovery period for children with general anesthesia. European review for medical and pharmacological sciences. 2017 03; 21(5):1106-1111. doi: . [PMID: 28338180]
  • Shangkun Li, Su Min, Bin Wu, Wanbi Tang. [Application of patient-controlled intravenous analgesia of dezocine combined with sufentanil in burn patients after surgery]. Zhonghua shao shang za zhi = Zhonghua shaoshang zazhi = Chinese journal of burns. 2015 Feb; 31(1):48-51. doi: . [PMID: 25876640]
  • Renyu Liu, Xi-Ping Huang, Alexei Yeliseev, Jin Xi, Bryan L Roth. Novel molecular targets of dezocine and their clinical implications. Anesthesiology. 2014 Mar; 120(3):714-23. doi: 10.1097/aln.0000000000000076. [PMID: 24263237]
  • Parham Gharagozlou, Ezzat Hashemi, Timothy M DeLorey, J David Clark, Jelveh Lameh. Pharmacological profiles of opioid ligands at kappa opioid receptors. BMC pharmacology. 2006 Jan; 6(?):3. doi: 10.1186/1471-2210-6-3. [PMID: 16433932]
  • Parham Gharagozlou, Hasan Demirci, J David Clark, Jelveh Lameh. Activation profiles of opioid ligands in HEK cells expressing delta opioid receptors. BMC neuroscience. 2002 Nov; 3(?):19. doi: 10.1186/1471-2202-3-19. [PMID: 12437765]
  • J M Wilson, R I Cohen, E A Kezer, S J Schange, E R Smith. Single- and multiple-dose pharmacokinetics of dezocine in patients with acute or chronic pain. Journal of clinical pharmacology. 1995 Apr; 35(4):398-403. doi: 10.1002/j.1552-4604.1995.tb04080.x. [PMID: 7650230]
  • M M Warren, W H Boyce, J W Evans, P C Peters. A double-blind comparison of dezocine and morphine in patients with acute renal and ureteral colic. The Journal of urology. 1985 Sep; 134(3):457-9. doi: 10.1016/s0022-5347(17)47239-9. [PMID: 2863392]
  • S F Sisenwine, C O Tio, A L Liu, H W Ruelius. Pharmacokinetics of parenteral dezocine in rhesus monkeys and dogs. Drug metabolism and disposition: the biological fate of chemicals. 1982 Jul; 10(4):366-70. doi: NULL. [PMID: 6126336]
  • A J Lewis, T Kirchner. A comparison of the cardiorespiratory effects of ciramadol, dezocine, morphine and pentazocine in the anesthetized dog. Archives internationales de pharmacodynamie et de therapie. 1981 Mar; 250(1):73-83. doi: . [PMID: 6115623]
  • S F Sisenwine, C O Tio. The metabolic disposition of dezocine in rhesus monkeys and female rats given 14C-dezocine intragastrically. Drug metabolism and disposition: the biological fate of chemicals. 1981 Jan; 9(1):37-42. doi: NULL. [PMID: 6111429]
  • W Oosterlinck, A Verbaeys. Preliminary clinical experience with dezocine, a new potent analgesic. Current medical research and opinion. 1980; 6(7):472-4. doi: 10.1185/03007998009109470. [PMID: 7363647]