1-(4-Hydroxy-3-methoxyphenyl)-3-decanone (BioDeep_00000008114)

 

Secondary id: BioDeep_00000861590

human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


2-08-00-00318 (Beilstein Handbook Reference)

化学式: C17H26O3 (278.1882)
中文名称: [6]-姜酮酚, 必理通, 姜酮酚, 十二烷醇
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 82.48%

分子结构信息

SMILES: CCCCCCCC(=O)CCC1=CC(=C(C=C1)O)OC
InChI: InChI=1S/C17H26O3/c1-3-4-5-6-7-8-15(18)11-9-14-10-12-16(19)17(13-14)20-2/h10,12-13,19H,3-9,11H2,1-2H3

描述信息

1-(4-Hydroxy-3-methoxyphenyl)-3-decanone is found in alcoholic beverages. 1-(4-Hydroxy-3-methoxyphenyl)-3-decanone is from grains of paradise (Amomum melegueta) and ginger (Zingiber officinale).Paradol is the active flavor constituent of the seeds of Guinea pepper (Aframomum melegueta). The seed is also known as Grains of paradise. Paradol has been found to have antioxidative and antitumor promoting effects. It is used in flavors as an essential oil to give spiciness. (Wikipedia
[6]-Paradol is a member of phenols, a ketone and a monomethoxybenzene.
Paradol is a natural product found in Aframomum angustifolium, Aframomum melegueta, and Zingiber officinale with data available.
From grains of paradise (Amomum melegueta) and ginger (Zingiber officinale)
Paradol is a pungent phenolic substance found in ginger and other Zingiberaceae plants. Paradol is an effective inhibitor of tumor promotion in mouse skin carcinogenesis, binds to cyclooxygenase (COX)-2 active site.
Paradol is a pungent phenolic substance found in ginger and other Zingiberaceae plants. Paradol is an effective inhibitor of tumor promotion in mouse skin carcinogenesis, binds to cyclooxygenase (COX)-2 active site.

同义名列表

27 个代谢物同义名

2-08-00-00318 (Beilstein Handbook Reference); 3-Decanone, 1-(4-hydroxy-3-methoxyphenyl)-; Heptyl 4-hydroxy-3-methoxyphenethyl ketone; 1-(4-Hydroxy-3-methoxyphenyl)-3-decanone #; 1-(4-hydroxy-3-methoxyphenyl)-decan-3-one; 1-(4-hydroxy-3-methoxy-phenyl)decan-3-one; 1-(4-hydroxy-3-methoxyphenyl)-3-decanone; 1-(4-Hydroxy-3-methoxyphenyl)-3-decanone; 1-(4-hydroxy-3-methoxyphenyl)decan-3-one; 1-(4-Hydroxy-3-methoxyphenyl)decan-5-one; HYDROXYMETHOXYPHENYL DECANONE [INCI]; HYDROXYMETHOXYPHENYL DECANONE; [6]-Gingerone;[6]-Paradol; UNII-BO24ID7E9U; MEGxp0_001218; [6]-Gingerone; (6)-GINGERONE; ACon1_001067; (6)-paradol; [6]-Paradol; 6-GINGERONE; BO24ID7E9U; 6-paradol; 5-Paradol; Paradol; 6-Paradol; Paradol



数据库引用编号

21 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 12 ANXA5, BCL2, CASP3, CCND1, DCTN4, EGFR, MTOR, NLRP3, ODC1, PIK3CA, PML, PRKAA2
Peripheral membrane protein 3 ANXA5, MTOR, PML
Endosome membrane 1 EGFR
Endoplasmic reticulum membrane 5 BCL2, EGFR, HMOX1, MTOR, PML
Nucleus 12 BCL2, CASP3, CCND1, DCTN4, EGFR, GABPA, HMOX1, MPO, MTOR, NLRP3, PML, PRKAA2
cytosol 13 ANXA5, BCL2, CASP3, CCND1, DCTN4, HMOX1, MTOR, NGF, NLRP3, ODC1, PIK3CA, PML, PRKAA2
dendrite 3 MTOR, NGF, PRKAA2
phagocytic vesicle 1 MTOR
centrosome 2 CCND1, DCTN4
nucleoplasm 8 CASP3, CCND1, GABPA, HMOX1, MPO, MTOR, PML, PRKAA2
Cell membrane 2 EGFR, TNF
Cytoplasmic side 3 HMOX1, MTOR, PML
lamellipodium 1 PIK3CA
ruffle membrane 1 EGFR
Early endosome membrane 2 EGFR, PML
Multi-pass membrane protein 2 MOG, UCP1
Golgi apparatus membrane 2 MTOR, NLRP3
cell cortex 1 DCTN4
cell junction 1 EGFR
cell surface 2 EGFR, TNF
glutamatergic synapse 2 CASP3, EGFR
Golgi apparatus 1 PRKAA2
Golgi membrane 3 EGFR, MTOR, NLRP3
lysosomal membrane 1 MTOR
mitochondrial inner membrane 1 UCP1
neuronal cell body 3 CASP3, PRKAA2, TNF
sarcolemma 1 ANXA5
synaptic vesicle 1 NGF
Cytoplasm, cytosol 1 NLRP3
Lysosome 2 MPO, MTOR
endosome 1 EGFR
plasma membrane 4 EGFR, MOG, PIK3CA, TNF
Membrane 8 ANXA5, BCL2, EGFR, HMOX1, MOG, MTOR, NLRP3, PRKAA2
apical plasma membrane 1 EGFR
axon 2 NGF, PRKAA2
basolateral plasma membrane 1 EGFR
extracellular exosome 2 ANXA5, MPO
Lysosome membrane 1 MTOR
endoplasmic reticulum 3 BCL2, HMOX1, NLRP3
extracellular space 6 EGFR, HMOX1, IL6, MPO, NGF, TNF
perinuclear region of cytoplasm 3 EGFR, HMOX1, PIK3CA
bicellular tight junction 1 CCND1
intercalated disc 1 PIK3CA
mitochondrion 3 BCL2, NLRP3, UCP1
protein-containing complex 2 BCL2, EGFR
intracellular membrane-bounded organelle 1 MPO
Microsome membrane 1 MTOR
postsynaptic density 1 CASP3
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 2 EGFR, MOG
Secreted 3 IL6, NGF, NLRP3
extracellular region 6 ANXA5, IL6, MPO, NGF, NLRP3, TNF
Mitochondrion outer membrane 2 BCL2, MTOR
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 3 BCL2, HMOX1, MTOR
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 DCTN4
Nucleus membrane 2 BCL2, CCND1
Bcl-2 family protein complex 1 BCL2
nuclear membrane 4 BCL2, CCND1, EGFR, PML
external side of plasma membrane 3 ANXA5, MOG, TNF
nucleolus 1 PML
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Mitochondrion inner membrane 1 UCP1
Membrane raft 2 EGFR, TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton 1 DCTN4
focal adhesion 3 ANXA5, DCTN4, EGFR
intracellular vesicle 1 EGFR
Nucleus, PML body 2 MTOR, PML
PML body 2 MTOR, PML
collagen-containing extracellular matrix 1 ANXA5
secretory granule 1 MPO
nuclear speck 1 PRKAA2
Cytoplasm, cytoskeleton, microtubule organizing center 1 NLRP3
Inflammasome 1 NLRP3
interphase microtubule organizing center 1 NLRP3
NLRP3 inflammasome complex 1 NLRP3
Cytoplasm, myofibril, sarcomere 1 DCTN4
sarcomere 1 DCTN4
receptor complex 1 EGFR
Zymogen granule membrane 1 ANXA5
chromatin 1 GABPA
phagocytic cup 1 TNF
spindle pole 1 DCTN4
chromosome, telomeric region 1 PML
Cytoplasm, cell cortex 1 DCTN4
[Isoform 2]: Cell membrane 1 MOG
nuclear envelope 1 MTOR
Endomembrane system 2 MTOR, NLRP3
endosome lumen 1 NGF
microtubule organizing center 1 NLRP3
cytoplasmic stress granule 1 PRKAA2
myelin sheath 1 BCL2
stress fiber 1 DCTN4
basal plasma membrane 1 EGFR
azurophil granule 1 MPO
synaptic membrane 1 EGFR
Golgi lumen 1 NGF
endoplasmic reticulum lumen 1 IL6
nuclear matrix 1 PML
transcription repressor complex 1 CCND1
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
dynactin complex 1 DCTN4
kinetochore 1 DCTN4
azurophil granule lumen 1 MPO
cytoplasmic dynein complex 1 DCTN4
Single-pass type IV membrane protein 1 HMOX1
vesicle membrane 1 ANXA5
clathrin-coated endocytic vesicle membrane 1 EGFR
phagocytic vesicle lumen 1 MPO
Cytoplasm, cytoskeleton, stress fiber 1 DCTN4
death-inducing signaling complex 1 CASP3
[Isoform 1]: Cell membrane 1 MOG
nucleotide-activated protein kinase complex 1 PRKAA2
Cytoplasmic vesicle, phagosome 1 MTOR
[Isoform 3]: Cell membrane 1 MOG
cyclin-dependent protein kinase holoenzyme complex 1 CCND1
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
interleukin-6 receptor complex 1 IL6
[Isoform 6]: Cell membrane 1 MOG
[Isoform 7]: Cell membrane 1 MOG
endothelial microparticle 1 ANXA5
BAD-BCL-2 complex 1 BCL2
[Isoform 4]: Cell membrane 1 MOG
[Isoform 5]: Cell membrane 1 MOG
cyclin D1-CDK4 complex 1 CCND1
[Isoform 8]: Cell membrane 1 MOG
cyclin D1-CDK6 complex 1 CCND1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[Isoform 9]: Cell membrane 1 MOG
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Jiasheng Li, Ying Zhang, Shurui Liu, Wangjun Li, Yue Sun, Hui Cao, Shumei Wang, Jiang Meng. A network pharmacology integrated pharmacokinetics strategy to investigate the pharmacological mechanism of absorbed components from crude and processed Zingiberis Rhizoma on deficiency-cold and hemorrhagic syndrome. Journal of ethnopharmacology. 2023 Jan; 301(?):115754. doi: 10.1016/j.jep.2022.115754. [PMID: 36195301]
  • Walaa H El-Maadawy, Marwa Hassan, Rabab M Abdou, Riham S El-Dine, Tarek Aboushousha, Nebal D El-Tanbouly, Aly M El-Sayed. 6-Paradol alleviates Diclofenac-induced acute kidney injury via autophagy enhancement-mediated by AMPK/AKT/mTOR and NLRP3 inflammasome pathways. Environmental toxicology and pharmacology. 2022 Apr; 91(?):103817. doi: 10.1016/j.etap.2022.103817. [PMID: 35091105]
  • Heggar Venkataramana Sudeep, Khanna Aman, Thomas V Jestin, Kodimule Shyamprasad. Aframomum melegueta Seed Extract with Standardized Content of 6-Paradol Reduces Visceral Fat and Enhances Energy Expenditure in Overweight Adults - A Randomized Double-Blind, Placebo-Controlled Clinical Study. Drug design, development and therapy. 2022; 16(?):3777-3791. doi: 10.2147/dddt.s367350. [PMID: 36329722]
  • Giovanni Schepici, Valentina Contestabile, Andrea Valeri, Emanuela Mazzon. Ginger, a Possible Candidate for the Treatment of Dementias?. Molecules (Basel, Switzerland). 2021 Sep; 26(18):. doi: 10.3390/molecules26185700. [PMID: 34577171]
  • Hiroyuki Hattori, Takashi Mori, Takahiro Shibata, Masaki Kita, Tohru Mitsunaga. 6-Paradol Acts as a Potential Anti-obesity Vanilloid from Grains of Paradise. Molecular nutrition & food research. 2021 08; 65(16):e2100185. doi: 10.1002/mnfr.202100185. [PMID: 33793045]
  • Misbahuddin Rafeeq, Hussam Aly Sayed Murad, Hossam Mohammed Abdallah, Ali M El-Halawany. Protective effect of 6-paradol in acetic acid-induced ulcerative colitis in rats. BMC complementary medicine and therapies. 2021 Jan; 21(1):28. doi: 10.1186/s12906-021-03203-7. [PMID: 33441125]
  • Rishab Marahatha, Saroj Basnet, Bibek Raj Bhattarai, Prakriti Budhathoki, Babita Aryal, Bikash Adhikari, Ganesh Lamichhane, Darbin Kumar Poudel, Niranjan Parajuli. Potential natural inhibitors of xanthine oxidase and HMG-CoA reductase in cholesterol regulation: in silico analysis. BMC complementary medicine and therapies. 2021 Jan; 21(1):1. doi: 10.1186/s12906-020-03162-5. [PMID: 33386071]
  • Kaho Yamaguchi, Tohru Mitsunaga, Kosei Yamauchi. 6-Paradol and its glucoside improve memory disorder in mice. Food & function. 2020 Nov; 11(11):9892-9902. doi: 10.1039/d0fo01975e. [PMID: 33094793]
  • Hiroyuki Hattori, Kosei Yamauchi, Siaw Onwona-Agyeman, Tohru Mitsunaga. Identification of vanilloid compounds in grains of paradise and their effects on sympathetic nerve activity. Journal of the science of food and agriculture. 2018 Sep; 98(12):4742-4748. doi: 10.1002/jsfa.9009. [PMID: 29542131]
  • Chien-Kei Wei, Yi-Hong Tsai, Michal Korinek, Pei-Hsuan Hung, Mohamed El-Shazly, Yuan-Bin Cheng, Yang-Chang Wu, Tusty-Jiuan Hsieh, Fang-Rong Chang. 6-Paradol and 6-Shogaol, the Pungent Compounds of Ginger, Promote Glucose Utilization in Adipocytes and Myotubes, and 6-Paradol Reduces Blood Glucose in High-Fat Diet-Fed Mice. International journal of molecular sciences. 2017 Jan; 18(1):. doi: 10.3390/ijms18010168. [PMID: 28106738]
  • Shuichi Setoguchi, Daisuke Watase, Nami Nagata-Akaho, Akinori Haratake, Kazuhisa Matsunaga, Jiro Takata. Pharmacokinetics of Paradol Analogues Orally Administered to Rats. Journal of agricultural and food chemistry. 2016 Mar; 64(9):1932-7. doi: 10.1021/acs.jafc.5b05615. [PMID: 26868188]
  • Jun Sugita, Takeshi Yoneshiro, Takuya Hatano, Sayuri Aita, Takeshi Ikemoto, Hideyo Uchiwa, Toshihiko Iwanaga, Toshimitsu Kameya, Yuko Kawai, Masayuki Saito. Grains of paradise (Aframomum melegueta) extract activates brown adipose tissue and increases whole-body energy expenditure in men. The British journal of nutrition. 2013 Aug; 110(4):733-8. doi: 10.1017/s0007114512005715. [PMID: 23308394]
  • Huadong Chen, Lishuang Lv, Dominique Soroka, Renaud F Warin, Tiffany A Parks, Yuhui Hu, Yingdong Zhu, Xiaoxin Chen, Shengmin Sang. Metabolism of [6]-shogaol in mice and in cancer cells. Drug metabolism and disposition: the biological fate of chemicals. 2012 Apr; 40(4):742-53. doi: 10.1124/dmd.111.043331. [PMID: 22246389]
  • Momoe Iwami, Fatma A Mahmoud, Takahiko Shiina, Haruko Hirayama, Takeshi Shima, Jun Sugita, Yasutake Shimizu. Extract of grains of paradise and its active principle 6-paradol trigger thermogenesis of brown adipose tissue in rats. Autonomic neuroscience : basic & clinical. 2011 Apr; 161(1-2):63-7. doi: 10.1016/j.autneu.2010.11.012. [PMID: 21185236]
  • Richard B van Breemen, Yi Tao, Wenkui Li. Cyclooxygenase-2 inhibitors in ginger (Zingiber officinale). Fitoterapia. 2011 Jan; 82(1):38-43. doi: 10.1016/j.fitote.2010.09.004. [PMID: 20837112]
  • Kathiresan Suresh, Shanmugam Manoharan, Mariadoss Arokia Vijayaanand, Govindasamy Sugunadevi. Chemopreventive and antioxidant efficacy of (6)-paradol in 7,12-dimethylbenz(a)anthracene induced hamster buccal pouch carcinogenesis. Pharmacological reports : PR. 2010 Nov; 62(6):1178-85. doi: 10.1016/s1734-1140(10)70380-7. [PMID: 21273675]
  • C E Riera, C Menozzi-Smarrito, M Affolter, S Michlig, C Munari, F Robert, H Vogel, S A Simon, J le Coutre. Compounds from Sichuan and Melegueta peppers activate, covalently and non-covalently, TRPA1 and TRPV1 channels. British journal of pharmacology. 2009 Aug; 157(8):1398-409. doi: 10.1111/j.1476-5381.2009.00307.x. [PMID: 19594761]
  • Eun Mi Koh, Hye Jin Kim, Sohee Kim, Woo Hyuck Choi, Yeon Hee Choi, Shi Yong Ryu, Young Sup Kim, Woo Suk Koh, Shin-Young Park. Modulation of macrophage functions by compounds isolated from Zingiber officinale. Planta medica. 2009 Feb; 75(2):148-51. doi: 10.1055/s-0028-1088347. [PMID: 19031369]
  • Joris Vriens, Bernd Nilius, Rudi Vennekens. Herbal compounds and toxins modulating TRP channels. Current neuropharmacology. 2008 Mar; 6(1):79-96. doi: 10.2174/157015908783769644. [PMID: 19305789]
  • Q Shi, J Li, X Tong, X Tan, F Ge, J Liang. [Studies on the supercritical-CO2 fluid extraction and quality evaluation of ginger oils]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 1999 Mar; 22(3):134-5. doi: . [PMID: 12575096]
  • Y J Surh, K K Park, K S Chun, L J Lee, E Lee, S S Lee. Anti-tumor-promoting activities of selected pungent phenolic substances present in ginger. Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer. 1999; 18(2):131-9. doi: . [PMID: 15281225]