codonolactone (BioDeep_00000000306)

Main id: BioDeep_00000398498

Secondary id: BioDeep_00000859330

PANOMIX_OTCML-2023


代谢物信息卡片


[4aS-(4aalpha,8abeta,9abeta)]-4a,5,6,7,8,8a,9,9a-Octahydro-9a-hydroxy-3,8a-dimethyl-5-methylenenaphtho[2,3-b]furan-2(4H)-one

化学式: C15H20O3 (248.1412)
中文名称: 白术内酯 III, 白术内酯III
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1(=C)[C@H]2[C@](CCC1)(C[C@]1(C(=C(C(=O)O1)C)C2)O)C
InChI: InChI=1S/C15H20O3/c1-9-5-4-6-14(3)8-15(17)12(7-11(9)14)10(2)13(16)18-15/h11,17H,1,4-8H2,2-3H3/t11-,14+,15-/m0/s1

描述信息

Atractylenolide III is a naphthofuran. It has a role as a metabolite.
Atractylenolide III is a natural product found in Codonopsis canescens, Codonopsis subglobosa, and other organisms with data available.
A natural product found in Atractylodes lancea.
Atractylenolide-III is the main component of Atractylodes rhizome and has the activity of inducing apoptosis in lung cancer cells.
Atractylenolide-III is the main component of Atractylodes rhizome and has the activity of inducing apoptosis in lung cancer cells.

同义名列表

24 个代谢物同义名

Naphtho(2,3-b)furan-2(4H)-one, 4a,5,6,7,8,8a,9,9a-octahydro-9a-hydroxy-3,8a-dimethyl-5-methylene-, (4aS,8aR,9aS)-; aphtho[2,3-b]furan-2(4H)-one, 4a,5,6,7,8,8a,9,9a-octahydro-9a-hydroxy-3,8a-dimethyl-5-methylene-, (4aS,8aR,9aS)-; Naphtho[2,3-b]furan-2(4H)-one,4a,5,6,7,8,8a,9,9a-octahydro-9a-hydroxy-3,8a-dimethyl-5-methylene-,(4aS,8aR,9aS)-; (4aS,8aR,9aS)-9a-hydroxy-3,8a-dimethyl-5-methylidene-2H,4H,4aH,5H,6H,7H,8H,8aH,9H,9aH-naphtho[2,3-b]furan-2-one; (4aS,8aR,9aS)-9a-hydroxy-3,8a-dimethyl-5-methylene-4a,5,6,7,8,8a,9,9a-octahydronaphtho[2,3-b]furan-2(4H)-one; (4aS,8aR,9aS)-9a-hydroxy-3,8a-dimethyl-5-methylidene-4,4a,6,7,8,9-hexahydrobenzo[f][1]benzofuran-2-one; Atractylenolide III, >=98\\% (HPLC); ICodonolactone;8-Hydroxyasterolide; 8beta-Hydroxyasterolide; 8 beta-hydroasterolide; atractylenolide cento; Atractylodes japonica; Atractylenolide beta; 8b-Hydroxyasterolide; 8-Hydroxyasterolide; Atractylenolide III; Atractylenolide-III; AtractylenolideIII; Atractylenolide; Icodonolactone; codonolactone; [4aS-(4aalpha,8abeta,9abeta)]-4a,5,6,7,8,8a,9,9a-Octahydro-9a-hydroxy-3,8a-dimethyl-5-methylenenaphtho[2,3-b]furan-2(4H)-one; 8-Hydroxyasterolid; 8β-Hydroxyasterolide



数据库引用编号

13 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 13 BCL2, CASP3, CASP9, MAPK14, MAPK8, MTOR, PIK3CA, PRKAA2, PTGS2, RUNX2, SIRT1, STAT3, VEGFA
Peripheral membrane protein 2 MTOR, PTGS2
Endoplasmic reticulum membrane 4 BCL2, HMOX1, MTOR, PTGS2
Nucleus 14 BCL2, CASP3, CASP9, GABPA, HMOX1, MAPK14, MAPK8, MTOR, PPARGC1A, PRKAA2, RUNX2, SIRT1, STAT3, VEGFA
cytosol 13 BCL2, CASP3, CASP9, HMOX1, MAPK14, MAPK8, MTOR, PIK3CA, PPARGC1A, PRKAA2, RUNX2, SIRT1, STAT3
dendrite 2 MTOR, PRKAA2
phagocytic vesicle 1 MTOR
nucleoplasm 11 CASP3, GABPA, HMOX1, MAPK14, MAPK8, MTOR, PPARGC1A, PRKAA2, RUNX2, SIRT1, STAT3
RNA polymerase II transcription regulator complex 1 STAT3
Cell membrane 1 TNF
Cytoplasmic side 2 HMOX1, MTOR
lamellipodium 1 PIK3CA
Golgi apparatus membrane 1 MTOR
Synapse 1 MAPK8
cell surface 2 TNF, VEGFA
glutamatergic synapse 2 CASP3, MAPK14
Golgi apparatus 2 PRKAA2, VEGFA
Golgi membrane 1 MTOR
lysosomal membrane 1 MTOR
neuronal cell body 3 CASP3, PRKAA2, TNF
Lysosome 1 MTOR
plasma membrane 3 PIK3CA, STAT3, TNF
Membrane 5 BCL2, HMOX1, MTOR, PRKAA2, VEGFA
axon 2 MAPK8, PRKAA2
caveola 1 PTGS2
Lysosome membrane 1 MTOR
endoplasmic reticulum 4 BCL2, HMOX1, PTGS2, VEGFA
extracellular space 5 CXCL8, HMOX1, IL6, TNF, VEGFA
perinuclear region of cytoplasm 2 HMOX1, PIK3CA
adherens junction 1 VEGFA
intercalated disc 1 PIK3CA
mitochondrion 4 BCL2, CASP9, MAPK14, SIRT1
protein-containing complex 3 BCL2, CASP9, PTGS2
Microsome membrane 2 MTOR, PTGS2
postsynaptic density 1 CASP3
chromatin silencing complex 1 SIRT1
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Secreted 3 CXCL8, IL6, VEGFA
extracellular region 6 CXCL8, DNAH9, IL6, MAPK14, TNF, VEGFA
Mitochondrion outer membrane 2 BCL2, MTOR
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 3 BCL2, HMOX1, MTOR
transcription regulator complex 2 RUNX2, STAT3
motile cilium 1 DNAH9
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 1 TNF
Secreted, extracellular space, extracellular matrix 1 VEGFA
nucleolus 1 SIRT1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
heterochromatin 1 SIRT1
Membrane raft 1 TNF
pore complex 1 BCL2
microtubule 1 DNAH9
extracellular matrix 1 VEGFA
Nucleus, PML body 3 MTOR, PPARGC1A, SIRT1
PML body 3 MTOR, PPARGC1A, SIRT1
secretory granule 1 VEGFA
axoneme 1 DNAH9
nuclear speck 2 MAPK14, PRKAA2
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 2 PTGS2, SIRT1
nuclear outer membrane 1 PTGS2
neuron projection 1 PTGS2
chromatin 5 GABPA, PPARGC1A, RUNX2, SIRT1, STAT3
phagocytic cup 1 TNF
spindle pole 1 MAPK14
Cytoplasm, cytoskeleton, cilium axoneme 1 DNAH9
fibrillar center 1 SIRT1
nuclear envelope 2 MTOR, SIRT1
Endomembrane system 1 MTOR
cytoplasmic stress granule 1 PRKAA2
euchromatin 1 SIRT1
myelin sheath 1 BCL2
ficolin-1-rich granule lumen 1 MAPK14
secretory granule lumen 1 MAPK14
endoplasmic reticulum lumen 2 IL6, PTGS2
platelet alpha granule lumen 1 VEGFA
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
9+2 motile cilium 1 DNAH9
dynein complex 1 DNAH9
Single-pass type IV membrane protein 1 HMOX1
apoptosome 1 CASP9
[Isoform 1]: Nucleus 1 PPARGC1A
basal dendrite 1 MAPK8
death-inducing signaling complex 1 CASP3
eNoSc complex 1 SIRT1
rDNA heterochromatin 1 SIRT1
nucleotide-activated protein kinase complex 1 PRKAA2
Cytoplasmic vesicle, phagosome 1 MTOR
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
interleukin-6 receptor complex 1 IL6
BAD-BCL-2 complex 1 BCL2
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
caspase complex 1 CASP9
outer dynein arm 1 DNAH9
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF
[SirtT1 75 kDa fragment]: Cytoplasm 1 SIRT1
distal portion of axoneme 1 DNAH9
[Isoform B4]: Nucleus 1 PPARGC1A
[Isoform B4-8a]: Cytoplasm 1 PPARGC1A
[Isoform B5]: Nucleus 1 PPARGC1A
[Isoform 9]: Nucleus 1 PPARGC1A


文献列表

  • Yan Wang, Kun Shi, Jiyuan Tu, Chang Ke, Niping Chen, Bo Wang, Yanju Liu, Zhongshi Zhou. Atractylenolide III Ameliorates Bile Duct Ligation-Induced Liver Fibrosis by Inhibiting the PI3K/AKT Pathway and Regulating Glutamine Metabolism. Molecules (Basel, Switzerland). 2023 Jul; 28(14):. doi: 10.3390/molecules28145504. [PMID: 37513376]
  • Shiyi Tan, Shang Yang, Huimin Kang, Ke Zhou, Hanqin Wang, Yujing Zhang, Shi Chen. Atractylenolide III Ameliorated Autophagy Dysfunction via Epidermal Growth Factor Receptor-Mammalian Target of Rapamycin Signals and Alleviated Silicosis Fibrosis in Mice. Laboratory investigation; a journal of technical methods and pathology. 2023 02; 103(2):100024. doi: 10.1016/j.labinv.2022.100024. [PMID: 37039148]
  • Xin Liu, Yuan Huang, Xu Liang, Qiong Wu, Nan Wang, Li-Jun Zhou, Wen-Wu Liu, Qun Ma, Bei Hu, Huan Gao, Ya-Ling Cui, Xiang Li, Qing-Chun Zhao. Atractylenolide III from Atractylodes macrocephala Koidz promotes the activation of brown and white adipose tissue through SIRT1/PGC-1α signaling pathway. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2022 Sep; 104(?):154289. doi: 10.1016/j.phymed.2022.154289. [PMID: 35785561]
  • Meng-Yu Zuo, Tong-Juan Tang, Peng Zhou, Xiang Wang, Rui Ding, Jin-Fan Gu, Jian Chen, Liang Wang, Juan Yao, Xiang-Yang Li, Jin-Ling Huang. [Mechanism of atractylenolide Ⅲ in alleviating H9c2 cell apoptosis through ROS/GRP78/caspase-12 signaling pathway based on molecular docking]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2022 Aug; 47(16):4436-4445. doi: 10.19540/j.cnki.cjcmm.20220304.401. [PMID: 36046873]
  • Dan Zhang, Xiaofang Li, Daqiang Song, Siwei Chen, Zhuo Zhang, Shousong Cao, Minghua Liu. Atractylenolide III induces apoptosis by regulating the Bax/Bcl-2 signaling pathway in human colorectal cancer HCT-116 Cells in vitro and in vivo. Anti-cancer drugs. 2022 01; 33(1):30-47. doi: 10.1097/cad.0000000000001136. [PMID: 34261915]
  • Qian Li, Jia-Xin Tan, Yong He, Fang Bai, Shi-Wei Li, Yi-Wen Hou, Long-Shan Ji, Ya-Ting Gao, Xin Zhang, Zhen-Hua Zhou, Zhuo Yu, Miao Fang, Yue-Qiu Gao, Man Li. Atractylenolide III ameliorates Non-Alcoholic Fatty Liver Disease by activating Hepatic Adiponectin Receptor 1-Mediated AMPK Pathway. International journal of biological sciences. 2022; 18(4):1594-1611. doi: 10.7150/ijbs.68873. [PMID: 35280674]
  • Shuying Zhu, Zeru Wang, Jun Yu, Lin Yin, Anding Zhu. Atractylenolide III alleviates isoflurane-induced injury in rat hippocampal neurons by activating the PI3K/Akt/mTOR pathway. Journal of food biochemistry. 2021 09; 45(9):e13892. doi: 10.1111/jfbc.13892. [PMID: 34363234]
  • Mao Deng, Huijuan Chen, Jiaying Long, Jiawen Song, Long Xie, Xiaofang Li. Atractylenolides (I, II, and III): a review of their pharmacology and pharmacokinetics. Archives of pharmacal research. 2021 Jul; 44(7):633-654. doi: 10.1007/s12272-021-01342-6. [PMID: 34269984]
  • Elyza Aiman Azizah Nur, Taichi Ohshiro, Keisuke Kobayashi, Jing Wu, Elly Wahyudin, Huiping Zhang, Fumiaki Hayashi, Hirokazu Kawagishi, Hiroshi Tomoda. Inhibition of cholesteryl ester synthesis by polyacetylenes from Atractylodes rhizome. Bioorganic & medicinal chemistry letters. 2020 04; 30(7):126997. doi: 10.1016/j.bmcl.2020.126997. [PMID: 32035699]
  • Yun Hee Jeong, Wei Li, Younghoon Go, You-Chang Oh. Atractylodis Rhizoma Alba Attenuates Neuroinflammation in BV2 Microglia upon LPS Stimulation by Inducing HO-1 Activity and Inhibiting NF-κB and MAPK. International journal of molecular sciences. 2019 Aug; 20(16):. doi: 10.3390/ijms20164015. [PMID: 31426492]
  • Liufang Hu, Zhihong Yao, Zifei Qin, Liyin Liu, Xiaojun Song, Yi Dai, Hiroaki Kiyohara, Haruki Yamada, Xinsheng Yao. In vivo metabolic profiles of Bu-Zhong-Yi-Qi-Tang, a famous traditional Chinese medicine prescription, in rats by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Journal of pharmaceutical and biomedical analysis. 2019 Jul; 171(?):81-98. doi: 10.1016/j.jpba.2019.04.001. [PMID: 30981193]
  • Wen-Xia Gong, Yu-Zhi Zhou, Xue-Mei Qin, Guan-Hua DU. Involvement of mitochondrial apoptotic pathway and MAPKs/NF-κ B inflammatory pathway in the neuroprotective effect of atractylenolide III in corticosterone-induced PC12 cells. Chinese journal of natural medicines. 2019 Apr; 17(4):264-274. doi: 10.1016/s1875-5364(19)30030-5. [PMID: 31076130]
  • Zhihui Jiang, Chunyan Peng, Wenping Huang, Bei Wu, Dan Zhang, Hui Ouyang, Yulin Feng, Shilin Yang. A High Throughput Three-step Ultra-performance Liquid Chromatography Tandem Mass Spectrometry Method to Study Metabolites of Atractylenolide-III. Journal of chromatographic science. 2019 Feb; 57(2):163-176. doi: 10.1093/chromsci/bmy098. [PMID: 30496359]
  • Jiao-Jiao Ji, Qi Feng, Hai-Feng Sun, Xue-Jun Zhang, Xiao-Xiao Li, Jian-Kuan Li, Jian-Ping Gao. Response of Bioactive Metabolite and Biosynthesis Related Genes to Methyl Jasmonate Elicitation in Codonopsis pilosula. Molecules (Basel, Switzerland). 2019 Feb; 24(3):. doi: 10.3390/molecules24030533. [PMID: 30717158]
  • Mingqing Wang, Rong Hu, Yanjing Wang, Lingyu Liu, Haiyan You, Jiaxing Zhang, Xiaohui Wu, Tingting Pei, Fujing Wang, Lu Lu, Wei Xiao, Lianbo Wei. Atractylenolide III Attenuates Muscle Wasting in Chronic Kidney Disease via the Oxidative Stress-Mediated PI3K/AKT/mTOR Pathway. Oxidative medicine and cellular longevity. 2019; 2019(?):1875471. doi: 10.1155/2019/1875471. [PMID: 31178951]
  • Shizhao Xu, Xiaojie Qi, Yuqiang Liu, Yuhan Liu, Xin Lv, Jianzhi Sun, Qian Cai. UPLC-MS/MS of Atractylenolide I, Atractylenolide II, Atractylenolide III, and Atractyloside A in Rat Plasma after Oral Administration of Raw and Wheat Bran-Processed Atractylodis Rhizoma. Molecules (Basel, Switzerland). 2018 Dec; 23(12):. doi: 10.3390/molecules23123234. [PMID: 30544552]
  • Myoung-Schook Yoou, Sun-Young Nam, Mu Hyun Jin, So Young Lee, Mi-Sun Kim, Seok Seon Roh, In Hwa Choi, Nariyah Woo, SeokWon Lim, Dong Hyun Kim, Jae-Bum Jang, Hyung-Min Kim, Hyun-Ja Jeong. Ameliorative effect of atractylenolide III in the mast cell proliferation induced by TSLP. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2017 Aug; 106(Pt A):78-85. doi: 10.1016/j.fct.2017.05.042. [PMID: 28545868]
  • Yu-Jiao Zhao, Wen-Hui Xu, Xiao-Li Shen, Jun-Sheng Tian, Xue-Mei Qin. [Study on TLC identification and UPLC determination method of atractylenolide in Atractylodes macrocephala]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2017 Feb; 42(3):531-535. doi: 10.19540/j.cnki.cjcmm.20161222.074. [PMID: 28952260]
  • Mi Young Song, Hyo Won Jung, Seok Yong Kang, Yong-Ki Park. Atractylenolide III Enhances Energy Metabolism by Increasing the SIRT-1 and PGC1α Expression with AMPK Phosphorylation in C2C12 Mouse Skeletal Muscle Cells. Biological & pharmaceutical bulletin. 2017; 40(3):339-344. doi: 10.1248/bpb.b16-00853. [PMID: 28250276]
  • Na Zhang, Chao Liu, Tie-Min Sun, Xiao-Ku Ran, Ting-Guo Kang, De-Qiang Dou. Two new compounds from Atractylodes macrocephala with neuroprotective activity. Journal of Asian natural products research. 2017 Jan; 19(1):35-41. doi: 10.1080/10286020.2016.1247351. [PMID: 28027699]
  • Qinghao Jin, Jin Woo Lee, Hari Jang, Ji Eun Choi, Hyung Sik Kim, Dongho Lee, Jin Tae Hong, Mi Kyeong Lee, Bang Yeon Hwang. Dimeric sesquiterpene and thiophenes from the roots of Echinops latifolius. Bioorganic & medicinal chemistry letters. 2016 12; 26(24):5995-5998. doi: 10.1016/j.bmcl.2016.10.017. [PMID: 27865705]
  • Qian Zhang, Yun-Feng Cao, Rui-Xue Ran, Rong-Shan Li, Xue Wu, Pei-Pei Dong, Yan-Yan Zhang, Cui-Min Hu, Wei-Ming Wang. Strong Specific Inhibition of UDP-glucuronosyltransferase 2B7 by Atractylenolide I and III. Phytotherapy research : PTR. 2016 Jan; 30(1):25-30. doi: 10.1002/ptr.5496. [PMID: 26536846]
  • Jianjiang Fu, Xiaoqin Ke, Songlin Tan, Ting Liu, Shan Wang, Junchao Ma, Hong Lu. The natural compound codonolactone attenuates TGF-β1-mediated epithelial-to-mesenchymal transition and motility of breast cancer cells. Oncology reports. 2016 Jan; 35(1):117-26. doi: 10.3892/or.2015.4394. [PMID: 26549400]
  • Yao Gao, Li Gao, Xiao-xia Gao, Yu-zhi Zhou, Xue-mei Qin, Jun-sheng Tian. [An exploration in the action targets for antidepressant bioactive components of Xiaoyaosan based on network pharmacology]. Yao xue xue bao = Acta pharmaceutica Sinica. 2015 Dec; 50(12):1589-95. doi: . [PMID: 27169281]
  • Shan Wang, Rui Cai, Junchao Ma, Ting Liu, Xiaoqin Ke, Hong Lu, Jianjiang Fu. The natural compound codonolactone impairs tumor induced angiogenesis by downregulating BMP signaling in endothelial cells. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2015 Oct; 22(11):1017-26. doi: 10.1016/j.phymed.2015.07.009. [PMID: 26407944]
  • Han Yan, Yuanyuan Sun, Qili Zhang, Mingjing Yang, Xiaorui Wang, Yang Wang, Zhiguo Yu, Yunli Zhao. Simultaneous determination and pharmacokinetic study of Atractylenolide I, II and III in rat plasma after intragastric administration of Baizhufuling extract and Atractylodis extract by UPLC-MS/MS. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2015 Jul; 993-994(?):86-92. doi: 10.1016/j.jchromb.2015.05.006. [PMID: 26001909]
  • Guo-Shun Shan, Liang-Xiao Zhang, Qi-Miao Zhao, Hong-Bin Xiao, Rong-Jie Zhuo, Gang Xu, Hong Jiang, Xian-Min You, Tian-Zhu Jia. Metabolomic study of raw and processed Atractylodes macrocephala Koidz by LC-MS. Journal of pharmaceutical and biomedical analysis. 2014 Sep; 98(?):74-84. doi: 10.1016/j.jpba.2014.05.010. [PMID: 24893211]
  • Qing-Song Shao, Ai-lian Zhang, Wen-Wen Ye, Hai-Peng Guo, Run-Huai Hu. Fast determination of two atractylenolides in Rhizoma Atractylodis Macrocephalae by Fourier transform near-infrared spectroscopy with partial least squares. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2014; 120(?):499-504. doi: 10.1016/j.saa.2013.10.035. [PMID: 24211810]
  • Qinhua Chen, Hongsheng He, Peng Li, Jun Zhu, Min Xiong. Identification and quantification of atractylenolide I and atractylenolide III in Rhizoma Atractylodes Macrocephala by liquid chromatography-ion trap mass spectrometry. Biomedical chromatography : BMC. 2013 Jun; 27(6):699-707. doi: 10.1002/bmc.2847. [PMID: 23175447]
  • Qian Wang, Rong Shi, Yue-Ming Ma, Peng Jiang, Jie Zhong, Hong-Yan Cui, Ping Liu, Cheng-Hai Liu. Content determination of the major constituents of Yinchenzhufu decoction via ultra high-performance liquid chromatography coupled with electrospray ionisation tandem mass spectrometry. Journal of pharmaceutical and biomedical analysis. 2013 Apr; 77(?):88-93. doi: 10.1016/j.jpba.2013.01.020. [PMID: 23411001]
  • Yang-yang Shi, Shu-hong Guan, Ren-neng Tang, Si-jiao Tao, De-an Guo. Simultaneous determination of atractylenolide II and atractylenolide III by liquid chromatography-tandem mass spectrometry in rat plasma and its application in a pharmacokinetic study after oral administration of Atractylodes Macrocephala Rhizoma extract. Biomedical chromatography : BMC. 2012 Nov; 26(11):1386-92. doi: 10.1002/bmc.2709. [PMID: 22311612]
  • Yang-Yang Shi, Shu-Hong Guan, Ren-Neng Tang, Si-Jia Tao, De-An Guo. Simultaneous determination of four sesquiterpenoids in Atractylodes Macrocephala Rhizoma by GC-FID: optimisation of an ultrasound-assisted extraction by central composite design. Phytochemical analysis : PCA. 2012 Jul; 23(4):408-14. doi: 10.1002/pca.1373. [PMID: 22095585]
  • Chia-Jui Tsai, Jui-Wei Liang, Hsiang-Ru Lin. Sesquiterpenoids from Atractylodes macrocephala act as farnesoid X receptor and progesterone receptor modulators. Bioorganic & medicinal chemistry letters. 2012 Mar; 22(6):2326-9. doi: 10.1016/j.bmcl.2012.01.048. [PMID: 22365756]
  • Xican Li, Gang Wei, Xiaozhen Wang, Dong-Hui Liu, Ru-Dong Deng, Hui Li, Jian-Hong Zhou, Yi-Wei Li, He-Ping Zeng, Dong-Feng Chen. Targeting of the Sonic Hedgehog pathway by atractylenolides promotes chondrogenic differentiation of mesenchymal stem cells. Biological & pharmaceutical bulletin. 2012; 35(8):1328-35. doi: 10.1248/bpb.b12-00265. [PMID: 22863933]
  • Huan-yang Qi, Rui Wang, Yong Liu, Yan-ping Shi. [Studies on the chemical constituents of Codonopsis pilosula]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2011 Apr; 34(4):546-8. doi: . [PMID: 21809539]
  • Suihar Rong, Hai Lin, Ni Gao. [Study on processing technology and processing principles of atractrylodis macrocephalae rhizoma]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2011 Apr; 36(8):1001-3. doi: ". [PMID: 21809571]
  • Jue Zhou, Fan Qu, Yongping Yu. Chemical and ecological evaluation of a genuine Chinese medicine: Atractylodes macrocephala Koidz. African journal of traditional, complementary, and alternative medicines : AJTCAM. 2011; 8(4):405-11. doi: 10.4314/ajtcam.v8i4.10. [PMID: 22654218]
  • Myung Hee Hong, Jeong-Hyun Kim, Hyunsu Bae, Na-Youn Lee, Yong-Cheol Shin, Sung-Hoon Kim, Seong-Gyu Ko. Atractylodes japonica Koidzumi inhibits the production of proinflammatory cytokines through inhibition of the NF-kappaB/IkappaB signal pathway in HMC-1 human mast cells. Archives of pharmacal research. 2010 Jun; 33(6):843-51. doi: 10.1007/s12272-010-0606-6. [PMID: 20607488]
  • Kun-Teng Wang, Lih-Geeng Chen, Chih-Hsiung Wu, Chun-Chao Chang, Ching-Chiung Wang. Gastroprotective activity of atractylenolide III from Atractylodes ovata on ethanol-induced gastric ulcer in vitro and in vivo. The Journal of pharmacy and pharmacology. 2010 Mar; 62(3):381-8. doi: 10.1211/jpp.62.03.0014. [PMID: 20487223]
  • Hyun-Sun Park, Takeshi Ohama. Biotransformation of a herb plant metabolite by a cell disruptant of Chlamydomonas reinhardtii. Bioscience, biotechnology, and biochemistry. 2009 Dec; 73(12):2803-5. doi: 10.1271/bbb.90603. [PMID: 19966454]
  • Li-She Gan, Yun-Liang Zheng, Jian-Xia Mo, Xin Liu, Xin-Hua Li, Chang-Xin Zhou. Sesquiterpene lactones from the root tubers of Lindera aggregata. Journal of natural products. 2009 Aug; 72(8):1497-501. doi: 10.1021/np900354q. [PMID: 19639966]
  • Dan Shou, Shiwen Dai, Jianmin Zhang, Hongyu Li, Zhongming Yu. [Simultaneous determination of atractylenolide III, atractylenolide I and atractylon in Artactylodis macrocephala using microbore liquid chromatography]. Se pu = Chinese journal of chromatography. 2008 Sep; 26(5):637-9. doi: . [PMID: 19160769]
  • Bin Wu, Jun Chen, Haibin Qu, Yiyu Cheng. Complex sesquiterpenoids with tyrosinase inhibitory activity from the leaves of Chloranthus tianmushanensis. Journal of natural products. 2008 May; 71(5):877-80. doi: 10.1021/np070623r. [PMID: 18357995]
  • Jian Ge, You-Wei Wang, Xiao-Cong Lu, Xiao-Hong Sun, Fu-Jun Gong. Determination of atractylenolide II in rat plasma by reversed-phase high-performance liquid chromatography. Biomedical chromatography : BMC. 2007 Mar; 21(3):299-303. doi: 10.1002/bmc.756. [PMID: 17236249]
  • Wei Li, Hong-Mei Wen, Xiao-Bing Cui, Ke-Wei Zhang. [Process mechanism of Atractylodes macrocephala and conversion of sesquiterpenes]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2006 Oct; 31(19):1600-3. doi: . [PMID: 17165584]
  • Cui-Qin Li, Lang-Chong He, Ting Deng. [Pharmacokinetics and tissue distribution of atractylenolide III in rats]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2006 Aug; 29(8):807-9. doi: NULL. [PMID: 17076240]
  • Rui Wang, GuangJi Wang, Haiping Hao, HaiTang Xie, Jinfeng Zhang, Feng Wu. Quantitative determination of atractylenolide III in rat plasma by liquid chromatography electrospray ionization mass spectrometry. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2006 Feb; 831(1-2):36-41. doi: 10.1016/j.jchromb.2005.11.026. [PMID: 16324894]
  • Yukari Kuwahara, Takashi Nakamura, Akio Hashimoto, Hiroyuki Nishi. [Analysis of natural medicines by micellar electrokinetic chromatography (MEKC) (II)--determination of atractylenolide III in Atractylodis Rhizoma]. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan. 2003 Jun; 123(6):453-61. doi: 10.1248/yakushi.123.453. [PMID: 12822489]
  • Ching-Chiung Wang, Lih-Geeng Chen, Ling-Ling Yang. Cytotoxic activity of sesquiterpenoids from Atractylodes ovata on leukemia cell lines. Planta medica. 2002 Mar; 68(3):204-8. doi: 10.1055/s-2002-23144. [PMID: 11914954]
  • M Resch, A Steigel, Z L Chen, R Bauer. 5-Lipoxygenase and cyclooxygenase-1 inhibitory active compounds from Atractylodes lancea. Journal of natural products. 1998 Mar; 61(3):347-50. doi: 10.1021/np970430b. [PMID: 9544564]
  • H Wen, W Li, H Wu, L Qiu. [Influence of processing on atractylenolide III content in Atractylodes macrocephala Koids]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 1997 Nov; 22(11):662-3, 702. doi: ". [PMID: 11243181]
  • Y Kiso, M Tohkin, H Hikino. Antihepatotoxic principles of Atractylodes rhizomes. Journal of natural products. 1983 Sep; 46(5):651-4. doi: 10.1021/np50029a010. [PMID: 6418860]
  • V R Zurawski, W J Kohr, J F Foster. Conformational properties of bovine plasma albumin with a cleaved internal peptide bond. Biochemistry. 1975 Dec; 14(26):5579-86. doi: 10.1021/bi00697a007. [PMID: 1086]