beta-Thujaplicin (BioDeep_00000000760)
Secondary id: BioDeep_00000400331
natural product human metabolite PANOMIX_OTCML-2023 Chemicals and Drugs Volatile Flavor Compounds
代谢物信息卡片
化学式: C10H12O2 (164.0837252)
中文名称: 日柏醇, 桧木醇, 扁柏醇, 扁柏酚
谱图信息:
最多检出来源 Viridiplantae(plant) 3.47%
Last reviewed on 2024-08-19.
Cite this Page
beta-Thujaplicin. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/hinokitiol (retrieved
2024-11-22) (BioDeep RN: BioDeep_00000000760). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: c1cc(cc(c(=O)c1)O)C(C)C
InChI: InChI=1S/C10H12O2/c1-7(2)8-4-3-5-9(11)10(12)6-8/h3-7H,1-2H3,(H,11,12)
描述信息
Beta-thujaplicin is a monoterpenoid that is cyclohepta-2,4,6-trien-1-one substituted by a hydroxy group at position 2 and an isopropyl group at position 4. Isolated from Thuja plicata and Chamaecyparis obtusa, it exhibits antimicrobial activities. It has a role as an antifungal agent, an antibacterial agent, an antiplasmodial drug, an antineoplastic agent and a plant metabolite. It is an enol, a cyclic ketone and a monoterpenoid. It derives from a hydride of a cyclohepta-1,3,5-triene.
Hinokitiol is a natural product found in Chamaecyparis obtusa, Thujopsis dolabrata, and other organisms with data available.
A monoterpenoid that is cyclohepta-2,4,6-trien-1-one substituted by a hydroxy group at position 2 and an isopropyl group at position 4. Isolated from Thuja plicata and Chamaecyparis obtusa, it exhibits antimicrobial activities.
D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents
beta-Thujaplicin is found in fruits. beta-Thujaplicin occurs in Juniperus communis (juniper
Occurs in Juniperus communis (juniper). beta-Thujaplicin is found in fruits.
D000890 - Anti-Infective Agents
D000970 - Antineoplastic Agents
Acquisition and generation of the data is financially supported in part by CREST/JST.
Hinokitiol is a component of essential oils isolated from Chymacyparis obtusa, reduces Nrf2 expression, and decreases DNMT1 and UHRF1 mRNA and protein expression, with anti-infective, anti-oxidative, and anti-tumor activities.
Hinokitiol is a component of essential oils isolated from Chymacyparis obtusa, reduces Nrf2 expression, and decreases DNMT1 and UHRF1 mRNA and protein expression, with anti-infective, anti-oxidative, and anti-tumor activities.
同义名列表
71 个代谢物同义名
InChI=1/C10H12O2/c1-7(2)8-4-3-5-9(11)10(12)6-8/h3-7H,1-2H3,(H,11,12); 2-Hydroxy-4(6)-(1-methylethyl)-2,4,6-cycloheptatrien-1-one, 9CI; (2E,4Z,6Z)-2-hydroxy-4-isopropylcyclohepta-2,4,6-trienone; 2,4,6-Cycloheptatrien-1-one, 2-hydroxy-4-(1-methylethyl)-; 2-Hydroxy-4-isopropyl-2,4,6-cyclohepta-2,4,6-trien-1-one; 2-Hydroxy-4-(1-methylethyl)-2,4,6-cycloheptatrien-1-one; 2,6-Cycloheptatrien-1-one, 2-hydroxy-4-(1-methylethyl)-; 2-hydroxy-4-(propan-2-yl)cyclohepta-2,4,6-trien-1-one; 2-oxidanyl-6-propan-2-yl-cyclohepta-2,4,6-trien-1-one; 2-hydroxy-6-(propan-2-yl)cyclohepta-2,4,6-trien-1-one; 2-hydroxy-6-propan-2-yl-1-cyclohepta-2,4,6-trienone; 2,4,6-CYCLOHEPTATRIEN-1-ONE, 2-HYDROXY-4-ISOPROPYL-; 2-hydroxy-4-isopropyl- 2,4,6-cycloheptatriene-1-one; 2-hydroxy-6-propan-2-ylcyclohepta-2,4,6-trien-1-one; 2-Hydroxy-4-isopropyl-cyclohepta-2,4,6-trien-1-one; 2-Hydroxy-4-isopropyl-2,4, 6-cycloheptatrien-1-one; 2-hydroxy-6-isopropyl-cyclohepta-2,4,6-trien-1-one; 2,6-Cycloheptatrien-1-one, 2-hydroxy-4-isopropyl-; 2-Hydroxy-4-isopropyl-2,4,6-cycloheptatrien-1-one; 2-Hydroxy-4-isopropylcyclohepta-2,4,6-trien-1-one; 2-hydroxy-4-isopropyl-cyclohepta2,4,6-trien-1-one; 2-Hydroxy-4-isopropyl-2,6-cycloheptatrien-1-one; 2-Hydroxy-4-isopropyl-cyclohepta-2,4,6-trienone; beta-Thujaplicin, SAJ special grade, >=99.0\\%; 4-08-00-00488 (Beilstein Handbook Reference); Hinokitiol 4-Isopropyltropolone; beta-thujaplicin, sodium salt; FUWUEFKEXZQKKA-UHFFFAOYSA-; .beta.-Isopropyltropolon; 4(6)-Isopropyltropolone; Tropolone, 4-isopropyl-; .BETA.-THUJAPLICIN [MI]; beta-Isopropyltropolone; beta -isopropyltropolon; beta-Isopropyltropolon; beta-Thujaplicin, 99\\%; 4-isopropyl-tropolone; 6-Isopropyl-tropolon; 4-isopropyltropolone; .beta.-Thujaplicine; HINOKITIOL [WHO-DD]; Thujaplicin, .beta.; WLN: L7VJ BQ DY1&1; .beta.-Thujaplicin; Isopropyltropolone; beta -thujaplicine; beta-Thujaplicine; THUJAPLICIN, BETA; alpha-Thujaplicin; beta -thujaplicin; HINOKITIOL [INCI]; beta-thujaplicin; |A-Thujaplicin; b-Thujaplicin; |A-thujaplici; Β-thujaplicin; KBio2_002933; KBio3_000710; KBio2_005501; KBio3_000709; NCI60_001565; KBio2_000365; QTL1_000044; IDI1_002098; Bio2_000823; Bio2_000343; Hinokitiol; Hinokitol; AI3-28398; beta-Thujaplicin; Hinokitiol
数据库引用编号
28 个数据库交叉引用编号
- ChEBI: CHEBI:10447
- KEGG: C09904
- KEGG: C75327
- KEGGdrug: D04876
- PubChem: 3611
- HMDB: HMDB0035213
- Metlin: METLIN67998
- ChEMBL: CHEMBL48310
- Wikipedia: Hinokitiol
- MeSH: beta-thujaplicin
- ChemIDplus: 0000499445
- KNApSAcK: C00003062
- foodb: FDB013860
- chemspider: 3485
- CAS: 499-44-5
- MoNA: PS088002
- MoNA: PS088003
- MoNA: PR100373
- MoNA: PR100822
- MoNA: PS088001
- MoNA: PR100823
- medchemexpress: HY-B2230
- PMhub: MS000009993
- MetaboLights: MTBLC10447
- 3DMET: B03367
- NIKKAJI: J6.176J
- PubChem: 12090
- KNApSAcK: 10447
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
14 个相关的物种来源信息
- 54798 - Calocedrus formosana: 10.1271/BBB.62.1653
- 187461 - Chamaecyparis formosensis: 10.1246/NIKKASHI1921.63.1465
- 13415 - Chamaecyparis obtusa:
- 3367 - Cupressaceae: 10.1016/J.JID.2016.11.044
- 329077 - Hesperocyparis goveniana var. abramsiana:
- 76352 - Hesperocyparis macrocarpa:
- 9606 - Homo sapiens: -
- 58039 - Juniperus communis: 10.3891/ACTA.CHEM.SCAND.15-0961
- 33090 - Plants: -
- 3317 - Thuja occidentalis: 10.1016/0031-9422(88)80602-2
- 3316 - Thuja plicata:
- 3316 - Thuja plicata: -
- 13727 - Thujopsis dolabrata:
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Hongxing Tang, Kejun He, Kun Zhao, Chen Zheng, Weichi Wu, Weilin Jin, Lixuan Yang, Baoshu Xie. Protective effects of Hinokitiol on neuronal ferroptosis by activating the KEAP1/NRF-2/HO-1 pathway in traumatic brain injury.
Journal of neurotrauma.
2023 Nov; ?(?):. doi:
10.1089/neu.2023.0150
. [PMID: 37962273] - Yonghui Qiao, Mengwei Zhang, Yuxuan Cao, Qianqian Mi, Shen Liang, Juntao Feng, Yong Wang. Postharvest sclerotinia rot control in carrot by the natural product hinokitiol and the potential mechanisms involved.
International journal of food microbiology.
2022 Dec; 383(?):109939. doi:
10.1016/j.ijfoodmicro.2022.109939
. [PMID: 36166914] - Zhiping Che, Yibo Liu, Luyao Chen, Puhou Xing, Xiangdong Li, Xiaobo Huang, Shengming Liu, Genqiang Chen, Xiaomin Lin, Yuee Tian. Synthesis of Hinokitiol Sulfonate Derivatives and Their Anti-Oomycete and Nematicidal Activities.
Chemistry & biodiversity.
2022 Sep; 19(9):e202200580. doi:
10.1002/cbdv.202200580
. [PMID: 35975883] - Yamini Chelpuri, Shivakumar Pabbathi, Gopala Reddy Alla, Ravi Kumar Yadala, Mounika Kamishetti, Anil Kumar Banothu, Ramya Boinepally, Kala Kumar Bharani, Amit Khurana. Tropolone derivative hinokitiol ameliorates cerulein-induced acute pancreatitis in mice.
International immunopharmacology.
2022 Aug; 109(?):108915. doi:
10.1016/j.intimp.2022.108915
. [PMID: 35679663] - Xuan Tao, Lu Zhang, Liubing Du, Kai Lu, Zhennan Zhao, Yanxuan Xie, Xiaobo Li, Shuxiang Huang, Pei-Hui Wang, Ji-An Pan, Wei Xia, Jun Dai, Zong-Wan Mao. Inhibition of SARS-CoV-2 replication by zinc gluconate in combination with hinokitiol.
Journal of inorganic biochemistry.
2022 06; 231(?):111777. doi:
10.1016/j.jinorgbio.2022.111777
. [PMID: 35255411] - Marketa Houdkova, Aishwarya Chaure, Ivo Doskocil, Jaroslav Havlik, Ladislav Kokoska. New Broth Macrodilution Volatilization Method for Antibacterial Susceptibility Testing of Volatile Agents and Evaluation of Their Toxicity Using Modified MTT Assay In Vitro.
Molecules (Basel, Switzerland).
2021 Jul; 26(14):. doi:
10.3390/molecules26144179
. [PMID: 34299454] - Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
Cell reports.
2021 04; 35(4):109040. doi:
10.1016/j.celrep.2021.109040
. [PMID: 33910017] - Saideng Lu, Yu Song, Rongjin Luo, Shuai Li, Gaocai Li, Kun Wang, Zhiwei Liao, Bingjin Wang, Wencan Ke, Qian Xiang, Chao Chen, Xinghuo Wu, Yukun Zhang, Li Ling, Cao Yang. Ferroportin-Dependent Iron Homeostasis Protects against Oxidative Stress-Induced Nucleus Pulposus Cell Ferroptosis and Ameliorates Intervertebral Disc Degeneration In Vivo.
Oxidative medicine and cellular longevity.
2021; 2021(?):6670497. doi:
10.1155/2021/6670497
. [PMID: 33628376] - Ba X Hoang, Bo Han. A possible application of hinokitiol as a natural zinc ionophore and anti-infective agent for the prevention and treatment of COVID-19 and viral infections.
Medical hypotheses.
2020 Dec; 145(?):110333. doi:
10.1016/j.mehy.2020.110333
. [PMID: 33045596] - Yueh-Jung Wu, Wei-Jie Hsu, Li-Hsien Wu, Huei-Pu Liou, Christian Ronquillo Pangilinan, Yu-Chang Tyan, Che-Hsin Lee. Hinokitiol reduces tumor metastasis by inhibiting heparanase via extracellular signal-regulated kinase and protein kinase B pathway.
International journal of medical sciences.
2020; 17(3):403-413. doi:
10.7150/ijms.41177
. [PMID: 32132875] - Toshihito Isono, Hisanori Domon, Kosuke Nagai, Tomoki Maekawa, Hikaru Tamura, Takumi Hiyoshi, Katsunori Yanagihara, Eiji Kunitomo, Shoji Takenaka, Yuichiro Noiri, Yutaka Terao. Treatment of severe pneumonia by hinokitiol in a murine antimicrobial-resistant pneumococcal pneumonia model.
PloS one.
2020; 15(10):e0240329. doi:
10.1371/journal.pone.0240329
. [PMID: 33057343] - Nobuya Magori, Tsugumi Fujita, Eiichi Kumamoto. Hinokitiol inhibits compound action potentials in the frog sciatic nerve.
European journal of pharmacology.
2018 Jan; 819(?):254-260. doi:
10.1016/j.ejphar.2017.12.014
. [PMID: 29225186] - Lihong Zhang, Yang Peng, Ivan P Uray, Jianfeng Shen, Lulu Wang, Xiangdong Peng, Powel H Brown, Wei Tu, Guang Peng. Natural product β-thujaplicin inhibits homologous recombination repair and sensitizes cancer cells to radiation therapy.
DNA repair.
2017 12; 60(?):89-101. doi:
10.1016/j.dnarep.2017.10.009
. [PMID: 29112893] - Jung Seon Seo, Young Ha Choi, Ji Wook Moon, Hyeon Soo Kim, Sun-Hwa Park. Hinokitiol induces DNA demethylation via DNMT1 and UHRF1 inhibition in colon cancer cells.
BMC cell biology.
2017 02; 18(1):14. doi:
10.1186/s12860-017-0130-3
. [PMID: 28241740] - Yuki Naito, Yutaka Yoshikawa, Michiko Shintani, Shingo Kamoshida, Naemi Kajiwara, Hiroyuki Yasui. Anti-hyperglycemic Effect of Long-Term Bis(hinokitiolato)zinc Complex ([Zn(hkt)2]) Ingestion on Insulin Resistance and Pancreatic Islet Cells Protection in Type 2 Diabetic KK-Ay Mice.
Biological & pharmaceutical bulletin.
2017; 40(3):318-326. doi:
10.1248/bpb.b16-00797
. [PMID: 28250273] - Koki Fujita, Ryo Kambe, Ransika De Alwis, Tatsuya Yagi, Yuji Tsutsumi. Airborne Monoterpenes Emitted from a Cupressus lusitanica Cell Culture Induce a Signaling Cascade that Produces β-Thujaplicin.
Journal of chemical ecology.
2016 Aug; 42(8):814-820. doi:
10.1007/s10886-016-0739-2
. [PMID: 27596215] - Yun Chen, Ling Zeng, Wen Xiong, Meiyun Song, Hongxu Du, Yixuan Wang, Ke Ming, Yi Wu, Deyun Wang, Yuanliang Hu, Jiaguo Liu. Anti-duck virus hepatitis mechanisms of Bush Sophora Root polysaccharide and its sulfate verified by intervention experiments.
Virus research.
2015 Jun; 204(?):58-67. doi:
10.1016/j.virusres.2015.04.013
. [PMID: 25901935] - Shinjiro Ogita, Masahito Shichiken, Chizuru Ito, Toshiyuki Yamashita, Taiji Nomura, Yasuo Kato. A stepwise protocol for induction and selection of prominent coniferous cell cultures for the production of β-thujaplicin.
Natural product communications.
2015 May; 10(5):783-7. doi:
"
. [PMID: 26058158] - Koki Fujita, Yasufumi Bunyu, Ken'ich Kuroda, Tatsuya Ashitani, Jun Shigeto, Yuji Tsutsumi. A novel synthetic pathway for tropolone ring formation via the olefin monoterpene intermediate terpinolene in cultured Cupressus lusitanica cells.
Journal of plant physiology.
2014 May; 171(8):610-4. doi:
10.1016/j.jplph.2013.12.016
. [PMID: 24709152] - Kosaku Iha, Nao Suzuki, Masahiro Yoneda, Toru Takeshita, Takao Hirofuji. Effect of mouth cleaning with hinokitiol-containing gel on oral malodor: a randomized, open-label pilot study.
Oral surgery, oral medicine, oral pathology and oral radiology.
2013 Oct; 116(4):433-9. doi:
10.1016/j.oooo.2013.05.021
. [PMID: 23969334] - Toyotaka Murakami, Mutsumi Matsukawa, Narumi Katsuyama, Masato Imada, Shin Aizawa, Takaaki Sato. Stress-related activities induced by predator odor may become indistinguishable by hinokitiol odor.
Neuroreport.
2012 Dec; 23(18):1071-6. doi:
10.1097/wnr.0b013e32835b373b
. [PMID: 23128452] - Jong Yuh Cherng, Li Yin Chen, Mei Fen Shih. Preventive effects of β-thujaplicin against UVB-induced MMP-1 and MMP-3 mRNA expressions in skin fibroblasts.
The American journal of Chinese medicine.
2012; 40(2):387-98. doi:
10.1142/s0192415x12500309
. [PMID: 22419431] - Y M Cho, M Hasumura, S Takami, T Imai, M Hirose, K Ogawa, A Nishikawa. A 13-week subchronic toxicity study of hinokitiol administered in the diet to F344 rats.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2011 Aug; 49(8):1782-6. doi:
10.1016/j.fct.2011.04.027
. [PMID: 21557982] - Elizabeth A Mazzio, Fran Close, Karam F A Soliman. The biochemical and cellular basis for nutraceutical strategies to attenuate neurodegeneration in Parkinson's disease.
International journal of molecular sciences.
2011 Jan; 12(1):506-69. doi:
10.3390/ijms12010506
. [PMID: 21340000] - Aartjan J W te Velthuis, Sjoerd H E van den Worm, Amy C Sims, Ralph S Baric, Eric J Snijder, Martijn J van Hemert. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture.
PLoS pathogens.
2010 Nov; 6(11):e1001176. doi:
10.1371/journal.ppat.1001176
. [PMID: 21079686] - Ransika De Alwis, Koki Fujita, Tatsuya Ashitani, Ken'ichi Kuroda. Volatile and non-volatile monoterpenes produced by elicitor-stimulated Cupressus lusitanica cultured cells.
Journal of plant physiology.
2009 May; 166(7):720-8. doi:
10.1016/j.jplph.2008.09.009
. [PMID: 19027192] - S Kwon, K Shimoda, H Hamada, K Ishihara, N Masuoka, H Hamada. High production of beta-thujaplicin glycosides by immobilized plant cells of Nicotiana tabacum.
Acta biologica Hungarica.
2008 Sep; 59(3):347-55. doi:
10.1556/abiol.59.2008.3.8
. [PMID: 18839701] - Tsair-Bor Yen, Hui-Ting Chang, Chun-Chun Hsieh, Shang-Tzen Chang. Antifungal properties of ethanolic extract and its active compounds from Calocedrus macrolepis var. formosana (Florin) heartwood.
Bioresource technology.
2008 Jul; 99(11):4871-7. doi:
10.1016/j.biortech.2007.09.037
. [PMID: 17977717] - Shicheng Liu, Hitoshi Yamauchi. Hinokitiol, a metal chelator derived from natural plants, suppresses cell growth and disrupts androgen receptor signaling in prostate carcinoma cell lines.
Biochemical and biophysical research communications.
2006 Dec; 351(1):26-32. doi:
10.1016/j.bbrc.2006.09.166
. [PMID: 17055455] - Yoshihiko Inamori, Yasuhiro Morita, Yoshikazu Sakagami, Toshihoro Okabe, Nakao Ishida. The excellence of Aomori Hiba (Hinokiasunaro) in its use as building materials of Buddhist temples and Shinto shrines.
Biocontrol science.
2006 Jun; 11(2):49-54. doi:
10.4265/bio.11.49
. [PMID: 16789546] - Young-Su Jang, Ju-Hyun Jeon, Hoi-Seon Lee. Mosquito larvicidal activity of active constituent derived from Chamaecyparis obtusa leaves against 3 mosquito species.
Journal of the American Mosquito Control Association.
2005 Dec; 21(4):400-3. doi:
10.2987/8756-971x(2006)21[400:mlaoac]2.0.co;2
. [PMID: 16506565] - Jian Zhao, Koki Fujita, Kokki Sakai. Oxidative stress in plant cell culture: a role in production of beta-thujaplicin by Cupresssus lusitanica suspension culture.
Biotechnology and bioengineering.
2005 Jun; 90(5):621-31. doi:
10.1002/bit.20465
. [PMID: 15834951] - Young-Su Jang, Chi-Hoon Lee, Moo-Key Kim, Jeong-Hak Kim, Sang-Hyun Lee, Hoi-Seon Lee. Acaricidal activity of active constituent isolated in Chamaecyparis obtusa leaves against Dermatophagoides spp.
Journal of agricultural and food chemistry.
2005 Mar; 53(6):1934-7. doi:
10.1021/jf048472a
. [PMID: 15769116] - Yasuhiro Morita, Eiko Matsumura, Toshihiro Okabe, Toru Fukui, Tatsuhiko Ohe, Nakao Ishida, Yoshihiko Inamori. Biological activity of beta-dolabrin, gamma-thujaplicin, and 4-acetyltropolone, hinokitiol-related compounds.
Biological & pharmaceutical bulletin.
2004 Oct; 27(10):1666-9. doi:
10.1248/bpb.27.1666
. [PMID: 15467216] - Yasuhiro Morita, Eiko Matsumura, Toshihiro Okabe, Toru Fukui, Mitsunobu Shibata, Masaaki Sugiura, Tatsuhiko Ohe, Hiroshi Tsujibo, Nakao Ishida, Yoshihiko Inamori. Biological activity of alpha-thujaplicin, the isomer of hinokitiol.
Biological & pharmaceutical bulletin.
2004 Jun; 27(6):899-902. doi:
10.1248/bpb.27.899
. [PMID: 15187442] - Jian Zhao, Shao-Hui Zheng, Koki Fujita, Kokki Sakai. Jasmonate and ethylene signalling and their interaction are integral parts of the elicitor signalling pathway leading to beta-thujaplicin biosynthesis in Cupressus lusitanica cell cultures.
Journal of experimental botany.
2004 May; 55(399):1003-12. doi:
10.1093/jxb/erh127
. [PMID: 15047767] - Jian Zhao, YingQing Guo, Atsushi Kosaihira, Kokki Sakai. Rapid accumulation and metabolism of polyphosphoinositol and its possible role in phytoalexin biosynthesis in yeast elicitor-treated Cupressus lusitanica cell cultures.
Planta.
2004 May; 219(1):121-31. doi:
10.1007/s00425-003-1198-x
. [PMID: 14747948] - Yasuhiro Morita, Eiko Matsumura, Toshihiro Okabe, Mitsunobu Shibata, Masaaki Sugiura, Tatsuhiko Ohe, Hiroshi Tsujibo, Nakao Ishida, Yoshihiko Inamori. Biological activity of tropolone.
Biological & pharmaceutical bulletin.
2003 Oct; 26(10):1487-90. doi:
10.1248/bpb.26.1487
. [PMID: 14519960] - Jian Zhao, Kokki Sakai. Multiple signalling pathways mediate fungal elicitor-induced beta-thujaplicin biosynthesis in Cupressus lusitanica cell cultures.
Journal of experimental botany.
2003 Feb; 54(383):647-56. doi:
10.1093/jxb/erg062
. [PMID: 12554707] - Yasuhiro Morita, Eiko Matsumura, Hiroshi Tsujibo, Masahide Yasuda, Toshihiro Okabe, Yoshikazu Sakagami, Yuko Kumeda, Nakao Ishida, Yoshihiko Inamor. Biological activity of 4-acetyltropolone, the minor component of Thujopsis dolabrata SIeb. et Zucc. hondai Mak.
Biological & pharmaceutical bulletin.
2002 Aug; 25(8):981-5. doi:
10.1248/bpb.25.981
. [PMID: 12186430] - Y Morita, E Matsumura, H Tsujibo, M Yasuda, Y Sakagami, T Okabe, N Ishida, Y Inamori. Biological activity of alpha-thujaplicin, the minor component of Thujopsis dolabrata SIEB. et ZUCC. var. hondai MAKINO.
Biological & pharmaceutical bulletin.
2001 Jun; 24(6):607-11. doi:
10.1248/bpb.24.607
. [PMID: 11411545] - J Zhao, K Fujita, J Yamada, K Sakai. Improved beta-thujaplicin production in Cupressus lusitanica suspension cultures by fungal elicitor and methyl jasmonate.
Applied microbiology and biotechnology.
2001 Apr; 55(3):301-5. doi:
10.1007/s002530000555
. [PMID: 11341310] - H Kawahara, K Masuda, H Obata. Identification of a compound in Chamaecyparis taiwanensis inhibiting the ice-nucleating activity of Pseudomonas fluorescens KUIN-1.
Bioscience, biotechnology, and biochemistry.
2000 Dec; 64(12):2651-6. doi:
10.1271/bbb.64.2651
. [PMID: 11210129] - Y Sakagami, Y Inamori, N Isoyama, H Tsujibo, T Okabe, Y Morita, N Ishida. Phytogrowth-Inhibitory activities of beta-dolabrin and gamma-thujaplicin, hinokitiol-related compounds and constituents of Thujopsis dolabrata Sieb. et Zucc. var hondai Makino.
Biological & pharmaceutical bulletin.
2000 May; 23(5):645-8. doi:
10.1248/bpb.23.645
. [PMID: 10823681] - Y Nakagawa, K Tayama. Mechanism of mitochondrial dysfunction and cytotoxicity induced by tropolones in isolated rat hepatocytes.
Chemico-biological interactions.
1998 Nov; 116(1-2):45-60. doi:
10.1016/s0009-2797(98)00078-7
. [PMID: 9877200] - D Miyamoto, Y Kusagaya, N Endo, A Sometani, S Takeo, T Suzuki, Y Arima, K Nakajima, Y Suzuki. Thujaplicin-copper chelates inhibit replication of human influenza viruses.
Antiviral research.
1998 Aug; 39(2):89-100. doi:
10.1016/s0166-3542(98)00034-5
. [PMID: 9806486] - H Akiyama, O Yamasaki, H Kanzaki, J Tada, J Arata. Effects of zinc oxide on the attachment of Staphylococcus aureus strains.
Journal of dermatological science.
1998 May; 17(1):67-74. doi:
10.1016/s0923-1811(97)00070-4
. [PMID: 9651831] - T ABE, S KATSURA, Y TAMANO. [Therapeutic use of hinokitiol in pulmonary gangrene not well responding to antibiotics].
Medizinische Klinik.
1956 Nov; 51(48):2045-7. doi:
"
. [PMID: 13386868]