(+)-Lithospermic acid (BioDeep_00000171508)

   

human metabolite blood metabolite natural product


代谢物信息卡片


4-{3-[1-carboxy-2-(3,4-dihydroxyphenyl)ethoxy]-3-oxoprop-1-en-1-yl}-2-(3,4-dihydroxyphenyl)-7-hydroxy-2,3-dihydro-1-benzofuran-3-carboxylic acid

化学式: C27H22O12 (538.1111)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(blood) 100%

分子结构信息

SMILES: O=C(C=Cc1ccc(O)c2c1C(C(=O)O)C(c1ccc(O)c(O)c1)O2)OC(Cc1ccc(O)c(O)c1)C(=O)O
InChI: InChI=1S/C27H22O12/c28-15-5-1-12(9-18(15)31)10-20(26(34)35)38-21(33)8-4-13-2-7-17(30)25-22(13)23(27(36)37)24(39-25)14-3-6-16(29)19(32)11-14/h1-9,11,20,23-24,28-32H,10H2,(H,34,35)(H,36,37)



数据库引用编号

4 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

24 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 8 CASP3, CASP7, CCND1, DCTN4, MTOR, NOS3, PIK3CA, PRKAA2
Peripheral membrane protein 2 GORASP1, MTOR
Endosome membrane 1 CTSD
Endoplasmic reticulum membrane 2 HMOX1, MTOR
Nucleus 9 CASP3, CASP7, CCND1, DCTN4, GABPA, HMOX1, MTOR, NOS3, PRKAA2
cytosol 9 CASP3, CASP7, CCND1, DCTN4, HMOX1, MTOR, NOS3, PIK3CA, PRKAA2
dendrite 2 MTOR, PRKAA2
phagocytic vesicle 1 MTOR
centrosome 2 CCND1, DCTN4
nucleoplasm 8 CASP3, CASP7, CCND1, GABPA, HMOX1, MTOR, NOS3, PRKAA2
Cell membrane 1 TNF
Cytoplasmic side 3 GORASP1, HMOX1, MTOR
lamellipodium 1 PIK3CA
Multi-pass membrane protein 3 ABCC3, SLC22A6, SLC22A8
Golgi apparatus membrane 2 GORASP1, MTOR
cell cortex 1 DCTN4
cell surface 1 TNF
glutamatergic synapse 1 CASP3
Golgi apparatus 3 GORASP1, NOS3, PRKAA2
Golgi membrane 3 GORASP1, MTOR, NOS3
lysosomal membrane 2 CTSD, MTOR
neuronal cell body 4 CASP3, IAPP, PRKAA2, TNF
Cytoplasm, cytosol 1 CASP7
Lysosome 2 CTSD, MTOR
plasma membrane 6 ABCC3, NOS3, PIK3CA, SLC22A6, SLC22A8, TNF
Membrane 5 ABCC3, HMOX1, MTOR, PRKAA2, SLC22A6
apical plasma membrane 1 SLC22A8
axon 1 PRKAA2
basolateral plasma membrane 3 ABCC3, SLC22A6, SLC22A8
caveola 2 NOS3, SLC22A6
extracellular exosome 3 CTSD, SLC22A6, SLC22A8
Lysosome membrane 1 MTOR
endoplasmic reticulum 1 HMOX1
extracellular space 6 CASP7, CTSD, HMOX1, IAPP, IL6, TNF
lysosomal lumen 1 CTSD
perinuclear region of cytoplasm 3 HMOX1, NOS3, PIK3CA
bicellular tight junction 1 CCND1
intercalated disc 1 PIK3CA
protein-containing complex 1 SLC22A6
Microsome membrane 1 MTOR
postsynaptic density 1 CASP3
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Secreted 2 IAPP, IL6
extracellular region 4 CTSD, IAPP, IL6, TNF
Mitochondrion outer membrane 1 MTOR
mitochondrial outer membrane 2 HMOX1, MTOR
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 DCTN4
Nucleus membrane 1 CCND1
nuclear membrane 1 CCND1
external side of plasma membrane 1 TNF
Cytoplasm, P-body 1 NOS3
P-body 1 NOS3
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Membrane raft 2 CTSD, TNF
Cytoplasm, cytoskeleton 1 DCTN4
focal adhesion 1 DCTN4
cis-Golgi network 1 GORASP1
Nucleus, PML body 1 MTOR
PML body 1 MTOR
collagen-containing extracellular matrix 1 CTSD
lateral plasma membrane 1 SLC22A8
nuclear speck 1 PRKAA2
Cytoplasm, myofibril, sarcomere 1 DCTN4
sarcomere 1 DCTN4
chromatin 1 GABPA
phagocytic cup 1 TNF
cytoskeleton 1 NOS3
Secreted, extracellular space 1 CASP7
spindle pole 1 DCTN4
Cytoplasm, cell cortex 1 DCTN4
Basolateral cell membrane 3 ABCC3, SLC22A6, SLC22A8
nuclear envelope 1 MTOR
Endomembrane system 1 MTOR
endosome lumen 1 CTSD
Melanosome 1 CTSD
Cytoplasm, Stress granule 1 NOS3
cytoplasmic stress granule 2 NOS3, PRKAA2
stress fiber 1 DCTN4
basal plasma membrane 2 ABCC3, SLC22A6
ficolin-1-rich granule lumen 1 CTSD
endoplasmic reticulum lumen 1 IL6
transcription repressor complex 1 CCND1
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
specific granule lumen 1 CTSD
tertiary granule lumen 1 CTSD
dynactin complex 1 DCTN4
kinetochore 1 DCTN4
endocytic vesicle membrane 1 NOS3
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 GORASP1
cytoplasmic dynein complex 1 DCTN4
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
Single-pass type IV membrane protein 1 HMOX1
Cytoplasm, cytoskeleton, stress fiber 1 DCTN4
Basal cell membrane 2 ABCC3, SLC22A6
death-inducing signaling complex 1 CASP3
nucleotide-activated protein kinase complex 1 PRKAA2
Cytoplasmic vesicle, phagosome 1 MTOR
cyclin-dependent protein kinase holoenzyme complex 1 CCND1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
interleukin-6 receptor complex 1 IL6
cyclin D1-CDK4 complex 1 CCND1
cyclin D1-CDK6 complex 1 CCND1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Ewelina Piątczak, Joanna Kolniak-Ostek, Weronika Gonciarz, Paweł Lisiecki, Urszula Kalinowska-Lis, Magdalena Szemraj, Magdalena Chmiela, Sylwia Zielińska. The Effect of Salvia tomentosa Miller Extracts, Rich in Rosmarinic, Salvianolic and Lithospermic Acids, on Bacteria Causing Opportunistic Infections. Molecules (Basel, Switzerland). 2024 Jan; 29(3):. doi: 10.3390/molecules29030590. [PMID: 38338335]
  • Shiqi Zhu, Haimei Wen, Wenling Wang, Yong Chen, Fengmei Han, Wentao Cai. Anti-hepatitis B virus activity of lithospermic acid, a polyphenol from Salvia miltiorrhiza, in vitro and in vivo by autophagy regulation. Journal of ethnopharmacology. 2023 Feb; 302(Pt A):115896. doi: 10.1016/j.jep.2022.115896. [PMID: 36334815]
  • Jin-Su Oh, Sang-Jun Lee, Se-Young Choung. Lithospermum erythrorhizon Alleviates Atopic Dermatitis-like Skin Lesions by Restoring Immune Balance and Skin Barrier Function in 2.4-Dinitrochlorobenzene-Induced NC/Nga Mice. Nutrients. 2021 Sep; 13(9):. doi: 10.3390/nu13093209. [PMID: 34579088]
  • Tao Tian, Guo-Ying Chen, Hao Zhang, Feng-Qing Yang. Personal Glucose Meter for α-Glucosidase Inhibitor Screening Based on the Hydrolysis of Maltose. Molecules (Basel, Switzerland). 2021 Jul; 26(15):. doi: 10.3390/molecules26154638. [PMID: 34361791]
  • Tae Kyeom Kang, Tam Thi Le, Kyung-A Kim, Young-Joo Kim, Wook-Bin Lee, Sang Hoon Jung. Roots of Lithospermum erythrorhizon promotes retinal cell survival in optic nerve crush-induced retinal degeneration. Experimental eye research. 2021 02; 203(?):108419. doi: 10.1016/j.exer.2020.108419. [PMID: 33383026]
  • Amit Rai, Taiki Nakaya, Yohei Shimizu, Megha Rai, Michimi Nakamura, Hideyuki Suzuki, Kazuki Saito, Mami Yamazaki. De Novo Transcriptome Assembly and Characterization of Lithospermum officinale to Discover Putative Genes Involved in Specialized Metabolites Biosynthesis. Planta medica. 2018 Aug; 84(12-13):920-934. doi: 10.1055/a-0630-5925. [PMID: 29843181]
  • Wei Li, Navaneethakrishnan Polachi, Xiangyang Wang, Yang Chu, Yuan Wang, Meng Tian, Dekun Li, Dazheng Zhou, Shuiping Zhou, Aichun Ju, Yubo Li, Yanjun Zhang, Min Chen, Luqi Huang, Changxiao Liu. A quality marker study on salvianolic acids for injection. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2018 May; 44(?):138-147. doi: 10.1016/j.phymed.2018.02.003. [PMID: 29544864]
  • Jianyang Pan, Xingchu Gong, Haibin Qu. Degradation Kinetics and Mechanism of Lithospermic Acid under Low Oxygen Condition Using Quantitative 1H NMR with HPLC-MS. PloS one. 2016; 11(10):e0164421. doi: 10.1371/journal.pone.0164421. [PMID: 27776128]
  • Zheng Lou, Kai-Di Ren, Bin Tan, Jing-Jie Peng, Xian Ren, Zhong-Bao Yang, Bin Liu, Jie Yang, Qi-Lin Ma, Xiu-Ju Luo, Jun Peng. Salviaolate Protects Rat Brain from Ischemia-Reperfusion Injury through Inhibition of NADPH Oxidase. Planta medica. 2015 Oct; 81(15):1361-9. doi: 10.1055/s-0035-1557774. [PMID: 26252829]
  • Ka Woon Karen Chan, Wing Shing Ho. Anti-oxidative and hepatoprotective effects of lithospermic acid against carbon tetrachloride-induced liver oxidative damage in vitro and in vivo. Oncology reports. 2015 Aug; 34(2):673-80. doi: 10.3892/or.2015.4068. [PMID: 26081670]
  • Cheng Ji Jin, Sung Hoon Yu, Xiao-Mei Wang, Se Joon Woo, Hyo Jin Park, Hyun Chul Lee, Sung Hee Choi, Kyoung Min Kim, Jung Hee Kim, Kyong Soo Park, Hak Chul Jang, Soo Lim. The effect of lithospermic acid, an antioxidant, on development of diabetic retinopathy in spontaneously obese diabetic rats. PloS one. 2014; 9(6):e98232. doi: 10.1371/journal.pone.0098232. [PMID: 24905410]
  • Toshihiro Murata, Kanae Oyama, Minami Fujiyama, Bunmei Oobayashi, Kaoru Umehara, Toshio Miyase, Fumihiko Yoshizaki. Diastereomers of lithospermic acid and lithospermic acid B from Monarda fistulosa and Lithospermum erythrorhizon. Fitoterapia. 2013 Dec; 91(?):51-59. doi: 10.1016/j.fitote.2013.08.009. [PMID: 23978578]
  • Carmine Negro, Luigi De Bellis, Antonio Miceli. Antioxidant activity of Buglossoides purpureocaerulea (L.) I.M. Johnst. extracts. Natural product research. 2013 Mar; 27(4-5):509-12. doi: 10.1080/14786419.2012.706298. [PMID: 22804459]
  • Di Zhao, De-en Han, Ning Li, Yang Lu, Ting-ting Li, Suo-ye Yang, Jia-ke He, Xi-jing Chen. Simultaneous determination of six phenolic constituents of Danshen injection in rat plasma by LC-ESI-MS and its application to a pharmacokinetic study. European journal of mass spectrometry (Chichester, England). 2011; 17(4):395-403. doi: 10.1255/ejms.1137. [PMID: 22006631]
  • Li Chen, Wen-yi Wang, Yi-ping Wang. Inhibitory effects of lithospermic acid on proliferation and migration of rat vascular smooth muscle cells. Acta pharmacologica Sinica. 2009 Sep; 30(9):1245-52. doi: 10.1038/aps.2009.122. [PMID: 19701233]
  • Zheng-Fu Zhang, Zong-Gen Peng, Lei Gao, Biao Dong, Jian-Rui Li, Zhuo-Yong Li, Hong-Shan Chen. Three new derivatives of anti-HIV-1 polyphenols isolated from Salvia yunnanensis. Journal of Asian natural products research. 2008 May; 10(5-6):391-6. doi: 10.1080/10286020801966591. [PMID: 18464075]
  • Li Wang, Qiang Zhang, Xiaochuan Li, Youli Lu, Zhimou Xue, Lijiang Xuan, Yiping Wang. Pharmacokinetics and metabolism of lithospermic acid by LC/MS/MS in rats. International journal of pharmaceutics. 2008 Feb; 350(1-2):240-6. doi: 10.1016/j.ijpharm.2007.09.001. [PMID: 17936527]
  • Xiaochuan Li, Chen Yu, Youli Lu, Yunlong Gu, Jie Lu, Wei Xu, Lijiang Xuan, Yiping Wang. Pharmacokinetics, tissue distribution, metabolism, and excretion of depside salts from Salvia miltiorrhiza in rats. Drug metabolism and disposition: the biological fate of chemicals. 2007 Feb; 35(2):234-9. doi: 10.1124/dmd.106.013045. [PMID: 17132761]
  • Yong-Xue Guo, Dai-Jia Zhang, Hui Wang, Zhi-Long Xiu, Long-Xing Wang, Hong-Bin Xiao. Hydrolytic kinetics of lithospermic acid B extracted from roots of Salvia miltiorrhiza. Journal of pharmaceutical and biomedical analysis. 2007 Jan; 43(2):435-9. doi: 10.1016/j.jpba.2006.07.046. [PMID: 16950588]
  • Akiko Satoh, Takako Yokozawa, Young Ae Kim, Eun Ju Cho, Takuya Okamoto, Yasuo Sei. The mechanisms underlying the anti-aging activity of the Chinese prescription Kangen-karyu in hydrogen peroxide-induced human fibroblasts. The Journal of pharmacy and pharmacology. 2005 Oct; 57(10):1335-43. doi: 10.1111/j.2042-7158.2005.tb01609.x. [PMID: 16259763]
  • Xiaochuan Li, Chen Yu, Yongbao Cai, Gangyi Liu, Jingying Jia, Yiping Wang. Simultaneous determination of six phenolic constituents of danshen in human serum using liquid chromatography/tandem mass spectrometry. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2005 Jun; 820(1):41-7. doi: 10.1016/j.jchromb.2005.03.005. [PMID: 15866491]
  • Xiaochuan Li, Chen Yu, Weikang Sun, Gangyi Liu, Jingying Jia, Yiping Wang. Simultaneous determination of magnesium lithospermate B, rosmarinic acid, and lithospermic acid in beagle dog serum by liquid chromatography/tandem mass spectrometry. Rapid communications in mass spectrometry : RCM. 2004; 18(23):2878-82. doi: 10.1002/rcm.1703. [PMID: 15517529]
  • Ibrahim S Abd-Elazem, Hong S Chen, Robert B Bates, Ru Chih C Huang. Isolation of two highly potent and non-toxic inhibitors of human immunodeficiency virus type 1 (HIV-1) integrase from Salvia miltiorrhiza. Antiviral research. 2002 Jul; 55(1):91-106. doi: 10.1016/s0166-3542(02)00011-6. [PMID: 12076754]
  • M Nagai, M Noguchi, T Iizuka, K Otani, K Kamata. Vasodilator effects of des(alpha-carboxy-3,4-dihydroxyphenethyl)lithospermic acid (8-epiblechnic acid), a derivative of lithospermic acids in salviae miltiorrhizae radix. Biological & pharmaceutical bulletin. 1996 Feb; 19(2):228-32. doi: 10.1248/bpb.19.228. [PMID: 8850312]
  • T Shigematsu, S Tajima, T Nishikawa, S Murad, S R Pinnell, I Nishioka. Inhibition of collagen hydroxylation by lithospermic acid magnesium salt, a novel compound isolated from Salviae miltiorrhizae Radix. Biochimica et biophysica acta. 1994 May; 1200(1):79-83. doi: 10.1016/0304-4165(94)90030-2. [PMID: 8186237]
  • W E Findley, U Hollstein, P K Besch. Effect of purified lithospermic acid and its oxidation product on luteinizing hormone release in vitro. Biology of reproduction. 1985 Sep; 33(2):309-15. doi: 10.1095/biolreprod33.2.309. [PMID: 3899201]