N-Acetylserotonin (BioDeep_00000001293)
Secondary id: BioDeep_00000400007
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C12H14N2O2 (218.1055224)
中文名称: N-乙酰-5-羟基色胺, N-乙酰基-5-羟色胺, N-乙酰羟色胺
谱图信息:
最多检出来源 Viridiplantae(plant) 0.09%
Last reviewed on 2024-07-17.
Cite this Page
N-Acetylserotonin. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/n-acetylserotonin (retrieved
2024-11-08) (BioDeep RN: BioDeep_00000001293). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CC(=O)NCCC1=CNC2=C1C=C(C=C2)O
InChI: InChI=1S/C12H14N2O2/c1-8(15)13-5-4-9-7-14-12-3-2-10(16)6-11(9)12/h2-3,6-7,14,16H,4-5H2,1H3,(H,13,15)
描述信息
N-Acetylserotonin (NAS), also known as normelatonin, is a naturally occurring chemical precursor and intermediate in the endogenous production of melatonin from serotonin. It also has biological activity in its own right, including acting as a melatonin receptor agonist, an agonist of the TrkB, and having antioxidant effects. N-Acetylserotonin is an intermediate in the metabolic pathway of melatonin and indoleamine in the pineal gland of mammalians. Serotonin-N-acetyltransferase (SNAT), which regulates the rate of melatonin biosynthesis in the pineal gland, catalyzes the acetylation of 5HT to N-acetylserotonin (NAS). A methyl group from S-adenosylmethionine is transferred to NAS by hydroxyindole-O-methyltransferase (HIOMT), and finally NAS is converted to 5-methoxy-N-acetyltryptamine, or melatonin. In most mammalian species the content of NAS (and melatonin) in the pineal gland shows clear circadian changes with the highest level occurring during the dark period. This elevation of the contents of NAS (and melatonin) in the dark period is due to the increase of SNAT activity and the elevation of SNAT gene expression. Experimental studies show that N-acetylserotonin possess free radical scavenging activity. Acute administration of irreversible and reversible selective MAO-A inhibitors and high doses (or chronic administration of low doses) of relatively selective MAO-B inhibitors (but not of highly selective MAO-B inhibitors) suppressed MAO-A activity and stimulated N-acetylation of pineal serotonin into N-acetylserotonin, the immediate precursor of melatonin. N-acetylserotonin increase after MAO-A inhibitors might mediate their antidepressive and antihypertensive effects. N-Acetylserotonin is the product of the O-demethylation of melatonin mediated by cytochrome P-450 isoforms: Cytochrome p450, subfamily IIc, polypeptide 19 (CYP2C19, a clinically important enzyme that metabolizes a wide variety of drugs), with a minor contribution from Cytochrome p450, subfamily I, polypeptide (2CYP1A2, involved in O-deethylation of phenacetin). (PMID 15616152, 11103901, 10721079, 10591054). N-Acetylserotonin acts as a potent antioxidant, NAS effectiveness as an anti-oxidant has been found to be different depending on the experimental model used, it has been described as being between 5 and 20 times more effect than melatonin at protecting against oxidant damage. NAS has been shown to protect against lipid peroxidation in microsomes and mitochondria. NAS has also been reported to lower resting levels of ROS in peripheral blood lymphocytes and to exhibit anti-oxidant effects against t-butylated hydroperoxide- and diamide-induced ROS.
N-acetyl serotonin, also known as N-acetyl-5-hydroxytryptamine or N-(2-(5-hydroxy-1h-indol-3-yl)ethyl)acetamide, is a member of the class of compounds known as hydroxyindoles. Hydroxyindoles are organic compounds containing an indole moiety that carries a hydroxyl group. N-acetyl serotonin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). N-acetyl serotonin can be found in a number of food items such as tronchuda cabbage, winter savory, rambutan, and poppy, which makes N-acetyl serotonin a potential biomarker for the consumption of these food products. N-acetyl serotonin can be found primarily in blood and urine, as well as in human kidney and liver tissues. In humans, N-acetyl serotonin is involved in the tryptophan metabolism. Moreover, N-acetyl serotonin is found to be associated with schizophrenia.
N-Acetyl-5-hydroxytryptamine is a Melatonin precursor, and that it can potently activate TrkB receptor.
同义名列表
14 个代谢物同义名
N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]acetamide; N-(2-(5-Hydroxy-1H-indol-3-yl)ethyl)acetamide; N-Acetyl-5-hydroxytryptamine; 5-Hydroxy-N-acetyltryptamine; N-Acetylhydroxytryptamine; O-Demethylmelatonin; 5-Hydroxymelatonin; N-acetyl-serotonin; Desmethylmelatonin; N-Acetylserotonin; Acetyl-serotonin; ASE; N-Acetylserotonin; Normelatonin
数据库引用编号
19 个数据库交叉引用编号
- ChEBI: CHEBI:17697
- KEGG: C00978
- PubChem: 903
- HMDB: HMDB0001238
- Metlin: METLIN366
- DrugBank: DB04275
- ChEMBL: CHEMBL33103
- Wikipedia: N-acetyl-serotonin
- MetaCyc: N-ACETYL-SEROTONIN
- foodb: FDB031021
- chemspider: 879
- CAS: 1210-83-9
- PMhub: MS000000275
- PDB-CCD: ASE
- 3DMET: B00212
- NIKKAJI: J125.886I
- RefMet: N-Acetylserotonin
- medchemexpress: HY-107854
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-478
分类词条
相关代谢途径
BioCyc(4)
PlantCyc(0)
代谢反应
181 个相关的代谢反应过程信息。
Reactome(52)
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amine-derived hormones:
Iodine + L-Tyr ⟶ HI + MIT
- Serotonin and melatonin biosynthesis:
5HTP ⟶ 5HT + carbon dioxide
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amine-derived hormones:
Dopa ⟶ DA + carbon dioxide
- Serotonin and melatonin biosynthesis:
5HTP ⟶ 5HT + carbon dioxide
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amine-derived hormones:
Dopa ⟶ DA + carbon dioxide
- Serotonin and melatonin biosynthesis:
5HTP ⟶ 5HT + carbon dioxide
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of amine-derived hormones:
Iodine + L-Tyr ⟶ HI + MIT
- Serotonin and melatonin biosynthesis:
5HT + Ac-CoA ⟶ Ac5HT + CoA-SH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of amine-derived hormones:
Iodine + L-Tyr ⟶ HI + MIT
- Serotonin and melatonin biosynthesis:
5HTP ⟶ 5HT + carbon dioxide
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of amine-derived hormones:
MIT + TPNH ⟶ I- + L-Tyr + TPN
- Serotonin and melatonin biosynthesis:
5HTP ⟶ 5HT + carbon dioxide
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of amine-derived hormones:
Iodine + L-Tyr ⟶ HI + MIT
- Serotonin and melatonin biosynthesis:
L-Trp + Oxygen + Tetrahydrobiopterin ⟶ 4aOH-BH4 + 5HTP
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of amine-derived hormones:
Iodine + L-Tyr ⟶ HI + MIT
- Serotonin and melatonin biosynthesis:
5HTP ⟶ 5HT + carbon dioxide
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of amine-derived hormones:
Iodine + L-Tyr ⟶ HI + MIT
- Serotonin and melatonin biosynthesis:
5HTP ⟶ 5HT + carbon dioxide
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of amine-derived hormones:
Iodine + L-Tyr ⟶ HI + MIT
- Serotonin and melatonin biosynthesis:
5HTP ⟶ 5HT + carbon dioxide
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of amine-derived hormones:
Iodine + L-Tyr ⟶ HI + MIT
- Serotonin and melatonin biosynthesis:
5HTP ⟶ 5HT + carbon dioxide
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of amine-derived hormones:
Iodine + L-Tyr ⟶ HI + MIT
- Serotonin and melatonin biosynthesis:
5HTP ⟶ 5HT + carbon dioxide
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of amine-derived hormones:
NAd + SAM ⟶ ADR + H+ + SAH
- Serotonin and melatonin biosynthesis:
5HT + Ac-CoA ⟶ Ac5HT + CoA-SH
BioCyc(10)
- superpathway of tryptophan utilization:
N-formylkynurenine + H2O ⟶ H+ + L-kynurenine + formate
- superpathway of melatonin degradation:
hydrogen peroxide + melatonin ⟶ N1-acetyl-N2-formyl-5-methoxykynuramine + H2O
- melatonin degradation I:
O2 + a reduced [NADPH-hemoprotein reductase] + melatonin ⟶ N-acetyl-serotonin + H2O + an oxidized [NADPH-hemoprotein reductase] + formaldehyde
- superpathway of melatonin degradation:
N1-acetyl-N2-formyl-5-methoxykynuramine + H2O ⟶ N-acetyl-5-methoxykynurenamine + H+ + formate
- melatonin degradation I:
O2 + a reduced [NADPH-hemoprotein reductase] + melatonin ⟶ N-acetyl-serotonin + H2O + an oxidized [NADPH-hemoprotein reductase] + formaldehyde
- serotonin and melatonin biosynthesis:
5-hydroxy-L-tryptophan + H+ ⟶ CO2 + serotonin
- serotonin and melatonin biosynthesis:
N-acetyl-serotonin + SAM ⟶ H+ + SAH + melatonin
- biosynthesis of serotonin and melatonin:
5-hydroxy-L-tryptophan + H+ ⟶ CO2 + serotonin
- serotonin and melatonin biosynthesis:
5-hydroxy-L-tryptophan + H+ ⟶ CO2 + serotonin
- serotonin and melatonin biosynthesis:
5-hydroxy-L-tryptophan + H+ ⟶ CO2 + serotonin
WikiPathways(3)
- Biogenic amine synthesis:
Norepinephrine ⟶ Epinephrine
- Melatonin metabolism and effects:
Serotonin ⟶ 5-Hydroxyindoleacetic acid
- Biosynthesis and regeneration of tetrahydrobiopterin and catabolism of phenylalanine:
5-OH-Trp ⟶ Serotonin
Plant Reactome(0)
INOH(1)
- Tryptophan degradation ( Tryptophan degradation ):
L-Tryptophan + O2 ⟶ N-Formyl-L-kynurenine
PlantCyc(110)
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
N-acetyl-serotonin + SAM ⟶ H+ + SAH + melatonin
- serotonin and melatonin biosynthesis:
N-acetyl-serotonin + SAM ⟶ H+ + SAH + melatonin
COVID-19 Disease Map(0)
PathBank(5)
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
PharmGKB(0)
9 个相关的物种来源信息
- 7461 - Apis cerana: 10.1371/JOURNAL.PONE.0175573
- 13345 - Ardisia crenata: 10.3389/FMOLB.2021.683671
- 6669 - Daphnia pulex: 10.1038/SREP25125
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 180039 - Psychotria punctata: 10.3389/FMOLB.2021.683671
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Ying Cheng, Yuan Gao, Jing Li, Tongyu Rui, Qianqian Li, Huan Chen, Bowen Jia, Yiting Song, Zhiya Gu, Tao Wang, Cheng Gao, Ying Wang, Zufeng Wang, Fudi Wang, Luyang Tao, Chengliang Luo. TrkB agonist N-acetyl serotonin promotes functional recovery after traumatic brain injury by suppressing ferroptosis via the PI3K/Akt/Nrf2/Ferritin H pathway.
Free radical biology & medicine.
2023 01; 194(?):184-198. doi:
10.1016/j.freeradbiomed.2022.12.002
. [PMID: 36493983] - Kun Zhou, Yangtiansu Li, Lingyu Hu, Jingyun Zhang, Hong Yue, Shulin Yang, Yuan Liu, Xiaoqing Gong, Fengwang Ma. Overexpression of MdASMT9, an N-acetylserotonin methyltransferase gene, increases melatonin biosynthesis and improves water-use efficiency in transgenic apple.
Tree physiology.
2022 05; 42(5):1114-1126. doi:
10.1093/treephys/tpab157
. [PMID: 34865159] - Dake Zhao, Zhengping Yao, Jiemei Zhang, Renjun Zhang, Zongmin Mou, Xue Zhang, Zonghang Li, Xiaoli Feng, Suiyun Chen, Russel J Reiter. Melatonin synthesis genes N-acetylserotonin methyltransferases evolved into caffeic acid O-methyltransferases and both assisted in plant terrestrialization.
Journal of pineal research.
2021 Oct; 71(3):e12737. doi:
10.1111/jpi.12737
. [PMID: 33844336] - Kyungjin Lee, Geun-Hee Choi, Kyoungwhan Back. Inhibition of Rice Serotonin N-Acetyltransferases by MG149 Decreased Melatonin Synthesis in Rice Seedlings.
Biomolecules.
2021 04; 11(5):. doi:
10.3390/biom11050658
. [PMID: 33946959] - Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
Cell reports.
2021 04; 35(4):109040. doi:
10.1016/j.celrep.2021.109040
. [PMID: 33910017] - Andrzej T Slominski, Tae-Kang Kim, Konrad Kleszczyński, Igor Semak, Zorica Janjetovic, Trevor Sweatman, Cezary Skobowiat, Jeffery D Steketee, Zongtao Lin, Arnold Postlethwaite, Wei Li, Russel J Reiter, Desmond J Tobin. Characterization of serotonin and N-acetylserotonin systems in the human epidermis and skin cells.
Journal of pineal research.
2020 Mar; 68(2):e12626. doi:
10.1111/jpi.12626
. [PMID: 31770455] - Ondřej Vašíček, Antonín Lojek, Milan Číž. Serotonin and its metabolites reduce oxidative stress in murine RAW264.7 macrophages and prevent inflammation.
Journal of physiology and biochemistry.
2020 Feb; 76(1):49-60. doi:
10.1007/s13105-019-00714-3
. [PMID: 31900806] - Jie Yang, Mingyu Liu. Role of a complex of two proteins in alleviating sodium ion stress in an economic crop.
PloS one.
2020; 15(11):e0242221. doi:
10.1371/journal.pone.0242221
. [PMID: 33216769] - Hyoung Yool Lee, Kyungjin Lee, Kyoungwhan Back. Knockout of Arabidopsis Serotonin N-Acetyltransferase-2 Reduces Melatonin Levels and Delays Flowering.
Biomolecules.
2019 11; 9(11):. doi:
10.3390/biom9110712
. [PMID: 31698875] - Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Molecular pharmacology.
2019 11; 96(5):629-640. doi:
10.1124/mol.119.115964
. [PMID: 31515284] - Chengliang Luo, Qiang Yang, Yuancai Liu, Shuanhu Zhou, Jiying Jiang, Russel J Reiter, Pallab Bhattacharya, Yongchun Cui, Hongwei Yang, He Ma, Jiemin Yao, Sean E Lawler, Xinmu Zhang, Jianfang Fu, Renato Rozental, Hany Aly, Mark D Johnson, E Antonio Chiocca, Xin Wang. The multiple protective roles and molecular mechanisms of melatonin and its precursor N-acetylserotonin in targeting brain injury and liver damage and in maintaining bone health.
Free radical biology & medicine.
2019 01; 130(?):215-233. doi:
10.1016/j.freeradbiomed.2018.10.402
. [PMID: 30315933] - Kyungjin Lee, Hyoung Yool Lee, Kyoungwhan Back. Rice histone deacetylase 10 and Arabidopsis histone deacetylase 14 genes encode N-acetylserotonin deacetylase, which catalyzes conversion of N-acetylserotonin into serotonin, a reverse reaction for melatonin biosynthesis in plants.
Journal of pineal research.
2018 Mar; 64(2):. doi:
10.1111/jpi.12460
. [PMID: 29247559] - Marion Benabou, Thomas Rolland, Claire S Leblond, Gaël A Millot, Guillaume Huguet, Richard Delorme, Marion Leboyer, Cécile Pagan, Jacques Callebert, Erik Maronde, Thomas Bourgeron. Heritability of the melatonin synthesis variability in autism spectrum disorders.
Scientific reports.
2017 12; 7(1):17746. doi:
10.1038/s41598-017-18016-3
. [PMID: 29255243] - Denise Wolrab, Peter Frühauf, Christopher Gerner. Quantification of the neurotransmitters melatonin and N-acetyl-serotonin in human serum by supercritical fluid chromatography coupled with tandem mass spectrometry.
Analytica chimica acta.
2016 Sep; 937(?):168-74. doi:
10.1016/j.aca.2016.08.012
. [PMID: 27590559] - Yoav Ben Shahar, Igor Sukhotnik, Nir Bitterman, Yulia Pollak, Jacob Bejar, Dmitriy Chepurov, Arnold Coran, Arie Bitterman. Effect of N-Acetylserotonin on Intestinal Recovery Following Intestinal Ischemia-Reperfusion Injury in a Rat.
European journal of pediatric surgery : official journal of Austrian Association of Pediatric Surgery ... [et al] = Zeitschrift fur Kinderchirurgie.
2016 Feb; 26(1):47-53. doi:
10.1055/s-0035-1559886
. [PMID: 26378484] - Haijie Yu, Eamonn J Dickson, Seung-Ryoung Jung, Duk-Su Koh, Bertil Hille. High membrane permeability for melatonin.
The Journal of general physiology.
2016 Jan; 147(1):63-76. doi:
10.1085/jgp.201511526
. [PMID: 26712850] - Yohei Sakaguchi, Jun Ikenaga, Hideyuki Yoshida, Tadashi Hayama, Miki Itoyama, Kenichiro Todoroki, Osamu Imakyure, Masatoshi Yamaguchi, Hitoshi Nohta. Selective and sensitive liquid chromatographic determination method of 5-hydroxyindoles with fluorous and fluorogenic derivatization.
Journal of pharmaceutical and biomedical analysis.
2015 Oct; 114(?):348-54. doi:
10.1016/j.jpba.2015.06.003
. [PMID: 26112924] - Ruslán Álvarez-Diduk, Annia Galano, Dun Xian Tan, Russel J Reiter. N-Acetylserotonin and 6-Hydroxymelatonin against Oxidative Stress: Implications for the Overall Protection Exerted by Melatonin.
The journal of physical chemistry. B.
2015 Jul; 119(27):8535-43. doi:
10.1021/acs.jpcb.5b04920
. [PMID: 26079042] - C Pagan, R Delorme, J Callebert, H Goubran-Botros, F Amsellem, X Drouot, C Boudebesse, K Le Dudal, N Ngo-Nguyen, H Laouamri, C Gillberg, M Leboyer, T Bourgeron, J-M Launay. The serotonin-N-acetylserotonin-melatonin pathway as a biomarker for autism spectrum disorders.
Translational psychiatry.
2014 Nov; 4(?):e479. doi:
10.1038/tp.2014.120
. [PMID: 25386956] - Yeong Byeon, Hyoung Yool Lee, Kyungjin Lee, Kyoungwhan Back. Caffeic acid O-methyltransferase is involved in the synthesis of melatonin by methylating N-acetylserotonin in Arabidopsis.
Journal of pineal research.
2014 Sep; 57(2):219-27. doi:
10.1111/jpi.12160
. [PMID: 25039887] - Junko Takeda, Rieko Nakata, Hiroshi Ueno, Akio Murakami, Mineo Iseki, Masakatsu Watanabe. Possible involvement of a tetrahydrobiopterin in photoreception for UV-B-induced anthocyanin synthesis in carrot.
Photochemistry and photobiology.
2014 Sep; 90(5):1043-9. doi:
10.1111/php.12302
. [PMID: 24943195] - Yeong Byeon, Sangkyu Park, Hyoung Yool Lee, Young-Soon Kim, Kyoungwhan Back. Elevated production of melatonin in transgenic rice seeds expressing rice tryptophan decarboxylase.
Journal of pineal research.
2014 Apr; 56(3):275-82. doi:
10.1111/jpi.12120
. [PMID: 24433490] - Tadashi Hayama, Yurika Yabuuchi, Tomomi Iwamatsu, Erina Tamashima, Yusuke Kawami, Miki Itoyama, Hideyuki Yoshida, Masatoshi Yamaguchi, Hitoshi Nohta. Concerted derivatization and concentration method with dispersive liquid-liquid microextraction for liquid chromatographic analysis of 5-hydroxyindoles in human serum.
Talanta.
2013 Dec; 117(?):27-31. doi:
10.1016/j.talanta.2013.08.035
. [PMID: 24209305] - Aneta Piesiewicz, Urszula Kedzierska, Iwona Adamska, Michal Usarek, Michal Zeman, Krystyna Skwarlo-Sonta, Pawel Marek Majewski. Pineal arylalkylamine N-acetyltransferase (Aanat) gene expression as a target of inflammatory mediators in the chicken.
General and comparative endocrinology.
2012 Nov; 179(2):143-51. doi:
10.1016/j.ygcen.2012.08.013
. [PMID: 22935823] - Caroline H Johnson, Andrew D Patterson, Kristopher W Krausz, John F Kalinich, John B Tyburski, Dong Wook Kang, Hans Luecke, Frank J Gonzalez, William F Blakely, Jeffrey R Idle. Radiation metabolomics. 5. Identification of urinary biomarkers of ionizing radiation exposure in nonhuman primates by mass spectrometry-based metabolomics.
Radiation research.
2012 Oct; 178(4):328-40. doi:
10.1667/rr2950.1
. [PMID: 22954391] - Yeong Byeon, Sangkyu Park, Young-Soon Kim, Don-Hee Park, Sungbeom Lee, Kyoungwhan Back. Light-regulated melatonin biosynthesis in rice during the senescence process in detached leaves.
Journal of pineal research.
2012 Aug; 53(1):107-11. doi:
10.1111/j.1600-079x.2012.00976.x
. [PMID: 22289080] - Natalia Fagali, Angel Catalá. The antioxidant behaviour of melatonin and structural analogues during lipid peroxidation depends not only on their functional groups but also on the assay system.
Biochemical and biophysical research communications.
2012 Jul; 423(4):873-7. doi:
10.1016/j.bbrc.2012.06.060
. [PMID: 22713457] - Melissa D Carter, M Wade Calcutt, Beth A Malow, Kristie L Rose, David L Hachey. Quantitation of melatonin and n-acetylserotonin in human plasma by nanoflow LC-MS/MS and electrospray LC-MS/MS.
Journal of mass spectrometry : JMS.
2012 Mar; 47(3):277-85. doi:
10.1002/jms.2051
. [PMID: 22431453] - Sangkyu Park, Kyungjin Lee, Young-Soon Kim, Kyoungwhan Back. Tryptamine 5-hydroxylase-deficient Sekiguchi rice induces synthesis of 5-hydroxytryptophan and N-acetyltryptamine but decreases melatonin biosynthesis during senescence process of detached leaves.
Journal of pineal research.
2012 Mar; 52(2):211-6. doi:
10.1111/j.1600-079x.2011.00930.x
. [PMID: 21884550] - Masayasu Minami, Hideyo Takahashi, Tsukasa Sasaki, Shun Matsumoto, Kazuhiro Sakai, Hirofumi Inagaki, Yuko Yamano, Hirotsugu Miyake. The effect of sleep restriction and psychological load on the diurnal metabolic changes in tryptamine-related compounds in human urine.
Environmental health and preventive medicine.
2012 Mar; 17(2):87-97. doi:
10.1007/s12199-011-0222-1
. [PMID: 21655926] - Marco Antonioli, Joanna Rybka, Livia A Carvalho. Neuroimmune endocrine effects of antidepressants.
Neuropsychiatric disease and treatment.
2012; 8(?):65-83. doi:
10.2147/ndt.s16409
. [PMID: 22347798] - Gregory Oxenkrug. Interferon-gamma - Inducible Inflammation: Contribution to Aging and Aging-Associated Psychiatric Disorders.
Aging and disease.
2011 Dec; 2(6):474-86. doi:
. [PMID: 22396896]
- Eduardo Alves de Almeida, Paolo Di Mascio, Tatsuo Harumi, D Warren Spence, Adam Moscovitch, Rüdiger Hardeland, Daniel P Cardinali, Gregory M Brown, S R Pandi-Perumal. Measurement of melatonin in body fluids: standards, protocols and procedures.
Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery.
2011 Jun; 27(6):879-91. doi:
10.1007/s00381-010-1278-8
. [PMID: 21104186] - Kiyoon Kang, Kyoungjin Kong, Sangkyu Park, Uyanga Natsagdorj, Young Soon Kim, Kyoungwhan Back. Molecular cloning of a plant N-acetylserotonin methyltransferase and its expression characteristics in rice.
Journal of pineal research.
2011 Apr; 50(3):304-9. doi:
10.1111/j.1600-079x.2010.00841.x
. [PMID: 21210840] - Taiichi Hikichi, Naohiro Tateda, Toshiaki Miura. Alteration of melatonin secretion in patients with type 2 diabetes and proliferative diabetic retinopathy.
Clinical ophthalmology (Auckland, N.Z.).
2011; 5(?):655-60. doi:
10.2147/opth.s19559
. [PMID: 21629571] - Venkatramanujam Srinivasan, Charanjit Kaur, Seithikurippu Pandi-Perumal, Gregory M Brown, Daniel P Cardinali. Melatonin and its agonist ramelteon in Alzheimer's disease: possible therapeutic value.
International journal of Alzheimer's disease.
2010 Dec; 2011(?):741974. doi:
10.4061/2011/741974
. [PMID: 21197086] - Eduardo Koji Tamura, Pedro Augusto Fernandes, Marina Marçola, Sanseray da Silveira Cruz-Machado, Regina Pekelmann Markus. Long-lasting priming of endothelial cells by plasma melatonin levels.
PloS one.
2010 Nov; 5(11):e13958. doi:
10.1371/journal.pone.0013958
. [PMID: 21103056] - J K Yao, G G Dougherty, R D Reddy, M S Keshavan, D M Montrose, W R Matson, S Rozen, R R Krishnan, J McEvoy, R Kaddurah-Daouk. Altered interactions of tryptophan metabolites in first-episode neuroleptic-naive patients with schizophrenia.
Molecular psychiatry.
2010 Sep; 15(9):938-53. doi:
10.1038/mp.2009.33
. [PMID: 19401681] - Pongsagon Pothavorn, Kasipong Kitdamrongsont, Sasivimon Swangpol, Siripope Wongniam, Kanokporn Atawongsa, Jisnuson Savasti, Jamorn Somana. Sap phytochemical compositions of some bananas in Thailand.
Journal of agricultural and food chemistry.
2010 Aug; 58(15):8782-7. doi:
10.1021/jf101220k
. [PMID: 20681667] - Yoon-Jung Moon, Eun-Mi Lee, Young Mok Park, Young Shik Park, Won-Il Chung, Young-Ho Chung. The role of cyanopterin in UV/blue light signal transduction of cyanobacterium Synechocystis sp. PCC 6803 phototaxis.
Plant & cell physiology.
2010 Jun; 51(6):969-80. doi:
10.1093/pcp/pcq059
. [PMID: 20418333] - Andreas Gunter Bach, Eckhard Mühlbauer, Elmar Peschke. Adrenoceptor expression and diurnal rhythms of melatonin and its precursors in the pineal gland of type 2 diabetic goto-kakizaki rats.
Endocrinology.
2010 Jun; 151(6):2483-93. doi:
10.1210/en.2009-1299
. [PMID: 20371702] - Izabela Sadowska-Woda, Natalia Wójcik, Agata Karowicz-Bilińska, Edyta Bieszczad-Bedrejczuk. Effect of selected antioxidants in beta-cyfluthrin-induced oxidative stress in human erythrocytes in vitro.
Toxicology in vitro : an international journal published in association with BIBRA.
2010 Apr; 24(3):879-84. doi:
10.1016/j.tiv.2009.11.022
. [PMID: 19961921] - Michal Stuss, Joanna A Wiktorska, Ewa Sewerynek. N-acetylserotonin reduces lipopolysaccharide-induced lipid peroxidation in vitro more effectively than melatonin.
Neuro endocrinology letters.
2010; 31(4):489-96. doi:
NULL
. [PMID: 20802448] - Allan F Wiechmann, Lindsey R Hollaway, Jody A Summers Rada. Melatonin receptor expression in Xenopus laevis surface corneal epithelium: diurnal rhythm of lateral membrane localization.
Molecular vision.
2009 Nov; 15(?):2384-403. doi:
NULL
. [PMID: 19936310] - Thomas Frese, Andreas Gunter Bach, Eckhard Mühlbauer, Klaus Pönicke, Hans-Jürgen Brömme, André Welp, Elmar Peschke. Pineal melatonin synthesis is decreased in type 2 diabetic Goto-Kakizaki rats.
Life sciences.
2009 Sep; 85(13-14):526-33. doi:
10.1016/j.lfs.2009.08.004
. [PMID: 19695268] - Masateru Okazaki, Kenji Higuchi, Yutaka Hanawa, Yoshihiro Shiraiwa, Hiroshi Ezura. Cloning and characterization of a Chlamydomonas reinhardtii cDNA arylalkylamine N-acetyltransferase and its use in the genetic engineering of melatonin content in the Micro-Tom tomato.
Journal of pineal research.
2009 May; 46(4):373-82. doi:
10.1111/j.1600-079x.2009.00673.x
. [PMID: 19552760] - Hirotaka Ishii, Nobuyuki Tanaka, Momoko Kobayashi, Masakatsu Kato, Yasuo Sakuma. Gene structures, biochemical characterization and distribution of rat melatonin receptors.
The journal of physiological sciences : JPS.
2009 Jan; 59(1):37-47. doi:
10.1007/s12576-008-0003-9
. [PMID: 19340560] - Mariana Gavazza, Angel Catalá. Relative efficacies of alpha-tocopherol, N-acetyl-serotonin, and melatonin in reducing non-enzymatic lipid peroxidation of rat testicular microsomes and mitochondria.
Molecular and cellular biochemistry.
2009 Jan; 321(1-2):37-43. doi:
10.1007/s11010-008-9907-1
. [PMID: 18758914] - Adam Gesing, Malgorzata Karbownik-Lewinska. Protective effects of melatonin and N-acetylserotonin on aflatoxin B1-induced lipid peroxidation in rats.
Cell biochemistry and function.
2008 Apr; 26(3):314-9. doi:
10.1002/cbf.1438
. [PMID: 17868196] - Xiaochao Ma, Chi Chen, Kristopher W Krausz, Jeffrey R Idle, Frank J Gonzalez. A metabolomic perspective of melatonin metabolism in the mouse.
Endocrinology.
2008 Apr; 149(4):1869-79. doi:
10.1210/en.2007-1412
. [PMID: 18187545] - Mary C Perianayagam, Pura J Requintina, Bertrand L Jaber, Gregory F Oxenkrug. Effect of methyl derivatives of dopamine on tumor necrosis factor alpha and lipid peroxidation.
Annals of the New York Academy of Sciences.
2007 Dec; 1122(?):253-9. doi:
10.1196/annals.1403.018
. [PMID: 18077578] - Pura J Requintina, Gregory F Oxenkrug. Effect of luzindole and other melatonin receptor antagonists on iron- and lipopolysaccharide-induced lipid peroxidation in vitro.
Annals of the New York Academy of Sciences.
2007 Dec; 1122(?):289-94. doi:
10.1196/annals.1403.021
. [PMID: 18077581] - Natalia Fagali, Angel Catalá. The effect of melatonin and structural analogues on the lipid peroxidation of triglycerides enriched in omega-3 polyunsaturated fatty acids.
Life sciences.
2007 Jul; 81(4):299-305. doi:
10.1016/j.lfs.2007.05.013
. [PMID: 17603083] - Patricio J Leaden, Angel Catalá. Melatonin and N-acetyl serotonin inhibit selectively enzymatic and non-enzymatic lipid peroxidation of rat liver microsomes.
Prostaglandins, leukotrienes, and essential fatty acids.
2007 Jul; 77(1):29-35. doi:
10.1016/j.plefa.2007.06.001
. [PMID: 17681744] - Indraneel Saha, Urmi Chatterji, Santasri Chaudhuri-Sengupta, Tapas C Nag, Debabrata Nag, Samir Banerjee, B R Maiti. Ultrastructural and hormonal changes in the pineal-testicular axis following arecoline administration in rats.
Journal of experimental zoology. Part A, Ecological genetics and physiology.
2007 Apr; 307(4):187-98. doi:
10.1002/jez.354
. [PMID: 17436329] - Gordon Y Tang, Angel K Ip, Andrew W Siu. Pinoline and N-acetylserotonin reduce glutamate-induced lipid peroxidation in retinal homogenates.
Neuroscience letters.
2007 Feb; 412(3):191-4. doi:
10.1016/j.neulet.2006.11.011
. [PMID: 17125922] - K Huuhka, A Riutta, R Haataja, P Ylitalo, E Leinonen. The effect of CYP2C19 substrate on the metabolism of melatonin in the elderly: A randomized, double-blind, placebo-controlled study.
Methods and findings in experimental and clinical pharmacology.
2006 Sep; 28(7):447-50. doi:
10.1358/mf.2006.28.7.1003545
. [PMID: 17003850] - Julio Rubio, Maria Caldas, Sonia Dávila, Manuel Gasco, Gustavo F Gonzales. Effect of three different cultivars of Lepidium meyenii (Maca) on learning and depression in ovariectomized mice.
BMC complementary and alternative medicine.
2006 Jun; 6(?):23. doi:
10.1186/1472-6882-6-23
. [PMID: 16796734] - Tangbin Yang, Jianhe Wang, Lina Qu, Ping Zhong, Yanhong Yuan. Preparation and identification of anti-melatonin monoclonal antibodies.
Journal of pineal research.
2006 May; 40(4):350-4. doi:
10.1111/j.1600-079x.2006.00314.x
. [PMID: 16635023] - Anna Zielińska, Jacek Swietosławski, Russel J Reiter, Michał Karasek. The effects of melatonin, N-acetylserotonin, and 6-hydroxymelatonin on the ultrastructure of the pinealocytes of the Syrian hamster (Mesocricetus auratus).
Endokrynologia Polska.
2006 Jan; 57(1):2-6. doi:
. [PMID: 16575756]
- Gregory Oxenkrug. Antioxidant effects of N-acetylserotonin: possible mechanisms and clinical implications.
Annals of the New York Academy of Sciences.
2005 Aug; 1053(?):334-47. doi:
10.1196/annals.1344.029
. [PMID: 16179540] - Gregory F Oxenkrug, Pura J Requintina. N-acetyldopamine inhibits rat brain lipid peroxidation induced by lipopolysaccharide.
Annals of the New York Academy of Sciences.
2005 Aug; 1053(?):394-9. doi:
10.1111/j.1749-6632.2005.tb00047.x
. [PMID: 16179545] - Mariana B Gavazza, Angel Català. Protective effect of N-acetyl-serotonin on the nonenzymatic lipid peroxidation in rat testicular microsomes and mitochondria.
Journal of pineal research.
2004 Oct; 37(3):153-60. doi:
10.1111/j.1600-079x.2004.00150.x
. [PMID: 15357659] - Do Yu Soung, Hye Rhi Choi, Ji Young Kim, Jae Kyung No, Jee Hyun Lee, Min Sun Kim, Sook Hee Rhee, Jin Seng Park, Myung Jung Kim, Ryung Yang, Hae Young Chung. Peroxynitrite scavenging activity of indole derivatives: interaction of indoles with peroxynitrite.
Journal of medicinal food.
2004; 7(1):84-9. doi:
10.1089/109662004322984752
. [PMID: 15117558] - Margarita H Guajardo, Ana M Terrasa, Angel Catalá. Protective effect of indoleamines on in vitro ascorbate-Fe2+ dependent lipid peroxidation of rod outer segment membranes of bovine retina.
Journal of pineal research.
2003 Nov; 35(4):276-82. doi:
10.1034/j.1600-079x.2003.00087.x
. [PMID: 14521634] - Ercument Olmez, Zehra Kurcer. Melatonin attenuates alpha-adrenergic-induced contractions by increasing the release of vasoactive intestinal peptide in isolated rat penile bulb.
Urological research.
2003 Aug; 31(4):276-9. doi:
10.1007/s00240-003-0327-0
. [PMID: 12844242] - Andrzej Slominski, Alexander Pisarchik, Blazej Zbytek, Desmond J Tobin, Söbia Kauser, Jacobo Wortsman. Functional activity of serotoninergic and melatoninergic systems expressed in the skin.
Journal of cellular physiology.
2003 Jul; 196(1):144-53. doi:
10.1002/jcp.10287
. [PMID: 12767050] - Pura J Requintina, Gregory F Oxenkrug. Differential effects of lipopolysaccharide on lipid peroxidation in F344N, SHR rats and BALB/c mice, and protection of melatonin and NAS against its toxicity.
Annals of the New York Academy of Sciences.
2003 May; 993(?):325-33; discussion 345. doi:
10.1111/j.1749-6632.2003.tb07540.x
. [PMID: 12853324] - Sergey O Bachurin, Elena P Shevtsova, Elena G Kireeva, Gregory F Oxenkrug, Sergey O Sablin. Mitochondria as a target for neurotoxins and neuroprotective agents.
Annals of the New York Academy of Sciences.
2003 May; 993(?):334-44; discussion 345. doi:
10.1111/j.1749-6632.2003.tb07541.x
. [PMID: 12853325] - Nilgün Yildirim, Ahmet Ozer, Mine Inal, Kemal Angin, Sumru Yurdakul. The effect of N-acetyl serotonin on ultraviolet-radiation-induced cataracts in rats.
Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.
2003 Mar; 217(2):148-53. doi:
10.1159/000068555
. [PMID: 12592055] - Gregory F Oxenkrug, Pura J Requintina. Melatonin and jet lag syndrome: experimental model and clinical implications.
CNS spectrums.
2003 Feb; 8(2):139-48. doi:
10.1017/s109285290001837x
. [PMID: 12612500] - Thilo Gambichler, Armin Bader, Mirjana Vojvodic, Falk G Bechara, Kirsten Sauermann, Peter Altmeyer, Klaus Hoffmann. Impact of UVA exposure on psychological parameters and circulating serotonin and melatonin.
BMC dermatology.
2002 Apr; 2(?):6. doi:
10.1186/1471-5945-2-6
. [PMID: 11952999] - A M Poon, E H Choy, S F Pang. Modulation of blood glucose by melatonin: a direct action on melatonin receptors in mouse hepatocytes.
Biological signals and receptors.
2001 Nov; 10(6):367-79. doi:
10.1159/000046904
. [PMID: 11721092] - J J García, R J Reiter, M Karbownik, J R Calvo, G G Ortiz, D X Tan, E Martínez-Ballarín, D Acuña-Castroviejo. N-acetylserotonin suppresses hepatic microsomal membrane rigidity associated with lipid peroxidation.
European journal of pharmacology.
2001 Oct; 428(2):169-75. doi:
10.1016/s0014-2999(01)01342-5
. [PMID: 11675033] - G Oxenkrug, P Requintina, S Bachurin. Antioxidant and antiaging activity of N-acetylserotonin and melatonin in the in vivo models.
Annals of the New York Academy of Sciences.
2001 Jun; 939(?):190-9. doi:
10.1111/j.1749-6632.2001.tb03626.x
. [PMID: 11462771] - M Karbownik, R J Reiter, J Cabrera, J J Garcia. Comparison of the protective effect of melatonin with other antioxidants in the hamster kidney model of estradiol-induced DNA damage.
Mutation research.
2001 Mar; 474(1-2):87-92. doi:
10.1016/s0027-5107(00)00164-0
. [PMID: 11239965] - G Facciolá, M Hidestrand, C von Bahr, G Tybring. Cytochrome P450 isoforms involved in melatonin metabolism in human liver microsomes.
European journal of clinical pharmacology.
2001 Mar; 56(12):881-8. doi:
10.1007/s002280000245
. [PMID: 11317475] - A W Siu, J P Cheung, C H To, E K Chan, J K Chan, J C Cheung. N-acetyl-serotonin reduces copper (I) ion-induced lipid peroxidation in bovine retinal homogenates.
Acta ophthalmologica Scandinavica.
2001 Feb; 79(1):69-71. doi:
10.1034/j.1600-0420.2001.079001069.x
. [PMID: 11167292] - J R Calvo, R J Reiter, J J García, G G Ortiz, D X Tan, M Karbownik. Characterization of the protective effects of melatonin and related indoles against alpha-naphthylisothiocyanate-induced liver injury in rats.
Journal of cellular biochemistry.
2001; 80(4):461-70. doi:
10.1002/1097-4644(20010315)80:4<461::aid-jcb1000>3.0.co;2-p
. [PMID: 11169730] - M Karbownik, E Gitto, A Lewiñski, R J Reiter. Relative efficacies of indole antioxidants in reducing autoxidation and iron-induced lipid peroxidation in hamster testes.
Journal of cellular biochemistry.
2001; 81(4):693-9. doi:
10.1002/jcb.1100
. [PMID: 11329624] - A W Siu, R J Reiter, C H To. Pineal indoleamines and vitamin E reduce nitric oxide-induced lipid peroxidation in rat retinal homogenates.
Journal of pineal research.
1999 Sep; 27(2):122-8. doi:
10.1111/j.1600-079x.1999.tb00606.x
. [PMID: 10496149] - A García-Pergañeda, J M Guerrero, M Rafii-El-Idrissi, M Paz Romero, D Pozo, J R Calvo. Characterization of membrane melatonin receptor in mouse peritoneal macrophages: inhibition of adenylyl cyclase by a pertussis toxin-sensitive G protein.
Journal of neuroimmunology.
1999 Mar; 95(1-2):85-94. doi:
10.1016/s0165-5728(98)00268-9
. [PMID: 10229118] - R Barsacchi, C Kusmic, E Damiani, P Carloni, L Greci, L Donato. Vitamin E consumption induced by oxidative stress in red blood cells is enhanced by melatonin and reduced by N-acetylserotonin.
Free radical biology & medicine.
1998 May; 24(7-8):1187-92. doi:
10.1016/s0891-5849(97)00431-0
. [PMID: 9626573] - W Marktl, P Brugger, M Herold. [Melatonin and coronary heart disease].
Wiener klinische Wochenschrift.
1997 Oct; 109(18):747-9. doi:
NULL
. [PMID: 9441519] - B Longoni, W A Pryor, P Marchiafava. Inhibition of lipid peroxidation by N-acetylserotonin and its role in retinal physiology.
Biochemical and biophysical research communications.
1997 Apr; 233(3):778-80. doi:
10.1006/bbrc.1997.6563
. [PMID: 9168932] - S Conway, J E Drew, S J Canning, P Barrett, R Jockers, A D Strosberg, B Guardiola-Lemaitre, P Delagrange, P J Morgan. Identification of Mel1a melatonin receptors in the human embryonic kidney cell line HEK293: evidence of G protein-coupled melatonin receptors which do not mediate the inhibition of stimulated cyclic AMP levels.
FEBS letters.
1997 Apr; 407(1):121-6. doi:
10.1016/s0014-5793(97)00315-3
. [PMID: 9141494] - C S Pang, P L Tang, S F Pang, G M Brown. Comparison of the pharmacological characteristics of 2-[125I]iodomelatonin binding sites in the lung, spleen, brain and kidney of chicken.
Biological signals.
1995 Nov; 4(6):311-24. doi:
10.1159/000109465
. [PMID: 8688910] - P Klemm, M Hecker, H Stockhausen, C C Wu, C Thiemermann. Inhibition by N-acetyl-5-hydroxytryptamine of nitric oxide synthase expression in cultured cells and in the anaesthetized rat.
British journal of pharmacology.
1995 Aug; 115(7):1175-81. doi:
10.1111/j.1476-5381.1995.tb15021.x
. [PMID: 7582541] - D Müller-Wieland, B Behnke, K Koopmann, W Krone. Melatonin inhibits LDL receptor activity and cholesterol synthesis in freshly isolated human mononuclear leukocytes.
Biochemical and biophysical research communications.
1994 Aug; 203(1):416-21. doi:
10.1006/bbrc.1994.2198
. [PMID: 8074686] - G L Brammer. Duodenum is not a consistent source of melatonin in rats.
Life sciences.
1994; 55(10):775-87. doi:
10.1016/0024-3205(94)00561-3
. [PMID: 8072375] - P Klemm, J Ostrowski, T Morath, C Gruber, P A Martorana, R Henning. N-Acetylserotonin prevents the hypotension induced by bacterial lipopolysaccharides in the rat.
European journal of pharmacology.
1993 Nov; 250(1):R9-10. doi:
10.1016/0014-2999(93)90651-w
. [PMID: 7509747] - N Gazzah, A Gharib, I Delton, P Molière, G Durand, R Christon, M Lagarde, N Sarda. Effect of an n-3 fatty acid-deficient diet on the adenosine-dependent melatonin release in cultured rat pineal.
Journal of neurochemistry.
1993 Sep; 61(3):1057-63. doi:
10.1111/j.1471-4159.1993.tb03620.x
. [PMID: 8360673] - J K Porter, J A Stuedemann, F N Thompson, B A Buchanan, H A Tucker. Melatonin and pineal neurochemicals in steers grazed on endophyte-infected tall fescue: effects of metoclopramide.
Journal of animal science.
1993 Jun; 71(6):1526-31. doi:
10.2527/1993.7161526x
. [PMID: 8392046] - A Lewiński, I Rybicka, E Wajs, M Szkudliński, M Pawlikowski. Influence of pineal indoleamines on the mitotic activity of gastric and colonic mucosa epithelial cells in the rat: interaction with omeprazole.
Journal of pineal research.
1991 Mar; 10(2):104-8. doi:
10.1111/j.1600-079x.1991.tb00018.x
. [PMID: 2056433] - A E Allen, S F Pang, I Nir. The effect of environmental photoperiodicity on indole rhythms and locomotor activity in sighted and eye covered chickens.
Journal of neural transmission. General section.
1991; 83(1-2):107-19. doi:
10.1007/bf01244457
. [PMID: 2018627] - G A Kuchel, R L Sherman, R E Zigmond. Recovery of function following unilateral denervation, but not unilateral decentralization, of the pineal gland as indicated by measurements of pineal melatonin content and urinary melatonin metabolites.
Neuroscience.
1990; 37(2):413-20. doi:
10.1016/0306-4522(90)90411-v
. [PMID: 2133350] - N M Munoz, C Tutins, A R Leff. Highly sensitive determination of catecholamine and serotonin concentrations in plasma by liquid chromatography-electrochemistry.
Journal of chromatography.
1989 Aug; 493(1):157-63. doi:
10.1016/s0378-4347(00)82718-8
. [PMID: 2778006] - T Sato, A Attanasio, K Wake, D Gupta. Rhythm development in pineal and circulating serotonin, N-acetylserotonin, and melatonin in Syrian hamsters.
Journal of pineal research.
1989; 7(1):45-54. doi:
10.1111/j.1600-079x.1989.tb00441.x
. [PMID: 2724055] - A M Leone, P L Francis, B McKenzie-Gray. Rapid and simple synthesis for the sulphate esters of 6-hydroxy-melatonin and N-acetyl-serotonin.
Journal of pineal research.
1988; 5(4):367-71. doi:
10.1111/j.1600-079x.1988.tb00885.x
. [PMID: 3210137]