Pyraclostrobin (BioDeep_00000001179)

   

Industrial Pollutants


代谢物信息卡片


Pyraclostrobine

化学式: C19H18ClN3O4 (387.0986)
中文名称: 吡唑醚菌酯
谱图信息: 最多检出来源 Viridiplantae(plant) 28.05%

分子结构信息

SMILES: c1(ccc(n2ccc(OCc3c(cccc3)N(OC)C(OC)=O)n2)cc1)Cl
InChI: InChI=1S/C19H18ClN3O4/c1-25-19(24)23(26-2)17-6-4-3-5-14(17)13-27-18-11-12-22(21-18)16-9-7-15(20)8-10-16/h3-12H,13H2,1-2H3

描述信息

D010575 - Pesticides > D005659 - Fungicides, Industrial > D000073739 - Strobilurins
D016573 - Agrochemicals
CONFIDENCE standard compound; INTERNAL_ID 375; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9757; ORIGINAL_PRECURSOR_SCAN_NO 9756
CONFIDENCE standard compound; INTERNAL_ID 375; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9779; ORIGINAL_PRECURSOR_SCAN_NO 9775
CONFIDENCE standard compound; INTERNAL_ID 375; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9794; ORIGINAL_PRECURSOR_SCAN_NO 9793
CONFIDENCE standard compound; INTERNAL_ID 375; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9828; ORIGINAL_PRECURSOR_SCAN_NO 9826
CONFIDENCE standard compound; INTERNAL_ID 375; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9794; ORIGINAL_PRECURSOR_SCAN_NO 9792
CONFIDENCE standard compound; INTERNAL_ID 375; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9842; ORIGINAL_PRECURSOR_SCAN_NO 9840
CONFIDENCE standard compound; INTERNAL_ID 2593
CONFIDENCE standard compound; INTERNAL_ID 8468
CONFIDENCE standard compound; EAWAG_UCHEM_ID 2779
Pyraclostrobin is a highly effective and broad-spectrum strobilurin fungicide. Pyraclostrobin can induce oxidative DNA damage, mitochondrial dysfunction and autophagy through the activation of AMPK/mTOR signaling. Pyraclostrobin can be used to control crop diseases[1][2][3].

同义名列表

4 个代谢物同义名

Pyraclostrobine; Pyraclostrobin; PYR; Pyraclostrobin



数据库引用编号

37 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 12 ADIG, ANXA5, ARHGAP45, BCL2, BECN1, CASP3, CASP9, DCTN4, GAPDH, HPGDS, MTOR, PRKAA2
Golgi apparatus, trans-Golgi network membrane 1 BECN1
Peripheral membrane protein 4 ANXA5, BECN1, MTOR, SDHB
Endosome membrane 1 BECN1
Endoplasmic reticulum membrane 3 BCL2, BECN1, MTOR
Mitochondrion membrane 1 BECN1
Cytoplasmic vesicle, autophagosome 1 BECN1
Nucleus 10 ADIG, BCL2, BECN1, CASP3, CASP9, DCTN4, GAPDH, MTOR, PRKAA2, THRB
autophagosome 1 BECN1
cytosol 11 ANXA5, ARHGAP45, BCL2, BECN1, CASP3, CASP9, DCTN4, GAPDH, HPGDS, MTOR, PRKAA2
dendrite 3 BECN1, MTOR, PRKAA2
mitochondrial membrane 2 BECN1, SDHB
nuclear body 2 BECN1, THRB
phagocytic vesicle 2 BECN1, MTOR
phosphatidylinositol 3-kinase complex, class III 1 BECN1
trans-Golgi network 1 BECN1
centrosome 1 DCTN4
nucleoplasm 6 CASP3, HPGDS, MTOR, PRKAA2, SDHB, THRB
RNA polymerase II transcription regulator complex 1 THRB
Cell membrane 1 TNF
Cytoplasmic side 1 MTOR
ruffle membrane 1 ARHGAP45
Multi-pass membrane protein 3 MT-CYB, SDHC, SDHD
Golgi apparatus membrane 1 MTOR
Synapse 1 CRH
cell cortex 1 DCTN4
cell surface 1 TNF
glutamatergic synapse 1 CASP3
Golgi apparatus 1 PRKAA2
Golgi membrane 1 MTOR
lysosomal membrane 1 MTOR
mitochondrial inner membrane 4 MT-CYB, SDHB, SDHC, SDHD
neuronal cell body 3 CASP3, PRKAA2, TNF
sarcolemma 1 ANXA5
Cytoplasm, cytosol 1 GAPDH
Lysosome 1 MTOR
endosome 1 BECN1
plasma membrane 4 ARHGAP45, GAPDH, SDHB, TNF
Membrane 9 ADIG, ANXA5, ARHGAP45, BCL2, GAPDH, MT-CYB, MTOR, PRKAA2, SDHC
axon 1 PRKAA2
extracellular exosome 2 ANXA5, GAPDH
Lysosome membrane 1 MTOR
endoplasmic reticulum 2 BCL2, BECN1
extracellular space 3 CRH, CXCL8, TNF
perinuclear region of cytoplasm 1 GAPDH
mitochondrion 6 BCL2, CASP9, MT-CYB, SDHB, SDHC, SDHD
protein-containing complex 2 BCL2, CASP9
intracellular membrane-bounded organelle 2 GAPDH, HPGDS
Microsome membrane 1 MTOR
postsynaptic density 1 CASP3
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Secreted 3 ADIG, CRH, CXCL8
extracellular region 6 ADIG, ANXA5, ARHGAP45, CRH, CXCL8, TNF
Mitochondrion outer membrane 2 BCL2, MTOR
Single-pass membrane protein 2 ADIG, BCL2
mitochondrial outer membrane 2 BCL2, MTOR
mitochondrial matrix 1 SDHB
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 DCTN4
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 2 BCL2, GAPDH
external side of plasma membrane 2 ANXA5, TNF
varicosity 1 CRH
neuronal dense core vesicle lumen 1 CRH
perikaryon 1 CRH
microtubule cytoskeleton 1 GAPDH
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 GAPDH
Cell projection, ruffle membrane 1 ARHGAP45
Cytoplasm, perinuclear region 1 GAPDH
Mitochondrion inner membrane 4 MT-CYB, SDHB, SDHC, SDHD
Matrix side 1 SDHB
Membrane raft 1 TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton 2 DCTN4, GAPDH
focal adhesion 2 ANXA5, DCTN4
Nucleus, PML body 1 MTOR
PML body 1 MTOR
collagen-containing extracellular matrix 1 ANXA5
nuclear speck 1 PRKAA2
Cytoplasm, myofibril, sarcomere 1 DCTN4
sarcomere 1 DCTN4
Zymogen granule membrane 1 ANXA5
chromatin 1 THRB
phagocytic cup 1 TNF
cytoskeleton 1 GAPDH
spindle pole 1 DCTN4
Cytoplasm, cell cortex 1 DCTN4
nuclear envelope 1 MTOR
Endomembrane system 1 MTOR
Lipid droplet 2 ADIG, GAPDH
phagophore assembly site 1 BECN1
phosphatidylinositol 3-kinase complex, class III, type I 1 BECN1
phosphatidylinositol 3-kinase complex, class III, type II 1 BECN1
cytoplasmic stress granule 1 PRKAA2
myelin sheath 1 BCL2
stress fiber 1 DCTN4
secretory granule lumen 1 ARHGAP45
dynactin complex 1 DCTN4
kinetochore 1 DCTN4
azurophil granule lumen 1 ARHGAP45
mitochondrial envelope 1 SDHD
respiratory chain complex II (succinate dehydrogenase) 3 SDHB, SDHC, SDHD
cytoplasmic dynein complex 1 DCTN4
apoptosome 1 CASP9
vesicle membrane 1 ANXA5
respiratory chain complex III 1 MT-CYB
Cytoplasm, cytoskeleton, stress fiber 1 DCTN4
ribonucleoprotein complex 1 GAPDH
death-inducing signaling complex 1 CASP3
nucleotide-activated protein kinase complex 1 PRKAA2
Cytoplasmic vesicle, phagosome 1 MTOR
GAIT complex 1 GAPDH
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
endothelial microparticle 1 ANXA5
BAD-BCL-2 complex 1 BCL2
cytoplasmic side of mitochondrial outer membrane 1 BECN1
caspase complex 1 CASP9
[Beclin-1-C 35 kDa]: Mitochondrion 1 BECN1
[Beclin-1-C 37 kDa]: Mitochondrion 1 BECN1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Kensy D Rodriguez-Herrera, Alejandra Vargas, Jonathan Amie, Paul P Price, Leonardo D Salgado, Vinson P Doyle, Jonathan K Richards, David Moseley, Alejandro Rojas, Sara Thomas-Sharma. Development of a Greenhouse Assay to Screen Soybean Varieties for Resistance to Aerial Blight Caused by Rhizoctonia solani Anastomosis Group 1-IA. Phytopathology. 2024 May; 114(5):1039-1049. doi: 10.1094/phyto-10-23-0390-kc. [PMID: 38514043]
  • Yeju Kim, Ceyhun Bereketoglu, Onur Sercinoglu, Ajay Pradhan. In Vitro, In Vivo, and In Silico Analysis of Pyraclostrobin and Cyprodinil and Their Mixture Reveal New Targets and Signaling Mechanisms. Chemical research in toxicology. 2024 03; 37(3):497-512. doi: 10.1021/acs.chemrestox.3c00371. [PMID: 38419406]
  • Yirong Zhang, Kaikai Qin, Chenglan Liu. Low-density polyethylene enhances the disturbance of microbiome and antibiotic resistance genes transfer in soil-earthworm system induced by pyraclostrobin. Journal of hazardous materials. 2024 Mar; 465(?):133459. doi: 10.1016/j.jhazmat.2024.133459. [PMID: 38219581]
  • Yushuai Mao, Hui Qiu, Xinlong Gao, Yige Li, Xuanming Zheng, Yiqiang Cai, Guilin Sheng, Yingchun Shen, Jianxin Wang, Mingguo Zhou, Yabing Duan. Resistance Risk and Molecular Mechanism of Tomato Wilt Pathogen Fusarium oxysporum f. sp. lycopersici to Pyraclostrobin. Journal of agricultural and food chemistry. 2024 Feb; 72(8):3998-4007. doi: 10.1021/acs.jafc.3c09907. [PMID: 38372233]
  • Ya-Qi An, Bo-Shi Bi, Han Xu, De-Jun Ma, Zhen Xi. Co-application of Brassinolide and Pyraclostrobin Improved Disease Control Efficacy by Eliciting Plant Innate Defense Responses in Arabidopsis thaliana. Journal of agricultural and food chemistry. 2024 Jan; 72(1):916-932. doi: 10.1021/acs.jafc.3c07006. [PMID: 38115548]
  • Xinle Duan, Lizhu Wang, Ruyi Wang, Manqiong Xiong, Gan Qin, Shaokang Huang, Jianghong Li. Variation in the physiological response of adult worker bees of different ages (Apis mellifera L.) to pyraclostrobin stress. Ecotoxicology and environmental safety. 2024 Jan; 269(?):115754. doi: 10.1016/j.ecoenv.2023.115754. [PMID: 38043416]
  • Xinyue Wang, Kai An, Yajing Guo, Qi Li, Tiantian Liu, Yingchao Liu, Xiaoxiao Feng. Uptake, Translocation, and Subcellular Distribution of Strobilurin Fungicides in Cucumber (Cucumis sativa L.). Journal of agricultural and food chemistry. 2023 Dec; 71(49):19324-19332. doi: 10.1021/acs.jafc.3c04902. [PMID: 38019973]
  • Hong-Wei He, Dan Xu, Ke-Huan Wu, Zheng-Yi Lu, Xili Liu, Gong Xu. Discovery of novel salicylaldehyde derivatives incorporating an α-methylene-γ-butyrolactone moiety as fungicidal agents. Pest management science. 2023 Dec; 79(12):5015-5028. doi: 10.1002/ps.7703. [PMID: 37544900]
  • Li Ma, Meng Yu, Yingjian Ma, Linying Gao, Shouhe Pan, Xuefeng Li, Xuemin Wu, Yong Xu, Sen Pang, Ping Wang. Ascendancy of pyraclostrobin nanocapsule formulation against Rhizoctonia solani: From a perspective of fungus. Pesticide biochemistry and physiology. 2023 Dec; 197(?):105682. doi: 10.1016/j.pestbp.2023.105682. [PMID: 38072539]
  • Mo Yi Yue, Rong Wang, Yan Min Liu, Bing Wei Chen, Wan-Long Ding, Yong Li. Resistance of ginseng gray mold pathogen, Botrytis cinerea, to boscalid and pyraclostrobin fungicides in China. Plant disease. 2023 Nov; ?(?):. doi: 10.1094/pdis-02-23-0321-re. [PMID: 38012822]
  • Yanan Zhao, Henglin Zhang, Yuxian Liu, Yongyin Lan, Jiamin Zhu, Yanpeng Cai, Fen Guo, Feilong Li, Yuan Zhang, Tao Zhang, Kurunthachalam Kannan, Jingchuan Xue, Zhifeng Yang. Evidence of strobilurin fungicides and their metabolites in Dongjiang River ecosystem, southern China: Bioaccumulation and ecological risks. The Science of the total environment. 2023 Nov; ?(?):168427. doi: 10.1016/j.scitotenv.2023.168427. [PMID: 37949138]
  • Kun Fan, Yu-Kun Qi, Li Fu, Li Li, Xinghong Liu, Jianlu Qu, De-Wei Li, Ai-Xin Dong, Yi-Ji Peng, Qing-Hai Wang. Identification and fungicide screening of fungal species associated with walnut anthracnose in Shaanxi and Liaoning provinces, China. Plant disease. 2023 Sep; ?(?):. doi: 10.1094/pdis-05-23-0967-re. [PMID: 37682223]
  • Tiffanna J Ross, Tom Allen, Shim Sujoung, Nathanael M Thompson, Darcy E P Telenko. Investigations into economic returns resulting from foliar fungicides and application timing on management of tar spot in Indiana hybrid corn. Plant disease. 2023 Sep; ?(?):. doi: 10.1094/pdis-05-23-0932-re. [PMID: 37669181]
  • Xueping Huang, Jian Luo, Haichao Cao, Aiping Wang, Fengyan Zhou, Feng Liu, Beixing Li, Wei Mu, Yong Zhang. A multidimensional optimization strategy of pyraclostrobin-loaded microcapsules to improve the selectivity between toxicological risk in zebrafish and efficacy in controlling rice blast. The Science of the total environment. 2023 Sep; 904(?):166587. doi: 10.1016/j.scitotenv.2023.166587. [PMID: 37659543]
  • Collins Bugingo, Monica Brelsford, Mary Burrows. Fungicide sensitivity of Fusarium oxysporum f. sp. lentis and Fusarium acuminatum affecting lentil in the Northern Great Plains. Plant disease. 2023 Aug; ?(?):. doi: 10.1094/pdis-07-23-1440-sc. [PMID: 37606958]
  • Jhonatan Barro, Emerson Medeiros Del Ponte, Tom Allen, Jason P Bond, Travis R Faske, Clayton Hollier, Yuba Raj Kandel, Daren S Mueller, Heather M Kelly, Nathan Michael Kleczewski, Keith A Ames, Paul Price, Edward Sikora, Carl Bradley. Efficacy and profitability of fungicides for managing frogeye leaf spot on soybean in the United States: A 10-year quantitative summary. Plant disease. 2023 May; ?(?):. doi: 10.1094/pdis-02-23-0291-re. [PMID: 37157104]
  • Minjie Huang, Jie Dong, Shuyuan Yang, Minghui Xiao, Haikun Guo, Jiawen Zhang, Deqian Wang. Ecotoxicological effects of common fungicides on the eastern honeybee Apis cerana cerana (Hymenoptera). The Science of the total environment. 2023 Apr; 868(?):161637. doi: 10.1016/j.scitotenv.2023.161637. [PMID: 36649770]
  • Aiping Wang, Yue Sun, Zhengyi Sun, Xiao Liu, Xin Yu, Ke Li, Xianxia Zhang, Yue Xu, Wei Mu, Beixing Li. Modification of sedimentation and bioaccumulation behavior as an efficient strategy to modulate the toxicity of pyraclostrobin to zebrafish (Danio rerio). Environmental pollution (Barking, Essex : 1987). 2023 Apr; 322(?):121164. doi: 10.1016/j.envpol.2023.121164. [PMID: 36720336]
  • Jie Dong, Minjie Huang, Haikun Guo, Jiawen Zhang, Xiaodong Tan, Deqian Wang. Ternary Mixture of Azoxystrobin, Boscalid and Pyraclostrobin Disrupts the Gut Microbiota and Metabolic Balance of Honeybees (Apis cerana cerana). International journal of molecular sciences. 2023 Mar; 24(6):. doi: 10.3390/ijms24065354. [PMID: 36982426]
  • Shatha Alaoufi, Andrew Friskop, Senay Simsek. Effect of Field-applied Fungicides on Claviceps purpurea Sclerotia and Associated Toxins in Wheat. Journal of food protection. 2023 03; 86(3):100046. doi: 10.1016/j.jfp.2023.100046. [PMID: 36916553]
  • Weichao Ren, Zhongqiang Wang, Sen Lian, Xiangli Dong, Baohua Li, Na Liu. Molecular and Biochemical Characterization of Field Resistant Isolates of Glomerella cingulata to Pyraclostrobin in China. Journal of agricultural and food chemistry. 2023 Feb; ?(?):. doi: 10.1021/acs.jafc.2c08846. [PMID: 36821832]
  • Mo-Yi Yue, Rong Wang, Yong Li, Yan-Min Liu, Wan-Long Ding. [Sensitivity baseline establishment and resistance risk assessment of Botrytis cinerea from Panax ginseng to prochloraz]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2023 Feb; 48(3):636-641. doi: 10.19540/j.cnki.cjcmm.20221102.104. [PMID: 36872226]
  • Siwei Wang, Xiaonan Wang, Qiang He, Haidan Lin, Hong Chang, Yanping Liu, Haibin Sun, Xiaobing Song. Analysis of the fungicidal efficacy, environmental fate, and safety of the application of a mefentrifluconazole and pyraclostrobin mixture to control mango anthracnose. Journal of the science of food and agriculture. 2023 Jan; 103(1):400-410. doi: 10.1002/jsfa.12154. [PMID: 36373789]
  • Fahriye Zemheri-Navruz, Sinan Ince, Damla Arslan-Acaroz, Ulas Acaroz, Hasan Huseyin Demirel, Ezgi Nur Demirkapi. Resveratrol alleviates pyraclostrobin-induced lipid peroxidation, oxidative stress, and DNA damage in rats. Environmental science and pollution research international. 2023 Jan; 30(3):6414-6423. doi: 10.1007/s11356-022-22613-9. [PMID: 35996050]
  • Ercheng Zhao, Anqi Xie, Dong Wang, Xiaoying Du, Bingjie Liu, Li Chen, Min He, Pingzhong Yu, Junjie Jing. Residue behavior and risk assessment of pyraclostrobin and tebuconazole in peppers under different growing conditions. Environmental science and pollution research international. 2022 Dec; 29(56):84096-84105. doi: 10.1007/s11356-022-23469-9. [PMID: 36264460]
  • Rachel P Naegele, Noor Abdelsamad, Jeff A DeLong, Seiya Saito, Chang-Lin Xiao, Timothy D Miles. Fungicide Resistance and Host Influence on Population Structure in Botrytis spp. from Specialty Crops in California. Phytopathology. 2022 Dec; 112(12):2549-2559. doi: 10.1094/phyto-03-22-0070-r. [PMID: 35801851]
  • Natalia Pineros Guerrero, Danilo Neves, Carl Bradley, Darcy E P Telenko. Determining the distribution of QoI fungicide-resistant Cercospora sojina on soybean from Indiana. Plant disease. 2022 Nov; ?(?):. doi: 10.1094/pdis-08-22-1744-sr. [PMID: 36410014]
  • Guoran Dong, Yu Zhang, Xioyu Liang, Meng Wang, Qianqian Ye, Xinwei Xian, Ye Yang. Resistance characterization of the natural population and resistance mechanism to pyraclostrobin in Lasiodiplodia theobromae. Pesticide biochemistry and physiology. 2022 Nov; 188(?):105232. doi: 10.1016/j.pestbp.2022.105232. [PMID: 36464332]
  • Shaorong Luan, Yongjun Chen, Xiaohua Wang, Dongmei Yan, Jialin Xu, Hairong Cui, Qingchun Huang. Synergy of cystamine and pyraclostrobin against Fusarium graminearum involves membrane permeability mitigation and autophagy enhancement. Pesticide biochemistry and physiology. 2022 Nov; 188(?):105287. doi: 10.1016/j.pestbp.2022.105287. [PMID: 36464340]
  • Jie-Hui Song, Si-Jie Zhang, Yan Wang, Yun-Tong Chen, Jun-Fei Luo, You Liang, Hong-Cheng Zhang, Qi-Gen Dai, Ke Xu, Zhong-Yang Huo. Baseline Sensitivity and Control Efficacy of Two Quinone Outside Inhibitor Fungicides, Azoxystrobin and Pyraclostrobin, Against Ustilaginoidea virens. Plant disease. 2022 Nov; 106(11):2967-2973. doi: 10.1094/pdis-12-21-2850-re. [PMID: 35306849]
  • Weichao Ren, Zhongqiang Wang, Meiqi Zhu, Yihan Zhang, Sen Lian, Baohua Li, Xiangli Dong, Na Liu. Detection of Cytb point mutation (G143A) that confers high-level resistance to pyraclostrobin in Glomerella cingulata using LAMP method. Plant disease. 2022 Oct; ?(?):. doi: 10.1094/pdis-08-22-1992-re. [PMID: 36205690]
  • Georgios Makris, Nikolaos Nikoloudakis, Anastasios Samaras, Georgios S Karaoglanidis, Loukas I Kanetis. Under Pressure: A Comparative Study of Botrytis cinerea Populations from Conventional and Organic Farms in Cyprus and Greece. Phytopathology. 2022 Oct; 112(10):2236-2247. doi: 10.1094/phyto-12-21-0510-r. [PMID: 35671479]
  • Xiaolan Shao, Lejun Liu, Hui Li, Yue Luo, Jingyu Zhao, Shuai Liu, Bei Yan, Dan Wang, Kun Luo, Min Liu, Lianyang Bai, Xiaoyun Li, Kailin Liu. The effects of polyethersulfone and Nylon 6 micromembrane filters on the pyraclostrobin detection: adsorption performance and mechanism. Environmental science and pollution research international. 2022 Oct; 29(49):74051-74061. doi: 10.1007/s11356-022-21021-3. [PMID: 35633450]
  • Cheng Zhang, Qinju Li, Jiaohong Li, Yue Su, Xiaomao Wu. Chitosan as an Adjuvant to Enhance the Control Efficacy of Low-Dosage Pyraclostrobin against Powdery Mildew of Rosa roxburghii and Improve Its Photosynthesis, Yield, and Quality. Biomolecules. 2022 09; 12(9):. doi: 10.3390/biom12091304. [PMID: 36139143]
  • Huadong Tan, Qiumin Wu, Rong Hao, Chuanmi Wang, Jinlin Zhai, Qinfen Li, Yanmei Cui, Chunyuan Wu. Occurrence, distribution, and driving factors of current-use pesticides in commonly cultivated crops and their potential risks to non-target organisms: A case study in Hainan, China. The Science of the total environment. 2022 Sep; 854(?):158640. doi: 10.1016/j.scitotenv.2022.158640. [PMID: 36113805]
  • Zhengang Xie, Wenlong Liang, Qiuyu Xiong, Yanyan Zhao, Jingli Cheng, Xianbin Li, Jinhao Zhao. Acetalated dextran microparticles for the smart delivery of pyraclostrobin to control Sclerotinia diseases. Carbohydrate polymers. 2022 Sep; 291(?):119576. doi: 10.1016/j.carbpol.2022.119576. [PMID: 35698394]
  • You Liang, Sijin Wang, Huijuan Jia, Yijia Yao, Jiehui Song, Hongqiang Dong, Yongsong Cao, Feng Zhu, Zhongyang Huo. Pectin functionalized metal-organic frameworks as dual-stimuli-responsive carriers to improve the pesticide targeting and reduce environmental risks. Colloids and surfaces. B, Biointerfaces. 2022 Aug; 219(?):112796. doi: 10.1016/j.colsurfb.2022.112796. [PMID: 36063717]
  • Jianzhong Yu, Jiayin Hou, Ruixian Yu, Xiuqing Hu, Zhenlan Xu, Xueping Zhao, Liezhong Chen. Dissipation and dietary exposure risk assessment of pyraclostrobin, fluxapyroxad, difenoconazole, and azoxystrobin in the Fritillaria field ecosystem. Environmental science and pollution research international. 2022 Jul; 29(34):51758-51767. doi: 10.1007/s11356-022-19511-5. [PMID: 35253103]
  • Jianguo Feng, Zhiyang Chen, Wang Chen, Li Sun, Jinghan Yang, Kangli He, Sa Dong, Shuzhong Yuan. Facile pathway to construct mesoporous silica nanoparticles loaded with pyraclostrobin: Physicochemical properties, antifungal activity, and biosafety. Pest management science. 2022 Jun; 78(6):2332-2341. doi: 10.1002/ps.6859. [PMID: 35246931]
  • Shihang Han, Yingying Bi, Lijun Han, Shuangyu Song, Ziyu Ye, Fayi Qin, Xinru Lv. Residue Behavior and Risk Assessment of Pyraclostrobin and Thifluzamide in Cowpea. Bulletin of environmental contamination and toxicology. 2022 Apr; 108(4):786-790. doi: 10.1007/s00128-021-03421-2. [PMID: 35067727]
  • Hafiz Muhammad Usman, Qin Tan, Mohammad Mazharul Karim, Muhammad Adnan, Wei-Xiao Yin, Fu-Xing Zhu, Chao-Xi Luo. Sensitivity of Colletotrichum fructicola and Colletotrichum siamense of Peach in China to Multiple Classes of Fungicides and Characterization of Pyraclostrobin-Resistant Isolates. Plant disease. 2021 Nov; 105(11):3459-3465. doi: 10.1094/pdis-04-21-0693-re. [PMID: 34132595]
  • Xue Yang, Chun-Yan Gu, Jia-Zhi Sun, Yang Bai, Hao-Yu Zang, Yu Chen. Biological Activity of Pyraclostrobin Against Coniella granati Causing Pomegranate Crown Rot. Plant disease. 2021 Nov; 105(11):3538-3544. doi: 10.1094/pdis-01-21-0144-re. [PMID: 34096770]
  • Jingmao You, Tao Tang, Fanfan Wang, Ting Mao, Bin Yuan, Jie Guo, Xiaoliang Guo, Yuanyuan Duan, Junbin Huang. Baseline Sensitivity and Control Efficacy of Strobilurin Fungicide Pyraclostrobin Against Sclerotium rolfsii. Plant disease. 2021 Nov; 105(11):3503-3509. doi: 10.1094/pdis-01-21-0176-re. [PMID: 34003039]
  • Alfredo Nicolás Dominguez, Germán Ezequiel Emmert, Diego Mauricio Gil, Rosa María Susana Álvarez. Experimental and theoretical vibrational study of the fungicide pyraclostrobin. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2021 Oct; 259(?):119888. doi: 10.1016/j.saa.2021.119888. [PMID: 34015601]
  • You Liang, Jiehui Song, Hongqiang Dong, Zhongyang Huo, Yunhao Gao, Zhiyuan Zhou, Yuyang Tian, Yan Li, Yongsong Cao. Fabrication of pH-responsive nanoparticles for high efficiency pyraclostrobin delivery and reducing environmental impact. The Science of the total environment. 2021 Sep; 787(?):147422. doi: 10.1016/j.scitotenv.2021.147422. [PMID: 33991920]
  • Hong Li, Tongfang Jing, Tongbin Li, Xueping Huang, Yangyang Gao, Jiamei Zhu, Jin Lin, Peng Zhang, Beixing Li, Wei Mu. Ecotoxicological effects of pyraclostrobin on tilapia (Oreochromis niloticus) via various exposure routes. Environmental pollution (Barking, Essex : 1987). 2021 Sep; 285(?):117188. doi: 10.1016/j.envpol.2021.117188. [PMID: 33957519]
  • Xueping Huang, Song Yang, Beixing Li, Aiping Wang, Hong Li, Xiuhuan Li, Jian Luo, Feng Liu, Wei Mu. Comparative toxicity of multiple exposure routes of pyraclostrobin in adult zebrafish (Danio rerio). The Science of the total environment. 2021 Jul; 777(?):145957. doi: 10.1016/j.scitotenv.2021.145957. [PMID: 33676221]
  • Magdalena Jankowska, Piotr Kaczyński, Bożena Łozowicka. Dissipation kinetics and processing behavior of boscalid and pyraclostrobin in greenhouse dill plant (Anethum graveolens L.) and soil. Pest management science. 2021 Jul; 77(7):3349-3357. doi: 10.1002/ps.6379. [PMID: 33773022]
  • Adrian Fisher, Gloria DeGrandi-Hoffman, Brian H Smith, Cahit Ozturk, Osman Kaftanoglu, Jennifer H Fewell, Jon F Harrison. Field cross-fostering and in vitro rearing demonstrate negative effects of both larval and adult exposure to a widely used fungicide in honey bees (Apis mellifera). Ecotoxicology and environmental safety. 2021 Jul; 217(?):112251. doi: 10.1016/j.ecoenv.2021.112251. [PMID: 33905983]
  • Tonima Islam, Cecil Vera, Jan Slaski, Ramona Mohr, Khalid Y Rashid, Helen Booker, Hadley R Kutcher. Fungicide Management of Pasmo Disease of Flax and Sensitivity of Septoria linicola to Pyraclostrobin and Fluxapyroxad. Plant disease. 2021 Jun; 105(6):1677-1684. doi: 10.1094/pdis-06-20-1175-re. [PMID: 33206013]
  • Soudamini Mohapatra, Lekha Siddamallaiah, Nagapooja Yogendraiah Matadha. Behavior of acetamiprid, azoxystrobin, pyraclostrobin, and lambda-cyhalothrin in/on pomegranate tissues. Environmental science and pollution research international. 2021 Jun; 28(22):27481-27492. doi: 10.1007/s11356-021-12490-z. [PMID: 33506422]
  • Lifei He, Falin He, Song Yang, Yangyang Gao, Beixing Li, Feng Liu, Wei Mu. Dissipation kinetics and safety evaluation of pyraclostrobin and its desmethoxy metabolite BF 500-3 in a cucumber greenhouse agroecosystem. Environmental science and pollution research international. 2021 Apr; 28(14):17712-17723. doi: 10.1007/s11356-020-11798-6. [PMID: 33400109]
  • Haichao Cao, Da-Xia Zhang, Shanggang Liu, Jian Luo, Tongfang Jing, Shouhe Pan, Feng Liu, Beixing Li, Wei Mu. Achieving Win-Win Ecotoxicological Safety and Fungicidal Activity of Pyraclostrobin-Loaded Polyurea Microcapsules by Selecting Proper Polyamines. Journal of agricultural and food chemistry. 2021 Feb; 69(7):2099-2107. doi: 10.1021/acs.jafc.0c07482. [PMID: 33555871]
  • Chaeeun Kim, Hyeseung Choe, Jungeun Park, Gayoung Kim, Kyeongnam Kim, Hwang-Ju Jeon, Joon-Kwan Moon, Myoung-Jin Kim, Sung-Eun Lee. Molecular mechanisms of developmental toxicities of azoxystrobin and pyraclostrobin toward zebrafish (Danio rerio) embryos: Visualization of abnormal development using two transgenic lines. Environmental pollution (Barking, Essex : 1987). 2021 Feb; 270(?):116087. doi: 10.1016/j.envpol.2020.116087. [PMID: 33234374]
  • Rui He, Ye Yang, Zhizhong Hu, Ru Xue, Yajuan Hu. Resistance mechanisms and fitness of pyraclostrobin-resistant isolates of Lasiodiplodia theobromae from mango orchards. PloS one. 2021; 16(6):e0253659. doi: 10.1371/journal.pone.0253659. [PMID: 34161390]
  • Ya Wang, Chaonan Li, Xin Zhang, Wei Chen, Xiaogang Li. Fabrication a controlled-release pesticide for improving UV-shielding properties and reducing toxicity via coating polydopamine. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes. 2021; 56(5):512-521. doi: 10.1080/03601234.2021.1908799. [PMID: 33818270]
  • Hong Li, Song Yang, Tongbin Li, Xiuhuan Li, Xueping Huang, Yangyang Gao, Beixing Li, Jin Lin, Wei Mu. Determination of pyraclostrobin dynamic residual distribution in tilapia tissues by UPLC-MS/MS under acute toxicity conditions. Ecotoxicology and environmental safety. 2020 Dec; 206(?):111182. doi: 10.1016/j.ecoenv.2020.111182. [PMID: 32911370]
  • Liying Wang, Chong Gao, Jianguo Feng, Yong Xu, Danqi Li, Lixin Zhang. Adsorption Properties of Comb-Shaped Polycarboxylate Dispersant onto Different Crystal Pyraclostrobin Particle Surfaces. Molecules (Basel, Switzerland). 2020 Nov; 25(23):. doi: 10.3390/molecules25235637. [PMID: 33266038]
  • Pingliang Li, Pingyang Sun, Dong Li, Delong Li, Baohua Li, Xiangli Dong. Evaluation of Pyraclostrobin as an Ingredient for Soybean Seed Treatment by Analyzing its Accumulation-Dissipation Kinetics, Plant-Growth Activation, and Protection Against Phytophthora sojae. Journal of agricultural and food chemistry. 2020 Oct; 68(43):11928-11938. doi: 10.1021/acs.jafc.0c04376. [PMID: 33078613]
  • Hui Xiong, Xuefeng Liu, Jiuyong Xu, Xianfei Zhang, Shaorong Luan, Qingchun Huang. Fungicidal Effect of Pyraclostrobin against Botrytis cinerea in Relation to Its Crystal Structure. Journal of agricultural and food chemistry. 2020 Sep; 68(39):10975-10983. doi: 10.1021/acs.jafc.0c04908. [PMID: 32857513]
  • Paola Olaya-Arenas, Kayleigh Hauri, Michael E Scharf, Ian Kaplan. Larval pesticide exposure impacts monarch butterfly performance. Scientific reports. 2020 09; 10(1):14490. doi: 10.1038/s41598-020-71211-7. [PMID: 32879347]
  • Pingliang Li, Pingyang Sun, Xiangli Dong, Baohua Li. Residue analysis and kinetics modeling of thiophanate-methyl, carbendazim, tebuconazole and pyraclostrobin in apple tree bark using QuEChERS/HPLC-VWD. Biomedical chromatography : BMC. 2020 Sep; 34(9):e4851. doi: 10.1002/bmc.4851. [PMID: 32307729]
  • Yixiao Wang, Alireza Akhavan, Sheau-Fang Hwang, Stephen E Strelkov. Decreased Sensitivity of Leptosphaeria maculans to Pyraclostrobin in Alberta, Canada. Plant disease. 2020 Sep; 104(9):2462-2468. doi: 10.1094/pdis-11-19-2461-re. [PMID: 32609053]
  • Liangang Mao, Wei Jia, Lan Zhang, Yanning Zhang, Lizhen Zhu, Muhammad Umair Sial, Hongyun Jiang. Embryonic development and oxidative stress effects in the larvae and adult fish livers of zebrafish (Danio rerio) exposed to the strobilurin fungicides, kresoxim-methyl and pyraclostrobin. The Science of the total environment. 2020 Aug; 729(?):139031. doi: 10.1016/j.scitotenv.2020.139031. [PMID: 32387777]
  • Anqi Wang, Jianxia Cui, Yan Wang, Huaxin Zhu, Ningjun Li, Chunxin Wang, Yue Shen, Pengfei Liu, Bo Cui, Changjiao Sun, Xiang Zhao, Chong Wang, Fei Gao, Zhanghua Zeng, Haixin Cui. Preparation and characterization of a novel controlled-release nano-delivery system loaded with pyraclostrobin via high-pressure homogenization. Pest management science. 2020 Aug; 76(8):2829-2837. doi: 10.1002/ps.5833. [PMID: 32246522]
  • Kai Wang, Zhonghua Sun, Liandong Yang, Lu He, Xinghai Li, Gang Wang. Respiratory Toxicity of Azoxystrobin, Pyraclostrobin and Coumoxystrobin on Chlorella vulgaris. Bulletin of environmental contamination and toxicology. 2020 Jun; 104(6):799-803. doi: 10.1007/s00128-020-02869-y. [PMID: 32388572]
  • Qingkui Fang, Ruifeng Wu, Guixian Hu, Aiping Lai, Kaixin Wu, Linwei Zhang, Jiajun Feng, Haiqun Cao. Dissipation behavior, residue distribution and risk assessment of three fungicides in pears. Journal of the science of food and agriculture. 2020 Mar; 100(4):1757-1763. doi: 10.1002/jsfa.10199. [PMID: 31825523]
  • Y Y Gao, X X Li, L F He, B X Li, W Mu, F Liu. Effect of Application Rate and Timing on Residual Efficacy of Pyraclostrobin in the Control of Pepper Anthracnose. Plant disease. 2020 Mar; 104(3):958-966. doi: 10.1094/pdis-03-19-0435-re. [PMID: 31944880]
  • Xiaofang Long, Niao Wang, Qingmei Song, Ye Wang, Lingzhu Chen, Deyu Hu, Yuping Zhang. Effects of mineral oil spray additives on the distribution and dissipation kinetics of pyraclostrobin and azoxystrobin in banana leaves, fruits, and soil. Biomedical chromatography : BMC. 2020 Mar; 34(3):e4745. doi: 10.1002/bmc.4745. [PMID: 31725903]
  • Xiao-Xu Li, Yang Liu, Li-Fei He, Yang-Yang Gao, Wei Mu, Peng Zhang, Bei-Xing Li, Feng Liu. Fungicide Formulations Influence Their Control Efficacy by Mediating Physicochemical Properties of Spray Dilutions and Their Interaction with Target Leaves. Journal of agricultural and food chemistry. 2020 Feb; 68(5):1198-1206. doi: 10.1021/acs.jafc.9b05141. [PMID: 31928001]
  • Farag Malhat, El-Sayed Saber, Shokr Abd Elsalam Shokr, Mohamed Tawfic Ahmed, Alaa El-Sayed Amin. Consumer safety evaluation of pyraclostrobin residues in strawberry using liquid chromatography tandem mass spectrometry (LC-MS/MS): An Egyptian profile. Regulatory toxicology and pharmacology : RTP. 2019 Nov; 108(?):104450. doi: 10.1016/j.yrtph.2019.104450. [PMID: 31449917]
  • Yangyang Gao, Song Yang, Xiaoxu Li, Lifei He, Jiamei Zhu, Wei Mu, Feng Liu. Residue determination of pyraclostrobin, picoxystrobin and its metabolite in pepper fruit via UPLC-MS/MS under open field conditions. Ecotoxicology and environmental safety. 2019 Oct; 182(?):109445. doi: 10.1016/j.ecoenv.2019.109445. [PMID: 31330408]
  • Chunxin Wang, Liang Guo, Junwei Yao, Anqi Wang, Fei Gao, Xiang Zhao, Zhanghua Zeng, Yan Wang, Changjiao Sun, Haixin Cui, Bo Cui. Preparation, characterization and antifungal activity of pyraclostrobin solid nanodispersion by self-emulsifying technique. Pest management science. 2019 Oct; 75(10):2785-2793. doi: 10.1002/ps.5390. [PMID: 30809936]
  • Yangyang Gao, Xiaoxu Li, Lifei He, Beixing Li, Wei Mu, Feng Liu. Role of Adjuvants in the Management of Anthracnose-Change in the Crystal Morphology and Wetting Properties of Fungicides. Journal of agricultural and food chemistry. 2019 Aug; 67(33):9232-9240. doi: 10.1021/acs.jafc.9b02147. [PMID: 31347839]
  • Lifei He, Xiaoxu Li, Yangyang Gao, Beixing Li, Wei Mu, Feng Liu. Oil Adjuvants Enhance the Efficacy of Pyraclostrobin in Managing Cucumber Powdery Mildew (Podosphaera xanthii) by Modifying the Affinity of Fungicide Droplets on Diseased Leaves. Plant disease. 2019 Jul; 103(7):1657-1664. doi: 10.1094/pdis-09-18-1606-re. [PMID: 31082320]
  • Kun Fan, Jie Wang, Li Fu, Guo Fu Zhang, Hai Bin Wu, Changchun Feng, Jian Lu Qu. Baseline Sensitivity and Control Efficacy of Pyraclostrobin Against Botryosphaeria dothidea Isolates in China. Plant disease. 2019 Jul; 103(7):1458-1463. doi: 10.1094/pdis-07-18-1214-re. [PMID: 31025906]
  • J Y Wu, X R Hu, C Q Zhang. Molecular Detection of QoI Resistance in Colletotrichum gloeosporioides Causing Strawberry Anthracnose Based on Loop-Mediated Isothermal Amplification Assay. Plant disease. 2019 Jun; 103(6):1319-1325. doi: 10.1094/pdis-09-18-1593-re. [PMID: 30998417]
  • Tanja Vasić, Uroš Vojinović, Suzana Žujović, Vesna Krnjaja, Sanja Živković, Jordan Marković, Milan Stević. In vitro toxicity of fungicides with different modes of action to alfalfa anthracnose fungus, Colletotrichum destructivum. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes. 2019; 54(12):964-971. doi: 10.1080/03601234.2019.1653735. [PMID: 31429367]
  • Hanna Sulewska, Karolina Ratajczak, Katarzyna Panasiewicz, Hazem M Kalaji. Can pyraclostrobin and epoxiconazole protect conventional and stay-green maize varieties grown under drought stress?. PloS one. 2019; 14(8):e0221116. doi: 10.1371/journal.pone.0221116. [PMID: 31430301]
  • Lidong Cao, Huirong Zhang, Zhaolu Zhou, Chunli Xu, Yongpan Shan, Yuqing Lin, Qiliang Huang. Fluorophore-free luminescent double-shelled hollow mesoporous silica nanoparticles as pesticide delivery vehicles. Nanoscale. 2018 Nov; 10(43):20354-20365. doi: 10.1039/c8nr04626c. [PMID: 30376015]
  • A Amiri, A I Zuniga, N A Peres. Potential Impact of Populations Drift on Botrytis Occurrence and Resistance to Multi- and Single-Site Fungicides in Florida Southern Highbush Blueberry Fields. Plant disease. 2018 11; 102(11):2142-2148. doi: 10.1094/pdis-11-17-1810-re. [PMID: 30169135]
  • Urszula Wachowska, Witold Irzykowski, Małgorzata Jędryczka. Agrochemicals: Effect on genetic resistance in yeasts colonizing winter wheat kernels. Ecotoxicology and environmental safety. 2018 Oct; 162(?):77-84. doi: 10.1016/j.ecoenv.2018.06.042. [PMID: 29990742]
  • Dicheng Ma, Jiangong Jiang, Leiming He, Kaidi Cui, Wei Mu, Feng Liu. Detection and Characterization of QoI-Resistant Phytophthora capsici Causing Pepper Phytophthora Blight in China. Plant disease. 2018 Sep; 102(9):1725-1732. doi: 10.1094/pdis-01-18-0197-re. [PMID: 30125205]
  • Evelyn G Reátegui-Zirena, Christopher J Salice. Parental diet affects embryogenesis of the great pond snail (Lymnaea stagnalis) exposed to cadmium, pyraclostrobin, and tributyltin. Environmental toxicology and chemistry. 2018 Sep; 37(9):2428-2438. doi: 10.1002/etc.4202. [PMID: 29900568]
  • Chunli Xu, Lidong Cao, Pengyue Zhao, Zhaolu Zhou, Chong Cao, Feng Zhu, Fengmin Li, Qiliang Huang. Synthesis and Characterization of Stimuli-Responsive Poly(2-dimethylamino-ethylmethacrylate)-Grafted Chitosan Microcapsule for Controlled Pyraclostrobin Release. International journal of molecular sciences. 2018 Mar; 19(3):. doi: 10.3390/ijms19030854. [PMID: 29538323]
  • Emran Md Ali, Laxmi K Pandit, Katie A Mulvaney, Achour Amiri. Sensitivity of Phacidiopycnis spp. Isolates from Pome Fruit to Six Pre- and Postharvest Fungicides. Plant disease. 2018 Mar; 102(3):533-539. doi: 10.1094/pdis-07-17-1014-re. [PMID: 30673472]
  • Lili Wang, Shuangshuang Zhao, Xiaotian Kong, Lingling Cao, Sheng Tian, Yonghao Ye, Chunhua Qiao. Design, synthesis and fungicidal evaluation of novel pyraclostrobin analogues. Bioorganic & medicinal chemistry. 2018 02; 26(4):875-883. doi: 10.1016/j.bmc.2018.01.004. [PMID: 29395803]
  • Anthony L Luz, Christopher D Kassotis, Heather M Stapleton, Joel N Meyer. The high-production volume fungicide pyraclostrobin induces triglyceride accumulation associated with mitochondrial dysfunction, and promotes adipocyte differentiation independent of PPARγ activation, in 3T3-L1 cells. Toxicology. 2018 01; 393(?):150-159. doi: 10.1016/j.tox.2017.11.010. [PMID: 29127035]
  • Yuba R Kandel, Catherine L Hunt, Peter M Kyveryga, Tristan A Mueller, Daren S Mueller. Differences in Small Plot and On-Farm Trials for Yield Response to Foliar Fungicide in Soybean. Plant disease. 2018 Jan; 102(1):140-145. doi: 10.1094/pdis-05-17-0697-re. [PMID: 30673461]
  • Mengran Yang, Jingjing Zhang, Jing Zhang, Muhammad Rashid, Guohua Zhong, Jie Liu. The control effect of fungicide pyraclostrobin against freckle disease of banana and its residue dynamics under field conditions. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes. 2018; 53(9):615-621. doi: 10.1080/03601234.2018.1473974. [PMID: 30020853]
  • Kaiwei Shi, Xujin Wu, Jingwei Ma, Junfeng Zhang, Ling Zhou, Hong Wang, Li Li. Effects of Planting and Processing Modes on the Degradation of Dithianon and Pyraclostrobin in Chinese Yam (Dioscorea spp.). Journal of agricultural and food chemistry. 2017 Dec; 65(48):10439-10444. doi: 10.1021/acs.jafc.7b03916. [PMID: 29131625]
  • Meng-Jun Hu, Kerik D Cox, Guido Schnabel. Resistance to Increasing Chemical Classes of Fungicides by Virtue of 'Selection by Association' in Botrytis cinerea. Phytopathology. 2016 12; 106(12):1513-1520. doi: 10.1094/phyto-04-16-0161-r. [PMID: 27503370]
  • S N Chen, C X Luo, M J Hu, G Schnabel. Fitness and Competitive Ability of Botrytis cinerea Isolates with Resistance to Multiple Chemical Classes of Fungicides. Phytopathology. 2016 09; 106(9):997-1005. doi: 10.1094/phyto-02-16-0061-r. [PMID: 27161219]
  • Magdalena Jankowska, Piotr Kaczynski, Izabela Hrynko, Bozena Lozowicka. Dissipation of six fungicides in greenhouse-grown tomatoes with processing and health risk. Environmental science and pollution research international. 2016 Jun; 23(12):11885-900. doi: 10.1007/s11356-016-6260-x. [PMID: 26957431]
  • Morgan M Willming, Jonathan D Maul. Direct and indirect toxicity of the fungicide pyraclostrobin to Hyalella azteca and effects on leaf processing under realistic daily temperature regimes. Environmental pollution (Barking, Essex : 1987). 2016 Apr; 211(?):435-42. doi: 10.1016/j.envpol.2015.11.029. [PMID: 26827148]
  • Firuz Odilbekov, Eva Edin, Larisa Garkava-Gustavsson, Helena Persson Hovmalm, Erland Liljeroth. Genetic diversity and occurrence of the F129L substitutions among isolates of Alternaria solani in south-eastern Sweden. Hereditas. 2016; 153(?):10. doi: 10.1186/s41065-016-0014-0. [PMID: 28096772]
  • Elżbieta Wołejko, Bożena Łozowicka, Piotr Kaczyński, Magdalena Jankowska, Jolanta Piekut. The influence of effective microorganisms (EM) and yeast on the degradation of strobilurins and carboxamides in leafy vegetables monitored by LC-MS/MS and health risk assessment. Environmental monitoring and assessment. 2016 Jan; 188(1):64. doi: 10.1007/s10661-015-5022-4. [PMID: 26718945]
  • Waziha Farha, Md Musfiqur Rahman, A M Abd El-Aty, Da-I Jung, Md Humayun Kabir, Jeong-Heui Choi, Sung-Woo Kim, So Jeong Im, Young-Jun Lee, Ho-Chul Shin, Chan-Hyeok Kwon, Young-Wook Son, Kang-Bong Lee, Jae-Han Shim. A combination of solid-phase extraction and dispersive solid-phase extraction effectively reduces the matrix interference in liquid chromatography-ultraviolet detection during pyraclostrobin analysis in perilla leaves. Biomedical chromatography : BMC. 2015 Dec; 29(12):1932-6. doi: 10.1002/bmc.3523. [PMID: 26032066]
  • J Honorato Júnior, L Zambolim, C E Aucique-Pérez, R S Resende, F A Rodrigues. Photosynthetic and antioxidative alterations in coffee leaves caused by epoxiconazole and pyraclostrobin sprays and Hemileia vastatrix infection. Pesticide biochemistry and physiology. 2015 Sep; 123(?):31-9. doi: 10.1016/j.pestbp.2015.01.016. [PMID: 26267050]