Atractydin (BioDeep_00000000382)

 

Secondary id: BioDeep_00000859428

PANOMIX_OTCML-2023


代谢物信息卡片


2-((1E,7E)-Nona-1,7-dien-3,5-diyn-1-yl)furan-1-yl)furan

化学式: C13H10O (182.0732)
中文名称: 苍术呋喃烃, 苍术醇, 苍术素, 白术
谱图信息: 最多检出来源 Macaca mulatta(otcml) 79.15%

分子结构信息

SMILES: C/C=C/C#CC#C/C=C/C1=CC=CO1
InChI: InChI=1S/C13H10O/c1-2-3-4-5-6-7-8-10-13-11-9-12-14-13/h2-3,8-12H,1H3/b3-2+,10-8+

描述信息

Atractylodin is a member of furans.
Atractylodin is a natural product found in Atractylodes japonica, Atractylodes macrocephala, and other organisms with data available.
Atractylodin (Atractydin) is an active component of the essential oil contained in the rhizomes of Atractylodes lancea and A. chinensis. Atractylodin is natural insecticide and is active against Tribolium castaneum[1][2]. Atractylodin is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
Atractylodin (Atractydin) is an active component of the essential oil contained in the rhizomes of Atractylodes lancea and A. chinensis. Atractylodin is natural insecticide and is active against Tribolium castaneum[1][2]. Atractylodin is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.

同义名列表

14 个代谢物同义名

2-((1E,7E)-Nona-1,7-dien-3,5-diyn-1-yl)furan-1-yl)furan; Furan, 2-[(1E,7E)-1,7-nonadiene-3,5-diyn-1-yl]-; 3,5-BIS(TRIFLUOROMETHYL)-4-CHLORO-NITROBENZENE; Furan, 2-(1,7-nonadiene-3,5-diynyl)-, (E,E)-; 2-[(1E,7E)-nona-1,7-dien-3,5-diynyl]furan; (E,E)-2-(1,7-Nonadiene-3,5-diynyl)furan; 2-(NONA-1,7-DIEN-3,5-DIYN-1-YL)FURAN; GRBKWAXRYIITKG-QFMFQGICSA-N; UNII-V73E8B6UAC; Atractylodin; Atractydin; V73E8B6UAC; Atractylodin; Atractylodin



数据库引用编号

14 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

7 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 ANXA5, BECN1, CAT, MTOR, NLRP3, PIK3C3, PIK3CA, STAT3, TLR4
Golgi apparatus, trans-Golgi network membrane 1 BECN1
Peripheral membrane protein 3 ANXA5, BECN1, MTOR
Endosome membrane 2 BECN1, TLR4
Endoplasmic reticulum membrane 4 BECN1, CD4, INSIG1, MTOR
Mitochondrion membrane 1 BECN1
Cytoplasmic vesicle, autophagosome 2 BECN1, PIK3C3
Nucleus 7 BECN1, GABPA, GPX4, MTOR, NLRP3, PPARA, STAT3
autophagosome 2 BECN1, PIK3C3
cytosol 9 ANXA5, BECN1, CAT, GPX4, MTOR, NLRP3, PIK3C3, PIK3CA, STAT3
dendrite 2 BECN1, MTOR
mitochondrial membrane 1 BECN1
nuclear body 1 BECN1
phagocytic vesicle 2 BECN1, MTOR
phosphatidylinositol 3-kinase complex, class III 2 BECN1, PIK3C3
trans-Golgi network 1 BECN1
nucleoplasm 4 GABPA, MTOR, PPARA, STAT3
RNA polymerase II transcription regulator complex 1 STAT3
Cell membrane 4 CD4, CD80, TLR4, TNF
Cytoplasmic side 1 MTOR
lamellipodium 1 PIK3CA
Multi-pass membrane protein 2 GHSR, INSIG1
Golgi apparatus membrane 2 MTOR, NLRP3
cell surface 5 CD40, CD80, GHSR, TLR4, TNF
glutamatergic synapse 2 GHSR, PIK3C3
Golgi membrane 2 MTOR, NLRP3
lysosomal membrane 1 MTOR
neuronal cell body 2 CD40, TNF
postsynapse 1 GHSR
sarcolemma 1 ANXA5
Cytoplasm, cytosol 1 NLRP3
Lysosome 1 MTOR
endosome 2 BECN1, PIK3C3
plasma membrane 8 CD4, CD40, CD80, GHSR, PIK3CA, STAT3, TLR4, TNF
Membrane 9 ANXA5, CAT, CD40, CD80, GHSR, MTOR, NLRP3, PIK3C3, TLR4
axon 1 CCK
extracellular exosome 4 ANXA5, CAT, CD40, GPX4
Lysosome membrane 1 MTOR
endoplasmic reticulum 3 BECN1, INSIG1, NLRP3
extracellular space 4 CCK, CD40, IL6, TNF
perinuclear region of cytoplasm 2 PIK3CA, TLR4
Schaffer collateral - CA1 synapse 1 GHSR
intercalated disc 1 PIK3CA
mitochondrion 3 CAT, GPX4, NLRP3
protein-containing complex 2 CAT, GPX4
intracellular membrane-bounded organelle 2 CAT, CD40
Microsome membrane 1 MTOR
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 4 CD4, CD40, CD80, TLR4
Secreted 3 CCK, IL6, NLRP3
extracellular region 6 ANXA5, CAT, CCK, IL6, NLRP3, TNF
Mitochondrion outer membrane 1 MTOR
mitochondrial outer membrane 1 MTOR
mitochondrial matrix 1 CAT
transcription regulator complex 1 STAT3
CD40 receptor complex 1 CD40
external side of plasma membrane 6 ANXA5, CD4, CD40, CD80, TLR4, TNF
varicosity 1 CD40
midbody 1 PIK3C3
Early endosome 2 CD4, TLR4
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Membrane raft 3 CD4, GHSR, TNF
focal adhesion 2 ANXA5, CAT
GABA-ergic synapse 1 PIK3C3
Peroxisome 2 CAT, PIK3C3
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Nucleus, PML body 1 MTOR
PML body 1 MTOR
collagen-containing extracellular matrix 1 ANXA5
axoneme 1 PIK3C3
Cytoplasm, cytoskeleton, microtubule organizing center 1 NLRP3
Inflammasome 1 NLRP3
interphase microtubule organizing center 1 NLRP3
NLRP3 inflammasome complex 1 NLRP3
Cell projection, ruffle 1 TLR4
Late endosome 1 PIK3C3
ruffle 1 TLR4
receptor complex 1 TLR4
Zymogen granule membrane 1 ANXA5
neuron projection 1 GHSR
chromatin 3 GABPA, PPARA, STAT3
phagocytic cup 2 TLR4, TNF
phagocytic vesicle membrane 1 PIK3C3
nuclear envelope 2 GPX4, MTOR
Endomembrane system 2 MTOR, NLRP3
microtubule organizing center 1 NLRP3
phagophore assembly site 2 BECN1, PIK3C3
phosphatidylinositol 3-kinase complex, class III, type I 2 BECN1, PIK3C3
phosphatidylinositol 3-kinase complex, class III, type II 2 BECN1, PIK3C3
synaptic membrane 1 GHSR
lipopolysaccharide receptor complex 1 TLR4
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 1 CAT
endoplasmic reticulum lumen 2 CD4, IL6
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
presynaptic endosome 1 PIK3C3
vesicle membrane 1 ANXA5
clathrin-coated endocytic vesicle membrane 1 CD4
SREBP-SCAP-Insig complex 1 INSIG1
Cytoplasmic vesicle, phagosome 1 MTOR
postsynaptic endosome 1 PIK3C3
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
T cell receptor complex 1 CD4
Autolysosome 1 PIK3C3
catalase complex 1 CAT
interleukin-6 receptor complex 1 IL6
[Isoform Mitochondrial]: Mitochondrion 1 GPX4
endothelial microparticle 1 ANXA5
protein complex involved in cell adhesion 1 CD80
cytoplasmic side of mitochondrial outer membrane 1 BECN1
[Isoform Cytoplasmic]: Cytoplasm 1 GPX4
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[Beclin-1-C 35 kDa]: Mitochondrion 1 BECN1
[Beclin-1-C 37 kDa]: Mitochondrion 1 BECN1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Bai Yu, Yanhua Zhao, Shichao Teng, Yongcheng Ni, Shunjuan Xu, Xiang Wu, Jing Zhang, Xiru Xu, Yuan Fang, Jun Shi, Biao Zhang. Atractylodin alleviates cancer anorexia-cachexia syndrome by regulating NPY through hypothalamic Sirt1/AMPK axis-induced autophagy. Biochemical and biophysical research communications. 2022 10; 625(?):154-160. doi: 10.1016/j.bbrc.2022.08.011. [PMID: 35963161]
  • Zuowei Li, YeLin Song, Wangjun Hou, Yingzi Qi, Xuxiang Lu, Ye Xue, Jie Huang, Qiong Fang. Atractylodin induces oxidative stress-mediated apoptosis and autophagy in human breast cancer MCF-7 cells through inhibition of the P13K/Akt/mTOR pathway. Journal of biochemical and molecular toxicology. 2022 Aug; 36(8):e23081. doi: 10.1002/jbt.23081. [PMID: 35478473]
  • Lin Lei, Chang Ke, Kunyu Xiao, Linghang Qu, Xiong Lin, Xin Zhan, Jiyuan Tu, Kang Xu, Yanju Liu. Identification of different bran-fried Atractylodis Rhizoma and prediction of atractylodin content based on multivariate data mining combined with intelligent color recognition and near-infrared spectroscopy. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2021 Dec; 262(?):120119. doi: 10.1016/j.saa.2021.120119. [PMID: 34243140]
  • Bishwanath Acharya, Wanna Chaijaroenkul, Kesara Na-Bangchang. Atractylodin inhibited the migration and induced autophagy in cholangiocarcinoma cells via PI3K/AKT/mTOR and p38MAPK signalling pathways. The Journal of pharmacy and pharmacology. 2021 Aug; 73(9):1191-1200. doi: 10.1093/jpp/rgab036. [PMID: 33885818]
  • Hirosato Kanda, Yanjing Yang, Shaoqi Duan, Yoko Kogure, Shenglan Wang, Emiko Iwaoka, Miku Ishikawa, Saki Takeda, Hidemi Sonoda, Kyoka Mizuta, Shunji Aoki, Satoshi Yamamoto, Koichi Noguchi, Yi Dai. Atractylodin Produces Antinociceptive Effect through a Long-Lasting TRPA1 Channel Activation. International journal of molecular sciences. 2021 Mar; 22(7):. doi: 10.3390/ijms22073614. [PMID: 33807167]
  • Inthuon Kulma, Luxsana Panrit, Tullayakorn Plengsuriyakarn, Wanna Chaijaroenkul, Siriprapa Warathumpitak, Kesara Na-Bangchang. A randomized placebo-controlled phase I clinical trial to evaluate the immunomodulatory activities of Atractylodes lancea (Thunb) DC. in healthy Thai subjects. BMC complementary medicine and therapies. 2021 Feb; 21(1):61. doi: 10.1186/s12906-020-03199-6. [PMID: 33579265]
  • Gyem Tshering, Tullayakorn Plengsuriyakarn, Kesara Na-Bangchang, Wittaya Pimtong. Embryotoxicity evaluation of atractylodin and β-eudesmol using the zebrafish model. Comparative biochemistry and physiology. Toxicology & pharmacology : CBP. 2021 Jan; 239(?):108869. doi: 10.1016/j.cbpc.2020.108869. [PMID: 32805444]
  • Yu-Chao Lin, Ching-Chieh Yang, Ching-Hsiung Lin, Te-Chun Hsia, Wen-Cheng Chao, Chi-Chien Lin. Atractylodin ameliorates ovalbumin‑induced asthma in a mouse model and exerts immunomodulatory effects on Th2 immunity and dendritic cell function. Molecular medicine reports. 2020 Dec; 22(6):4909-4918. doi: 10.3892/mmr.2020.11569. [PMID: 33174031]
  • M Nahata, Y Mizuhara, C Sadakane, J Watanabe, N Fujitsuka, T Hattori. Influence of food on the gastric motor effect of the Kampo medicine rikkunshito in rat. Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society. 2018 02; 30(2):. doi: 10.1111/nmo.13177. [PMID: 28776825]
  • Kazuhiro Ishiguro, Osamu Watanabe, Masanao Nakamura, Takeshi Yamamura, Masanobu Matsushita, Hidemi Goto, Yoshiki Hirooka. Inhibition of KDM4A activity as a strategy to suppress interleukin-6 production and attenuate colitis induction. Clinical immunology (Orlando, Fla.). 2017 07; 180(?):120-127. doi: 10.1016/j.clim.2017.05.014. [PMID: 28511912]
  • Zhu Shoudong, Peng Huasheng, Guo Lanping, Xu Tongren, Zhang Yan, Chen Meilan, Hao Qingxiu, Kang Liping, Huang Luqi. Regionalization of Chinese Material Medical Quality Based on Maximum Entropy Model: A case study of Atractylodes lancea. Scientific reports. 2017 02; 7(?):42417. doi: 10.1038/srep42417. [PMID: 28205539]
  • Hai-Ping Chen, Li-Shi Zheng, Kai Yang, Ning Lei, Zhu-Feng Geng, Ping Ma, Qian Cai, Shu-Shan Du, Zhi-Wei Deng. Insecticidal and repellant activities of polyacetylenes and lactones derived from Atractylodes lancea rhizomes. Chemistry & biodiversity. 2015 Apr; 12(4):593-8. doi: 10.1002/cbdv.201400161. [PMID: 25879503]
  • Yan Zhang, Sakurai Miki, Mei-lan Chen, Xiuji Takeda, Dong-yue Zhao, Li-ping Kang, Lan-ping Guo. [Effects of Lime on Seedling Growth,Yield and Volatile Constituents of Atractylodes lancea]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2015 Mar; 38(3):429-32. doi: . [PMID: 26495637]
  • Ping Jiao, Julie Tseng-Crank, Brandon Corneliusen, Mesfin Yimam, Mandee Hodges, Mei Hong, Catherine Maurseth, Misun Oh, Hyunjin Kim, Min Chu, Qi Jia. Lipase inhibition and antiobesity effect of Atractylodes lancea. Planta medica. 2014 May; 80(7):577-82. doi: 10.1055/s-0034-1368354. [PMID: 24687739]
  • Lei Zhang, Zhen Ouyang, Ming Zhao, Peixiang Wang, Jing Fang. [Simultaneous determination of atractylone, hinesol, beta-eudesmol, atrctylodin in Atractylodes lancea and hierarchical cluster analysis]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2010 Mar; 35(6):725-8. doi: 10.4268/cjcmm20100615. [PMID: 20545197]
  • Yoichiro Nakai, Toshitaka Kido, Kazunori Hashimoto, Yoshio Kase, Iwao Sakakibara, Masami Higuchi, Hiroshi Sasaki. Effect of the rhizomes of Atractylodes lancea and its constituents on the delay of gastric emptying. Journal of ethnopharmacology. 2003 Jan; 84(1):51-5. doi: 10.1016/s0378-8741(02)00260-x. [PMID: 12499077]
  • Lan-ping Guo, Jun-ying Liu, Li Ji, Lu-qi Huang. [The naphtha composing characteristics of geoherbs of Atractylodes lancea]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2002 Nov; 27(11):814-9. doi: . [PMID: 12776582]
  • M Kohjyouma, S Nakajima, A Namera, R Shimizu, H Mizukami, H Kohda. Random amplified polymorphic DNA analysis and variation of essential oil components of Atractylodes plants. Biological & pharmaceutical bulletin. 1997 May; 20(5):502-6. doi: 10.1248/bpb.20.502. [PMID: 9178929]