Fustin (BioDeep_00000001043)

 

Secondary id: BioDeep_00001045414

PANOMIX_OTCML-2023 natural product


代谢物信息卡片


4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-2,3-dihydro-3,7-dihydroxy-, (2R,3R)-rel-

化学式: C15H12O6 (288.0634)
中文名称: 黄颜木素
谱图信息: 最多检出来源 Viridiplantae(plant) 15.57%

分子结构信息

SMILES: C1=CC(=C(C=C1C2C(C(=O)C3=C(O2)C=C(C=C3)O)O)O)O
InChI: InChI=1S/C15H12O6/c16-8-2-3-9-12(6-8)21-15(14(20)13(9)19)7-1-4-10(17)11(18)5-7/h1-6,14-18,20H

描述信息

Fustin is a natural product found in Acacia vestita, Acacia carneorum, and other organisms with data available.
See also: Cotinus coggygria whole (part of); Toxicodendron succedaneum whole (part of).
A dihydroflavonol that is the 2,3-dihydro derivative of fisetin.
Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) is a potent amyloid β (Aβ) inhibitor. Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) increases the expression of acetylcholine (ACh) levels, choline acetyltransferase (ChAT) activity, and ChAT gene induced by Aβ (1-42). Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) decreases in acetyl cholinesterase (AChE) activity and AChE gene expression induced by Aβ (1-42). Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) increases muscarinic M1 receptor gene expression and muscarinic M1 receptor binding activity. Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) can be used for Alzheimer's disease research[1].

同义名列表

36 个代谢物同义名

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-2,3-dihydro-3,7-dihydroxy-, (2R,3R)-rel-; 4H-1-BENZOPYRAN-4-ONE, 2-(3,4-DIHYDROXYPHENYL)-2,3-DIHYDRO-3,7-DIHYDROXY-, (2R-TRANS)-; 4H-1-Benzopyran-4-one,2-(3,4-dihydroxyphenyl)-2,3-dihydro-3,7-dihydroxy-,(2R,3R)-rel-; 4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-2,3-dihydro-3,7-dihydroxy-, (2R,3R)-; 4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-2,3-dihydro-3,7-dihydroxy-, trans-; (2R,3R)-2-(3,4-Dihydroxyphenyl)-2,3-dihydro-3,7-dihydroxy-4H-1-benzopyran-4-one; (2R,3S)-2-(3,4-dihydroxyphenyl)-3,7-dihydroxy-2,3-dihydro-4H-chromen-4-one; (2R,3R)-2-(3,4-dihydroxyphenyl)-3,7-dihydroxy-2,3-dihydrochromen-4-one; trans-2-(3,4-Dihydroxyphenyl)-2,3-dihydro-3,7-dihydroxy-4-benzopyrone; (2R,3R)-2-(3,4-dihydroxyphenyl)-3,7-dihydroxy-chroman-4-one; (2R,3R)-2-(3,4-dihydroxyphenyl)-3,7-dihydroxychroman-4-one; TRANS-(+/-)-3,3,4,7-TETRAHYDROXYFLAVANONE; Flavanone, 3,3,4,7-tetrahydroxy- (VAN); Flavanone, 3,3,4,7-tetrahydroxy-, (+)-; Flavanone, 3,3,4,7-tetrahydroxy-(VAN); 3,7,3,4-Tetrahydroxyflavanone; 3,7,3,4-Tetrahydroxy-flavanon; 3,3,4,7-tetrahydroxyflavanone; Fustin (2R,3R)-form [MI]; Tetrahydroxyflavanone; 2,3-Dihydrofisetin; 2,3-TRANS-FUSTIN; FUSTIN, (+/-)-; Dihydrofisetin; Fustin, (+)-; (+/-)-Fustin; FUSTIN [MI]; (+)-Fustin; AC1NSVLG; Fustin; (2R,3R)-2-(3,4-dihydroxyphenyl)-3,7-dihydroxy-4-chromanone; 20725-03-5; C01378; (±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone; Fustin



数据库引用编号

24 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

1 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(1)

PharmGKB(0)

192 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 BCL2, BDNF, CASP3, CAT, CHAT, MAPK14, MAPK3, NOS3, PTGS2
Peripheral membrane protein 2 ACHE, PTGS2
Endoplasmic reticulum membrane 3 BCL2, HMOX1, PTGS2
Nucleus 9 ACHE, BCL2, CASP3, CHAT, HMOX1, MAPK14, MAPK3, MPO, NOS3
cytosol 11 BCL2, CASP3, CAT, CHAT, GPT, HMOX1, IL1B, LEP, MAPK14, MAPK3, NOS3
dendrite 1 BDNF
nucleoplasm 6 CASP3, HMOX1, MAPK14, MAPK3, MPO, NOS3
Cell membrane 2 ACHE, TNF
Cytoplasmic side 1 HMOX1
Multi-pass membrane protein 1 MPC1L
Synapse 2 ACHE, CHAT
cell surface 3 ACHE, ADIPOQ, TNF
glutamatergic synapse 3 CASP3, MAPK14, MAPK3
Golgi apparatus 3 ACHE, MAPK3, NOS3
Golgi membrane 2 INS, NOS3
mitochondrial inner membrane 1 MPC1L
neuromuscular junction 1 ACHE
neuronal cell body 2 CASP3, TNF
synaptic vesicle 1 BDNF
Cytoplasm, cytosol 1 IL1B
Lysosome 2 IL1B, MPO
plasma membrane 4 ACHE, MAPK3, NOS3, TNF
Membrane 5 ACHE, BCL2, BDNF, CAT, HMOX1
axon 1 BDNF
caveola 3 MAPK3, NOS3, PTGS2
extracellular exosome 3 CAT, GPT, MPO
endoplasmic reticulum 4 ADIPOQ, BCL2, HMOX1, PTGS2
extracellular space 10 ACHE, ADIPOQ, BDNF, HMOX1, IL1B, IL6, INS, LEP, MPO, TNF
perinuclear region of cytoplasm 4 ACHE, BDNF, HMOX1, NOS3
mitochondrion 4 BCL2, CAT, MAPK14, MAPK3
protein-containing complex 3 BCL2, CAT, PTGS2
intracellular membrane-bounded organelle 2 CAT, MPO
Microsome membrane 1 PTGS2
postsynaptic density 1 CASP3
Secreted 7 ACHE, ADIPOQ, BDNF, IL1B, IL6, INS, LEP
extracellular region 11 ACHE, ADIPOQ, BDNF, CAT, IL1B, IL6, INS, LEP, MAPK14, MPO, TNF
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 2 BCL2, HMOX1
mitochondrial matrix 1 CAT
Extracellular side 1 ACHE
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 1 TNF
Cytoplasm, P-body 1 NOS3
P-body 1 NOS3
Early endosome 1 MAPK3
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Mitochondrion inner membrane 1 MPC1L
Membrane raft 1 TNF
pore complex 1 BCL2
Cell junction, focal adhesion 1 MAPK3
focal adhesion 2 CAT, MAPK3
Peroxisome 1 CAT
basement membrane 1 ACHE
collagen trimer 1 ADIPOQ
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
collagen-containing extracellular matrix 1 ADIPOQ
secretory granule 2 IL1B, MPO
nuclear speck 1 MAPK14
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Late endosome 1 MAPK3
neuron projection 2 CHAT, PTGS2
phagocytic cup 1 TNF
cytoskeleton 2 MAPK3, NOS3
spindle pole 1 MAPK14
Lipid-anchor, GPI-anchor 1 ACHE
nuclear envelope 1 MAPK3
endosome lumen 1 INS
Membrane, caveola 1 MAPK3
Cytoplasm, Stress granule 1 NOS3
cytoplasmic stress granule 1 NOS3
side of membrane 1 ACHE
myelin sheath 1 BCL2
pseudopodium 1 MAPK3
azurophil granule 1 MPO
ficolin-1-rich granule lumen 2 CAT, MAPK14
secretory granule lumen 3 CAT, INS, MAPK14
Golgi lumen 1 INS
endoplasmic reticulum lumen 5 BDNF, IL6, INS, MAPK3, PTGS2
endocytic vesicle membrane 1 NOS3
transport vesicle 1 INS
Secreted, extracellular exosome 1 IL1B
azurophil granule lumen 1 MPO
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
Single-pass type IV membrane protein 1 HMOX1
phagocytic vesicle lumen 1 MPO
synaptic cleft 1 ACHE
death-inducing signaling complex 1 CASP3
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
interleukin-6 receptor complex 1 IL6
BAD-BCL-2 complex 1 BCL2
[Isoform H]: Cell membrane 1 ACHE
[Neurotrophic factor BDNF precursor form]: Secreted 1 BDNF
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • A S Bawadood, F A Al-Abbasi, A M Alghamdi, M M Alqurashi, R A Sheikh, S I Alzarea, N Sayyed, I Kazmi. Fustin alleviates lipopolysaccharide-induced anxiety-depression-like performances by modulation of oxidative stress/neuroinflammatory markers/ NF-κB/caspase-3/BDNF expression in rodents. European review for medical and pharmacological sciences. 2024 Jan; 28(1):419-432. doi: 10.26355/eurrev_202401_34931. [PMID: 38235894]
  • Muhammad Afzal, Fahad A Al-Abbasi, Imran Kazmi, Syed Sarim Imam, Sultan Alshehri, Mohammed M Ghoneim, Waleed Hassan Almalki, Muhammad Shahid Nadeem, Nadeem Sayyed. Fustin Inhibits Oxidative Free Radicals and Inflammatory Cytokines in Cerebral Cortex and Hippocampus and Protects Cognitive Impairment in Streptozotocin-Induced Diabetic Rats. ACS chemical neuroscience. 2021 12; 12(24):4587-4597. doi: 10.1021/acschemneuro.1c00712. [PMID: 34860003]
  • Laura Marín, Ignacio Gutiérrez-Del-Río, Claudio Jesús Villar, Felipe Lombó. De novo biosynthesis of garbanzol and fustin in Streptomyces albus based on a potential flavanone 3-hydroxylase with 2-hydroxylase side activity. Microbial biotechnology. 2021 09; 14(5):2009-2024. doi: 10.1111/1751-7915.13874. [PMID: 34216097]
  • Miroslav Novakovic, Iris Djordjevic, Nina Todorovic, Snezana Trifunovic, Boban Andjelkovic, Boris Mandic, Milka Jadranin, Ivan Vuckovic, Vlatka Vajs, Slobodan Milosavljevic, Vele Tesevic. New aurone epoxide and auronolignan from the heartwood of Cotinus coggygria Scop. Natural product research. 2019 Oct; 33(19):2837-2844. doi: 10.1080/14786419.2018.1508141. [PMID: 30513208]
  • Seon-Ok Lee, Sung-Ji Kim, Ju-Sung Kim, Hyuk Ji, Eun-Ok Lee, Hyo-Jeong Lee. Comparison of the main components and bioactivity of Rhus verniciflua Stokes extracts by different detoxification processing methods. BMC complementary and alternative medicine. 2018 Aug; 18(1):242. doi: 10.1186/s12906-018-2310-x. [PMID: 30165848]
  • Hongxia Chen, Chengzhang Wang, Hao Zhou, Ran Tao, Jianzhong Ye, Wenjun Li. Antioxidant capacity and identification of the constituents of ethyl acetate fraction from Rhus verniciflua Stokes by HPLC-MS. Natural product research. 2017 Jul; 31(13):1573-1577. doi: 10.1080/14786419.2016.1277353. [PMID: 28100074]
  • Tae Gyu Nam, Bong Han Lee, Hyo-Kyoung Choi, Ahmad Rois Mansur, Sang Gil Lee, Dae-Ok Kim. Rhus verniciflua Stokes Extract and Its Flavonoids Protect PC-12 Cells against H2O2-Induced Cytotoxicity. Journal of microbiology and biotechnology. 2017 Jun; 27(6):1090-1097. doi: 10.4014/jmb.1612.12018. [PMID: 28376611]
  • Won Kyun Im, Hyun Jung Park, Kwang Soo Lee, Jung Hoon Lee, Young Dong Kim, Kyeong-Hee Kim, Sang-Jae Park, Seokmann Hong, Sung Ho Jeon. Fisetin-Rich Extracts of Rhus verniciflua Stokes Improve Blood Flow Rates in Mice Fed Both Normal and High-Fat Diets. Journal of medicinal food. 2016 Feb; 19(2):120-6. doi: 10.1089/jmf.2015.3515. [PMID: 26741654]
  • Ji Eun Moon, Jae-Ho Shin, Oran Kwon, Ji Yeon Kim. A Standardized Extract of Rhus verniciflua Stokes Protects Wistar Rats Against Lipopolysaccharide-Induced Acute Inflammation. Journal of medicinal food. 2015 Nov; 18(11):1223-30. doi: 10.1089/jmf.2014.3411. [PMID: 26501382]
  • Guan Chen, Cheng-Bin Cui, Ai-Di Qi, Chang-Wei Li, Zun-Wei Tao, Rong Ren. Polyanthumin, a novel cyclobutane chalcone trimmer from Memecylon polyanthum. Journal of Asian natural products research. 2015; 17(2):170-7. doi: 10.1080/10286020.2014.945439. [PMID: 25434469]
  • Myeong Hyeon Park, In Sook Kim, Sun-A Kim, Chun-Soo Na, Cheol Yi Hong, Mi-Sook Dong, Hye Hyun Yoo. Inhibitory effect of Rhus verniciflua Stokes extract on human aromatase activity; butin is its major bioactive component. Bioorganic & medicinal chemistry letters. 2014 Apr; 24(7):1730-3. doi: 10.1016/j.bmcl.2014.02.039. [PMID: 24630560]
  • Nattapong Chaipukdee, Somdej Kanokmedhakul, Ratsami Lekphrom, Kwanjai Kanokmedhakul. Two new flavanonols from the bark of Akschindlium godefroyanum. Natural product research. 2014; 28(3):191-5. doi: 10.1080/14786419.2013.866113. [PMID: 24354343]
  • U R Kuppusamy, N P Das. Effects of flavonoids on cyclic AMP phosphodiesterase and lipid mobilization in rat adipocytes. Biochemical pharmacology. 1992 Oct; 44(7):1307-15. doi: 10.1016/0006-2952(92)90531-m. [PMID: 1384499]