3-Indoleacetonitrile (BioDeep_00000001238)
Secondary id: BioDeep_00000398009, BioDeep_00000400201
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Chemicals and Drugs Antibiotics BioNovoGene_Lab2019 Volatile Flavor Compounds
代谢物信息卡片
化学式: C10H8N2 (156.0687448)
中文名称: 3-吲哚乙腈, 吲哚-3-乙腈
谱图信息:
最多检出来源 Homo sapiens(blood) 0.08%
分子结构信息
SMILES: C1=CC=C2C(=C1)C(=CN2)CC#N
InChI: InChI=1/C10H8N2/c11-6-5-8-7-12-10-4-2-1-3-9(8)10/h1-4,7,12H,5H2
描述信息
3-Indoleacetonitrile is a phytoalexin. Phytoalexins are antibiotics produced by plants that are under attack. Phytoalexins tend to fall into several classes including terpenoids, glycosteroids, and alkaloids; however, researchers often find it convenient to extend the definition to include all phytochemicals that are part of the plants defensive arsenal. Phytoalexins produced in plants act as toxins to the attacking organism. They may puncture the cell wall, delay maturation, disrupt metabolism, or prevent the reproduction of the pathogen in question. However, phytoalexins are often targeted to specific predators; a plant that has anti-insect phytoalexins may not have the ability to repel a fungal attack. 3-Indoleacetonitrile is common in cruciferous vegetables such as cabbage, cauliflower, broccoli, and Brussels sprouts. Dietary indoles in cruciferous vegetables induce cytochrome P450 enzymes and have prevented tumours in various animal models. Consumption of Brassica vegetables is associated with a reduced risk of cancer of the alimentary tract in animal models and human populations (PMID:15612779, 15884814, 2342128, 3014947, 3880668, 6334634, 6419397, 6426808, 6584878, 6725517, 6838646, 7123561).
Myrosinase-induced hydrolysis product of indole glucosinolates, found in cabbage and other crucifers
Acquisition and generation of the data is financially supported in part by CREST/JST.
KEIO_ID I022
3-Indoleacetonitrile is an endogenous metabolite.
3-Indoleacetonitrile is an endogenous metabolite.
同义名列表
25 个代谢物同义名
2-(1H-indol-3-yl)acetonitrile; (1H-Indol-3-yl)acetonitrile; (Indole-3-yl)acetonitrile; 1H-indol-3-Ylacetonitrile; 1H-Indole-3-acetonitrile; (indol-3-yl)Acetonitrile; (3-Indolyl)acetonitrile; 3-Cyanomethyl-1H-indole; beta-Indoleacetonitrile; 3-Indolyl-acetonitrile; indol-3-Ylacetonitrile; Indolyl-3-acetonitrile; 3-(Cyanomethyl)indole; Indole-3-acetonitrile; 3-Indolylacetonitrile; 3-Indoleacetonitrile; b-Indoleacetonitrile; 3-Indolacetonitrile; Indolylacetonitrile; Indoleacetonitrile; Indolylacetonitril; Usaf CB-29; IAN; 3-Indoleacetonitrile; 3-Indoleacetonitrile
数据库引用编号
35 个数据库交叉引用编号
- ChEBI: CHEBI:17566
- KEGG: C02938
- PubChem: 351795
- HMDB: HMDB0006524
- Metlin: METLIN3278
- ChEMBL: CHEMBL1812654
- MetaCyc: INDOLEYL-CPD
- KNApSAcK: C00000107
- foodb: FDB001365
- chemspider: 312357
- CAS: 771-51-7
- MoNA: PS008101
- MoNA: PR100050
- MoNA: KO001210
- MoNA: KO003203
- MoNA: PR100049
- MoNA: KO001206
- MoNA: KO003205
- MoNA: KO001209
- MoNA: KO001207
- MoNA: KO003202
- MoNA: KO001208
- MoNA: KO003204
- MoNA: KO003206
- PMhub: MS000000183
- PubChem: 5857
- PDB-CCD: 3BO
- 3DMET: B00518
- NIKKAJI: J1.733G
- RefMet: 3-Indoleacetonitrile
- RefMet: Indoleacetonitrile
- medchemexpress: HY-Y0136
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-911
- KNApSAcK: 17566
- LOTUS: LTS0100514
分类词条
相关代谢途径
Reactome(0)
BioCyc(4)
PlantCyc(2)
代谢反应
276 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(14)
- indole-3-acetate biosynthesis IV (bacteria):
(indol-3-yl)acetamide ⟶ (indole-3-yl)acetonitrile + H2O
- indole-3-acetate biosynthesis V (bacteria and fungi):
(indole-3-yl)acetonitrile + H2O ⟶ (indol-3-yl)acetate + ammonium
- indole-3-acetate biosynthesis II:
(indole-3-yl)acetonitrile + H2O ⟶ (indol-3-yl)acetate + ammonium
- indole glucosinolate activation (herbivore attack):
indole-3-carbinol ⟶ 3,3'-di(indol-3-yl)methane + H2O + formaldehyde
- indole-3-acetate biosynthesis V (bacteria and fungi):
(indole-3-yl)acetonitrile + H2O ⟶ (indol-3-yl)acetate + ammonium
- camalexin biosynthesis:
2-(cystein-S-yl)-2-(1H-indol-3-yl)-acetonitrile + NADP+ ⟶ H+ + NADPH + dihydrocamalexate + hydrogen cyanide
- indole-3-acetate biosynthesis II:
(E)-indol-3-ylacetaldoxime ⟶ H2O + indole-3-acetonitrile
- indole glucosinolate activation (herbivore attack):
indole-3-carbinol ⟶ 3,3'-di(indol-3-yl)methane + H2O + formaldehyde
- IAA biosynthesis I:
acetate + indole ⟶ H+ + indole-3-acetate
- indole-3-acetate biosynthesis IV (bacteria):
(indol-3-yl)acetamide ⟶ (indole-3-yl)acetonitrile + H2O
- indole-3-acetate biosynthesis IV (bacteria):
(indol-3-yl)acetamide ⟶ (indole-3-yl)acetonitrile + H2O
- indole-3-acetate biosynthesis V (bacteria and fungi):
(indole-3-yl)acetonitrile + H2O ⟶ (indol-3-yl)acetate + ammonium
- IAA biosynthesis V:
H2O + indole-3-acetonitrile ⟶ H+ + ammonia + indole-3-acetate
- IAA biosynthesis I:
H2O + indole-3-acetamide ⟶ H+ + ammonia + indole-3-acetate
WikiPathways(0)
Plant Reactome(228)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + indole-3-acetonitrile ⟶ IAA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + indole-3-acetonitrile ⟶ IAA + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + indole-3-acetonitrile ⟶ IAA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + indole-3-acetonitrile ⟶ IAA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + indole-3-acetonitrile ⟶ IAA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + indole-3-acetonitrile ⟶ IAA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + indole-3-acetonitrile ⟶ IAA + ammonia
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + indole-3-acetonitrile ⟶ IAA + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + indole-3-acetonitrile ⟶ IAA + ammonia
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Hormone signaling, transport, and metabolism:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-octanoate + Oxygen ⟶ CH3COO- + jasmonic acid
- IAA biosynthesis I:
CH3COO- + indole ⟶ IAA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + indole-3-acetonitrile ⟶ IAA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
INOH(0)
PlantCyc(33)
- indole glucosinolate activation (herbivore attack):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- indole glucosinolate activation (herbivore attack):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- indole-3-acetate biosynthesis II:
(E)-(indol-3-yl)acetaldehyde oxime ⟶ (indole-3-yl)acetonitrile + H2O
- indole glucosinolate activation (herbivore attack):
indole-3-carbinol ⟶ 3,3'-di(indol-3-yl)methane + H2O + formaldehyde
- indole glucosinolate activation (herbivore attack):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- indole glucosinolate activation (herbivore attack):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- indole glucosinolate activation (herbivore attack):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- indole glucosinolate activation (herbivore attack):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- indole-3-acetate biosynthesis II:
(indol-3-yl)pyruvate + H+ + NADPH + O2 ⟶ (indol-3-yl)acetate + CO2 + H2O + NADP+
- indole glucosinolate activation (herbivore attack):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- indole-3-acetate biosynthesis II:
(indol-3-yl)acetamide ⟶ (indole-3-yl)acetonitrile + H2O
- indole glucosinolate activation (herbivore attack):
indole-3-carbinol ⟶ 3,3'-di(indol-3-yl)methane + H2O + formaldehyde
- camalexin biosynthesis:
2-(cystein-S-yl)-2-(1H-indol-3-yl)-acetonitrile + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (R)-dihydrocamalexate + H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + hydrogen cyanide
- 4-hydroxyindole-3-carbonyl nitrile biosynthesis:
(indole-3-yl)acetonitrile + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 2-hydroxy-2-(1H-indol-3-yl)acetonitrile + H2O + an oxidized [NADPH-hemoprotein reductase]
- camalexin biosynthesis:
(R)-dihydrocamalexate + H+ + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ CO2 + H2O + an oxidized [NADPH-hemoprotein reductase] + camalexin
- camalexin biosynthesis:
(R)-dihydrocamalexate + H+ + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ CO2 + H2O + an oxidized [NADPH-hemoprotein reductase] + camalexin
- camalexin biosynthesis:
(R)-dihydrocamalexate + H+ + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ CO2 + H2O + an oxidized [NADPH-hemoprotein reductase] + camalexin
- camalexin biosynthesis:
(R)-dihydrocamalexate + H+ + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ CO2 + H2O + an oxidized [NADPH-hemoprotein reductase] + camalexin
- camalexin biosynthesis:
(R)-dihydrocamalexate + H+ + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ CO2 + H2O + an oxidized [NADPH-hemoprotein reductase] + camalexin
- indole-3-acetate biosynthesis II:
(indol-3-yl)acetamide ⟶ (indole-3-yl)acetonitrile + H2O
- camalexin biosynthesis:
2-(cystein-S-yl)-2-(1H-indol-3-yl)-acetonitrile + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (R)-dihydrocamalexate + H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + hydrogen cyanide
- indole glucosinolate activation (herbivore attack):
indole-3-carbinol ⟶ 3,3'-di(indol-3-yl)methane + H2O + formaldehyde
- 4-hydroxyindole-3-carbonyl nitrile biosynthesis:
(indole-3-yl)acetonitrile + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 2-hydroxy-2-(1H-indol-3-yl)acetonitrile + H2O + an oxidized [NADPH-hemoprotein reductase]
- camalexin biosynthesis:
(R)-dihydrocamalexate + H+ + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ CO2 + H2O + an oxidized [NADPH-hemoprotein reductase] + camalexin
- camalexin biosynthesis:
(R)-dihydrocamalexate + H+ + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ CO2 + H2O + an oxidized [NADPH-hemoprotein reductase] + camalexin
- camalexin biosynthesis:
2-(cystein-S-yl)-2-(1H-indol-3-yl)-acetonitrile + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (R)-dihydrocamalexate + H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + hydrogen cyanide
- 4-hydroxyindole-3-carbonyl nitrile biosynthesis:
(indole-3-yl)acetonitrile + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 2-hydroxy-2-(1H-indol-3-yl)acetonitrile + H2O + an oxidized [NADPH-hemoprotein reductase]
- camalexin biosynthesis:
(R)-dihydrocamalexate + H+ + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ CO2 + H2O + an oxidized [NADPH-hemoprotein reductase] + camalexin
- camalexin biosynthesis:
(R)-dihydrocamalexate + H+ + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ CO2 + H2O + an oxidized [NADPH-hemoprotein reductase] + camalexin
- camalexin biosynthesis:
(R)-dihydrocamalexate + H+ + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ CO2 + H2O + an oxidized [NADPH-hemoprotein reductase] + camalexin
- camalexin biosynthesis:
(R)-dihydrocamalexate + H+ + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ CO2 + H2O + an oxidized [NADPH-hemoprotein reductase] + camalexin
- camalexin biosynthesis:
(R)-dihydrocamalexate + H+ + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ CO2 + H2O + an oxidized [NADPH-hemoprotein reductase] + camalexin
- camalexin biosynthesis:
(R)-dihydrocamalexate + H+ + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ CO2 + H2O + an oxidized [NADPH-hemoprotein reductase] + camalexin
COVID-19 Disease Map(0)
PathBank(1)
- Camalexin Biosynthesis:
Dehydro(indole-3-yl)acetonitrile + Glutathione ⟶ (glutathion-S-yl)(1H-indol-3-yl)acetonitrile
PharmGKB(0)
67 个相关的物种来源信息
- 7458 - Apidae: LTS0100514
- 7459 - Apis: LTS0100514
- 7461 - Apis cerana: 10.1371/JOURNAL.PONE.0175573
- 7461 - Apis cerana: LTS0100514
- 3701 - Arabidopsis: LTS0100514
- 3702 - Arabidopsis thaliana:
- 3702 - Arabidopsis thaliana: 10.1007/S004250050576
- 3702 - Arabidopsis thaliana: 10.1038/SREP37674
- 3702 - Arabidopsis thaliana: 10.1073/PNAS.90.21.10355
- 3702 - Arabidopsis thaliana: 10.1111/TPJ.14311
- 3702 - Arabidopsis thaliana: 10.1186/1752-0509-1-53
- 3702 - Arabidopsis thaliana: 10.3390/IJMS17091565
- 3702 - Arabidopsis thaliana: LTS0100514
- 6656 - Arthropoda: LTS0100514
- 2 - Bacteria: LTS0100514
- 3705 - Brassica: LTS0100514
- 3707 - Brassica juncea: 10.1021/NP50055A020
- 3707 - Brassica juncea: LTS0100514
- 3712 - Brassica oleracea:
- 3712 - Brassica oleracea: 10.1016/S0040-4039(97)10213-1
- 3712 - Brassica oleracea: 10.1021/JF00073A010
- 3712 - Brassica oleracea: 10.1021/NP50055A020
- 3712 - Brassica oleracea: 10.1248/BPB.16.207
- 3712 - Brassica oleracea: LTS0100514
- 3711 - Brassica rapa: 10.1021/NP50055A020
- 3711 - Brassica rapa: LTS0100514
- 51351 - Brassica rapa subsp. pekinensis: 10.1021/NP50055A020
- 51351 - Brassica rapa subsp. pekinensis: LTS0100514
- 3700 - Brassicaceae: LTS0100514
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 2759 - Eukaryota: LTS0100514
- 98005 - Eutrema: LTS0100514
- 98038 - Eutrema halophilum: 10.1016/J.PHYTOCHEM.2009.09.008
- 98038 - Eutrema halophilum: LTS0100514
- 3803 - Fabaceae: LTS0100514
- 1236 - Gammaproteobacteria: LTS0100514
- 9606 - Homo sapiens: -
- 50557 - Insecta: LTS0100514
- 161755 - Isatis: LTS0100514
- 161756 - Isatis tinctoria:
- 161756 - Isatis tinctoria: 10.1016/J.PHYTOCHEM.2009.04.019
- 161756 - Isatis tinctoria: 10.1021/NP3002833
- 161756 - Isatis tinctoria: 10.1055/S-2006-959577
- 161756 - Isatis tinctoria: 10.1515/ZNC-1994-1-208
- 161756 - Isatis tinctoria: LTS0100514
- 3398 - Magnoliopsida: LTS0100514
- 33208 - Metazoa: LTS0100514
- 65947 - Nasturtium: LTS0100514
- 3887 - Pisum: LTS0100514
- 3888 - Pisum sativum: 10.1007/BF00629909
- 3888 - Pisum sativum: LTS0100514
- 135621 - Pseudomonadaceae: LTS0100514
- 286 - Pseudomonas: LTS0100514
- 36746 - Pseudomonas cichorii: 10.1016/S0031-9422(00)81417-X
- 36746 - Pseudomonas cichorii: LTS0100514
- 3725 - Raphanus: LTS0100514
- 3726 - Raphanus sativus: 10.1016/0031-9422(95)00011-U
- 3726 - Raphanus sativus: LTS0100514
- 50495 - Rorippa: LTS0100514
- 1425330 - Rorippa dubia: 10.1016/S0367-326X(02)00061-8
- 50499 - Rorippa indica: 10.1016/S0367-326X(02)00061-8
- 50499 - Rorippa indica: LTS0100514
- 157092 - Rorippa islandica: 10.1016/S0367-326X(02)00061-8
- 35493 - Streptophyta: LTS0100514
- 58023 - Tracheophyta: LTS0100514
- 33090 - Viridiplantae: LTS0100514
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Wanyou Liu, Baozhu Dong, Jinghan Hu, Zhenpeng Xu, Chengzhong Zheng, Yin Nian, Hongyou Zhou. Indole-3-acetonitrile is a critical molecule with weed allopathic suppression function in broccoli (Brassica oleracea var. italica).
Chemistry & biodiversity.
2023 Jun; ?(?):e202300444. doi:
10.1002/cbdv.202300444
. [PMID: 37332028] - Xuejin Zhao, Lianzhong Zhao, Ya Zhao, Kun Huang, Wenxiao Gong, Ying Yang, Li Zhao, Xiaohan Xia, Zaiyun Li, Feng Sheng, Xuezhu Du, Meilin Jin. 3-Indoleacetonitrile Is Highly Effective in Treating Influenza A Virus Infection In Vitro and In Vivo.
Viruses.
2021 07; 13(8):. doi:
10.3390/v13081433
. [PMID: 34452298] - Linda Jahn, Uta Hofmann, Jutta Ludwig-Müller. Indole-3-Acetic Acid Is Synthesized by the Endophyte Cyanodermella asteris via a Tryptophan-Dependent and -Independent Way and Mediates the Interaction with a Non-Host Plant.
International journal of molecular sciences.
2021 Mar; 22(5):. doi:
10.3390/ijms22052651
. [PMID: 33800748] - Dongdong Zhang, Kang Du, Yitian Zhao, Songshan Shi, Yingchun Wu, Qi Jia, Kaixian Chen, Yiming Li, Rui Wang. Indole alkaloid glycosides from Isatis tinctoria roots.
Natural product research.
2021 Jan; 35(2):244-250. doi:
10.1080/14786419.2019.1624960
. [PMID: 31174427] - Antje Walter, Lorenzo Caputi, Sarah O'Connor, Karl-Heinz van Pée, Jutta Ludwig-Müller. Chlorinated Auxins-How Does Arabidopsis Thaliana Deal with Them?.
International journal of molecular sciences.
2020 Apr; 21(7):. doi:
10.3390/ijms21072567
. [PMID: 32272759] - Shi-Lei Sun, Wen-Long Yang, Wen-Wan Fang, Yun-Xiu Zhao, Ling Guo, Yi-Jun Dai. The Plant Growth-Promoting Rhizobacterium Variovorax boronicumulans CGMCC 4969 Regulates the Level of Indole-3-Acetic Acid Synthesized from Indole-3-Acetonitrile.
Applied and environmental microbiology.
2018 08; 84(16):. doi:
10.1128/aem.00298-18
. [PMID: 29884755] - Wenchao Qu, Christelle A M Robert, Matthias Erb, Bruce E Hibbard, Maxim Paven, Tassilo Gleede, Barbara Riehl, Lena Kersting, Aylin S Cankaya, Anna T Kunert, Youwen Xu, Michael J Schueller, Colleen Shea, David Alexoff, So Jeong Lee, Joanna S Fowler, Richard A Ferrieri. Dynamic Precision Phenotyping Reveals Mechanism of Crop Tolerance to Root Herbivory.
Plant physiology.
2016 10; 172(2):776-788. doi:
10.1104/pp.16.00735
. [PMID: 27406166] - Kun Luo, Hélène Rocheleau, Peng-Fei Qi, You-Liang Zheng, Hui-Yan Zhao, Thérèse Ouellet. Indole-3-acetic acid in Fusarium graminearum: Identification of biosynthetic pathways and characterization of physiological effects.
Fungal biology.
2016 09; 120(9):1135-45. doi:
10.1016/j.funbio.2016.06.002
. [PMID: 27567719] - Teresa M Müller, Christoph Böttcher, Robert Morbitzer, Cornelia C Götz, Johannes Lehmann, Thomas Lahaye, Erich Glawischnig. TRANSCRIPTION ACTIVATOR-LIKE EFFECTOR NUCLEASE-Mediated Generation and Metabolic Analysis of Camalexin-Deficient cyp71a12 cyp71a13 Double Knockout Lines.
Plant physiology.
2015 Jul; 168(3):849-58. doi:
10.1104/pp.15.00481
. [PMID: 25953104] - Yanting Zhao, Jiansheng Wang, Yuanyuan Liu, Huiying Miao, Congxi Cai, Zhiyong Shao, Rongfang Guo, Bo Sun, Chengguo Jia, Liping Zhang, Tamara Gigolashvili, Qiaomei Wang. Classic myrosinase-dependent degradation of indole glucosinolate attenuates fumonisin B1-induced programmed cell death in Arabidopsis.
The Plant journal : for cell and molecular biology.
2015 Mar; 81(6):920-33. doi:
10.1111/tpj.12778
. [PMID: 25645692] - Daiana Duca, David R Rose, Bernard R Glick. Characterization of a nitrilase and a nitrile hydratase from Pseudomonas sp. strain UW4 that converts indole-3-acetonitrile to indole-3-acetic acid.
Applied and environmental microbiology.
2014 Aug; 80(15):4640-9. doi:
10.1128/aem.00649-14
. [PMID: 24837382] - Sung Un Huh, Suk-Bae Lee, Hwang Hyun Kim, Kyung-Hee Paek. ATAF2, a NAC transcription factor, binds to the promoter and regulates NIT2 gene expression involved in auxin biosynthesis.
Molecules and cells.
2012 Sep; 34(3):305-13. doi:
10.1007/s10059-012-0122-2
. [PMID: 22965747] - Mu-Yang Wang, Xue-Ting Liu, Ying Chen, Xiao-Jing Xu, Biao Yu, Shu-Qun Zhang, Qun Li, Zu-Hua He. Arabidopsis acetyl-amido synthetase GH3.5 involvement in camalexin biosynthesis through conjugation of indole-3-carboxylic acid and cysteine and upregulation of camalexin biosynthesis genes.
Journal of integrative plant biology.
2012 Jul; 54(7):471-85. doi:
10.1111/j.1744-7909.2012.01131.x
. [PMID: 22624950] - Minghua Chen, Lishe Gan, Sheng Lin, Xiaoliang Wang, Li Li, Yuhuan Li, Chenggen Zhu, Yanan Wang, Bingya Jiang, Jiandong Jiang, Yongchun Yang, Jiangong Shi. Alkaloids from the root of Isatis indigotica.
Journal of natural products.
2012 Jun; 75(6):1167-76. doi:
10.1021/np3002833
. [PMID: 22694318] - Einar J Stauber, Petrissa Kuczka, Maike van Ohlen, Birgit Vogt, Tim Janowitz, Markus Piotrowski, Till Beuerle, Ute Wittstock. Turning the 'mustard oil bomb' into a 'cyanide bomb': aromatic glucosinolate metabolism in a specialist insect herbivore.
PloS one.
2012; 7(4):e35545. doi:
10.1371/journal.pone.0035545
. [PMID: 22536404] - M Soledade C Pedras, Sajjad Hossain. Interaction of cruciferous phytoanticipins with plant fungal pathogens: indole glucosinolates are not metabolized but the corresponding desulfo-derivatives and nitriles are.
Phytochemistry.
2011 Dec; 72(18):2308-16. doi:
10.1016/j.phytochem.2011.08.018
. [PMID: 21920565] - Yong-Guy Kim, Jin-Hyung Lee, Moo Hwan Cho, Jintae Lee. Indole and 3-indolylacetonitrile inhibit spore maturation in Paenibacillus alvei.
BMC microbiology.
2011 May; 11(?):119. doi:
10.1186/1471-2180-11-119
. [PMID: 21619597] - Fábio O Pedrosa, Rose Adele Monteiro, Roseli Wassem, Leonardo M Cruz, Ricardo A Ayub, Nelson B Colauto, Maria Aparecida Fernandez, Maria Helena P Fungaro, Edmundo C Grisard, Mariangela Hungria, Humberto M F Madeira, Rubens O Nodari, Clarice A Osaku, Maria Luiza Petzl-Erler, Hernán Terenzi, Luiz G E Vieira, Maria Berenice R Steffens, Vinicius A Weiss, Luiz F P Pereira, Marina I M Almeida, Lysangela R Alves, Anelis Marin, Luiza Maria Araujo, Eduardo Balsanelli, Valter A Baura, Leda S Chubatsu, Helisson Faoro, Augusto Favetti, Geraldo Friedermann, Chirlei Glienke, Susan Karp, Vanessa Kava-Cordeiro, Roberto T Raittz, Humberto J O Ramos, Enilze Maria S F Ribeiro, Liu Un Rigo, Saul N Rocha, Stefan Schwab, Anilda G Silva, Eliel M Souza, Michelle Z Tadra-Sfeir, Rodrigo A Torres, Audrei N G Dabul, Maria Albertina M Soares, Luciano S Gasques, Ciela C T Gimenes, Juliana S Valle, Ricardo R Ciferri, Luiz C Correa, Norma K Murace, João A Pamphile, Eliana Valéria Patussi, Alberto J Prioli, Sonia Maria A Prioli, Carmem Lúcia M S C Rocha, Olívia Márcia N Arantes, Márcia Cristina Furlaneto, Leandro P Godoy, Carlos E C Oliveira, Daniele Satori, Laurival A Vilas-Boas, Maria Angélica E Watanabe, Bibiana Paula Dambros, Miguel P Guerra, Sandra Marisa Mathioni, Karine Louise Santos, Mario Steindel, Javier Vernal, Fernando G Barcellos, Rubens J Campo, Ligia Maria O Chueire, Marisa Fabiana Nicolás, Lilian Pereira-Ferrari, José L da Conceição Silva, Nereida M R Gioppo, Vladimir P Margarido, Maria Amélia Menck-Soares, Fabiana Gisele S Pinto, Rita de Cássia G Simão, Elizabete K Takahashi, Marshall G Yates, Emanuel M Souza. Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses.
PLoS genetics.
2011 May; 7(5):e1002064. doi:
10.1371/journal.pgen.1002064
. [PMID: 21589895] - Kimberly A Phillips, Andrea L Skirpan, Xing Liu, Ashley Christensen, Thomas L Slewinski, Christopher Hudson, Solmaz Barazesh, Jerry D Cohen, Simon Malcomber, Paula McSteen. vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize.
The Plant cell.
2011 Feb; 23(2):550-66. doi:
10.1105/tpc.110.075267
. [PMID: 21335375] - Md Mujahid, Ch Sasikala, Ch V Ramana. Production of indole-3-acetic acid and related indole derivatives from L-tryptophan by Rubrivivax benzoatilyticus JA2.
Applied microbiology and biotechnology.
2011 Feb; 89(4):1001-8. doi:
10.1007/s00253-010-2951-2
. [PMID: 20972782] - Heather Nonhebel, Youxi Yuan, Hussein Al-Amier, Michael Pieck, Enne Akor, Arifa Ahamed, Jerry D Cohen, John L Celenza, Jennifer Normanly. Redirection of tryptophan metabolism in tobacco by ectopic expression of an Arabidopsis indolic glucosinolate biosynthetic gene.
Phytochemistry.
2011 Jan; 72(1):37-48. doi:
10.1016/j.phytochem.2010.10.018
. [PMID: 21111431] - Jin-Hyung Lee, Moo Hwan Cho, Jintae Lee. 3-indolylacetonitrile decreases Escherichia coli O157:H7 biofilm formation and Pseudomonas aeruginosa virulence.
Environmental microbiology.
2011 Jan; 13(1):62-73. doi:
10.1111/j.1462-2920.2010.02308.x
. [PMID: 20649646] - Alfonso Méndez-Bravo, Carlos Calderón-Vázquez, Enrique Ibarra-Laclette, Javier Raya-González, Enrique Ramírez-Chávez, Jorge Molina-Torres, Angel A Guevara-García, José López-Bucio, Luis Herrera-Estrella. Alkamides activate jasmonic acid biosynthesis and signaling pathways and confer resistance to Botrytis cinerea in Arabidopsis thaliana.
PloS one.
2011; 6(11):e27251. doi:
10.1371/journal.pone.0027251
. [PMID: 22076141] - Neil Fernandes, Rebecca J Case, Sharon R Longford, Mohammad R Seyedsayamdost, Peter D Steinberg, Staffan Kjelleberg, Torsten Thomas. Genomes and virulence factors of novel bacterial pathogens causing bleaching disease in the marine red alga Delisea pulchra.
PloS one.
2011; 6(12):e27387. doi:
10.1371/journal.pone.0027387
. [PMID: 22162749] - Jing Fu, Shiping Wang. Insights into auxin signaling in plant-pathogen interactions.
Frontiers in plant science.
2011; 2(?):74. doi:
10.3389/fpls.2011.00074
. [PMID: 22639609] - Tongbing Su, Juan Xu, Yuan Li, Lei Lei, Luo Zhao, Hailian Yang, Jidong Feng, Guoqin Liu, Dongtao Ren. Glutathione-indole-3-acetonitrile is required for camalexin biosynthesis in Arabidopsis thaliana.
The Plant cell.
2011 Jan; 23(1):364-80. doi:
10.1105/tpc.110.079145
. [PMID: 21239642] - Pratibha Vyas, Robin Joshi, K C Sharma, Praveen Rahi, Ashu Gulati, Arvind Gulati. Cold-adapted and rhizosphere-competent strain of Rahnella sp. with broad-spectrum plant growth-promotion potential.
Journal of microbiology and biotechnology.
2010 Dec; 20(12):1724-34. doi:
. [PMID: 21193830]
- M Soledade C Pedras, Zoran Minic, Premila D Thongbam, Vangala Bhaskar, Sabine Montaut. Indolyl-3-acetaldoxime dehydratase from the phytopathogenic fungus Sclerotinia sclerotiorum: purification, characterization, and substrate specificity.
Phytochemistry.
2010 Dec; 71(17-18):1952-62. doi:
10.1016/j.phytochem.2010.10.002
. [PMID: 21036375] - Brian Jones, Sara Andersson Gunnerås, Sara V Petersson, Petr Tarkowski, Neil Graham, Sean May, Karel Dolezal, Göran Sandberg, Karin Ljung. Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction.
The Plant cell.
2010 Sep; 22(9):2956-69. doi:
10.1105/tpc.110.074856
. [PMID: 20823193] - Stephanie Troufflard, William Mullen, Tony R Larson, Ian A Graham, Alan Crozier, Anna Amtmann, Patrick Armengaud. Potassium deficiency induces the biosynthesis of oxylipins and glucosinolates in Arabidopsis thaliana.
BMC plant biology.
2010 Aug; 10(?):172. doi:
10.1186/1471-2229-10-172
. [PMID: 20701801] - Stephen E Reichenbach, Xue Tian, Qingping Tao, Dwight R Stoll, Peter W Carr. Comprehensive feature analysis for sample classification with comprehensive two-dimensional LC.
Journal of separation science.
2010 Jun; 33(10):1365-74. doi:
10.1002/jssc.200900859
. [PMID: 20397213] - Ralph Blum, Katrin C Meyer, Jana Wünschmann, Klaus J Lendzian, Erwin Grill. Cytosolic action of phytochelatin synthase.
Plant physiology.
2010 May; 153(1):159-69. doi:
10.1104/pp.109.149922
. [PMID: 20304971] - Heather C Rowe, Justin W Walley, Jason Corwin, Eva K-F Chan, Katayoon Dehesh, Daniel J Kliebenstein. Deficiencies in jasmonate-mediated plant defense reveal quantitative variation in Botrytis cinerea pathogenesis.
PLoS pathogens.
2010 Apr; 6(4):e1000861. doi:
10.1371/journal.ppat.1000861
. [PMID: 20419157] - William M Truman, Mark H Bennett, Colin G N Turnbull, Murray R Grant. Arabidopsis auxin mutants are compromised in systemic acquired resistance and exhibit aberrant accumulation of various indolic compounds.
Plant physiology.
2010 Mar; 152(3):1562-73. doi:
10.1104/pp.109.152173
. [PMID: 20081042] - Pedro Robles, Delphine Fleury, Héctor Candela, Gerda Cnops, María Magdalena Alonso-Peral, Sylvester Anami, Andrea Falcone, Camila Caldana, Lothar Willmitzer, María Rosa Ponce, Mieke Van Lijsebettens, José Luis Micol. The RON1/FRY1/SAL1 gene is required for leaf morphogenesis and venation patterning in Arabidopsis.
Plant physiology.
2010 Mar; 152(3):1357-72. doi:
10.1104/pp.109.149369
. [PMID: 20044451] - Yves A Millet, Cristian H Danna, Nicole K Clay, Wisuwat Songnuan, Matthew D Simon, Danièle Werck-Reichhart, Frederick M Ausubel. Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns.
The Plant cell.
2010 Mar; 22(3):973-90. doi:
10.1105/tpc.109.069658
. [PMID: 20348432] - Hanna M Heidel-Fischer, Heiko Vogel, David G Heckel, Christopher W Wheat. Microevolutionary dynamics of a macroevolutionary key innovation in a Lepidopteran herbivore.
BMC evolutionary biology.
2010 Feb; 10(?):60. doi:
10.1186/1471-2148-10-60
. [PMID: 20181249] - Gaston Zolla, Yair M Heimer, Simon Barak. Mild salinity stimulates a stress-induced morphogenic response in Arabidopsis thaliana roots.
Journal of experimental botany.
2010; 61(1):211-24. doi:
10.1093/jxb/erp290
. [PMID: 19783843] - Marc Morant, Claus Ekstrøm, Peter Ulvskov, Charlotte Kristensen, Mats Rudemo, Carl Erik Olsen, Jørgen Hansen, Kirsten Jørgensen, Bodil Jørgensen, Birger Lindberg Møller, Søren Bak. Metabolomic, transcriptional, hormonal, and signaling cross-talk in superroot2.
Molecular plant.
2010 Jan; 3(1):192-211. doi:
10.1093/mp/ssp098
. [PMID: 20008451] - Andrew J M Howden, Arantza Rico, Thomas Mentlak, Laurent Miguet, Gail M Preston. Pseudomonas syringae pv. syringae B728a hydrolyses indole-3-acetonitrile to the plant hormone indole-3-acetic acid.
Molecular plant pathology.
2009 Nov; 10(6):857-65. doi:
10.1111/j.1364-3703.2009.00595.x
. [PMID: 19849791] - Nina E Fatouros, Foteini G Pashalidou, Wilma V Aponte Cordero, Joop J A van Loon, Roland Mumm, Marcel Dicke, Monika Hilker, Martinus E Huigens. Anti-aphrodisiac compounds of male butterflies increase the risk of egg parasitoid attack by inducing plant synomone production.
Journal of chemical ecology.
2009 Nov; 35(11):1373-81. doi:
10.1007/s10886-009-9714-5
. [PMID: 19949841] - Laura J Quittenden, Noel W Davies, Jason A Smith, Peter P Molesworth, Nathan D Tivendale, John J Ross. Auxin biosynthesis in pea: characterization of the tryptamine pathway.
Plant physiology.
2009 Nov; 151(3):1130-8. doi:
10.1104/pp.109.141507
. [PMID: 19710233] - Marcelo Bertalan, Rodolpho Albano, Vânia de Pádua, Luc Rouws, Cristian Rojas, Adriana Hemerly, Kátia Teixeira, Stefan Schwab, Jean Araujo, André Oliveira, Leonardo França, Viviane Magalhães, Sylvia Alquéres, Alexander Cardoso, Wellington Almeida, Marcio Martins Loureiro, Eduardo Nogueira, Daniela Cidade, Denise Oliveira, Tatiana Simão, Jacyara Macedo, Ana Valadão, Marcela Dreschsel, Flávia Freitas, Marcia Vidal, Helma Guedes, Elisete Rodrigues, Carlos Meneses, Paulo Brioso, Luciana Pozzer, Daniel Figueiredo, Helena Montano, Jadier Junior, Gonçalo de Souza Filho, Victor Martin Quintana Flores, Beatriz Ferreira, Alan Branco, Paula Gonzalez, Heloisa Guillobel, Melissa Lemos, Luiz Seibel, José Macedo, Marcio Alves-Ferreira, Gilberto Sachetto-Martins, Ana Coelho, Eidy Santos, Gilda Amaral, Anna Neves, Ana Beatriz Pacheco, Daniela Carvalho, Letícia Lery, Paulo Bisch, Shaila C Rössle, Turán Urményi, Alessandra Rael Pereira, Rosane Silva, Edson Rondinelli, Wanda von Krüger, Orlando Martins, José Ivo Baldani, Paulo C G Ferreira. Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5.
BMC genomics.
2009 Sep; 10(?):450. doi:
10.1186/1471-2164-10-450
. [PMID: 19775431] - Christoph Böttcher, Lore Westphal, Constanze Schmotz, Elke Prade, Dierk Scheel, Erich Glawischnig. The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana.
The Plant cell.
2009 Jun; 21(6):1830-45. doi:
10.1105/tpc.109.066670
. [PMID: 19567706] - Satoko Sugawara, Shojiro Hishiyama, Yusuke Jikumaru, Atsushi Hanada, Takeshi Nishimura, Tomokazu Koshiba, Yunde Zhao, Yuji Kamiya, Hiroyuki Kasahara. Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in Arabidopsis.
Proceedings of the National Academy of Sciences of the United States of America.
2009 Mar; 106(13):5430-5. doi:
10.1073/pnas.0811226106
. [PMID: 19279202] - Ewa Ciska, Ruud Verkerk, Joanna Honke. Effect of boiling on the content of ascorbigen, indole-3-carbinol, indole-3-acetonitrile, and 3,3'-diindolylmethane in fermented cabbage.
Journal of agricultural and food chemistry.
2009 Mar; 57(6):2334-8. doi:
10.1021/jf803477w
. [PMID: 19292468] - Flávia S Papini-Terzi, Flávia R Rocha, Ricardo Z N Vêncio, Juliana M Felix, Diana S Branco, Alessandro J Waclawovsky, Luiz E V Del Bem, Carolina G Lembke, Maximiller D L Costa, Milton Y Nishiyama, Renato Vicentini, Michel G A Vincentz, Eugênio C Ulian, Marcelo Menossi, Glaucia M Souza. Sugarcane genes associated with sucrose content.
BMC genomics.
2009 Mar; 10(?):120. doi:
10.1186/1471-2164-10-120
. [PMID: 19302712] - Nicole K Clay, Adewale M Adio, Carine Denoux, Georg Jander, Frederick M Ausubel. Glucosinolate metabolites required for an Arabidopsis innate immune response.
Science (New York, N.Y.).
2009 Jan; 323(5910):95-101. doi:
10.1126/science.1164627
. [PMID: 19095898] - Niels Agerbirk, Suzanne I Warwick, Paul R Hansen, Carl E Olsen. Sinapis phylogeny and evolution of glucosinolates and specific nitrile degrading enzymes.
Phytochemistry.
2008 Dec; 69(17):2937-49. doi:
10.1016/j.phytochem.2008.08.014
. [PMID: 18995873] - Ralf Tautenhahn, Christoph Böttcher, Steffen Neumann. Highly sensitive feature detection for high resolution LC/MS.
BMC bioinformatics.
2008 Nov; 9(?):504. doi:
10.1186/1471-2105-9-504
. [PMID: 19040729] - Jorge M C Mondego, Marcelo F Carazzolle, Gustavo G L Costa, Eduardo F Formighieri, Lucas P Parizzi, Johana Rincones, Carolina Cotomacci, Dirce M Carraro, Anderson F Cunha, Helaine Carrer, Ramon O Vidal, Raíssa C Estrela, Odalys García, Daniela P T Thomazella, Bruno V de Oliveira, Acássia Bl Pires, Maria Carolina S Rio, Marcos Renato R Araújo, Marcos H de Moraes, Luis A B Castro, Karina P Gramacho, Marilda S Gonçalves, José P Moura Neto, Aristóteles Góes Neto, Luciana V Barbosa, Mark J Guiltinan, Bryan A Bailey, Lyndel W Meinhardt, Julio Cm Cascardo, Gonçalo A G Pereira. A genome survey of Moniliophthora perniciosa gives new insights into Witches' Broom Disease of cacao.
BMC genomics.
2008 Nov; 9(?):548. doi:
10.1186/1471-2164-9-548
. [PMID: 19019209] - Adam M Wentzell, Ian Boeye, Zhiyong Zhang, Daniel J Kliebenstein. Genetic networks controlling structural outcome of glucosinolate activation across development.
PLoS genetics.
2008 Oct; 4(10):e1000234. doi:
10.1371/journal.pgen.1000234
. [PMID: 18949035] - Ko Hirano, Koichiro Aya, Tokunori Hobo, Hitoshi Sakakibara, Mikiko Kojima, Rosalyn Angeles Shim, Yasuko Hasegawa, Miyako Ueguchi-Tanaka, Makoto Matsuoka. Comprehensive transcriptome analysis of phytohormone biosynthesis and signaling genes in microspore/pollen and tapetum of rice.
Plant & cell physiology.
2008 Oct; 49(10):1429-50. doi:
10.1093/pcp/pcn123
. [PMID: 18718932] - Julia C Engelmann, Roland Schwarz, Steffen Blenk, Torben Friedrich, Philipp N Seibel, Thomas Dandekar, Tobias Müller. Unsupervised meta-analysis on diverse gene expression datasets allows insight into gene function and regulation.
Bioinformatics and biology insights.
2008 May; 2(?):265-80. doi:
10.4137/bbi.s665
. [PMID: 19812781] - Martin de Vos, Ksenia L Kriksunov, Georg Jander. Indole-3-acetonitrile production from indole glucosinolates deters oviposition by Pieris rapae.
Plant physiology.
2008 Mar; 146(3):916-26. doi:
10.1104/pp.107.112185
. [PMID: 18192443] - Meike Burow, Zhi-Yong Zhang, James A Ober, Virginia M Lambrix, Ute Wittstock, Jonathan Gershenzon, Daniel J Kliebenstein. ESP and ESM1 mediate indol-3-acetonitrile production from indol-3-ylmethyl glucosinolate in Arabidopsis.
Phytochemistry.
2008 Feb; 69(3):663-71. doi:
10.1016/j.phytochem.2007.08.027
. [PMID: 17920088] - Toshiki Ishikawa, Keiichi Okazaki, Haruka Kuroda, Kimiko Itoh, Toshiaki Mitsui, Hidetaka Hori. Molecular cloning of Brassica rapa nitrilases and their expression during clubroot development.
Molecular plant pathology.
2007 Sep; 8(5):623-37. doi:
10.1111/j.1364-3703.2007.00414.x
. [PMID: 20507526] - Jerome Grimplet, Laurent G Deluc, Richard L Tillett, Matthew D Wheatley, Karen A Schlauch, Grant R Cramer, John C Cushman. Tissue-specific mRNA expression profiling in grape berry tissues.
BMC genomics.
2007 Jun; 8(?):187. doi:
10.1186/1471-2164-8-187
. [PMID: 17584945] - Majse Nafisi, Sameer Goregaoker, Christopher J Botanga, Erich Glawischnig, Carl E Olsen, Barbara A Halkier, Jane Glazebrook. Arabidopsis cytochrome P450 monooxygenase 71A13 catalyzes the conversion of indole-3-acetaldoxime in camalexin synthesis.
The Plant cell.
2007 Jun; 19(6):2039-52. doi:
10.1105/tpc.107.051383
. [PMID: 17573535] - Christoph Böttcher, Edda V Roepenack-Lahaye, Edith Willscher, Dierk Scheel, Stephan Clemens. Evaluation of matrix effects in metabolite profiling based on capillary liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry.
Analytical chemistry.
2007 Feb; 79(4):1507-13. doi:
10.1021/ac061037q
. [PMID: 17297948] - Verena Kriechbaumer, Woong June Park, Markus Piotrowski, Robert B Meeley, Alfons Gierl, Erich Glawischnig. Maize nitrilases have a dual role in auxin homeostasis and beta-cyanoalanine hydrolysis.
Journal of experimental botany.
2007; 58(15-16):4225-33. doi:
10.1093/jxb/erm279
. [PMID: 18182427] - V Kriechbaumer, W J Park, A Gierl, E Glawischnig. Auxin biosynthesis in maize.
Plant biology (Stuttgart, Germany).
2006 May; 8(3):334-9. doi:
10.1055/s-2006-923883
. [PMID: 16807825] - Sean R Cutler, Chris R Somerville. Imaging plant cell death: GFP-Nit1 aggregation marks an early step of wound and herbicide induced cell death.
BMC plant biology.
2005 Mar; 5(?):4. doi:
10.1186/1471-2229-5-4
. [PMID: 15796778] - M Soledade C Pedras, Pearson W K Ahiahonu. Phytotoxin production and phytoalexin elicitation by the phytopathogenic fungus Sclerotinia sclerotiorum.
Journal of chemical ecology.
2004 Nov; 30(11):2163-79. doi:
10.1023/b:joec.0000048781.72203.6c
. [PMID: 15672663] - Yoshitaka Arai, Masayoshi Kawaguchi, Kunihiko Syono, Akira Ikuta. Partial purification of an enzyme hydrolyzing indole-3-acetamide from rice cells.
Journal of plant research.
2004 Jun; 117(3):191-8. doi:
10.1007/s10265-004-0146-6
. [PMID: 15042416] - Woong June Park, Verena Kriechbaumer, Axel Möller, Markus Piotrowski, Robert B Meeley, Alfons Gierl, Erich Glawischnig. The Nitrilase ZmNIT2 converts indole-3-acetonitrile to indole-3-acetic acid.
Plant physiology.
2003 Oct; 133(2):794-802. doi:
10.1104/pp.103.026609
. [PMID: 12972653] - M Soledade C Pedras, Sabine Montaut. Probing crucial metabolic pathways in fungal pathogens of crucifers: biotransformation of indole-3-acetaldoxime, 4-hydroxyphenylacetaldoxime, and their metabolites.
Bioorganic & medicinal chemistry.
2003 Jul; 11(14):3115-20. doi:
10.1016/s0968-0896(03)00241-4
. [PMID: 12818674] - Yunde Zhao, Anna K Hull, Neeru R Gupta, Kendrick A Goss, José Alonso, Joseph R Ecker, Jennifer Normanly, Joanne Chory, John L Celenza. Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3.
Genes & development.
2002 Dec; 16(23):3100-12. doi:
10.1101/gad.1035402
. [PMID: 12464638] - Stephan Pollmann, Axel Müller, Markus Piotrowski, Elmar W Weiler. Occurrence and formation of indole-3-acetamide in Arabidopsis thaliana.
Planta.
2002 Nov; 216(1):155-61. doi:
10.1007/s00425-002-0868-4
. [PMID: 12430025] - Alexandra Kutz, Axel Müller, Peter Hennig, Werner M Kaiser, Markus Piotrowski, Elmar W Weiler. A role for nitrilase 3 in the regulation of root morphology in sulphur-starving Arabidopsis thaliana.
The Plant journal : for cell and molecular biology.
2002 Apr; 30(1):95-106. doi:
10.1046/j.1365-313x.2002.01271.x
. [PMID: 11967096] - M Soledade C Pedras, Corwin M Nycholat, Sabine Montaut, Yiming Xu, Abdul Q Khan. Chemical defenses of crucifers: elicitation and metabolism of phytoalexins and indole-3-acetonitrile in brown mustard and turnip.
Phytochemistry.
2002 Mar; 59(6):611-25. doi:
10.1016/s0031-9422(02)00026-2
. [PMID: 11867093] - S Vorwerk, S Biernacki, H Hillebrand, I Janzik, A Müller, E W Weiler, M Piotrowski. Enzymatic characterization of the recombinant Arabidopsis thaliana nitrilase subfamily encoded by the NIT2/NIT1/NIT3-gene cluster.
Planta.
2001 Mar; 212(4):508-16. doi:
10.1007/s004250000420
. [PMID: 11525507] - B Reintanz, M Lehnen, M Reichelt, J Gershenzon, M Kowalczyk, G Sandberg, M Godde, R Uhl, K Palme. Bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates.
The Plant cell.
2001 Feb; 13(2):351-67. doi:
10.1105/tpc.13.2.351
. [PMID: 11226190] - A Müller, H Hillebrand, E W Weiler. Indole-3-acetic acid is synthesized from L-tryptophan in roots of Arabidopsis thaliana.
Planta.
1998 Oct; 206(3):362-9. doi:
10.1007/s004250050411
. [PMID: 9763705] - J Normanly, P Grisafi, G R Fink, B Bartel. Arabidopsis mutants resistant to the auxin effects of indole-3-acetonitrile are defective in the nitrilase encoded by the NIT1 gene.
The Plant cell.
1997 Oct; 9(10):1781-90. doi:
10.1105/tpc.9.10.1781
. [PMID: 9368415] - D Bartling, M Seedorf, A Mithöfer, E W Weiler. Cloning and expression of an Arabidopsis nitrilase which can convert indole-3-acetonitrile to the plant hormone, indole-3-acetic acid.
European journal of biochemistry.
1992 Apr; 205(1):417-24. doi:
10.1111/j.1432-1033.1992.tb16795.x
. [PMID: 1555601] - . .
.
. doi:
. [PMID: 18842274]
- . .
.
. doi:
. [PMID: 8419930]