Demethoxycurcumin (BioDeep_00000017273)

Main id: BioDeep_00000004132

 

human metabolite PANOMIX_OTCML-2023 natural product


代谢物信息卡片


(1E,4Z,6E)-5-Hydroxy-1-(4-hydroxy-3-methoxy-phenyl)-7-(4-hydroxy-phenyl)-hepta-1,4,6-trien-3-one

化学式: C20H18O5 (338.1154)
中文名称: (E/Z)-去甲氧基姜黄素, 去甲氧基姜黄素, 脱甲氧姜黄
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: c1(c(cc(cc1)/C=C/C(=O)CC(=O)/C=C/c1ccc(cc1)O)OC)O
InChI: InChI=1S/C20H18O5/c1-25-20-12-15(6-11-19(20)24)5-10-18(23)13-17(22)9-4-14-2-7-16(21)8-3-14/h2-12,21,24H,13H2,1H3/b9-4+,10-5+

描述信息

Demethoxycurcumin is a beta-diketone that is curcumin in which one of the methoxy groups is replaced by hydrogen. It is found in Curcuma zedoaria and Etlingera elatior. It has a role as a metabolite, an antineoplastic agent and an anti-inflammatory agent. It is a polyphenol, a beta-diketone, an enone and a diarylheptanoid.
Demethoxycurcumin is a natural product found in Curcuma amada, Curcuma aeruginosa, and other organisms with data available.
Isolated from Curcuma zedoaria (zedoary), Curcuma longa (turmeric), Curcuma xanthorrhiza (Java turmeric). Demethoxycurcumin is found in many foods, some of which are beverages, herbs and spices, turmeric, and root vegetables.
Demethoxycurcumin is found in beverages. Demethoxycurcumin is isolated from Curcuma zedoaria (zedoary), Curcuma longa (turmeric), Curcuma xanthorrhiza (Java turmeric).
A beta-diketone that is curcumin in which one of the methoxy groups is replaced by hydrogen. It is found in Curcuma zedoaria and Etlingera elatior.
Demethoxycurcumin is the main active component of curcumin and has been shown to have anti-inflammatory and toxic effects on cancer cells.
Demethoxycurcumin is the main active component of curcumin and has been shown to have anti-inflammatory and toxic effects on cancer cells.

同义名列表

41 个代谢物同义名

(1E,4Z,6E)-5-Hydroxy-1-(4-hydroxy-3-methoxy-phenyl)-7-(4-hydroxy-phenyl)-hepta-1,4,6-trien-3-one; 1,6-Heptadiene-3,5-dione, 1-(4-hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)-, (1E,6E)-; (1E,6E)-1-(4-Hydroxy-3-methoxy-phenyl)-7-(4-hydroxy-phenyl)-hepta-1,6-diene-3,5-dione; (1E,6E)-1-(4-HYDROXY-3-METHOXY-PHENYL)-7-(4-HYDROXYPHENYL)HEPTA-1,6-DI ENE-3,5-DIONE; (1E,6E)-1-(4-HYDROXY-3-METHOXY-PHENYL)-7-(4-HYDROXYPHENYL)HEPTA-1,6-DIENE-3,5-DIONE; (1E,6E)-1-(4-hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)-hepta-1,6-diene-3,5-dione; (1E,6E)-1-(4-hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)-1,6-heptadiene-3,5-dione; 5-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-1-(4-hydroxyphenyl)hepta-1,4,6-trien-3-one; (1E,6E)-1-(4-hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)hepta-1,6-diene-3,5-dione; 1,6-Heptadiene-3,5-dione, 1-(4-hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)- (VAN); (E,E)-1-(4-Hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)-1,6-heptadiene-3,5-dione; 1-(4-Hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)-1,6-heptadiene-3,5-dione, 9CI; 1,6-Heptadiene-3,5-dione, 1-(4-hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)-; 1-(4-hydroxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)-hepta-1,6-diene-3,5-dione; 1-(4-hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)hepta-1,6-diene-3,5-dione; 1-(4-Hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)-1,6-heptadiene-3,5-dione; Curcumin II;Desmethoxycurcumin;Monodemethoxycurcumin; 6-Bromo-2-pyridin-4-yl-quinoline-4-carboxylicacid; Demethoxycurcumin, analytical standard; p-Hydroxycinnamoyl feruloyl methane; Feruloyl-P-hydroxycinnnamoylmethane; 4-hydroxycinnamoyl(feruloyl)methane; p-Hydroxycinnamoyl-feruloylmethane; 4-hydroxycinnamoyl(feroyl)methane; p-Hydroxycinnamoylferuloylmethane; Demethoxycurcumin, >=98\\% (HPLC); DESMETHOXYCURCUMIN [USP-RS]; feruloyl-p-coumaroylmethane; DEMETHOXYCURCUMIN [INCI]; (E/Z)-Demethoxycurcumin; (2E)-Demethoxy Curcumin; monodemethoxycurcumin; Demethoxy Curcumin; demethoxy-curcumin; desmethoxycurcumin; Demethoxycurcumin; UNII-W2F8059T80; curcumin II; W2F8059T80; curcuminII; BHCFM



数据库引用编号

24 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

65 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 16 ABCB1, AKT1, ANG, BCL2, CASP3, CASP8, CASP9, CDH1, CTNNB1, EGFR, MAPK8, MTOR, PIK3CA, PTGS2, STAT3, VEGFA
Peripheral membrane protein 2 MTOR, PTGS2
Endosome membrane 1 EGFR
Endoplasmic reticulum membrane 5 BCL2, EGFR, HMOX1, MTOR, PTGS2
Nucleus 15 AKT1, ANG, BCL2, CASP3, CASP8, CASP9, CDH1, CTNNB1, EGFR, FASLG, HMOX1, MAPK8, MTOR, STAT3, VEGFA
cytosol 13 AKT1, ANG, BCL2, CASP3, CASP8, CASP9, CDH1, CTNNB1, HMOX1, MAPK8, MTOR, PIK3CA, STAT3
dendrite 1 MTOR
phagocytic vesicle 1 MTOR
trans-Golgi network 1 CDH1
centrosome 1 CTNNB1
nucleoplasm 9 AKT1, CASP3, CASP8, CDH1, CTNNB1, HMOX1, MAPK8, MTOR, STAT3
RNA polymerase II transcription regulator complex 1 STAT3
Cell membrane 7 ABCB1, AKT1, CDH1, CTNNB1, EGFR, FASLG, TNF
Cytoplasmic side 2 HMOX1, MTOR
lamellipodium 5 AKT1, CASP8, CDH1, CTNNB1, PIK3CA
ruffle membrane 1 EGFR
Early endosome membrane 1 EGFR
Multi-pass membrane protein 1 ABCB1
Golgi apparatus membrane 1 MTOR
Synapse 2 CTNNB1, MAPK8
cell cortex 2 AKT1, CTNNB1
cell junction 3 CDH1, CTNNB1, EGFR
cell surface 4 ABCB1, EGFR, TNF, VEGFA
glutamatergic synapse 5 AKT1, CASP3, CDH1, CTNNB1, EGFR
Golgi apparatus 2 CDH1, VEGFA
Golgi membrane 2 EGFR, MTOR
growth cone 1 ANG
lysosomal membrane 1 MTOR
neuronal cell body 3 ANG, CASP3, TNF
postsynapse 2 AKT1, CDH1
presynaptic membrane 1 CTNNB1
Lysosome 1 MTOR
endosome 2 CDH1, EGFR
plasma membrane 9 ABCB1, AKT1, CDH1, CTNNB1, EGFR, FASLG, PIK3CA, STAT3, TNF
Membrane 10 ABCB1, AKT1, BCL2, CDH1, CTNNB1, EGFR, FASLG, HMOX1, MTOR, VEGFA
apical plasma membrane 2 ABCB1, EGFR
axon 1 MAPK8
basolateral plasma membrane 2 CTNNB1, EGFR
caveola 2 FASLG, PTGS2
extracellular exosome 4 ABCB1, CDH1, CTNNB1, FASLG
Lysosome membrane 1 MTOR
endoplasmic reticulum 4 BCL2, HMOX1, PTGS2, VEGFA
extracellular space 7 ANG, EGFR, FASLG, HMOX1, IL6, TNF, VEGFA
lysosomal lumen 1 FASLG
perinuclear region of cytoplasm 6 CDH1, CTNNB1, EGFR, FASLG, HMOX1, PIK3CA
Schaffer collateral - CA1 synapse 1 CTNNB1
adherens junction 3 CDH1, CTNNB1, VEGFA
apicolateral plasma membrane 1 CTNNB1
bicellular tight junction 1 CTNNB1
intercalated disc 1 PIK3CA
mitochondrion 3 BCL2, CASP8, CASP9
protein-containing complex 7 AKT1, BCL2, CASP8, CASP9, CTNNB1, EGFR, PTGS2
Microsome membrane 2 MTOR, PTGS2
postsynaptic density 1 CASP3
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 2 CDH1, EGFR
Secreted 4 ANG, FASLG, IL6, VEGFA
extracellular region 6 ANG, CDH1, FASLG, IL6, TNF, VEGFA
cytoplasmic side of plasma membrane 1 CDH1
Mitochondrion outer membrane 2 BCL2, MTOR
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 4 BCL2, CASP8, HMOX1, MTOR
Cytoplasmic vesicle lumen 1 FASLG
transcription regulator complex 2 CTNNB1, STAT3
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 3 BCL2, CDH1, EGFR
external side of plasma membrane 2 FASLG, TNF
Secreted, extracellular space, extracellular matrix 1 VEGFA
actin cytoskeleton 2 ANG, CDH1
Z disc 1 CTNNB1
beta-catenin destruction complex 1 CTNNB1
microtubule cytoskeleton 1 AKT1
nucleolus 1 ANG
Wnt signalosome 1 CTNNB1
apical part of cell 1 CTNNB1
cell-cell junction 2 AKT1, CTNNB1
recycling endosome 1 TNF
Single-pass type II membrane protein 2 FASLG, TNF
vesicle 1 AKT1
postsynaptic membrane 1 CTNNB1
Apical cell membrane 1 ABCB1
Cell projection, lamellipodium 1 CASP8
Membrane raft 2 EGFR, TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton 1 CTNNB1
focal adhesion 2 CTNNB1, EGFR
spindle 1 AKT1
Cell junction, adherens junction 2 CDH1, CTNNB1
flotillin complex 2 CDH1, CTNNB1
extracellular matrix 1 VEGFA
basement membrane 1 ANG
intracellular vesicle 1 EGFR
Nucleus, PML body 1 MTOR
PML body 1 MTOR
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
secretory granule 1 VEGFA
fascia adherens 1 CTNNB1
lateral plasma membrane 2 CDH1, CTNNB1
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
receptor complex 1 EGFR
neuron projection 1 PTGS2
ciliary basal body 1 AKT1
chromatin 1 STAT3
phagocytic cup 1 TNF
cell periphery 1 CTNNB1
Chromosome 1 ANG
cytoskeleton 1 CASP8
Cytoplasm, cytoskeleton, cilium basal body 1 CTNNB1
Golgi apparatus, trans-Golgi network 1 CDH1
Nucleus, nucleolus 1 ANG
spindle pole 1 CTNNB1
postsynaptic density, intracellular component 1 CTNNB1
microvillus membrane 1 CTNNB1
nuclear envelope 1 MTOR
Endomembrane system 2 CTNNB1, MTOR
Cytoplasm, Stress granule 1 ANG
cytoplasmic stress granule 1 ANG
euchromatin 1 CTNNB1
cell body 1 CASP8
myelin sheath 1 BCL2
basal plasma membrane 1 EGFR
synaptic membrane 1 EGFR
endoplasmic reticulum lumen 2 IL6, PTGS2
platelet alpha granule lumen 1 VEGFA
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
endocytic vesicle 1 ANG
beta-catenin-TCF complex 1 CTNNB1
Lysosome lumen 1 FASLG
anaphase-promoting complex 1 CDH1
Single-pass type IV membrane protein 1 HMOX1
apoptosome 1 CASP9
presynaptic active zone cytoplasmic component 1 CTNNB1
clathrin-coated endocytic vesicle membrane 1 EGFR
[Isoform 2]: Nucleus 1 CDH1
protein-DNA complex 1 CTNNB1
external side of apical plasma membrane 1 ABCB1
basal dendrite 1 MAPK8
CD95 death-inducing signaling complex 1 CASP8
death-inducing signaling complex 2 CASP3, CASP8
ripoptosome 1 CASP8
apical junction complex 1 CDH1
Cell junction, desmosome 1 CDH1
desmosome 1 CDH1
Cytoplasmic vesicle, phagosome 1 MTOR
catenin complex 2 CDH1, CTNNB1
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
angiogenin-PRI complex 1 ANG
interleukin-6 receptor complex 1 IL6
BAD-BCL-2 complex 1 BCL2
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
beta-catenin-TCF7L2 complex 1 CTNNB1
beta-catenin-ICAT complex 1 CTNNB1
Scrib-APC-beta-catenin complex 1 CTNNB1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[Tumor necrosis factor ligand superfamily member 6, soluble form]: Secreted 1 FASLG
[FasL intracellular domain]: Nucleus 1 FASLG
caspase complex 1 CASP9
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Munirah F Aldayel. Enhancement of the Bioactive Compound Content and Antibacterial Activities in Curcuma Longa Using Zinc Oxide Nanoparticles. Molecules (Basel, Switzerland). 2023 Jun; 28(13):. doi: 10.3390/molecules28134935. [PMID: 37446597]
  • Jianmin Sang, Jinjin Chu, Xin Zhao, Hehua Quan, Zhongyao Ji, Shaowei Wang, Yunbing Tang, Zhiyan Hu, Huitao Li, Linxi Li, Ren-Shan Ge. Curcuminoids inhibit human and rat placental 3β-hydroxysteroid dehydrogenases: Structure-activity relationship and in silico docking analysis. Journal of ethnopharmacology. 2023 Apr; 305(?):116051. doi: 10.1016/j.jep.2022.116051. [PMID: 36572324]
  • Kiran Bharat Lokhande, Sarika Vishnu Pawar, Smriti Madkaiker, Ashish Shrivastava, Swamy K Venkateswara, Neelu Nawani, Minal Wani, Payel Ghosh, Ashutosh Singh. Screening of potential phytomolecules against MurG as drug target in nosocomial pathogen Pseudomonas aeruginosa: perceptions from computational campaign. Journal of biomolecular structure & dynamics. 2023 Mar; ?(?):1-14. doi: 10.1080/07391102.2023.2194005. [PMID: 36974974]
  • Yangyang Liao, Xinjie Zhang, Dongyi Cao, Fei Wang, Hulan Chen, Rui Li. Separation and identification of terpene-conjugated curcuminoids based on liquid chromatography-tandem mass spectrometry and their in vitro anti-inflammatory activities. Journal of separation science. 2023 Mar; ?(?):e2200789. doi: 10.1002/jssc.202200789. [PMID: 36892097]
  • Juan Antonio Giménez-Bastida, María Ángeles Ávila-Gálvez, Miguel Carmena-Bargueño, Horacio Pérez-Sánchez, Juan Carlos Espín, Antonio González-Sarrías. Physiologically relevant curcuminoids inhibit angiogenesis via VEGFR2 in human aortic endothelial cells. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2022 Aug; 166(?):113254. doi: 10.1016/j.fct.2022.113254. [PMID: 35752269]
  • Binjie Lu, Xiaolei Chen, Hua Chen, Qian Li, Hongwei Li, Yue Xu, Yuwei Li, Xiaofeng Shen, Rilei Jiang. Demethoxycurcumin mitigates inflammatory responses in lumbar disc herniation via MAPK and NF-κB pathways in vivo and in vitro. International immunopharmacology. 2022 Jul; 108(?):108914. doi: 10.1016/j.intimp.2022.108914. [PMID: 35729841]
  • Verónica Ibáñez Gaspar, Jasmin McCaul, Hilary Cassidy, Craig Slattery, Tara McMorrow. Effects of Curcumin Analogues DMC and EF24 in Combination with the Cytokine TRAIL against Kidney Cancer. Molecules (Basel, Switzerland). 2021 Oct; 26(20):. doi: 10.3390/molecules26206302. [PMID: 34684883]
  • Ahmed Alalaiwe, Jia-You Fang, Hsien-Ju Lee, Chun-Hui Chiu, Ching-Yun Hsu. The Demethoxy Derivatives of Curcumin Exhibit Greater Differentiation Suppression in 3T3-L1 Adipocytes Than Curcumin: A Mechanistic Study of Adipogenesis and Molecular Docking. Biomolecules. 2021 07; 11(7):. doi: 10.3390/biom11071025. [PMID: 34356649]
  • Thalita Alves Zanetti, Bruna Isabela Biazi, Giuliana Castello Coatti, Adrivanio Baranoski, Lilian Areal Marques, Amanda Cristina Corveloni, Mario Sergio Mantovani. Dimethoxycurcumin reduces proliferation and induces apoptosis in renal tumor cells more efficiently than demethoxycurcumin and curcumin. Chemico-biological interactions. 2021 Apr; 338(?):109410. doi: 10.1016/j.cbi.2021.109410. [PMID: 33582110]
  • Yi-Ming Chen, Wan-Chun Chiu, Yen-Shuo Chiu, Tong Li, Hsin-Ching Sung, Chien-Yu Hsiao. Supplementation of nano-bubble curcumin extract improves gut microbiota composition and exercise performance in mice. Food & function. 2020 Apr; 11(4):3574-3584. doi: 10.1039/c9fo02487e. [PMID: 32271330]
  • Jian-Liang Zhou, Jia-Yi Zheng, Xia-Qian Cheng, Gui-Zhong Xin, Shu-Ling Wang, Tian Xie. Chemical markers' knockout coupled with UHPLC-HRMS-based metabolomics reveals anti-cancer integration effects of the curcuminoids of turmeric (Curcuma longa L.) on lung cancer cell line. Journal of pharmaceutical and biomedical analysis. 2019 Oct; 175(?):112738. doi: 10.1016/j.jpba.2019.06.035. [PMID: 31362249]
  • Gabriel Manarin, Daniela Anderson, Jorgete Maria E Silva, Juliana da Silva Coppede, Persio Roxo-Junior, Ana Maria Soares Pereira, Fabio Carmona. Curcuma longa L. ameliorates asthma control in children and adolescents: A randomized, double-blind, controlled trial. Journal of ethnopharmacology. 2019 Jun; 238(?):111882. doi: 10.1016/j.jep.2019.111882. [PMID: 30991137]
  • Mayuko Itaya, Taiki Miyazawa, Jean-Marc Zingg, Takahiro Eitsuka, Angelo Azzi, Mohsen Meydani, Teruo Miyazawa, Kiyotaka Nakagawa. The differential cellular uptake of curcuminoids in vitro depends dominantly on albumin interaction. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2019 Jun; 59(?):152902. doi: 10.1016/j.phymed.2019.152902. [PMID: 30981184]
  • Amrit Poudel, Jitendra Pandey, Hyeong-Kyu Lee. Geographical Discrimination in Curcuminoids Content of Turmeric Assessed by Rapid UPLC-DAD Validated Analytical Method. Molecules (Basel, Switzerland). 2019 May; 24(9):. doi: 10.3390/molecules24091805. [PMID: 31083285]
  • Jesmin Akter, Md Amzad Hossain, Kensaku Takara, Md Zahorul Islam, De-Xing Hou. Antioxidant activity of different species and varieties of turmeric (Curcuma spp): Isolation of active compounds. Comparative biochemistry and physiology. Toxicology & pharmacology : CBP. 2019 Jan; 215(?):9-17. doi: 10.1016/j.cbpc.2018.09.002. [PMID: 30266519]
  • Chengxin Wu, Wei Wang, Feifei Quan, Pengfei Chen, Jiali Qian, Lei Zhou, Qiaosheng Pu. Sensitive analysis of curcuminoids via micellar electrokinetic chromatography with laser-induced native fluorescence detection and mixed micelles-induced fluorescence synergism. Journal of chromatography. A. 2018 Aug; 1564(?):207-213. doi: 10.1016/j.chroma.2018.06.012. [PMID: 29891402]
  • Jagdish Mahale, Rajinder Singh, Lynne M Howells, Robert G Britton, Sameena M Khan, Karen Brown. Detection of Plasma Curcuminoids from Dietary Intake of Turmeric-Containing Food in Human Volunteers. Molecular nutrition & food research. 2018 08; 62(16):e1800267. doi: 10.1002/mnfr.201800267. [PMID: 29943914]
  • In-Cheng Chao, Chun-Ming Wang, Shao-Ping Li, Li-Gen Lin, Wen-Cai Ye, Qing-Wen Zhang. Simultaneous Quantification of Three Curcuminoids and Three Volatile Components of Curcuma longa Using Pressurized Liquid Extraction and High-Performance Liquid Chromatography. Molecules (Basel, Switzerland). 2018 06; 23(7):. doi: 10.3390/molecules23071568. [PMID: 29958431]
  • Wirginia Kukula-Koch, Aneta Grabarska, Jarogniew Łuszczki, Lidia Czernicka, Ewa Nowosadzka, Ewelina Gumbarewicz, Agata Jarząb, Gregoire Audo, Shakti Upadhyay, Kazimierz Głowniak, Andrzej Stepulak. Superior anticancer activity is demonstrated by total extract of Curcuma longa L. as opposed to individual curcuminoids separated by centrifugal partition chromatography. Phytotherapy research : PTR. 2018 May; 32(5):933-942. doi: 10.1002/ptr.6035. [PMID: 29368356]
  • Martin Purpura, Ryan P Lowery, Jacob M Wilson, Haider Mannan, Gerald Münch, Valentina Razmovski-Naumovski. Analysis of different innovative formulations of curcumin for improved relative oral bioavailability in human subjects. European journal of nutrition. 2018 Apr; 57(3):929-938. doi: 10.1007/s00394-016-1376-9. [PMID: 28204880]
  • Zeynep Kalaycıoğlu, Işıl Gazioğlu, F Bedia Erim. Comparison of antioxidant, anticholinesterase, and antidiabetic activities of three curcuminoids isolated from Curcuma longa L. Natural product research. 2017 Dec; 31(24):2914-2917. doi: 10.1080/14786419.2017.1299727. [PMID: 28287280]
  • Donald J Messner, Christine Surrago, Celia Fiordalisi, Wing Yin Chung, Kris V Kowdley. Isolation and characterization of iron chelators from turmeric (Curcuma longa): selective metal binding by curcuminoids. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine. 2017 Oct; 30(5):699-708. doi: 10.1007/s10534-017-0038-6. [PMID: 28801864]
  • Annika Frank, Saleh Abu-Lafi, Azmi Adawi, Johannes S Schwed, Holger Stark, Anwar Rayan. From medicinal plant extracts to defined chemical compounds targeting the histamine H4 receptor: Curcuma longa in the treatment of inflammation. Inflammation research : official journal of the European Histamine Research Society ... [et al.]. 2017 Oct; 66(10):923-929. doi: 10.1007/s00011-017-1075-x. [PMID: 28647836]
  • Long Chen, Lei Shi, Wenhua Wang, Youxin Zhou. ABCG2 downregulation in glioma stem cells enhances the therapeutic efficacy of demethoxycurcumin. Oncotarget. 2017 Jun; 8(26):43237-43247. doi: 10.18632/oncotarget.18018. [PMID: 28591733]
  • Supawadee Burapan, Mihyang Kim, Jaehong Han. Curcuminoid Demethylation as an Alternative Metabolism by Human Intestinal Microbiota. Journal of agricultural and food chemistry. 2017 Apr; 65(16):3305-3310. doi: 10.1021/acs.jafc.7b00943. [PMID: 28401758]
  • Muthu Ramkumar, Srinivasagam Rajasankar, Veerappan Venkatesh Gobi, Chinnasamy Dhanalakshmi, Thamilarasan Manivasagam, Arokiasamy Justin Thenmozhi, Musthafa Mohamed Essa, Ameer Kalandar, Ranganathan Chidambaram. Neuroprotective effect of Demethoxycurcumin, a natural derivative of Curcumin on rotenone induced neurotoxicity in SH-SY 5Y Neuroblastoma cells. BMC complementary and alternative medicine. 2017 Apr; 17(1):217. doi: 10.1186/s12906-017-1720-5. [PMID: 28420370]
  • Gary N Asher, Ying Xie, Ruin Moaddel, Mitesh Sanghvi, Katina S S Dossou, Angela D M Kashuba, Robert S Sandler, Roy L Hawke. Randomized Pharmacokinetic Crossover Study Comparing 2 Curcumin Preparations in Plasma and Rectal Tissue of Healthy Human Volunteers. Journal of clinical pharmacology. 2017 02; 57(2):185-193. doi: 10.1002/jcph.806. [PMID: 27503249]
  • Caiyun Wang, Xuan Chen, Shuang Hu, Xiaohong Bai. Development of a novel stirrerliquid/solid microextraction method for the separation and enrichment of trace levels of active compounds in traditional Chinese medicine. Journal of separation science. 2016 Nov; 39(22):4290-4298. doi: 10.1002/jssc.201600605. [PMID: 27659768]
  • Yonglu Wang, Liyao Wang, Xinyi Zhu, Dong Wang, Xueming Li. Choleretic Activity of Turmeric and its Active Ingredients. Journal of food science. 2016 Jul; 81(7):H1800-6. doi: 10.1111/1750-3841.13348. [PMID: 27228476]
  • Trong Tuan Dao, Pankaj Sehgal, Truong Thanh Tung, Jesper Vuust Møller, John Nielsen, Michael Palmgren, Søren Brøgger Christensen, Anja Thoe Fuglsang. Demethoxycurcumin Is A Potent Inhibitor of P-Type ATPases from Diverse Kingdoms of Life. PloS one. 2016; 11(9):e0163260. doi: 10.1371/journal.pone.0163260. [PMID: 27644036]
  • Pei-pei Zhou, Jin-feng Shan, Jian-lan Jiang. [Extraction Optimization of Rhizome of Curcuma longa by Response Surface Methodology and Support Vector Regression]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2015 Dec; 38(12):2611-5. doi: ". [PMID: 27352545]
  • Y Panahi, M Ghanei, S Bashiri, A Hajihashemi, A Sahebkar. Short-term Curcuminoid Supplementation for Chronic Pulmonary Complications due to Sulfur Mustard Intoxication: Positive Results of a Randomized Double-blind Placebo-controlled Trial. Drug research. 2015 Nov; 65(11):567-73. doi: 10.1055/s-0034-1389986. [PMID: 25268878]
  • Hye-Lim Kwon, Myong-Soo Chung. Pilot-scale subcritical solvent extraction of curcuminoids from Curcuma long L. Food chemistry. 2015 Oct; 185(?):58-64. doi: 10.1016/j.foodchem.2015.03.114. [PMID: 25952841]
  • Odaine N Gordon, Paula B Luis, Rachel E Ashley, Neil Osheroff, Claus Schneider. Oxidative Transformation of Demethoxy- and Bisdemethoxycurcumin: Products, Mechanism of Formation, and Poisoning of Human Topoisomerase IIα. Chemical research in toxicology. 2015 May; 28(5):989-96. doi: 10.1021/acs.chemrestox.5b00009. [PMID: 25806475]
  • Wei Yang, Juan Fu, Miao Yu, Di Wang, Ying Rong, Ping Yao, Andreas K Nüssler, Hong Yan, Liegang Liu. Effects of three kinds of curcuminoids on anti-oxidative system and membrane deformation of human peripheral blood erythrocytes in high glucose levels. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2015; 35(2):789-802. doi: 10.1159/000369738. [PMID: 25634758]
  • Kazuya Murata, Shinichi Matsumura, Yuri Yoshioka, Yoshihiro Ueno, Hideaki Matsuda. Screening of β-secretase and acetylcholinesterase inhibitors from plant resources. Journal of natural medicines. 2015 Jan; 69(1):123-9. doi: 10.1007/s11418-014-0859-3. [PMID: 25119528]
  • Hong-Bin Chang, Bing-Huei Chen. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. International journal of nanomedicine. 2015; 10(?):5059-80. doi: 10.2147/ijn.s87225. [PMID: 26345201]
  • Jian-chun Luo, Xue-yuan Hu, Hong Wang, Yong-hong Zhang, Jing-qing Zhang. [Study on pharmacokinetics of demethoxycurcumin phospholipid complex in rats]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2014 Nov; 37(11):2051-3. doi: NULL. [PMID: 26027131]
  • Kiyotaka Nakagawa, Jean-Marc Zingg, Sharon H Kim, Michael J Thomas, Gregory G Dolnikowski, Angelo Azzi, Teruo Miyazawa, Mohsen Meydani. Differential cellular uptake and metabolism of curcuminoids in monocytes/macrophages: regulatory effects on lipid accumulation. The British journal of nutrition. 2014 Jul; 112(1):8-14. doi: 10.1017/s0007114514000567. [PMID: 24725345]
  • Jueun Lee, Youngae Jung, Jeoung-Hwa Shin, Ho Kyoung Kim, Byeong Cheol Moon, Do Hyun Ryu, Geum-Sook Hwang. Secondary metabolite profiling of Curcuma species grown at different locations using GC/TOF and UPLC/Q-TOF MS. Molecules (Basel, Switzerland). 2014 Jul; 19(7):9535-51. doi: 10.3390/molecules19079535. [PMID: 25000465]
  • Qing-Miao Li, Wen-Yu Yang, Xue-Mei Tang, Mei Zhang, Xian-Jian Zhou, Guang-Ming Shu, Jun-Ning Zhao, Qing-Mao Fang. [Dynamic accumulation regulation of curcumin, demethoxycurcumin and bisdemethoxyeurcumin in three strains of curcuma longae rhizome]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2014 Jun; 39(11):2000-4. doi: ". [PMID: 25272830]
  • Christina Schiborr, Alexa Kocher, Dariush Behnam, Josef Jandasek, Simone Toelstede, Jan Frank. The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes. Molecular nutrition & food research. 2014 Mar; 58(3):516-27. doi: 10.1002/mnfr.201300724. [PMID: 24402825]
  • Mayura Somchit, Chatchawan Changtam, Rungruedi Kimseng, Tanyarath Utaipan, Monthon Lertcanawanichakul, Apichart Suksamrarn, Warangkana Chunglok. Demethoxycurcumin from Curcuma longa rhizome suppresses iNOS induction in an in vitro inflamed human intestinal mucosa model. Asian Pacific journal of cancer prevention : APJCP. 2014; 15(4):1807-10. doi: 10.7314/apjcp.2014.15.4.1807. [PMID: 24641413]
  • Niyaz Ahmad, Sadiq Umar, Mohammad Ashafaq, Mohd Akhtar, Zeenat Iqbal, Mohd Samim, Farhan Jalees Ahmad. A comparative study of PNIPAM nanoparticles of curcumin, demethoxycurcumin, and bisdemethoxycurcumin and their effects on oxidative stress markers in experimental stroke. Protoplasma. 2013 Dec; 250(6):1327-38. doi: 10.1007/s00709-013-0516-9. [PMID: 23784381]
  • Mei-Chun Kou, Shu-Yuan Chiou, Ching-Yi Weng, Lisu Wang, Chi-Tang Ho, Ming-Jiuan Wu. Curcuminoids distinctly exhibit antioxidant activities and regulate expression of scavenger receptors and heme oxygenase-1. Molecular nutrition & food research. 2013 Sep; 57(9):1598-610. doi: 10.1002/mnfr.201200227. [PMID: 23386263]
  • Kun Wang, Feng Qiu. Curcuminoid metabolism and its contribution to the pharmacological effects. Current drug metabolism. 2013 Sep; 14(7):791-806. doi: 10.2174/13892002113149990102. [PMID: 23937173]
  • Yan Shen, Chao Han, Xiangzhun Chen, Xiandeng Hou, Zhou Long. Simultaneous determination of three Curcuminoids in Curcuma wenyujin Y.H.chen et C.Ling. by liquid chromatography-tandem mass spectrometry combined with pressurized liquid extraction. Journal of pharmaceutical and biomedical analysis. 2013 Jul; 81-82(?):146-50. doi: 10.1016/j.jpba.2013.03.027. [PMID: 23648558]
  • Yanyu Xiao, Xi Chen, Liu Yang, Xieting Zhu, Lang Zou, Fanfei Meng, Qineng Ping. Preparation and oral bioavailability study of curcuminoid-loaded microemulsion. Journal of agricultural and food chemistry. 2013 Apr; 61(15):3654-60. doi: 10.1021/jf400002x. [PMID: 23451842]
  • Laura E Wright, Jen B Frye, Bhavana Gorti, Barbara N Timmermann, Janet L Funk. Bioactivity of turmeric-derived curcuminoids and related metabolites in breast cancer. Current pharmaceutical design. 2013; 19(34):6218-25. doi: 10.2174/1381612811319340013. [PMID: 23448448]
  • Ji-ping Liu, Liang Feng, Mao-mao Zhu, Ru-Shang Wang, Ming-hua Zhang, Shao-ying Hu, Xiao-bin Jia, Jin-Jie Wu. The in vitro protective effects of curcumin and demethoxycurcumin in Curcuma longa extract on advanced glycation end products-induced mesangial cell apoptosis and oxidative stress. Planta medica. 2012 Nov; 78(16):1757-60. doi: 10.1055/s-0032-1315257. [PMID: 22923199]
  • Jun Li, Yue Liu, Jun-Qi Wei, Kun Wang, Li-Xia Chen, Xin-Sheng Yao, Feng Qiu. Isolation and identification of phase 1 metabolites of curcuminoids in rats. Planta medica. 2012 Aug; 78(12):1351-6. doi: 10.1055/s-0032-1314990. [PMID: 22753036]
  • Wanwarang Wongcharoen, Sasivimon Jai-Aue, Arintaya Phrommintikul, Weerachai Nawarawong, Surin Woragidpoonpol, Thitipong Tepsuwan, Apichard Sukonthasarn, Nattayaporn Apaijai, Nipon Chattipakorn. Effects of curcuminoids on frequency of acute myocardial infarction after coronary artery bypass grafting. The American journal of cardiology. 2012 Jul; 110(1):40-4. doi: 10.1016/j.amjcard.2012.02.043. [PMID: 22481014]
  • N P Aditya, Geetanjali Chimote, Karthigayan Gunalan, Rinti Banerjee, Swati Patankar, Basavaraj Madhusudhan. Curcuminoids-loaded liposomes in combination with arteether protects against Plasmodium berghei infection in mice. Experimental parasitology. 2012 Jul; 131(3):292-9. doi: 10.1016/j.exppara.2012.04.010. [PMID: 22561991]
  • Rui Li, Xue Qiao, Qingyan Li, Rong He, Min Ye, Cheng Xiang, Xionghao Lin, Dean Guo. Metabolic and pharmacokinetic studies of curcumin, demethoxycurcumin and bisdemethoxycurcumin in mice tumor after intragastric administration of nanoparticle formulations by liquid chromatography coupled with tandem mass spectrometry. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2011 Sep; 879(26):2751-8. doi: 10.1016/j.jchromb.2011.07.042. [PMID: 21856253]
  • John Cuomo, Giovanni Appendino, Adam S Dern, Erik Schneider, Toni P McKinnon, Mark J Brown, Stefano Togni, Brian M Dixon. Comparative absorption of a standardized curcuminoid mixture and its lecithin formulation. Journal of natural products. 2011 Apr; 74(4):664-9. doi: 10.1021/np1007262. [PMID: 21413691]
  • N J Yob, S Mohd Jofrry, M M R Meor Mohd Affandi, L K Teh, M Z Salleh, Z A Zakaria. Zingiber zerumbet (L.) Smith: A Review of Its Ethnomedicinal, Chemical, and Pharmacological Uses. Evidence-based complementary and alternative medicine : eCAM. 2011; 2011(?):543216. doi: 10.1155/2011/543216. [PMID: 21584247]
  • Chatchawan Changtam, Poonpilas Hongmanee, Apichart Suksamrarn. Isoxazole analogs of curcuminoids with highly potent multidrug-resistant antimycobacterial activity. European journal of medicinal chemistry. 2010 Oct; 45(10):4446-57. doi: 10.1016/j.ejmech.2010.07.003. [PMID: 20691508]
  • Chatchawan Changtam, Harry P de Koning, Hasan Ibrahim, M Sohail Sajid, Matthew K Gould, Apichart Suksamrarn. Curcuminoid analogs with potent activity against Trypanosoma and Leishmania species. European journal of medicinal chemistry. 2010 Mar; 45(3):941-56. doi: 10.1016/j.ejmech.2009.11.035. [PMID: 20004045]
  • R Douglas Shytle, Paula C Bickford, Kavon Rezai-zadeh, L Hou, Jin Zeng, Jun Tan, Paul R Sanberg, Cyndy D Sanberg, Bill Roschek, Ryan C Fink, Randall S Alberte. Optimized turmeric extracts have potent anti-amyloidogenic effects. Current Alzheimer research. 2009 Dec; 6(6):564-71. doi: 10.2174/156720509790147115. [PMID: 19715544]
  • Fang Dai, Wei-Feng Chen, Bo Zhou, Li Yang, Zhong-Li Liu. Antioxidative effects of curcumin and its analogues against the free-radical-induced peroxidation of linoleic acid in micelles. Phytotherapy research : PTR. 2009 Sep; 23(9):1220-8. doi: 10.1002/ptr.2517. [PMID: 19173279]
  • Diran Herebian, Jeong-Heui Choi, A M Abd El-Aty, Jae-Han Shim, Michael Spiteller. Metabolite analysis in Curcuma domestica using various GC-MS and LC-MS separation and detection techniques. Biomedical chromatography : BMC. 2009 Sep; 23(9):951-65. doi: 10.1002/bmc.1207. [PMID: 19358151]
  • Hye Jin Kim, Young Pyo Jang. Direct analysis of curcumin in turmeric by DART-MS. Phytochemical analysis : PCA. 2009 Sep; 20(5):372-7. doi: 10.1002/pca.1136. [PMID: 19533593]
  • Junwei Zhang, Sakie Jinnai, Rie Ikeda, Mitsuhiro Wada, Shinjiro Hayashida, Kenichiro Nakashima. A simple HPLC-fluorescence method for quantitation of curcuminoids and its application to turmeric products. Analytical sciences : the international journal of the Japan Society for Analytical Chemistry. 2009 Mar; 25(3):385-8. doi: 10.2116/analsci.25.385. [PMID: 19276595]
  • Dinesh Kumar Agrawal, Dharmendra Saikia, Richa Tiwari, Shweta Ojha, Karuna Shanker, Jonnala Kotesh Kumar, Anil Kumar Gupta, Sudeep Tandon, Arvind Singh Negi, Suman Preet Khanuja. Demethoxycurcumin and its semisynthetic analogues as antitubercular agents. Planta medica. 2008 Dec; 74(15):1828-31. doi: 10.1055/s-0028-1088335. [PMID: 18991209]
  • J S Zhang, J Guan, F Q Yang, H G Liu, X J Cheng, S P Li. Qualitative and quantitative analysis of four species of Curcuma rhizomes using twice development thin layer chromatography. Journal of pharmaceutical and biomedical analysis. 2008 Nov; 48(3):1024-8. doi: 10.1016/j.jpba.2008.07.006. [PMID: 18722068]
  • Songyot Anuchapreeda, Singkome Tima, Chadarat Duangrat, Pornngarm Limtrakul. Effect of pure curcumin, demethoxycurcumin, and bisdemethoxycurcumin on WT1 gene expression in leukemic cell lines. Cancer chemotherapy and pharmacology. 2008 Sep; 62(4):585-94. doi: 10.1007/s00280-007-0642-1. [PMID: 18034345]
  • M S Kiran, V B Sameer Kumar, R I Viji, G T Sherin, K N Rajasekharan, P R Sudhakaran. Opposing effects of curcuminoids on serum stimulated and unstimulated angiogenic response. Journal of cellular physiology. 2008 Apr; 215(1):251-64. doi: 10.1002/jcp.21307. [PMID: 17960570]
  • Yongchi Zeng, Feng Qiu, Yuan Liu, Gexia Qu, Xinsheng Yao. Isolation and identification of phase 1 metabolites of demethoxycurcumin in rats. Drug metabolism and disposition: the biological fate of chemicals. 2007 Sep; 35(9):1564-73. doi: 10.1124/dmd.107.015008. [PMID: 17553917]
  • Waree Tiyaboonchai, Watcharaphorn Tungpradit, Pinyupa Plianbangchang. Formulation and characterization of curcuminoids loaded solid lipid nanoparticles. International journal of pharmaceutics. 2007 Jun; 337(1-2):299-306. doi: 10.1016/j.ijpharm.2006.12.043. [PMID: 17287099]
  • Atanu Barik, Beena Mishra, Amit Kunwar, Ramakant M Kadam, Liang Shen, Sabari Dutta, Subhash Padhye, Ashis K Satpati, Hong-Yu Zhang, K Indira Priyadarsini. Comparative study of copper(II)-curcumin complexes as superoxide dismutase mimics and free radical scavengers. European journal of medicinal chemistry. 2007 Apr; 42(4):431-9. doi: 10.1016/j.ejmech.2006.11.012. [PMID: 17240482]
  • Amichand Dairam, Janice L Limson, Gareth M Watkins, Edith Antunes, Santy Daya. Curcuminoids, curcumin, and demethoxycurcumin reduce lead-induced memory deficits in male Wistar rats. Journal of agricultural and food chemistry. 2007 Feb; 55(3):1039-44. doi: 10.1021/jf063446t. [PMID: 17263510]
  • Poorichaya Somparn, Chada Phisalaphong, Somjai Nakornchai, Supeenun Unchern, Noppawan Phumala Morales. Comparative antioxidant activities of curcumin and its demethoxy and hydrogenated derivatives. Biological & pharmaceutical bulletin. 2007 Jan; 30(1):74-8. doi: 10.1248/bpb.30.74. [PMID: 17202663]
  • Wei-Feng Chen, Shui-Ling Deng, Bo Zhou, Li Yang, Zhong-Li Liu. Curcumin and its analogues as potent inhibitors of low density lipoprotein oxidation: H-atom abstraction from the phenolic groups and possible involvement of the 4-hydroxy-3-methoxyphenyl groups. Free radical biology & medicine. 2006 Feb; 40(3):526-35. doi: 10.1016/j.freeradbiomed.2005.09.008. [PMID: 16443168]
  • Qing-Yi Wei, Wei-Feng Chen, Bo Zhou, Li Yang, Zhong-Li Liu. Inhibition of lipid peroxidation and protein oxidation in rat liver mitochondria by curcumin and its analogues. Biochimica et biophysica acta. 2006 Jan; 1760(1):70-7. doi: 10.1016/j.bbagen.2005.09.008. [PMID: 16236451]
  • Heleen M Wortelboer, Mustafa Usta, Jelmer J van Zanden, Peter J van Bladeren, Ivonne M C M Rietjens, Nicole H P Cnubben. Inhibition of multidrug resistance proteins MRP1 and MRP2 by a series of alpha,beta-unsaturated carbonyl compounds. Biochemical pharmacology. 2005 Jun; 69(12):1879-90. doi: 10.1016/j.bcp.2005.04.001. [PMID: 15885658]
  • Tozo Nishiyama, Tatsumasa Mae, Hideyuki Kishida, Misuzu Tsukagawa, Yoshihiro Mimaki, Minpei Kuroda, Yutaka Sashida, Kazuma Takahashi, Teruo Kawada, Kaku Nakagawa, Mikio Kitahara. Curcuminoids and sesquiterpenoids in turmeric (Curcuma longa L.) suppress an increase in blood glucose level in type 2 diabetic KK-Ay mice. Journal of agricultural and food chemistry. 2005 Feb; 53(4):959-63. doi: 10.1021/jf0483873. [PMID: 15713005]
  • Habsah Mohamad, Nordin H Lajis, Faridah Abas, Abdul Manaf Ali, Mohamad Aspollah Sukari, Hiroe Kikuzaki, Nobuji Nakatani. Antioxidative constituents of Etlingera elatior. Journal of natural products. 2005 Feb; 68(2):285-8. doi: 10.1021/np040098l. [PMID: 15730265]
  • Lisa A May, Elena Tourkina, Stanley R Hoffman, Thomas A Dix. Detection and quantitation of curcumin in mouse lung cell cultures by matrix-assisted laser desorption ionization time of flight mass spectrometry. Analytical biochemistry. 2005 Feb; 337(1):62-9. doi: 10.1016/j.ab.2004.10.037. [PMID: 15649376]
  • W Chearwae, S Anuchapreeda, K Nandigama, S V Ambudkar, P Limtrakul. Biochemical mechanism of modulation of human P-glycoprotein (ABCB1) by curcumin I, II, and III purified from Turmeric powder. Biochemical pharmacology. 2004 Nov; 68(10):2043-52. doi: 10.1016/j.bcp.2004.07.009. [PMID: 15476675]
  • Pornngarm Limtrakul, Songyot Anuchapreeda, Duang Buddhasukh. Modulation of human multidrug-resistance MDR-1 gene by natural curcuminoids. BMC cancer. 2004 Apr; 4(?):13. doi: 10.1186/1471-2407-4-13. [PMID: 15090070]
  • Jung Eun Kim, Ae Ra Kim, Hae Young Chung, Shin Young Han, Byung Soo Kim, Jae Sue Choi. In vitro peroxynitrite scavenging activity of diarylheptanoids from Curcuma longa. Phytotherapy research : PTR. 2003 May; 17(5):481-4. doi: 10.1002/ptr.1179. [PMID: 12748983]
  • José L Quiles, M Dolores Mesa, César L Ramírez-Tortosa, Concepción M Aguilera, Maurizio Battino, Angel Gil, M Carmen Ramírez-Tortosa. Curcuma longa extract supplementation reduces oxidative stress and attenuates aortic fatty streak development in rabbits. Arteriosclerosis, thrombosis, and vascular biology. 2002 Jul; 22(7):1225-31. doi: 10.1161/01.atv.0000020676.11586.f2. [PMID: 12117742]
  • A Asai, T Miyazawa. Occurrence of orally administered curcuminoid as glucuronide and glucuronide/sulfate conjugates in rat plasma. Life sciences. 2000 Oct; 67(23):2785-93. doi: 10.1016/s0024-3205(00)00868-7. [PMID: 11105995]
  • S Toda, M Ohnishi, M Kimura, K Nakashima. Action of curcuminoids on the hemolysis and lipid peroxidation of mouse erythrocytes induced by hydrogen peroxide. Journal of ethnopharmacology. 1988 May; 23(1):105-8. doi: 10.1016/0378-8741(88)90119-5. [PMID: 3419196]
  • D Y Zhao, M K Yang. [Separation and determination of curcuminoids in Curcuma longa L. and its preparation by HPLC]. Yao xue xue bao = Acta pharmaceutica Sinica. 1986 May; 21(5):382-5. doi: ". [PMID: 3606744]