Pinosylvin (BioDeep_00000000379)
PANOMIX_OTCML-2023 Toxin natural product
代谢物信息卡片
化学式: C14H12O2 (212.0837)
中文名称: 赤松素, 松果油
谱图信息:
最多检出来源 Homo sapiens(lipidomics) 14.51%
Last reviewed on 2024-07-12.
Cite this Page
Pinosylvin. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/pinosylvin (retrieved
2024-12-21) (BioDeep RN: BioDeep_00000000379). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C1=CC=C(/C=C/C2=CC(O)=CC(O)=C2)C=C1
InChI: InChI=1S/C14H12O2/c15-13-8-12(9-14(16)10-13)7-6-11-4-2-1-3-5-11/h1-10,15-16H
描述信息
Pinosylvin is a stilbenol.
Pinosylvin is a natural product found in Alnus pendula, Calligonum leucocladum, and other organisms with data available.
Pinosylvin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=22139-77-1 (retrieved 2024-07-12) (CAS RN: 22139-77-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Pinosylvin is a?pre-infectious stilbenoid toxin?isolated from the heartwood of Pinus species, has anti-bacterial activities[1]. Pinosylvin is a resveratrol analogue, can induce cell apoptosis and autophapy in leukemia cells[2].
Pinosylvin is a?pre-infectious stilbenoid toxin?isolated from the heartwood of Pinus species, has anti-bacterial activities[1]. Pinosylvin is a resveratrol analogue, can induce cell apoptosis and autophapy in leukemia cells[2].
同义名列表
37 个代谢物同义名
Pinosylvin; 3-06-00-05577 (Beilstein Handbook Reference); 1,3-Benzenediol, 5-(2-phenylethenyl)-, (E)-; 1,3-Benzenediol, 5-[(1E)-2-phenylethenyl]-; 1,3-BENZENEDIOL, 5-((1E)-2-PHENYLETHENYL)-; 5-[(1E)-2-phenylethenyl]benzene-1,3-diol; 5-[(1E)-2-phenylethenyl]-1,3-benzenediol; 5-((1E)-2-Phenylethenyl)-1,3-benzenediol; 5-[(E)-2-phenylethenyl]benzene-1,3-diol; (E)-5-(2-Phenylethenyl)-1,3-benzenediol; 5-[(E)-2-PHENYLETHENYL]-1,3-BENZENEDIOL; 5-[(E)-2-phenylvinyl]benzene-1,3-diol; 1,3-Benzenediol, 5-(2-phenylethenyl)-; D33B05BD-8441-4288-A247-D461C3D1F1CA; 5-(2-phenylethenyl)-1,3-benzenediol; 5-(2-phenylvinyl)benzene-1,3-diol; Stilbene, 3,5-dihydroxy-, trans-; 5-[(E)-styryl]benzene-1,3-diol; 3,5-dihydroxy-trans-stilbene; (E)-5-Styrylbenzene-1,3-diol; 3,5-dimethoxy-trans-stilbene; trans-3,5-Dihydroxystilbene; Pinosylvin, >=97.0\\% (HPLC); (trans)-3,5-stilbenediol; pinosylvin, (E)-isomer; 3,5-Stilbenediol, (E)-; (E)-3,5-stilbenediol; 3,5-stilbenediol; Spectrum5_000307; trans-pinosylvin; PINOSYLVIN [MI]; (E)-pinosylvin; Stilbene, 1f; Pinosylvine; 3,5-Dihydroxystilbene; 5-Styrylresorcinol; Pinosylvin
数据库引用编号
26 个数据库交叉引用编号
- ChEBI: CHEBI:36011
- ChEBI: CHEBI:17323
- KEGG: C01745
- PubChem: 5280457
- PubChem: 100754
- Metlin: METLIN43624
- ChEMBL: CHEMBL101506
- Wikipedia: Pinosylvin
- LipidMAPS: LMPK13090001
- MeSH: pinosylvin
- ChemIDplus: 0022139771
- MetaCyc: CPD-438
- KNApSAcK: C00002897
- chemspider: 4444110
- CAS: 22139-77-1
- medchemexpress: HY-N2387
- PMhub: MS000016757
- MetaboLights: MTBLC36011
- MetaboLights: MTBLC17323
- 3DMET: B00340
- NIKKAJI: J10.798K
- PubChem: 4879
- CAS: 102-61-4
- KNApSAcK: 17323
- LOTUS: LTS0183107
- LOTUS: LTS0174997
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
代谢反应
2 个相关的代谢反应过程信息。
Reactome(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
220 个相关的物种来源信息
- 3515 - Alnus: LTS0174997
- 3515 - Alnus: LTS0183107
- 109067 - Alnus pendula:
- 109067 - Alnus pendula: 10.1246/BCSJ.45.2058
- 109067 - Alnus pendula: LTS0174997
- 109067 - Alnus pendula: LTS0183107
- 253221 - Alnus sieboldiana:
- 253221 - Alnus sieboldiana: 10.1016/0031-9422(91)84129-G
- 253221 - Alnus sieboldiana: 10.1016/J.PHYMED.2010.10.005
- 253221 - Alnus sieboldiana: 10.1246/BCSJ.44.2761
- 253221 - Alnus sieboldiana: LTS0174997
- 253221 - Alnus sieboldiana: LTS0183107
- 94326 - Alpinia: LTS0174997
- 94326 - Alpinia: LTS0183107
- 125259 - Alpinia hainanensis:
- 4210 - Asteraceae: LTS0174997
- 4210 - Asteraceae: LTS0183107
- 3514 - Betulaceae: LTS0174997
- 3514 - Betulaceae: LTS0183107
- 24079 - Bignoniaceae: LTS0174997
- 1202986 - Calligonum leucocladum: 10.1021/NP0304823
- 22027 - Cryptocarya: LTS0174997
- 22027 - Cryptocarya: LTS0183107
- 29743 - Cryptocarya obovata: 10.1021/NP030510H
- 29743 - Cryptocarya obovata: LTS0174997
- 29743 - Cryptocarya obovata: LTS0183107
- 2759 - Eukaryota: LTS0174997
- 2759 - Eukaryota: LTS0183107
- 3379 - Gnetaceae: LTS0174997
- 3372 - Gnetopsida: LTS0174997
- 3380 - Gnetum: LTS0174997
- 3381 - Gnetum montanum: 10.1055/S-2004-815494
- 33153 - Gnetum parvifolium: 10.1016/0031-9422(92)90050-Z
- 33153 - Gnetum parvifolium: LTS0174997
- 59430 - Helichrysum: LTS0174997
- 59430 - Helichrysum: LTS0183107
- 630296 - Helichrysum chionosphaerum: 10.1016/0031-9422(89)80195-5
- 630296 - Helichrysum chionosphaerum: LTS0174997
- 630296 - Helichrysum chionosphaerum: LTS0183107
- 41589 - Inula: LTS0174997
- 313945 - Inula germanica: 10.1055/S-2007-969474
- 313945 - Inula germanica: LTS0174997
- 3433 - Lauraceae: LTS0174997
- 3433 - Lauraceae: LTS0183107
- 4447 - Liliopsida: LTS0174997
- 4447 - Liliopsida: LTS0183107
- 55957 - Lindera: LTS0174997
- 155296 - Lindera reflexa: 10.1055/S-2006-959451
- 155296 - Lindera reflexa: LTS0174997
- 3398 - Magnoliopsida: LTS0174997
- 3398 - Magnoliopsida: LTS0183107
- 3276 - Matteuccia: LTS0174997
- 3276 - Matteuccia: LTS0183107
- 26778 - Nothofagaceae: LTS0174997
- 26778 - Nothofagaceae: LTS0183107
- 26779 - Nothofagus: LTS0174997
- 26779 - Nothofagus: LTS0183107
- 28941 - Nothofagus fusca: LTS0174997
- 28941 - Nothofagus fusca: LTS0183107
- 872793 - Onoclea orientalis: 10.1248/CPB.43.1558
- 693794 - Onocleaceae: LTS0174997
- 693794 - Onocleaceae: LTS0183107
- 83950 - Oroxylum: LTS0174997
- 83951 - Oroxylum indicum: LTS0174997
- 83951 - Oroxylum indicum: NA
- 313936 - Pentanema: LTS0174997
- 50328 - Pentarhizidium orientale: 10.1248/CPB.43.1558
- 61508 - Persicaria: LTS0174997
- 61508 - Persicaria: LTS0183107
- 430754 - Persicaria lapathifolia: 10.1248/CPB.30.1602
- 430754 - Persicaria lapathifolia: LTS0174997
- 430754 - Persicaria lapathifolia: LTS0183107
- 1211590 - Persicaria lapathifolia subsp. lapathifolia: 10.1248/CPB.30.1602
- 1211590 - Persicaria lapathifolia subsp. lapathifolia: LTS0174997
- 1211590 - Persicaria lapathifolia subsp. lapathifolia: LTS0183107
- 488004 - Persicaria nodosa: 10.1248/CPB.30.1602
- 488004 - Persicaria nodosa: LTS0174997
- 488004 - Persicaria nodosa: LTS0183107
- 3328 - Picea: LTS0174997
- 3329 - Picea abies: 10.3891/ACTA.CHEM.SCAND.05-0121
- 3329 - Picea abies: LTS0174997
- 993104 - Picea abies var. abies:
- 67778 - Picea jezoensis: 10.1016/J.PHYTOCHEM.2016.08.011
- 3318 - Pinaceae: 10.1055/S-2006-941545
- 3318 - Pinaceae: LTS0174997
- 3318 - Pinaceae: LTS0183107
- 58019 - Pinopsida: LTS0174997
- 58019 - Pinopsida: LTS0183107
- 3337 - Pinus: LTS0174997
- 3337 - Pinus: LTS0183107
- 71622 - Pinus albicaulis: 10.3891/ACTA.CHEM.SCAND.05-0121
- 71622 - Pinus albicaulis: LTS0174997
- 88733 - Pinus armandii: 10.1016/0031-9422(88)80201-2
- 88733 - Pinus armandii: LTS0174997
- 71625 - Pinus ayacahuite: 10.3891/ACTA.CHEM.SCAND.05-0121
- 71625 - Pinus ayacahuite: LTS0174997
- 3338 - Pinus balfouriana: 10.3891/ACTA.CHEM.SCAND.05-0121
- 3338 - Pinus balfouriana: LTS0174997
- 3353 - Pinus banksiana: 10.3891/ACTA.CHEM.SCAND.05-0121
- 3353 - Pinus banksiana: LTS0174997
- 49510 - Pinus canariensis: 10.3891/ACTA.CHEM.SCAND.05-0121
- 49510 - Pinus canariensis: LTS0174997
- 58041 - Pinus cembra: 10.3891/ACTA.CHEM.SCAND.05-0121
- 58041 - Pinus cembra: LTS0174997
- 261911 - Pinus clausa: 10.3891/ACTA.CHEM.SCAND.04-1042
- 261911 - Pinus clausa: LTS0174997
- 3339 - Pinus contorta: 10.3891/ACTA.CHEM.SCAND.03-0759
- 3339 - Pinus contorta: 10.3891/ACTA.CHEM.SCAND.03-0763
- 3339 - Pinus contorta: LTS0174997
- 3339 - Pinus contorta: LTS0183107
- 1281737 - Pinus contorta var. latifolia: 10.3891/ACTA.CHEM.SCAND.03-0759
- 1281737 - Pinus contorta var. latifolia: LTS0174997
- 3351 - Pinus coulteri: 10.3891/ACTA.CHEM.SCAND.05-0121
- 3351 - Pinus coulteri: LTS0174997
- 77912 - Pinus densiflora: 10.2524/JTAPPIJ1947.6.277
- 71631 - Pinus echinata: 10.3891/ACTA.CHEM.SCAND.05-0121
- 71631 - Pinus echinata: LTS0174997
- 368921 - Pinus glabra: 10.3891/ACTA.CHEM.SCAND.05-0121
- 368921 - Pinus glabra: LTS0174997
- 71633 - Pinus halepensis: 10.3891/ACTA.CHEM.SCAND.04-0055
- 71633 - Pinus halepensis: LTS0174997
- 55061 - Pinus jeffreyi: 10.3891/ACTA.CHEM.SCAND.03-0770
- 55061 - Pinus jeffreyi: LTS0174997
- 88728 - Pinus koraiensis: 10.3891/ACTA.CHEM.SCAND.05-0121
- 88728 - Pinus koraiensis: LTS0174997
- 3342 - Pinus krempfii: 10.1016/S0031-9422(00)82789-2
- 3342 - Pinus krempfii: LTS0174997
- 71638 - Pinus leiophylla: 10.3891/ACTA.CHEM.SCAND.05-0121
- 71638 - Pinus leiophylla: LTS0174997
- 71639 - Pinus lumholtzii: 10.3891/ACTA.CHEM.SCAND.05-0121
- 71639 - Pinus lumholtzii: LTS0174997
- 88730 - Pinus massoniana: 10.3891/ACTA.CHEM.SCAND.05-0121
- 88730 - Pinus massoniana: LTS0174997
- 71642 - Pinus montezumae: 10.3891/ACTA.CHEM.SCAND.05-0121
- 71642 - Pinus montezumae: LTS0174997
- 3345 - Pinus monticola: 10.3891/ACTA.CHEM.SCAND.03-1147
- 3345 - Pinus monticola: LTS0174997
- 139307 - Pinus morrisonicola: 10.1016/0031-9422(88)80201-2
- 139307 - Pinus morrisonicola: LTS0174997
- 28528 - Pinus mugo:
- 28528 - Pinus mugo: 10.3891/ACTA.CHEM.SCAND.03-0755
- 28528 - Pinus mugo: 10.3891/ACTA.CHEM.SCAND.03-0763
- 28528 - Pinus mugo: LTS0174997
- 28528 - Pinus mugo: LTS0183107
- 164245 - Pinus muricata: 10.3891/ACTA.CHEM.SCAND.05-0121
- 164245 - Pinus muricata: LTS0174997
- 268872 - Pinus occidentalis: 10.3891/ACTA.CHEM.SCAND.05-0121
- 268872 - Pinus occidentalis: LTS0174997
- 71644 - Pinus parviflora: 10.1016/0031-9422(88)80201-2
- 71644 - Pinus parviflora: 10.3891/ACTA.CHEM.SCAND.05-0121
- 71644 - Pinus parviflora: LTS0174997
- 399187 - Pinus parviflora var. pentaphylla:
- 71647 - Pinus pinaster: 10.3891/ACTA.CHEM.SCAND.04-0055
- 71647 - Pinus pinaster: LTS0174997
- 3346 - Pinus pinea: 10.3891/ACTA.CHEM.SCAND.04-0055
- 3346 - Pinus pinea: LTS0174997
- 55062 - Pinus ponderosa:
- 55062 - Pinus ponderosa: 10.3891/ACTA.CHEM.SCAND.03-0763
- 55062 - Pinus ponderosa: 10.3891/ACTA.CHEM.SCAND.03-0767
- 55062 - Pinus ponderosa: 10.3891/ACTA.CHEM.SCAND.05-0121
- 55062 - Pinus ponderosa: LTS0174997
- 55062 - Pinus ponderosa: LTS0183107
- 164241 - Pinus pungens:
- 164241 - Pinus pungens: 10.3891/ACTA.CHEM.SCAND.03-0755
- 164241 - Pinus pungens: 10.3891/ACTA.CHEM.SCAND.05-0121
- 164241 - Pinus pungens: LTS0174997
- 3347 - Pinus radiata:
- 3347 - Pinus radiata: 10.1016/S0031-9422(00)88199-6
- 3347 - Pinus radiata: LTS0174997
- 3347 - Pinus radiata: LTS0183107
- 54921 - Pinus resinosa:
- 54921 - Pinus resinosa: 10.1139/B69-143
- 54921 - Pinus resinosa: LTS0174997
- 164242 - Pinus rigida: 10.3891/ACTA.CHEM.SCAND.05-0121
- 164242 - Pinus rigida: LTS0174997
- 268869 - Pinus sabiniana: 10.3891/ACTA.CHEM.SCAND.05-0121
- 268869 - Pinus sabiniana: LTS0174997
- 62752 - Pinus sibirica:
- 62752 - Pinus sibirica: 10.1007/BF00563957
- 62752 - Pinus sibirica: 10.1007/BF00564921
- 62752 - Pinus sibirica: LTS0174997
- 62752 - Pinus sibirica: LTS0183107
- 399189 - Pinus strobiformis: 10.3891/ACTA.CHEM.SCAND.05-0121
- 399189 - Pinus strobiformis: LTS0174997
- 3348 - Pinus strobus: 10.3891/ACTA.CHEM.SCAND.05-0001
- 3348 - Pinus strobus: 10.3891/ACTA.CHEM.SCAND.05-0121
- 3348 - Pinus strobus: LTS0174997
- 3349 - Pinus sylvestris:
- 3349 - Pinus sylvestris: 10.1007/BF00201045
- 3349 - Pinus sylvestris: 10.1007/BF00574204
- 3349 - Pinus sylvestris: LTS0174997
- 3349 - Pinus sylvestris: LTS0183107
- 3352 - Pinus taeda: 10.3891/ACTA.CHEM.SCAND.05-0121
- 3352 - Pinus taeda: LTS0174997
- 33090 - Plants: -
- 3615 - Polygonaceae: LTS0174997
- 3615 - Polygonaceae: LTS0183107
- 241806 - Polypodiopsida: LTS0174997
- 241806 - Polypodiopsida: LTS0183107
- 85281 - Stemona: LTS0174997
- 2801495 - Stemona pierrei: 10.1016/J.PHYTOCHEM.2003.09.015
- 2801495 - Stemona pierrei: LTS0174997
- 167572 - Stemona tuberosa Lour.: -
- 49662 - Stemonaceae: LTS0174997
- 35493 - Streptophyta: LTS0174997
- 35493 - Streptophyta: LTS0183107
- 58023 - Tracheophyta: LTS0174997
- 58023 - Tracheophyta: LTS0183107
- 33090 - Viridiplantae: LTS0174997
- 33090 - Viridiplantae: LTS0183107
- 3602 - Vitaceae: LTS0174997
- 3602 - Vitaceae: LTS0183107
- 3603 - Vitis: LTS0174997
- 3603 - Vitis: LTS0183107
- 29760 - Vitis vinifera: 10.1002/JSSC.200500003
- 29760 - Vitis vinifera: LTS0174997
- 29760 - Vitis vinifera: LTS0183107
- 4642 - Zingiberaceae: LTS0174997
- 4642 - Zingiberaceae: LTS0183107
- 33090 - 虎杖: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Pouya Goleij, Pantea Majma Sanaye, Mehregan Babamohamadi, Mohammad Amin Khazeei Tabari, Roshanak Amirian, Aryan Rezaee, Hamed Mirzaei, Alan Prem Kumar, Gautam Sethi, Sarvin Sadreddini, Philippe Jeandet, Haroon Khan. Phytostilbenes in lymphoma: Focuses on the mechanistic and clinical prospects of resveratrol, pterostilbene, piceatannol, and pinosylvin.
Leukemia research.
2024 03; 138(?):107464. doi:
10.1016/j.leukres.2024.107464
. [PMID: 38422882] - Tobias Schwanemann, Maike Otto, Benedikt Wynands, Jan Marienhagen, Nick Wierckx. A Pseudomonas taiwanensis malonyl-CoA platform strain for polyketide synthesis.
Metabolic engineering.
2023 Apr; 77(?):219-230. doi:
10.1016/j.ymben.2023.04.001
. [PMID: 37031949] - Xiancai Li, Liyuan Yao, Binghong Xiong, Yaodan Wu, Shaohua Chen, Zhifang Xu, Sheng-Xiang Qiu. Inhibitory Mechanism of Pinosylvin Monomethyl Ether against Aspergillus flavus.
Journal of agricultural and food chemistry.
2022 Dec; 70(50):15840-15847. doi:
10.1021/acs.jafc.2c07240
. [PMID: 36448783] - Hwan-Su Hwang, Jung Yeon Han, Yong Eui Choi. Enhanced accumulation of pinosylvin stilbenes and related gene expression in Pinus strobus after infection of pine wood nematode.
Tree physiology.
2021 10; 41(10):1972-1987. doi:
10.1093/treephys/tpab053
. [PMID: 33891091] - Konsta Kivimäki, Tiina Leppänen, Mari Hämäläinen, Katriina Vuolteenaho, Eeva Moilanen. Pinosylvin Shifts Macrophage Polarization to Support Resolution of Inflammation.
Molecules (Basel, Switzerland).
2021 May; 26(9):. doi:
10.3390/molecules26092772
. [PMID: 34066748] - Toni Tamminen, Ali Koskela, Elisa Toropainen, Iswariyaraja Sridevi Gurubaran, Mateusz Winiarczyk, Mikko Liukkonen, Jussi J Paterno, Petri Lackman, Amir Sadeghi, Johanna Viiri, Juha M T Hyttinen, Ari Koskelainen, Kai Kaarniranta. Pinosylvin Extract Retinari™ Sustains Electrophysiological Function, Prevents Thinning of Retina, and Enhances Cellular Response to Oxidative Stress in NFE2L2 Knockout Mice.
Oxidative medicine and cellular longevity.
2021; 2021(?):8028427. doi:
10.1155/2021/8028427
. [PMID: 34917233] - Takao Koeduka, Miki Hatada, Hideyuki Suzuki, Shiro Suzuki, Kenji Matsui. Molecular cloning and functional characterization of an O-methyltransferase catalyzing 4'-O-methylation of resveratrol in Acorus calamus.
Journal of bioscience and bioengineering.
2019 May; 127(5):539-543. doi:
10.1016/j.jbiosc.2018.10.011
. [PMID: 30471982] - Shalem Modi, Nagendra Yaluri, Tarja Kokkola. Strigolactone GR24 and pinosylvin attenuate adipogenesis and inflammation of white adipocytes.
Biochemical and biophysical research communications.
2018 05; 499(2):164-169. doi:
10.1016/j.bbrc.2018.03.095
. [PMID: 29550483] - Shalem Modi, Nagendra Yaluri, Tarja Kokkola, Markku Laakso. Plant-derived compounds strigolactone GR24 and pinosylvin activate SIRT1 and enhance glucose uptake in rat skeletal muscle cells.
Scientific reports.
2017 12; 7(1):17606. doi:
10.1038/s41598-017-17840-x
. [PMID: 29242624] - Syuhei Nakao, Miyuki Mabuchi, Shenglan Wang, Yoko Kogure, Tadashi Shimizu, Koichi Noguchi, Akito Tanaka, Yi Dai. Synthesis of resveratrol derivatives as new analgesic drugs through desensitization of the TRPA1 receptor.
Bioorganic & medicinal chemistry letters.
2017 07; 27(14):3167-3172. doi:
10.1016/j.bmcl.2017.05.025
. [PMID: 28576617] - Tanja Paasela, Kean-Jin Lim, Milla Pietiäinen, Teemu H Teeri. The O-methyltransferase PMT2 mediates methylation of pinosylvin in Scots pine.
The New phytologist.
2017 Jun; 214(4):1537-1550. doi:
10.1111/nph.14480
. [PMID: 28248427] - Junjun Wu, Xia Zhang, Yingjie Zhu, Qinyu Tan, Jiacheng He, Mingsheng Dong. Rational modular design of metabolic network for efficient production of plant polyphenol pinosylvin.
Scientific reports.
2017 05; 7(1):1459. doi:
10.1038/s41598-017-01700-9
. [PMID: 28469159] - K V Kiselev, V P Grigorchuk, Z V Ogneva, A R Suprun, A S Dubrovina. Stilbene biosynthesis in the needles of spruce Picea jezoensis.
Phytochemistry.
2016 Nov; 131(?):57-67. doi:
10.1016/j.phytochem.2016.08.011
. [PMID: 27576046] - Tianhong Yang, Lingling Fang, Agnes M Rimando, Victor Sobolev, Keithanne Mockaitis, Fabricio Medina-Bolivar. A Stilbenoid-Specific Prenyltransferase Utilizes Dimethylallyl Pyrophosphate from the Plastidic Terpenoid Pathway.
Plant physiology.
2016 08; 171(4):2483-98. doi:
10.1104/pp.16.00610
. [PMID: 27356974] - Jing-Long Liang, Li-Qiong Guo, Jun-Fang Lin, Ze-Qi He, Fa-Ji Cai, Jun-Fei Chen. A novel process for obtaining pinosylvin using combinatorial bioengineering in Escherichia coli.
World journal of microbiology & biotechnology.
2016 Jun; 32(6):102. doi:
10.1007/s11274-016-2062-z
. [PMID: 27116968] - Mirka Laavola, Riina Nieminen, Tiina Leppänen, Christer Eckerman, Bjarne Holmbom, Eeva Moilanen. Pinosylvin and monomethylpinosylvin, constituents of an extract from the knot of Pinus sylvestris, reduce inflammatory gene expression and inflammatory responses in vivo.
Journal of agricultural and food chemistry.
2015 Apr; 63(13):3445-53. doi:
10.1021/jf504606m
. [PMID: 25763469] - Sue Ji Lim, Myungsuk Kim, Ahmad Randy, Chu Won Nho. Inhibitory effect of the branches of Hovenia dulcis Thunb. and its constituent pinosylvin on the activities of IgE-mediated mast cells and passive cutaneous anaphylaxis in mice.
Food & function.
2015 Apr; 6(4):1361-70. doi:
10.1039/c4fo01203h
. [PMID: 25804702] - Katarina Bauerova, Alessandra Acquaviva, Silvester Ponist, Concetta Gardi, Daniela Vecchio, Frantisek Drafi, Beatrice Arezzini, Lydia Bezakova, Viera Kuncirova, Danica Mihalova, Radomir Nosal. Markers of inflammation and oxidative stress studied in adjuvant-induced arthritis in the rat on systemic and local level affected by pinosylvin and methotrexate and their combination.
Autoimmunity.
2015 Feb; 48(1):46-56. doi:
10.3109/08916934.2014.939268
. [PMID: 25046647] - Philana Veronica van Summeren-Wesenhagen, Jan Marienhagen. Metabolic engineering of Escherichia coli for the synthesis of the plant polyphenol pinosylvin.
Applied and environmental microbiology.
2015 Feb; 81(3):840-9. doi:
10.1128/aem.02966-14
. [PMID: 25398870] - Emrah Yatkin, Lauri Polari, Teemu D Laajala, Annika Smeds, Christer Eckerman, Bjarne Holmbom, Niina M Saarinen, Tero Aittokallio, Sari I Mäkelä. Novel Lignan and stilbenoid mixture shows anticarcinogenic efficacy in preclinical PC-3M-luc2 prostate cancer model.
PloS one.
2014; 9(4):e93764. doi:
10.1371/journal.pone.0093764
. [PMID: 24699425] - Patrick Sherwood, Pierluigi Bonello. Austrian pine phenolics are likely contributors to systemic induced resistance against Diplodia pinea.
Tree physiology.
2013 Aug; 33(8):845-54. doi:
10.1093/treephys/tpt063
. [PMID: 23999139] - Samuel Chao Ming Yeo, Wenxia Luo, Jinzhu Wu, Paul C Ho, Hai-Shu Lin. Quantification of pinosylvin in rat plasma by liquid chromatography-tandem mass spectrometry: application to a pre-clinical pharmacokinetic study.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2013 Jul; 931(?):68-74. doi:
10.1016/j.jchromb.2013.05.023
. [PMID: 23777612] - Carme Plumed-Ferrer, Kati Väkeväinen, Heli Komulainen, Maarit Rautiainen, Annika Smeds, Jan-Erik Raitanen, Patrik Eklund, Stefan Willför, Hanna-Leena Alakomi, Maria Saarela, Atte von Wright. The antimicrobial effects of wood-associated polyphenols on food pathogens and spoilage organisms.
International journal of food microbiology.
2013 Jun; 164(1):99-107. doi:
10.1016/j.ijfoodmicro.2013.04.001
. [PMID: 23624538] - Philippe Jeandet, Bertrand Delaunois, Aziz Aziz, David Donnez, Yann Vasserot, Sylvain Cordelier, Eric Courot. Metabolic engineering of yeast and plants for the production of the biologically active hydroxystilbene, resveratrol.
Journal of biomedicine & biotechnology.
2012; 2012(?):579089. doi:
10.1155/2012/579089
. [PMID: 22654481] - A Ludwiczuk, A Saha, T Kuzuhara, Y Asakawa. Bioactivity guided isolation of anticancer constituents from leaves of Alnus sieboldiana (Betulaceae).
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2011 Apr; 18(6):491-8. doi:
10.1016/j.phymed.2010.10.005
. [PMID: 21111588] - Victor S Sobolev, Shabana I Khan, Nurhayat Tabanca, David E Wedge, Susan P Manly, Stephen J Cutler, Monique R Coy, James J Becnel, Scott A Neff, James B Gloer. Biological activity of peanut (Arachis hypogaea) phytoalexins and selected natural and synthetic Stilbenoids.
Journal of agricultural and food chemistry.
2011 Mar; 59(5):1673-82. doi:
10.1021/jf104742n
. [PMID: 21314127] - Katarína Bauerová, Silvester Poništ, Danica Mihalová, František Dráfi, Viera Kuncírová. Utilization of adjuvant arthritis model for evaluation of new approaches in rheumatoid arthritis therapy focused on regulation of immune processes and oxidative stress.
Interdisciplinary toxicology.
2011 Mar; 4(1):33-9. doi:
10.2478/v10102-011-0007-9
. [PMID: 21577282] - Pilar Rodríguez-Bonilla, José Manuel López-Nicolás, Francisco García-Carmona. Use of reversed phase high pressure liquid chromatography for the physicochemical and thermodynamic characterization of oxyresveratrol/beta-cyclodextrin complexes.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2010 Jun; 878(19):1569-75. doi:
10.1016/j.jchromb.2010.04.016
. [PMID: 20444655] - Supriya Baikar, Nutan Malpathak. Secondary metabolites as DNA topoisomerase inhibitors: A new era towards designing of anticancer drugs.
Pharmacognosy reviews.
2010 Jan; 4(7):12-26. doi:
10.4103/0973-7847.65320
. [PMID: 22228937] - Sung Ryeol Park, Jin A Yoon, Ji Hye Paik, Je Won Park, Won Seok Jung, Yeon-Hee Ban, Eun Ji Kim, Young Ji Yoo, Ah Reum Han, Yeo Joon Yoon. Engineering of plant-specific phenylpropanoids biosynthesis in Streptomyces venezuelae.
Journal of biotechnology.
2009 May; 141(3-4):181-8. doi:
10.1016/j.jbiotec.2009.03.013
. [PMID: 19433224] - Anni M Harju, Martti Venäläinen, Tapio Laakso, Pekka Saranpää. Wounding response in xylem of Scots pine seedlings shows wide genetic variation and connection with the constitutive defence of heartwood.
Tree physiology.
2009 Jan; 29(1):19-25. doi:
10.1093/treephys/tpn006
. [PMID: 19203929] - Kati Hanhineva, Harri Kokko, Henri Siljanen, Ilana Rogachev, Asaph Aharoni, Sirpa O Kärenlampi. Stilbene synthase gene transfer caused alterations in the phenylpropanoid metabolism of transgenic strawberry (Fragaria x ananassa).
Journal of experimental botany.
2009; 60(7):2093-106. doi:
10.1093/jxb/erp085
. [PMID: 19443619] - François Simard, Jean Legault, Serge Lavoie, Vakhtang Mshvildadze, André Pichette. Isolation and identification of cytotoxic compounds from the wood of Pinus resinosa.
Phytotherapy research : PTR.
2008 Jul; 22(7):919-22. doi:
10.1002/ptr.2416
. [PMID: 18389469] - Dong Zhang, Lan Yang, Mei-hong Fu, You-you Tu. [Studies on chemical constituents of rhizome of Matteuccia struthiopteris].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2008 Jul; 33(14):1703-5. doi:
"
. [PMID: 18841771] - Denina Bobbie Dawn Simmons, Vance Lionel Trudeau, Vicki Lee Marlatt, Thomas William Moon, James P Sherry, Chris David Metcalfe. Interaction of stilbene compounds with human and rainbow trout estrogen receptors.
Environmental toxicology and chemistry.
2008 Feb; 27(2):442-51. doi:
10.1897/07-146r.1
. [PMID: 18348622] - Yohei Katsuyama, Nobutaka Funa, Ikuo Miyahisa, Sueharu Horinouchi. Synthesis of unnatural flavonoids and stilbenes by exploiting the plant biosynthetic pathway in Escherichia coli.
Chemistry & biology.
2007 Jun; 14(6):613-21. doi:
10.1016/j.chembiol.2007.05.004
. [PMID: 17584609] - Connie M Remsberg, Jaime A Yáñez, Kathryn A Roupe, Neal M Davies. High-performance liquid chromatographic analysis of pterostilbene in biological fluids using fluorescence detection.
Journal of pharmaceutical and biomedical analysis.
2007 Jan; 43(1):250-4. doi:
10.1016/j.jpba.2006.06.035
. [PMID: 16884886] - Kathryn A Roupe, Jaime A Yáñez, Xiao Wei Teng, Neal M Davies. Pharmacokinetics of selected stilbenes: rhapontigenin, piceatannol and pinosylvin in rats.
The Journal of pharmacy and pharmacology.
2006 Nov; 58(11):1443-50. doi:
10.1211/jpp.58.11.0004
. [PMID: 17132206] - Jin-Chun Cheng, Jian-Guo Fang, Wei-Feng Chen, Bo Zhou, Li Yang, Zhong-Li Liu. Structure-activity relationship studies of resveratrol and its analogues by the reaction kinetics of low density lipoprotein peroxidation.
Bioorganic chemistry.
2006 Jun; 34(3):142-57. doi:
10.1016/j.bioorg.2006.04.001
. [PMID: 16712899] - Dag Ekeberg, Per-Otto Flaete, Morten Eikenes, Monica Fongen, Carl Fredrik Naess-Andresen. Qualitative and quantitative determination of extractives in heartwood of Scots pine (Pinus sylvestris L.) by gas chromatography.
Journal of chromatography. A.
2006 Mar; 1109(2):267-72. doi:
10.1016/j.chroma.2006.01.027
. [PMID: 16472534] - Hanne Hovelstad, Ingebjorg Leirset, Karin Oyaas, Anne Fiksdahl. Screening analyses of pinosylvin stilbenes, resin acids and lignans in Norwegian conifers.
Molecules (Basel, Switzerland).
2006 Jan; 11(1):103-14. doi:
10.3390/11010103
. [PMID: 17962750] - Kathryn A Roupe, Connie M Remsberg, Jaime A Yáñez, Neal M Davies. Pharmacometrics of stilbenes: seguing towards the clinic.
Current clinical pharmacology.
2006 Jan; 1(1):81-101. doi:
10.2174/157488406775268246
. [PMID: 18666380] - Liliya Serazetdinova, Klaus H Oldach, Horst Lörz. Expression of transgenic stilbene synthases in wheat causes the accumulation of unknown stilbene derivatives with antifungal activity.
Journal of plant physiology.
2005 Sep; 162(9):985-1002. doi:
10.1016/j.jplph.2004.11.005
. [PMID: 16173460] - Gao Li, Byung-Sun Min, Changji Zheng, Joongku Lee, Sei-Ryang Oh, Kyung-Seop Ahn, Hyeong-Kyu Lee. Neuroprotective and free radical scavenging activities of phenolic compounds from Hovenia dulcis.
Archives of pharmacal research.
2005 Jul; 28(7):804-9. doi:
10.1007/bf02977346
. [PMID: 16114495] - Kathryn Roupe, Steven Halls, Neal M Davies. Determination and assay validation of pinosylvin in rat serum: application to drug metabolism and pharmacokinetics.
Journal of pharmaceutical and biomedical analysis.
2005 Jun; 38(1):148-54. doi:
10.1016/j.jpba.2004.12.015
. [PMID: 15907633] - S K Lee, H J Lee, H Y Min, E J Park, K M Lee, Y H Ahn, Y J Cho, J H Pyee. Antibacterial and antifungal activity of pinosylvin, a constituent of pine.
Fitoterapia.
2005 Mar; 76(2):258-60. doi:
10.1016/j.fitote.2004.12.004
. [PMID: 15752644] - M Nuopponen, S Willför, A-S Jääskeläinen, T Vuorinen. A UV resonance Raman (UVRR) spectroscopic study on the extractable compounds in Scots pine (Pinus sylvestris) wood. Part II. Hydrophilic compounds.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2004 Nov; 60(13):2963-8. doi:
10.1016/j.saa.2004.02.007
. [PMID: 15477131] - S-K Seppänen, L Syrjälä, K von Weissenberg, T H Teeri, L Paajanen, A Pappinen. Antifungal activity of stilbenes in in vitro bioassays and in transgenic Populus expressing a gene encoding pinosylvin synthase.
Plant cell reports.
2004 Mar; 22(8):584-93. doi:
10.1007/s00299-003-0728-0
. [PMID: 14714142] - L E Lindberg, S M Willför, B R Holmbom. Antibacterial effects of knotwood extractives on paper mill bacteria.
Journal of industrial microbiology & biotechnology.
2004 Mar; 31(3):137-47. doi:
10.1007/s10295-004-0132-y
. [PMID: 15112061] - William R McNee, Pierluigi Bonello, Andrew J Storer, David L Wood, Thomas R Gordon. Feeding response of Ips paraconfusus to phloem and phloem metabolites of Heterobasidion annosum-inoculated ponderosa pine, Pinus ponderosa.
Journal of chemical ecology.
2003 May; 29(5):1183-202. doi:
10.1023/a:1023885724220
. [PMID: 12857030] - Eckhard Wollenweber, Jan F Stevens, Marion Dörr, Andrew C Rozefelds. Taxonomic significance of flavonoid variation in temperate species of Nothofagus.
Phytochemistry.
2003 Apr; 62(7):1125-31. doi:
10.1016/s0031-9422(02)00666-0
. [PMID: 12591267] - Yu Jun Cai, Jian Guo Fang, Lan Ping Ma, Li Yang, Zhong Li Liu. Inhibition of free radical-induced peroxidation of rat liver microsomes by resveratrol and its analogues.
Biochimica et biophysica acta.
2003 Jan; 1637(1):31-8. doi:
10.1016/s0925-4439(02)00174-6
. [PMID: 12527404] - Jian-Guo Fang, Man Lu, Zhi-Hua Chen, Hui-He Zhu, Yan Li, Li Yang, Long-Min Wu, Zhong-Li Liu. Antioxidant effects of resveratrol and its analogues against the free-radical-induced peroxidation of linoleic acid in micelles.
Chemistry (Weinheim an der Bergstrasse, Germany).
2002 Sep; 8(18):4191-8. doi:
10.1002/1521-3765(20020916)8:18<4191::aid-chem4191>3.0.co;2-s
. [PMID: 12298009] - T Pacher, C Seger, D Engelmeier, S Vajrodaya, O Hofer, H Greger. Antifungal stilbenoids from Stemona collinsae.
Journal of natural products.
2002 Jun; 65(6):820-7. doi:
10.1021/np0105073
. [PMID: 12088422] - Mikael Nilsson, Susanne Wikman, Leif Eklund. Induction of discolored wood in Scots pine (Pinus sylvestris).
Tree physiology.
2002 Apr; 22(5):331-8. doi:
10.1093/treephys/22.5.331
. [PMID: 11960757] - Christelle Privat, João Paulo Telo, Vania Bernardes-Genisson, Abel Vieira, Jean-Pierre Souchard, Françoise Nepveu. Antioxidant properties of trans-epsilon-viniferin as compared to stilbene derivatives in aqueous and nonaqueous media.
Journal of agricultural and food chemistry.
2002 Feb; 50(5):1213-7. doi:
10.1021/jf010676t
. [PMID: 11853506] - S Stojanović, H Sprinz, O Brede. Efficiency and mechanism of the antioxidant action of trans-resveratrol and its analogues in the radical liposome oxidation.
Archives of biochemistry and biophysics.
2001 Jul; 391(1):79-89. doi:
10.1006/abbi.2001.2388
. [PMID: 11414688] - H Chiron, A Drouet, F Lieutier, H D Payer, D Ernst, H Sandermann. Gene induction of stilbene biosynthesis in Scots pine in response to ozone treatment, wounding, and fungal infection.
Plant physiology.
2000 Oct; 124(2):865-72. doi:
10.1104/pp.124.2.865
. [PMID: 11027734] - R Preisig-Müller, A Schwekendiek, I Brehm, H J Reif, H Kindl. Characterization of a pine multigene family containing elicitor-responsive stilbene synthase genes.
Plant molecular biology.
1999 Jan; 39(2):221-9. doi:
10.1023/a:1006163030646
. [PMID: 10080690] - A Schwekendiek, G Pfeffer, H Kindl. Pine stilbene synthase cDNA, a tool for probing environmental stress.
FEBS letters.
1992 Apr; 301(1):41-4. doi:
10.1016/0014-5793(92)80206-v
. [PMID: 1451785] - L Skinnider, A Stoessl. The effect of the phytoalexins, lubimin, (-)-maackiain, pinosylvin, and the related compounds dehydroloroglossol and hordatine M on human lymphoblastoid cell lines.
Experientia.
1986 May; 42(5):568-70. doi:
10.1007/bf01946707
. [PMID: 3709764] - . .
.
. doi:
. [PMID: 11880657]