Pinosylvin (BioDeep_00000000379)

   

PANOMIX_OTCML-2023 Toxin natural product


代谢物信息卡片


3-06-00-05577 (Beilstein Handbook Reference)

化学式: C14H12O2 (212.0837)
中文名称: 赤松素, 松果油
谱图信息: 最多检出来源 Homo sapiens(lipidomics) 14.51%

Reviewed

Last reviewed on 2024-07-12.

Cite this Page

Pinosylvin. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/pinosylvin (retrieved 2024-12-21) (BioDeep RN: BioDeep_00000000379). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C1=CC=C(/C=C/C2=CC(O)=CC(O)=C2)C=C1
InChI: InChI=1S/C14H12O2/c15-13-8-12(9-14(16)10-13)7-6-11-4-2-1-3-5-11/h1-10,15-16H

描述信息

Pinosylvin is a stilbenol.
Pinosylvin is a natural product found in Alnus pendula, Calligonum leucocladum, and other organisms with data available.

Pinosylvin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=22139-77-1 (retrieved 2024-07-12) (CAS RN: 22139-77-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Pinosylvin is a?pre-infectious stilbenoid toxin?isolated from the heartwood of Pinus species, has anti-bacterial activities[1]. Pinosylvin is a resveratrol analogue, can induce cell apoptosis and autophapy in leukemia cells[2].
Pinosylvin is a?pre-infectious stilbenoid toxin?isolated from the heartwood of Pinus species, has anti-bacterial activities[1]. Pinosylvin is a resveratrol analogue, can induce cell apoptosis and autophapy in leukemia cells[2].

同义名列表

37 个代谢物同义名

Pinosylvin; 3-06-00-05577 (Beilstein Handbook Reference); 1,3-Benzenediol, 5-(2-phenylethenyl)-, (E)-; 1,3-Benzenediol, 5-[(1E)-2-phenylethenyl]-; 1,3-BENZENEDIOL, 5-((1E)-2-PHENYLETHENYL)-; 5-[(1E)-2-phenylethenyl]benzene-1,3-diol; 5-[(1E)-2-phenylethenyl]-1,3-benzenediol; 5-((1E)-2-Phenylethenyl)-1,3-benzenediol; 5-[(E)-2-phenylethenyl]benzene-1,3-diol; (E)-5-(2-Phenylethenyl)-1,3-benzenediol; 5-[(E)-2-PHENYLETHENYL]-1,3-BENZENEDIOL; 5-[(E)-2-phenylvinyl]benzene-1,3-diol; 1,3-Benzenediol, 5-(2-phenylethenyl)-; D33B05BD-8441-4288-A247-D461C3D1F1CA; 5-(2-phenylethenyl)-1,3-benzenediol; 5-(2-phenylvinyl)benzene-1,3-diol; Stilbene, 3,5-dihydroxy-, trans-; 5-[(E)-styryl]benzene-1,3-diol; 3,5-dihydroxy-trans-stilbene; (E)-5-Styrylbenzene-1,3-diol; 3,5-dimethoxy-trans-stilbene; trans-3,5-Dihydroxystilbene; Pinosylvin, >=97.0\\% (HPLC); (trans)-3,5-stilbenediol; pinosylvin, (E)-isomer; 3,5-Stilbenediol, (E)-; (E)-3,5-stilbenediol; 3,5-stilbenediol; Spectrum5_000307; trans-pinosylvin; PINOSYLVIN [MI]; (E)-pinosylvin; Stilbene, 1f; Pinosylvine; 3,5-Dihydroxystilbene; 5-Styrylresorcinol; Pinosylvin



数据库引用编号

26 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(1)

代谢反应

2 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(1)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(1)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

220 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 AIMP2, CASP3, CDH1, DCTN4, MAPK8, MT3, PPARG, PRKAA2, PTGS2, SIRT1
Peripheral membrane protein 1 PTGS2
Endoplasmic reticulum membrane 2 HMOX1, PTGS2
Nucleus 11 AIMP2, CASP3, CDH1, DCTN4, HMOX1, MAPK8, MT3, MYB, PPARG, PRKAA2, SIRT1
autophagosome 1 MAP1LC3A
cytosol 13 AIMP2, CASP3, CDH1, DCTN4, HMOX1, MAP1LC3A, MAPK8, MT3, MYB, PPARG, PRKAA2, PRKCQ, SIRT1
dendrite 1 PRKAA2
trans-Golgi network 1 CDH1
centrosome 1 DCTN4
nucleoplasm 8 CASP3, CDH1, HMOX1, MAPK8, MYB, PPARG, PRKAA2, SIRT1
RNA polymerase II transcription regulator complex 2 MYB, PPARG
Cell membrane 3 CDH1, TNF, TRPA1
Lipid-anchor 1 MAP1LC3A
Cytoplasmic side 1 HMOX1
lamellipodium 1 CDH1
Multi-pass membrane protein 1 TRPA1
Synapse 1 MAPK8
cell cortex 1 DCTN4
cell junction 1 CDH1
cell surface 1 TNF
glutamatergic synapse 3 CASP3, CDH1, MAP1LC3A
Golgi apparatus 2 CDH1, PRKAA2
neuronal cell body 3 CASP3, PRKAA2, TNF
postsynapse 1 CDH1
synaptic vesicle 1 MT3
Cytoplasm, cytosol 1 AIMP2
endosome 1 CDH1
plasma membrane 4 CDH1, PRKCQ, TNF, TRPA1
Membrane 6 AIMP2, CDH1, HMOX1, MYB, PRKAA2, TRPA1
axon 3 MAPK8, MT3, PRKAA2
caveola 1 PTGS2
extracellular exosome 1 CDH1
endoplasmic reticulum 2 HMOX1, PTGS2
extracellular space 7 CCL2, CXCL8, HMOX1, IL4, IL6, MT3, TNF
perinuclear region of cytoplasm 4 CDH1, HMOX1, MT3, PPARG
adherens junction 1 CDH1
mitochondrion 1 SIRT1
protein-containing complex 1 PTGS2
intracellular membrane-bounded organelle 2 MAP1LC3A, PPARG
Microsome membrane 1 PTGS2
postsynaptic density 1 CASP3
chromatin silencing complex 1 SIRT1
Single-pass type I membrane protein 1 CDH1
Secreted 4 CCL2, CXCL8, IL4, IL6
extracellular region 6 CCL2, CDH1, CXCL8, IL4, IL6, TNF
cytoplasmic side of plasma membrane 1 CDH1
mitochondrial outer membrane 2 HMOX1, MT3
astrocyte end-foot 1 MT3
centriolar satellite 1 PRKCQ
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 DCTN4
nuclear membrane 1 CDH1
external side of plasma membrane 1 TNF
actin cytoskeleton 1 CDH1
dendritic spine 1 MT3
nucleolus 1 SIRT1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
heterochromatin 1 SIRT1
Membrane raft 1 TNF
Cytoplasm, cytoskeleton 2 DCTN4, MAP1LC3A
focal adhesion 1 DCTN4
microtubule 2 MAP1LC3A, MT3
Cell junction, adherens junction 1 CDH1
flotillin complex 1 CDH1
Nucleus, PML body 1 SIRT1
PML body 1 SIRT1
lateral plasma membrane 1 CDH1
nuclear speck 1 PRKAA2
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 2 PTGS2, SIRT1
nuclear outer membrane 1 PTGS2
Cytoplasm, myofibril, sarcomere 1 DCTN4
Late endosome 1 MAP1LC3A
sarcomere 1 DCTN4
receptor complex 1 PPARG
neuron projection 1 PTGS2
chromatin 2 PPARG, SIRT1
stereocilium bundle 1 TRPA1
Cytoplasmic vesicle, autophagosome membrane 1 MAP1LC3A
autophagosome membrane 1 MAP1LC3A
phagocytic cup 1 TNF
Golgi apparatus, trans-Golgi network 1 CDH1
spindle pole 1 DCTN4
Cytoplasm, cell cortex 1 DCTN4
organelle membrane 1 MAP1LC3A
fibrillar center 1 SIRT1
nuclear envelope 1 SIRT1
Endomembrane system 1 MAP1LC3A
cytoplasmic stress granule 1 PRKAA2
euchromatin 1 SIRT1
stress fiber 1 DCTN4
endoplasmic reticulum lumen 2 IL6, PTGS2
nuclear matrix 1 MYB
dynactin complex 1 DCTN4
kinetochore 1 DCTN4
anaphase-promoting complex 1 CDH1
immunological synapse 1 PRKCQ
cytoplasmic dynein complex 1 DCTN4
aggresome 1 PRKCQ
Single-pass type IV membrane protein 1 HMOX1
Cytoplasm, cytoskeleton, stress fiber 1 DCTN4
[Isoform 2]: Nucleus 1 CDH1
basal dendrite 1 MAPK8
death-inducing signaling complex 1 CASP3
apical junction complex 1 CDH1
eNoSc complex 1 SIRT1
rDNA heterochromatin 1 SIRT1
aminoacyl-tRNA synthetase multienzyme complex 1 AIMP2
nucleotide-activated protein kinase complex 1 PRKAA2
Cell junction, desmosome 1 CDH1
desmosome 1 CDH1
catenin complex 1 CDH1
ribosome 1 MT3
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
Autolysosome 1 MAP1LC3A
inclusion body 1 MT3
interleukin-6 receptor complex 1 IL6
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF
[SirtT1 75 kDa fragment]: Cytoplasm 1 SIRT1


文献列表

  • Pouya Goleij, Pantea Majma Sanaye, Mehregan Babamohamadi, Mohammad Amin Khazeei Tabari, Roshanak Amirian, Aryan Rezaee, Hamed Mirzaei, Alan Prem Kumar, Gautam Sethi, Sarvin Sadreddini, Philippe Jeandet, Haroon Khan. Phytostilbenes in lymphoma: Focuses on the mechanistic and clinical prospects of resveratrol, pterostilbene, piceatannol, and pinosylvin. Leukemia research. 2024 03; 138(?):107464. doi: 10.1016/j.leukres.2024.107464. [PMID: 38422882]
  • Tobias Schwanemann, Maike Otto, Benedikt Wynands, Jan Marienhagen, Nick Wierckx. A Pseudomonas taiwanensis malonyl-CoA platform strain for polyketide synthesis. Metabolic engineering. 2023 Apr; 77(?):219-230. doi: 10.1016/j.ymben.2023.04.001. [PMID: 37031949]
  • Xiancai Li, Liyuan Yao, Binghong Xiong, Yaodan Wu, Shaohua Chen, Zhifang Xu, Sheng-Xiang Qiu. Inhibitory Mechanism of Pinosylvin Monomethyl Ether against Aspergillus flavus. Journal of agricultural and food chemistry. 2022 Dec; 70(50):15840-15847. doi: 10.1021/acs.jafc.2c07240. [PMID: 36448783]
  • Hwan-Su Hwang, Jung Yeon Han, Yong Eui Choi. Enhanced accumulation of pinosylvin stilbenes and related gene expression in Pinus strobus after infection of pine wood nematode. Tree physiology. 2021 10; 41(10):1972-1987. doi: 10.1093/treephys/tpab053. [PMID: 33891091]
  • Konsta Kivimäki, Tiina Leppänen, Mari Hämäläinen, Katriina Vuolteenaho, Eeva Moilanen. Pinosylvin Shifts Macrophage Polarization to Support Resolution of Inflammation. Molecules (Basel, Switzerland). 2021 May; 26(9):. doi: 10.3390/molecules26092772. [PMID: 34066748]
  • Toni Tamminen, Ali Koskela, Elisa Toropainen, Iswariyaraja Sridevi Gurubaran, Mateusz Winiarczyk, Mikko Liukkonen, Jussi J Paterno, Petri Lackman, Amir Sadeghi, Johanna Viiri, Juha M T Hyttinen, Ari Koskelainen, Kai Kaarniranta. Pinosylvin Extract Retinari™ Sustains Electrophysiological Function, Prevents Thinning of Retina, and Enhances Cellular Response to Oxidative Stress in NFE2L2 Knockout Mice. Oxidative medicine and cellular longevity. 2021; 2021(?):8028427. doi: 10.1155/2021/8028427. [PMID: 34917233]
  • Takao Koeduka, Miki Hatada, Hideyuki Suzuki, Shiro Suzuki, Kenji Matsui. Molecular cloning and functional characterization of an O-methyltransferase catalyzing 4'-O-methylation of resveratrol in Acorus calamus. Journal of bioscience and bioengineering. 2019 May; 127(5):539-543. doi: 10.1016/j.jbiosc.2018.10.011. [PMID: 30471982]
  • Shalem Modi, Nagendra Yaluri, Tarja Kokkola. Strigolactone GR24 and pinosylvin attenuate adipogenesis and inflammation of white adipocytes. Biochemical and biophysical research communications. 2018 05; 499(2):164-169. doi: 10.1016/j.bbrc.2018.03.095. [PMID: 29550483]
  • Shalem Modi, Nagendra Yaluri, Tarja Kokkola, Markku Laakso. Plant-derived compounds strigolactone GR24 and pinosylvin activate SIRT1 and enhance glucose uptake in rat skeletal muscle cells. Scientific reports. 2017 12; 7(1):17606. doi: 10.1038/s41598-017-17840-x. [PMID: 29242624]
  • Syuhei Nakao, Miyuki Mabuchi, Shenglan Wang, Yoko Kogure, Tadashi Shimizu, Koichi Noguchi, Akito Tanaka, Yi Dai. Synthesis of resveratrol derivatives as new analgesic drugs through desensitization of the TRPA1 receptor. Bioorganic & medicinal chemistry letters. 2017 07; 27(14):3167-3172. doi: 10.1016/j.bmcl.2017.05.025. [PMID: 28576617]
  • Tanja Paasela, Kean-Jin Lim, Milla Pietiäinen, Teemu H Teeri. The O-methyltransferase PMT2 mediates methylation of pinosylvin in Scots pine. The New phytologist. 2017 Jun; 214(4):1537-1550. doi: 10.1111/nph.14480. [PMID: 28248427]
  • Junjun Wu, Xia Zhang, Yingjie Zhu, Qinyu Tan, Jiacheng He, Mingsheng Dong. Rational modular design of metabolic network for efficient production of plant polyphenol pinosylvin. Scientific reports. 2017 05; 7(1):1459. doi: 10.1038/s41598-017-01700-9. [PMID: 28469159]
  • K V Kiselev, V P Grigorchuk, Z V Ogneva, A R Suprun, A S Dubrovina. Stilbene biosynthesis in the needles of spruce Picea jezoensis. Phytochemistry. 2016 Nov; 131(?):57-67. doi: 10.1016/j.phytochem.2016.08.011. [PMID: 27576046]
  • Tianhong Yang, Lingling Fang, Agnes M Rimando, Victor Sobolev, Keithanne Mockaitis, Fabricio Medina-Bolivar. A Stilbenoid-Specific Prenyltransferase Utilizes Dimethylallyl Pyrophosphate from the Plastidic Terpenoid Pathway. Plant physiology. 2016 08; 171(4):2483-98. doi: 10.1104/pp.16.00610. [PMID: 27356974]
  • Jing-Long Liang, Li-Qiong Guo, Jun-Fang Lin, Ze-Qi He, Fa-Ji Cai, Jun-Fei Chen. A novel process for obtaining pinosylvin using combinatorial bioengineering in Escherichia coli. World journal of microbiology & biotechnology. 2016 Jun; 32(6):102. doi: 10.1007/s11274-016-2062-z. [PMID: 27116968]
  • Mirka Laavola, Riina Nieminen, Tiina Leppänen, Christer Eckerman, Bjarne Holmbom, Eeva Moilanen. Pinosylvin and monomethylpinosylvin, constituents of an extract from the knot of Pinus sylvestris, reduce inflammatory gene expression and inflammatory responses in vivo. Journal of agricultural and food chemistry. 2015 Apr; 63(13):3445-53. doi: 10.1021/jf504606m. [PMID: 25763469]
  • Sue Ji Lim, Myungsuk Kim, Ahmad Randy, Chu Won Nho. Inhibitory effect of the branches of Hovenia dulcis Thunb. and its constituent pinosylvin on the activities of IgE-mediated mast cells and passive cutaneous anaphylaxis in mice. Food & function. 2015 Apr; 6(4):1361-70. doi: 10.1039/c4fo01203h. [PMID: 25804702]
  • Katarina Bauerova, Alessandra Acquaviva, Silvester Ponist, Concetta Gardi, Daniela Vecchio, Frantisek Drafi, Beatrice Arezzini, Lydia Bezakova, Viera Kuncirova, Danica Mihalova, Radomir Nosal. Markers of inflammation and oxidative stress studied in adjuvant-induced arthritis in the rat on systemic and local level affected by pinosylvin and methotrexate and their combination. Autoimmunity. 2015 Feb; 48(1):46-56. doi: 10.3109/08916934.2014.939268. [PMID: 25046647]
  • Philana Veronica van Summeren-Wesenhagen, Jan Marienhagen. Metabolic engineering of Escherichia coli for the synthesis of the plant polyphenol pinosylvin. Applied and environmental microbiology. 2015 Feb; 81(3):840-9. doi: 10.1128/aem.02966-14. [PMID: 25398870]
  • Emrah Yatkin, Lauri Polari, Teemu D Laajala, Annika Smeds, Christer Eckerman, Bjarne Holmbom, Niina M Saarinen, Tero Aittokallio, Sari I Mäkelä. Novel Lignan and stilbenoid mixture shows anticarcinogenic efficacy in preclinical PC-3M-luc2 prostate cancer model. PloS one. 2014; 9(4):e93764. doi: 10.1371/journal.pone.0093764. [PMID: 24699425]
  • Patrick Sherwood, Pierluigi Bonello. Austrian pine phenolics are likely contributors to systemic induced resistance against Diplodia pinea. Tree physiology. 2013 Aug; 33(8):845-54. doi: 10.1093/treephys/tpt063. [PMID: 23999139]
  • Samuel Chao Ming Yeo, Wenxia Luo, Jinzhu Wu, Paul C Ho, Hai-Shu Lin. Quantification of pinosylvin in rat plasma by liquid chromatography-tandem mass spectrometry: application to a pre-clinical pharmacokinetic study. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2013 Jul; 931(?):68-74. doi: 10.1016/j.jchromb.2013.05.023. [PMID: 23777612]
  • Carme Plumed-Ferrer, Kati Väkeväinen, Heli Komulainen, Maarit Rautiainen, Annika Smeds, Jan-Erik Raitanen, Patrik Eklund, Stefan Willför, Hanna-Leena Alakomi, Maria Saarela, Atte von Wright. The antimicrobial effects of wood-associated polyphenols on food pathogens and spoilage organisms. International journal of food microbiology. 2013 Jun; 164(1):99-107. doi: 10.1016/j.ijfoodmicro.2013.04.001. [PMID: 23624538]
  • Philippe Jeandet, Bertrand Delaunois, Aziz Aziz, David Donnez, Yann Vasserot, Sylvain Cordelier, Eric Courot. Metabolic engineering of yeast and plants for the production of the biologically active hydroxystilbene, resveratrol. Journal of biomedicine & biotechnology. 2012; 2012(?):579089. doi: 10.1155/2012/579089. [PMID: 22654481]
  • A Ludwiczuk, A Saha, T Kuzuhara, Y Asakawa. Bioactivity guided isolation of anticancer constituents from leaves of Alnus sieboldiana (Betulaceae). Phytomedicine : international journal of phytotherapy and phytopharmacology. 2011 Apr; 18(6):491-8. doi: 10.1016/j.phymed.2010.10.005. [PMID: 21111588]
  • Victor S Sobolev, Shabana I Khan, Nurhayat Tabanca, David E Wedge, Susan P Manly, Stephen J Cutler, Monique R Coy, James J Becnel, Scott A Neff, James B Gloer. Biological activity of peanut (Arachis hypogaea) phytoalexins and selected natural and synthetic Stilbenoids. Journal of agricultural and food chemistry. 2011 Mar; 59(5):1673-82. doi: 10.1021/jf104742n. [PMID: 21314127]
  • Katarína Bauerová, Silvester Poništ, Danica Mihalová, František Dráfi, Viera Kuncírová. Utilization of adjuvant arthritis model for evaluation of new approaches in rheumatoid arthritis therapy focused on regulation of immune processes and oxidative stress. Interdisciplinary toxicology. 2011 Mar; 4(1):33-9. doi: 10.2478/v10102-011-0007-9. [PMID: 21577282]
  • Pilar Rodríguez-Bonilla, José Manuel López-Nicolás, Francisco García-Carmona. Use of reversed phase high pressure liquid chromatography for the physicochemical and thermodynamic characterization of oxyresveratrol/beta-cyclodextrin complexes. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2010 Jun; 878(19):1569-75. doi: 10.1016/j.jchromb.2010.04.016. [PMID: 20444655]
  • Supriya Baikar, Nutan Malpathak. Secondary metabolites as DNA topoisomerase inhibitors: A new era towards designing of anticancer drugs. Pharmacognosy reviews. 2010 Jan; 4(7):12-26. doi: 10.4103/0973-7847.65320. [PMID: 22228937]
  • Sung Ryeol Park, Jin A Yoon, Ji Hye Paik, Je Won Park, Won Seok Jung, Yeon-Hee Ban, Eun Ji Kim, Young Ji Yoo, Ah Reum Han, Yeo Joon Yoon. Engineering of plant-specific phenylpropanoids biosynthesis in Streptomyces venezuelae. Journal of biotechnology. 2009 May; 141(3-4):181-8. doi: 10.1016/j.jbiotec.2009.03.013. [PMID: 19433224]
  • Anni M Harju, Martti Venäläinen, Tapio Laakso, Pekka Saranpää. Wounding response in xylem of Scots pine seedlings shows wide genetic variation and connection with the constitutive defence of heartwood. Tree physiology. 2009 Jan; 29(1):19-25. doi: 10.1093/treephys/tpn006. [PMID: 19203929]
  • Kati Hanhineva, Harri Kokko, Henri Siljanen, Ilana Rogachev, Asaph Aharoni, Sirpa O Kärenlampi. Stilbene synthase gene transfer caused alterations in the phenylpropanoid metabolism of transgenic strawberry (Fragaria x ananassa). Journal of experimental botany. 2009; 60(7):2093-106. doi: 10.1093/jxb/erp085. [PMID: 19443619]
  • François Simard, Jean Legault, Serge Lavoie, Vakhtang Mshvildadze, André Pichette. Isolation and identification of cytotoxic compounds from the wood of Pinus resinosa. Phytotherapy research : PTR. 2008 Jul; 22(7):919-22. doi: 10.1002/ptr.2416. [PMID: 18389469]
  • Dong Zhang, Lan Yang, Mei-hong Fu, You-you Tu. [Studies on chemical constituents of rhizome of Matteuccia struthiopteris]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2008 Jul; 33(14):1703-5. doi: ". [PMID: 18841771]
  • Denina Bobbie Dawn Simmons, Vance Lionel Trudeau, Vicki Lee Marlatt, Thomas William Moon, James P Sherry, Chris David Metcalfe. Interaction of stilbene compounds with human and rainbow trout estrogen receptors. Environmental toxicology and chemistry. 2008 Feb; 27(2):442-51. doi: 10.1897/07-146r.1. [PMID: 18348622]
  • Yohei Katsuyama, Nobutaka Funa, Ikuo Miyahisa, Sueharu Horinouchi. Synthesis of unnatural flavonoids and stilbenes by exploiting the plant biosynthetic pathway in Escherichia coli. Chemistry & biology. 2007 Jun; 14(6):613-21. doi: 10.1016/j.chembiol.2007.05.004. [PMID: 17584609]
  • Connie M Remsberg, Jaime A Yáñez, Kathryn A Roupe, Neal M Davies. High-performance liquid chromatographic analysis of pterostilbene in biological fluids using fluorescence detection. Journal of pharmaceutical and biomedical analysis. 2007 Jan; 43(1):250-4. doi: 10.1016/j.jpba.2006.06.035. [PMID: 16884886]
  • Kathryn A Roupe, Jaime A Yáñez, Xiao Wei Teng, Neal M Davies. Pharmacokinetics of selected stilbenes: rhapontigenin, piceatannol and pinosylvin in rats. The Journal of pharmacy and pharmacology. 2006 Nov; 58(11):1443-50. doi: 10.1211/jpp.58.11.0004. [PMID: 17132206]
  • Jin-Chun Cheng, Jian-Guo Fang, Wei-Feng Chen, Bo Zhou, Li Yang, Zhong-Li Liu. Structure-activity relationship studies of resveratrol and its analogues by the reaction kinetics of low density lipoprotein peroxidation. Bioorganic chemistry. 2006 Jun; 34(3):142-57. doi: 10.1016/j.bioorg.2006.04.001. [PMID: 16712899]
  • Dag Ekeberg, Per-Otto Flaete, Morten Eikenes, Monica Fongen, Carl Fredrik Naess-Andresen. Qualitative and quantitative determination of extractives in heartwood of Scots pine (Pinus sylvestris L.) by gas chromatography. Journal of chromatography. A. 2006 Mar; 1109(2):267-72. doi: 10.1016/j.chroma.2006.01.027. [PMID: 16472534]
  • Hanne Hovelstad, Ingebjorg Leirset, Karin Oyaas, Anne Fiksdahl. Screening analyses of pinosylvin stilbenes, resin acids and lignans in Norwegian conifers. Molecules (Basel, Switzerland). 2006 Jan; 11(1):103-14. doi: 10.3390/11010103. [PMID: 17962750]
  • Kathryn A Roupe, Connie M Remsberg, Jaime A Yáñez, Neal M Davies. Pharmacometrics of stilbenes: seguing towards the clinic. Current clinical pharmacology. 2006 Jan; 1(1):81-101. doi: 10.2174/157488406775268246. [PMID: 18666380]
  • Liliya Serazetdinova, Klaus H Oldach, Horst Lörz. Expression of transgenic stilbene synthases in wheat causes the accumulation of unknown stilbene derivatives with antifungal activity. Journal of plant physiology. 2005 Sep; 162(9):985-1002. doi: 10.1016/j.jplph.2004.11.005. [PMID: 16173460]
  • Gao Li, Byung-Sun Min, Changji Zheng, Joongku Lee, Sei-Ryang Oh, Kyung-Seop Ahn, Hyeong-Kyu Lee. Neuroprotective and free radical scavenging activities of phenolic compounds from Hovenia dulcis. Archives of pharmacal research. 2005 Jul; 28(7):804-9. doi: 10.1007/bf02977346. [PMID: 16114495]
  • Kathryn Roupe, Steven Halls, Neal M Davies. Determination and assay validation of pinosylvin in rat serum: application to drug metabolism and pharmacokinetics. Journal of pharmaceutical and biomedical analysis. 2005 Jun; 38(1):148-54. doi: 10.1016/j.jpba.2004.12.015. [PMID: 15907633]
  • S K Lee, H J Lee, H Y Min, E J Park, K M Lee, Y H Ahn, Y J Cho, J H Pyee. Antibacterial and antifungal activity of pinosylvin, a constituent of pine. Fitoterapia. 2005 Mar; 76(2):258-60. doi: 10.1016/j.fitote.2004.12.004. [PMID: 15752644]
  • M Nuopponen, S Willför, A-S Jääskeläinen, T Vuorinen. A UV resonance Raman (UVRR) spectroscopic study on the extractable compounds in Scots pine (Pinus sylvestris) wood. Part II. Hydrophilic compounds. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2004 Nov; 60(13):2963-8. doi: 10.1016/j.saa.2004.02.007. [PMID: 15477131]
  • S-K Seppänen, L Syrjälä, K von Weissenberg, T H Teeri, L Paajanen, A Pappinen. Antifungal activity of stilbenes in in vitro bioassays and in transgenic Populus expressing a gene encoding pinosylvin synthase. Plant cell reports. 2004 Mar; 22(8):584-93. doi: 10.1007/s00299-003-0728-0. [PMID: 14714142]
  • L E Lindberg, S M Willför, B R Holmbom. Antibacterial effects of knotwood extractives on paper mill bacteria. Journal of industrial microbiology & biotechnology. 2004 Mar; 31(3):137-47. doi: 10.1007/s10295-004-0132-y. [PMID: 15112061]
  • William R McNee, Pierluigi Bonello, Andrew J Storer, David L Wood, Thomas R Gordon. Feeding response of Ips paraconfusus to phloem and phloem metabolites of Heterobasidion annosum-inoculated ponderosa pine, Pinus ponderosa. Journal of chemical ecology. 2003 May; 29(5):1183-202. doi: 10.1023/a:1023885724220. [PMID: 12857030]
  • Eckhard Wollenweber, Jan F Stevens, Marion Dörr, Andrew C Rozefelds. Taxonomic significance of flavonoid variation in temperate species of Nothofagus. Phytochemistry. 2003 Apr; 62(7):1125-31. doi: 10.1016/s0031-9422(02)00666-0. [PMID: 12591267]
  • Yu Jun Cai, Jian Guo Fang, Lan Ping Ma, Li Yang, Zhong Li Liu. Inhibition of free radical-induced peroxidation of rat liver microsomes by resveratrol and its analogues. Biochimica et biophysica acta. 2003 Jan; 1637(1):31-8. doi: 10.1016/s0925-4439(02)00174-6. [PMID: 12527404]
  • Jian-Guo Fang, Man Lu, Zhi-Hua Chen, Hui-He Zhu, Yan Li, Li Yang, Long-Min Wu, Zhong-Li Liu. Antioxidant effects of resveratrol and its analogues against the free-radical-induced peroxidation of linoleic acid in micelles. Chemistry (Weinheim an der Bergstrasse, Germany). 2002 Sep; 8(18):4191-8. doi: 10.1002/1521-3765(20020916)8:18<4191::aid-chem4191>3.0.co;2-s. [PMID: 12298009]
  • T Pacher, C Seger, D Engelmeier, S Vajrodaya, O Hofer, H Greger. Antifungal stilbenoids from Stemona collinsae. Journal of natural products. 2002 Jun; 65(6):820-7. doi: 10.1021/np0105073. [PMID: 12088422]
  • Mikael Nilsson, Susanne Wikman, Leif Eklund. Induction of discolored wood in Scots pine (Pinus sylvestris). Tree physiology. 2002 Apr; 22(5):331-8. doi: 10.1093/treephys/22.5.331. [PMID: 11960757]
  • Christelle Privat, João Paulo Telo, Vania Bernardes-Genisson, Abel Vieira, Jean-Pierre Souchard, Françoise Nepveu. Antioxidant properties of trans-epsilon-viniferin as compared to stilbene derivatives in aqueous and nonaqueous media. Journal of agricultural and food chemistry. 2002 Feb; 50(5):1213-7. doi: 10.1021/jf010676t. [PMID: 11853506]
  • S Stojanović, H Sprinz, O Brede. Efficiency and mechanism of the antioxidant action of trans-resveratrol and its analogues in the radical liposome oxidation. Archives of biochemistry and biophysics. 2001 Jul; 391(1):79-89. doi: 10.1006/abbi.2001.2388. [PMID: 11414688]
  • H Chiron, A Drouet, F Lieutier, H D Payer, D Ernst, H Sandermann. Gene induction of stilbene biosynthesis in Scots pine in response to ozone treatment, wounding, and fungal infection. Plant physiology. 2000 Oct; 124(2):865-72. doi: 10.1104/pp.124.2.865. [PMID: 11027734]
  • R Preisig-Müller, A Schwekendiek, I Brehm, H J Reif, H Kindl. Characterization of a pine multigene family containing elicitor-responsive stilbene synthase genes. Plant molecular biology. 1999 Jan; 39(2):221-9. doi: 10.1023/a:1006163030646. [PMID: 10080690]
  • A Schwekendiek, G Pfeffer, H Kindl. Pine stilbene synthase cDNA, a tool for probing environmental stress. FEBS letters. 1992 Apr; 301(1):41-4. doi: 10.1016/0014-5793(92)80206-v. [PMID: 1451785]
  • L Skinnider, A Stoessl. The effect of the phytoalexins, lubimin, (-)-maackiain, pinosylvin, and the related compounds dehydroloroglossol and hordatine M on human lymphoblastoid cell lines. Experientia. 1986 May; 42(5):568-70. doi: 10.1007/bf01946707. [PMID: 3709764]
  • . . . . doi: . [PMID: 11880657]