Deoxyuridine triphosphate (BioDeep_00000002943)

 

Secondary id: BioDeep_00000415786

natural product human metabolite PANOMIX_OTCML-2023 Endogenous Toxin BioNovoGene_Lab2019


代谢物信息卡片


({[({[(2R,3S,5R)-5-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)-3-hydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphonic acid

化学式: C9H15N2O14P3 (467.9736)
中文名称: 2'-脱氧尿苷-5'-三磷酸, 2'-脱氧尿苷 5'-三磷酸 钠盐
谱图信息: 最多检出来源 Homo sapiens(blood) 14.29%

分子结构信息

SMILES: C1C(C(OC1N2C=CC(=O)NC2=O)COP(=O)(O)OP(=O)(O)OP(=O)(O)O)O
InChI: InChI=1S/C9H15N2O14P3/c12-5-3-8(11-2-1-7(13)10-9(11)14)23-6(5)4-22-27(18,19)25-28(20,21)24-26(15,16)17/h1-2,5-6,8,12H,3-4H2,(H,18,19)(H,20,21)(H,10,13,14)(H2,15,16,17)/t5-,6+,8+/m0/s1

描述信息

Dutp, also known as 2-deoxyuridine 5-triphosphate or deoxy-utp, is a member of the class of compounds known as pyrimidine 2-deoxyribonucleoside triphosphates. Pyrimidine 2-deoxyribonucleoside triphosphates are pyrimidine nucleotides with a triphosphate group linked to the ribose moiety lacking a hydroxyl group at position 2. Dutp is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Dutp can be found in a number of food items such as bilberry, japanese chestnut, black radish, and lovage, which makes dutp a potential biomarker for the consumption of these food products. Dutp can be found primarily in prostate Tissue, as well as throughout most human tissues. Dutp exists in all living species, ranging from bacteria to humans. In humans, dutp is involved in the pyrimidine metabolism. Dutp is also involved in few metabolic disorders, which include beta ureidopropionase deficiency, dihydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and UMP synthase deficiency (orotic aciduria). Moreover, dutp is found to be associated with prostate cancer. Dutp is a non-carcinogenic (not listed by IARC) potentially toxic compound. Metabolism of organophosphates occurs principally by oxidation, by hydrolysis via esterases and by reaction with glutathione. Demethylation and glucuronidation may also occur. Oxidation of organophosphorus pesticides may result in moderately toxic products. In general, phosphorothioates are not directly toxic but require oxidative metabolism to the proximal toxin. The glutathione transferase reactions produce products that are, in most cases, of low toxicity. Paraoxonase (PON1) is a key enzyme in the metabolism of organophosphates. PON1 can inactivate some organophosphates through hydrolysis. PON1 hydrolyzes the active metabolites in several organophosphates insecticides as well as, nerve agents such as soman, sarin, and VX. The presence of PON1 polymorphisms causes there to be different enzyme levels and catalytic efficiency of this esterase, which in turn suggests that different individuals may be more susceptible to the toxic effect of organophosphate exposure (T3DB).
Deoxyuridine triphosphate (dUTP) is a deoxynucleotide triphosphate (dNTP) that is chemically similar to uridine triphosphate (UTP) except that it has a deoxyribose sugar instead of a ribose sugar. DNA synthesis requires the availability of deoxynucleotide triphosphates (dTTP, dATP, dGTP, dCTP), whereas RNA synthesis requires the availability of nucleotide triphosphates (NTPs) such as TTP, ATP, GTP, and UTP. The conversion of nucleotide triphosphates (NTPs) into dNTPs can only be done in the diphosphate form. Typically, an NTP has one phosphate removed to become an NDP. This is then converted into a dNDP by an enzyme called ribonucleotide reductase and followed by the re-addition of phosphate to give a dNTP. dUTP is a substrate for several enzymes, including inosine triphosphate pyrophosphatase, deoxyuridine 5-triphosphate nucleotidohydrolase (mitochondrial), uridine-cytidine kinase 1, nucleoside diphosphate kinase 3, nucleoside diphosphate kinase B, nucleoside diphosphate kinase 6, nucleoside diphosphate kinase (mitochondrial), nucleoside diphosphate kinase homolog 5, nucleoside diphosphate kinase A, and nucleoside diphosphate kinase 7. While UTP is routinely incorporated into RNA, dUTP is not normally incorporated into DNA. Instead, if dUTP is misincorporated into DNA, it can cause DNA damage. Therefore, dUTP can be considered as a teratogen or a mutagen. The extent of DNA damage caused by dUTP is highly dependent on the levels of the dUTP pyrophosphatase (dUTPase) and uracil-DNA glycosylase (UDG), which limits the intracellular accumulation of dUTP. Additionally, loss of viability following thymidylate synthase (TS) inhibition occurs as a consequence of the accumulation of dUTP in some cell lines and subsequent misincorporation of uracil into DNA (PMID: 11487279).

同义名列表

22 个代谢物同义名

({[({[(2R,3S,5R)-5-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)-3-hydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphonic acid; 2’-Deoxyuridine 5’-(tetrahydrogen triphosphate); 2-Deoxyuridine 5-(tetrahydrogen triphosphate); 2-Deoxyuridine-5-triphosphoric acid = dUTP; 2-Deoxyuridine-5-triphosphate sodium salt; 2-Deoxyuridine-5-triphosphoric acid; 2-Deoxyuridine 5-triphosphoric acid; Deoxyuridine triphosphate (dUTP); 2-Deoxyuridine-5-triphosphorate; Deoxyuridine triphosphoric acid; 2’-Deoxyuridine 5’-triphosphate; 2-Deoxyuridine 5-triphosphate; Deoxyuridine 5’-triphosphate; Deoxyuridine 5-triphosphate; Deoxyuridine-5-triphosphate; Deoxyuridine triphosphate; 2’-deoxy-UTP; 2-deoxy-UTP; 102814-08-4; Deoxy-UTP; dUTP; 2'-Deoxyuridine 5'-triphosphate(dUTP)



数据库引用编号

29 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

36 个相关的代谢反应过程信息。

Reactome(9)

BioCyc(2)

WikiPathways(1)

Plant Reactome(0)

INOH(2)

PlantCyc(0)

COVID-19 Disease Map(1)

PathBank(21)

PharmGKB(0)

19 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 AKT1, BCL2L1, CASP1, CASP3, CASP8, CASP9, CDKN1A, GFAP, MAPK14
Endoplasmic reticulum membrane 2 CD4, HMOX1
Mitochondrion membrane 1 BCL2L1
Nucleus 13 AKT1, CASP3, CASP8, CASP9, CDKN1A, DUT, FASLG, HMOX1, MAPK14, MKI67, MPO, PCNA, UNG
cytosol 11 AKT1, BCL2L1, CASP1, CASP3, CASP8, CASP9, CDKN1A, GFAP, HMOX1, MAPK14, NGF
dendrite 1 NGF
nuclear body 3 CDKN1A, MKI67, PCNA
centrosome 2 BCL2L1, PCNA
nucleoplasm 11 AKT1, CASP3, CASP8, CDKN1A, DUT, HMOX1, MAPK14, MKI67, MPO, PCNA, UNG
Cell membrane 6 AKT1, CASP1, CD4, CD8A, FASLG, TNF
Cytoplasmic side 2 BCL2L1, HMOX1
lamellipodium 2 AKT1, CASP8
cell cortex 1 AKT1
cell surface 1 TNF
glutamatergic synapse 3 AKT1, CASP3, MAPK14
mitochondrial inner membrane 1 BCL2L1
neuronal cell body 2 CASP3, TNF
postsynapse 1 AKT1
synaptic vesicle 1 NGF
Cytoplasm, cytosol 1 BCL2L1
Lysosome 1 MPO
plasma membrane 6 AKT1, CASP1, CD4, CD8A, FASLG, TNF
synaptic vesicle membrane 1 BCL2L1
Membrane 4 AKT1, FASLG, HMOX1, MKI67
axon 1 NGF
caveola 1 FASLG
extracellular exosome 4 DUT, FASLG, MPO, PCNA
endoplasmic reticulum 2 BCL2L1, HMOX1
extracellular space 5 FASLG, HMOX1, MPO, NGF, TNF
lysosomal lumen 1 FASLG
perinuclear region of cytoplasm 3 CDKN1A, FASLG, HMOX1
mitochondrion 6 BCL2L1, CASP8, CASP9, DUT, MAPK14, UNG
protein-containing complex 5 AKT1, CASP1, CASP8, CASP9, CDKN1A
intracellular membrane-bounded organelle 1 MPO
postsynaptic density 1 CASP3
Single-pass type I membrane protein 2 CD4, CD8A
Secreted 2 FASLG, NGF
extracellular region 6 CD8A, FASLG, MAPK14, MPO, NGF, TNF
Mitochondrion outer membrane 1 BCL2L1
Single-pass membrane protein 1 BCL2L1
mitochondrial outer membrane 3 BCL2L1, CASP8, HMOX1
astrocyte end-foot 1 GFAP
[Isoform 2]: Secreted 1 CD8A
Mitochondrion matrix 1 BCL2L1
mitochondrial matrix 1 BCL2L1
Cytoplasmic vesicle lumen 1 FASLG
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 BCL2L1
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 BCL2L1
Nucleus membrane 1 BCL2L1
Bcl-2 family protein complex 1 BCL2L1
nuclear membrane 1 BCL2L1
external side of plasma membrane 4 CD4, CD8A, FASLG, TNF
microtubule cytoskeleton 1 AKT1
nucleolus 3 CASP1, CDKN1A, MKI67
Early endosome 1 CD4
cell-cell junction 1 AKT1
recycling endosome 1 TNF
Single-pass type II membrane protein 2 FASLG, TNF
vesicle 1 AKT1
Cell projection, lamellipodium 1 CASP8
Membrane raft 2 CD4, TNF
microtubule 1 CASP1
spindle 1 AKT1
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
secretory granule 1 MPO
intermediate filament 1 GFAP
nuclear speck 1 MAPK14
NLRP3 inflammasome complex 1 CASP1
receptor complex 1 CD8A
ciliary basal body 1 AKT1
chromatin 1 PCNA
cell projection 1 GFAP
phagocytic cup 1 TNF
Chromosome 1 MKI67
cytoskeleton 1 CASP8
Nucleus, nucleolus 1 MKI67
spindle pole 1 MAPK14
nuclear replication fork 1 PCNA
chromosome, telomeric region 1 PCNA
endosome lumen 1 NGF
cell body 2 CASP8, GFAP
replication fork 1 PCNA
intermediate filament cytoskeleton 1 GFAP
azurophil granule 1 MPO
plasma membrane raft 1 CD8A
ficolin-1-rich granule lumen 1 MAPK14
secretory granule lumen 1 MAPK14
Golgi lumen 1 NGF
endoplasmic reticulum lumen 1 CD4
male germ cell nucleus 1 PCNA
azurophil granule lumen 1 MPO
Lysosome lumen 1 FASLG
Single-pass type IV membrane protein 1 HMOX1
apoptosome 1 CASP9
AIM2 inflammasome complex 1 CASP1
nuclear lamina 1 PCNA
clathrin-coated endocytic vesicle membrane 1 CD4
phagocytic vesicle lumen 1 MPO
[Isoform 2]: Nucleus 1 DUT
CD95 death-inducing signaling complex 1 CASP8
death-inducing signaling complex 2 CASP3, CASP8
ripoptosome 1 CASP8
canonical inflammasome complex 1 CASP1
[Isoform 1]: Cell membrane 1 CD8A
[Isoform 3]: Mitochondrion 1 DUT
cyclin-dependent protein kinase holoenzyme complex 2 CDKN1A, PCNA
cytoplasmic side of lysosomal membrane 1 GFAP
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
T cell receptor complex 2 CD4, CD8A
PCNA complex 1 PCNA
PCNA-p21 complex 2 CDKN1A, PCNA
replisome 1 PCNA
IPAF inflammasome complex 1 CASP1
NLRP1 inflammasome complex 1 CASP1
protease inhibitor complex 1 CASP1
[Tumor necrosis factor ligand superfamily member 6, soluble form]: Secreted 1 FASLG
[FasL intracellular domain]: Nucleus 1 FASLG
caspase complex 1 CASP9
[Isoform Bcl-X(L)]: Mitochondrion inner membrane 1 BCL2L1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Guobang Li, Changwen Wang, Mengyuan Yang, Lin Cao, Dan Fu, Xiaoxia Liu, Dongdong Sun, Cheng Chen, Ying Wang, Zihan Jia, Cheng Yang, Yu Guo, Zihe Rao. Structural Insight into African Swine Fever Virus dUTPase Reveals a Novel Folding Pattern in the dUTPase Family. Journal of virology. 2020 01; 94(4):. doi: 10.1128/jvi.01698-19. [PMID: 31748385]
  • Gergely A Rácz, Nikolett Nagy, Zoltán Gál, Tímea Pintér, László Hiripi, Beáta G Vértessy. Evaluation of critical design parameters for RT-qPCR-based analysis of multiple dUTPase isoform genes in mice. FEBS open bio. 2019 06; 9(6):1153-1170. doi: 10.1002/2211-5463.12654. [PMID: 31077566]
  • Jing-min Ou, Xi-ping Zhang, Cheng-jun Wu, Di-jiong Wu, Ping Yan. Effects of dexamethasone and Salvia miltiorrhiza on multiple organs in rats with severe acute pancreatitis. Journal of Zhejiang University. Science. B. 2012 Nov; 13(11):919-31. doi: 10.1631/jzus.b1100351. [PMID: 23125085]
  • Selvinaz Dalaklioglu, Pinar Sahin, Ece Gungor Ordueri, Ciler Celik-Ozenci, Arda Tasatargil. Potential role of poly(ADP-ribose) polymerase (PARP) activation in methotrexate-induced nephrotoxicity and tubular apoptosis. International journal of toxicology. 2012 Sep; 31(5):430-40. doi: 10.1177/1091581812457430. [PMID: 22914891]
  • Seon Mi Jin, Hong Ryang Kil, Kwangsik Park, Chung Il Noh. Gene expression in rat hearts following oral administration of a single hepatotoxic dose of acetaminophen. Yonsei medical journal. 2012 Jan; 53(1):172-80. doi: 10.3349/ymj.2012.53.1.172. [PMID: 22187249]
  • Lin Wang, Yaqing Si, Lauren K Dedow, Ying Shao, Peng Liu, Thomas P Brutnell. A low-cost library construction protocol and data analysis pipeline for Illumina-based strand-specific multiplex RNA-seq. PloS one. 2011; 6(10):e26426. doi: 10.1371/journal.pone.0026426. [PMID: 22039485]
  • Souvik Roy, Santanu Sannigrahi, Subhabrota Majumdar, Balaram Ghosh, Biswajit Sarkar. Resveratrol regulates antioxidant status, inhibits cytokine expression and restricts apoptosis in carbon tetrachloride induced rat hepatic injury. Oxidative medicine and cellular longevity. 2011; 2011(?):703676. doi: 10.1155/2011/703676. [PMID: 22013498]
  • Yuan Chen, Hui Qian, Wei Zhu, Xu Zhang, Yongmin Yan, Shengqin Ye, Xiujuan Peng, Wei Li, Wenrong Xu. Hepatocyte growth factor modification promotes the amelioration effects of human umbilical cord mesenchymal stem cells on rat acute kidney injury. Stem cells and development. 2011 Jan; 20(1):103-13. doi: 10.1089/scd.2009.0495. [PMID: 20446811]
  • Hasmah Abdullah, Azimahtol Hawariah Lope Pihie, Judit Hohmann, Joseph Molnár. A natural compound from Hydnophytum formicarium induces apoptosis of MCF-7 cells via up-regulation of Bax. Cancer cell international. 2010 May; 10(?):14. doi: 10.1186/1475-2867-10-14. [PMID: 20441573]
  • Siamsa M Doyle, Mark Diamond, Paul F McCabe. Chloroplast and reactive oxygen species involvement in apoptotic-like programmed cell death in Arabidopsis suspension cultures. Journal of experimental botany. 2010; 61(2):473-82. doi: 10.1093/jxb/erp320. [PMID: 19933317]
  • Xichun Zhang, Fahe Chen, Zhiyong Huang. Apoptosis induced by acrylamide is suppressed in a 21.5\% fat diet through caspase-3-independent pathway in mice testis. Toxicology mechanisms and methods. 2009 Mar; 19(3):219-24. doi: 10.1080/15376510802499048. [PMID: 19750022]
  • Katja N Volpert, Joyce Tombran-Tink, Colin Barnstable, Paul G Layer. PEDF and GDNF are key regulators of photoreceptor development and retinal neurogenesis in reaggregates from chick embryonic retina. Journal of ocular biology, diseases, and informatics. 2009 Jan; 2(1):1-11. doi: 10.1007/s12177-009-9014-x. [PMID: 20072641]
  • Wei Zhang, Rui Wang, Shu-fang Han, Lun Bu, Si-wang Wang, Heng Ma, Guo-liang Jia. Alpha-linolenic acid attenuates high glucose-induced apoptosis in cultured human umbilical vein endothelial cells via PI3K/Akt/eNOS pathway. Nutrition (Burbank, Los Angeles County, Calif.). 2007 Oct; 23(10):762-70. doi: 10.1016/j.nut.2007.07.003. [PMID: 17716867]
  • S A Sharifah Sakinah, S Tri Handayani, L P Azimahtol Hawariah. Zerumbone induced apoptosis in liver cancer cells via modulation of Bax/Bcl-2 ratio. Cancer cell international. 2007 Apr; 7(?):4. doi: 10.1186/1475-2867-7-4. [PMID: 17407577]
  • Andrei A Ivanov, Hyojin Ko, Liesbet Cosyn, Savitri Maddileti, Pedro Besada, Ingrid Fricks, Stefano Costanzi, T Kendall Harden, Serge Van Calenbergh, Kenneth A Jacobson. Molecular modeling of the human P2Y2 receptor and design of a selective agonist, 2'-amino-2'-deoxy-2-thiouridine 5'-triphosphate. Journal of medicinal chemistry. 2007 Mar; 50(6):1166-76. doi: 10.1021/jm060903o. [PMID: 17302398]
  • E Homsi, P Janino, J B L de Faria. Role of caspases on cell death, inflammation, and cell cycle in glycerol-induced acute renal failure. Kidney international. 2006 Apr; 69(8):1385-92. doi: 10.1038/sj.ki.5000315. [PMID: 16557226]
  • Jiayin Wang, Noriyuki Ohara, Shigeki Takekida, Qin Xu, Takeshi Maruo. Comparative effects of heparin-binding epidermal growth factor-like growth factor on the growth of cultured human uterine leiomyoma cells and myometrial cells. Human reproduction (Oxford, England). 2005 Jun; 20(6):1456-65. doi: 10.1093/humrep/deh842. [PMID: 15760954]
  • Fabienne de Bilbao, Denis Arsenijevic, Philippe Vallet, Ole Petter Hjelle, Ole Petter Ottersen, Constantin Bouras, Yvette Raffin, Karin Abou, Wolfgang Langhans, Sheila Collins, Julie Plamondon, Marie-Clotilde Alves-Guerra, Anne Haguenauer, Irene Garcia, Denis Richard, Daniel Ricquier, Panteleimon Giannakopoulos. Resistance to cerebral ischemic injury in UCP2 knockout mice: evidence for a role of UCP2 as a regulator of mitochondrial glutathione levels. Journal of neurochemistry. 2004 Jun; 89(5):1283-92. doi: 10.1111/j.1471-4159.2004.02432.x. [PMID: 15147521]
  • S Van Cruchten, W Van den Broeck, L Duchateau, P Simoens. Apoptosis in the canine endometrium during the estrous cycle. Theriogenology. 2003 Dec; 60(9):1595-608. doi: 10.1016/s0093-691x(03)00178-x. [PMID: 14580643]
  • Nicholas J Hegarty, Leonie S Young, Amanda J O'Neill, R William Watson, John M Fitzpatrick. Endothelin in unilateral ureteral obstruction: vascular and cellular effects. The Journal of urology. 2003 Feb; 169(2):740-4. doi: 10.1097/01.ju.0000036813.52746.89. [PMID: 12544355]
  • Mark A Bird, Patty A Lange, Laura W Schrum, Joe W Grisham, Richard A Rippe, Kevin E Behrns. Cholestasis induces murine hepatocyte apoptosis and DNA synthesis with preservation of the immediate-early gene response. Surgery. 2002 May; 131(5):556-63. doi: 10.1067/msy.2002.122375. [PMID: 12019410]
  • A Miyajima, K Ito, T Asano, K Seta, A Ueda, M Hayakawa. Does cyclooxygenase-2 inhibitor prevent renal tissue damage in unilateral ureteral obstruction?. The Journal of urology. 2001 Sep; 166(3):1124-9. doi: . [PMID: 11490310]
  • A Miyajima, T Asano, T Asano, I Yoshimura, K Seta, M Hayakawa. Tranilast ameliorates renal tubular damage in unilateral ureteral obstruction. The Journal of urology. 2001 May; 165(5):1714-8. doi: NULL. [PMID: 11342962]
  • R L Barnhill, M W Piepkorn, A J Cochran, E Flynn, T Karaoli, J Folkman. Tumor vascularity, proliferation, and apoptosis in human melanoma micrometastases and macrometastases. Archives of dermatology. 1998 Aug; 134(8):991-4. doi: 10.1001/archderm.134.8.991. [PMID: 9722729]
  • R A Jacob, D M Gretz, P C Taylor, S J James, I P Pogribny, B J Miller, S M Henning, M E Swendseid. Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal women. The Journal of nutrition. 1998 Jul; 128(7):1204-12. doi: 10.1093/jn/128.7.1204. [PMID: 9649607]
  • H Sasano, H Yamaki, H Nagura. Detection of apoptotic cells in cytology specimens: an application of TdT-mediated dUTP-biotin nick end labeling to cell smears. Diagnostic cytopathology. 1998 Jun; 18(6):398-402. doi: 10.1002/(sici)1097-0339(199806)18:6<398::aid-dc3>3.0.co;2-5. [PMID: 9626510]
  • R A Canuto, G Muzio, G Bonelli, M Maggiora, R Autelli, G Barbiero, P Costelli, O Brossa, F M Baccino. Peroxisome proliferators induce apoptosis in hepatoma cells. Cancer detection and prevention. 1998; 22(4):357-66. doi: 10.1046/j.1525-1500.1998.cdoa44.x. [PMID: 9674879]
  • S Jovinge, M Crisby, J Thyberg, J Nilsson. DNA fragmentation and ultrastructural changes of degenerating cells in atherosclerotic lesions and smooth muscle cells exposed to oxidized LDL in vitro. Arteriosclerosis, thrombosis, and vascular biology. 1997 Oct; 17(10):2225-31. doi: 10.1161/01.atv.17.10.2225. [PMID: 9351393]
  • I E O'Brien, C P Reutelingsperger, K M Holdaway. Annexin-V and TUNEL use in monitoring the progression of apoptosis in plants. Cytometry. 1997 Sep; 29(1):28-33. doi: 10.1002/(sici)1097-0320(19970901)29:1<28::aid-cyto2>3.0.co;2-9. [PMID: 9298808]
  • R Paramanantham, K H Sit, B H Bay. Adding Zn2+ induces DNA fragmentation and cell condensation in cultured human Chang liver cells. Biological trace element research. 1997 Jul; 58(1-2):135-47. doi: 10.1007/bf02910674. [PMID: 9363328]
  • G Borghi-Scoazec, J Y Scoazec, F Durand, J Bernuau, J Belghiti, G Feldmann, D Henin, C Degott. Apoptosis after ischemia-reperfusion in human liver allografts. Liver transplantation and surgery : official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society. 1997 Jul; 3(4):407-15. doi: 10.1002/lt.500030408. [PMID: 9346771]
  • I Psikal, B Smíd, R Kubalíková, L Valícek, L Rodák, E Kosinová. Colorimetric detection of lagomorphs' calicivirus genomic sequences by polymerase chain reaction incorporating digoxigenin dUTP. Veterinary microbiology. 1997 Jun; 57(1):55-67. doi: 10.1016/s0378-1135(96)01348-x. [PMID: 9231981]
  • C H Halsted, J Villanueva, C J Chandler, S P Stabler, R H Allen, L Muskhelishvili, S J James, L Poirier. Ethanol feeding of micropigs alters methionine metabolism and increases hepatocellular apoptosis and proliferation. Hepatology (Baltimore, Md.). 1996 Mar; 23(3):497-505. doi: 10.1002/hep.510230314. [PMID: 8617429]
  • S Umemura, M Yasuda, R Y Osamura, Y Kawarada, T Sugiyama, Y Tsutsumi. Enhancement of TdT-mediated dUTP-biotin nick end-labeling (TUNEL) method using mung bean nuclease, a single-stranded DNA digestion enzyme. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society. 1996 Feb; 44(2):125-32. doi: 10.1177/44.2.8609368. [PMID: 8609368]
  • J Macas, J Dolezel, G Gualberti, U Pich, I Schubert, S Lucretti. Primer-induced labeling of pea and field bean chromosomes in situ and in suspension. BioTechniques. 1995 Sep; 19(3):402-4; 407. doi: ". [PMID: 7495553]
  • Y Kon, D Endoh, A Fukamizu, K Murakami, Y Hashimoto, M Sugimura. A simple method of hybridohistochemistry for detection of renin mRNA in the mouse kidney. The Journal of veterinary medical science. 1993 Jun; 55(3):461-3. doi: 10.1292/jvms.55.461. [PMID: 8357922]
  • T Urabe, K Sano, F Odawara, T Otake, H Mori, M Morimoto, S Okubo, K Ishikawa, M Nakai. [Non-radioisotopic reverse transcriptase assay using biotin-11-deoxyuridine-triphosphate and a primer-immobilized microtiter plate: application for detection and identification of isolated retroviruses from HIV-1-seropositive hemophiliac patients]. Kansenshogaku zasshi. The Journal of the Japanese Association for Infectious Diseases. 1993 Jan; 67(1):59-65. doi: 10.11150/kansenshogakuzasshi1970.67.59. [PMID: 7680705]
  • J C Edman, J A Kovacs, H Masur, D V Santi, H J Elwood, M L Sogin. Ribosomal RNA sequence shows Pneumocystis carinii to be a member of the fungi. Nature. 1988 Aug; 334(6182):519-22. doi: 10.1038/334519a0. [PMID: 2970013]