Difenoconazole (BioDeep_00000002167)

 

Secondary id: BioDeep_00000397782

human metabolite blood metabolite Industrial Pollutants


代谢物信息卡片


1-({2-[2-chloro-4-(4-chlorophenoxy)phenyl]-4-methyl-1,3-dioxolan-2-yl}methyl)-1H-1,2,4-triazole

化学式: C19H17Cl2N3O3 (405.0647)
中文名称: 恶醚唑, 苯醚甲环唑
谱图信息: 最多检出来源 Viridiplantae(plant) 16.89%

分子结构信息

SMILES: CC1COC(CN2C=NC=N2)(O1)C1=C(Cl)C=C(OC2=CC=C(Cl)C=C2)C=C1
InChI: InChI=1S/C19H17Cl2N3O3/c1-13-9-25-19(27-13,10-24-12-22-11-23-24)17-7-6-16(8-18(17)21)26-15-4-2-14(20)3-5-15/h2-8,11-13H,9-10H2,1H3

描述信息

CONFIDENCE standard compound; INTERNAL_ID 585; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9954; ORIGINAL_PRECURSOR_SCAN_NO 9949
CONFIDENCE standard compound; INTERNAL_ID 585; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9970; ORIGINAL_PRECURSOR_SCAN_NO 9969
CONFIDENCE standard compound; INTERNAL_ID 585; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9848; ORIGINAL_PRECURSOR_SCAN_NO 9843
CONFIDENCE standard compound; INTERNAL_ID 585; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9912; ORIGINAL_PRECURSOR_SCAN_NO 9911
CONFIDENCE standard compound; INTERNAL_ID 585; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9893; ORIGINAL_PRECURSOR_SCAN_NO 9891
CONFIDENCE standard compound; INTERNAL_ID 585; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9949; ORIGINAL_PRECURSOR_SCAN_NO 9948
CONFIDENCE standard compound; INTERNAL_ID 2586
CONFIDENCE standard compound; INTERNAL_ID 8457
D016573 - Agrochemicals
D010575 - Pesticides

同义名列表

6 个代谢物同义名

1-({2-[2-chloro-4-(4-chlorophenoxy)phenyl]-4-methyl-1,3-dioxolan-2-yl}methyl)-1H-1,2,4-triazole; Difenoconazole; Difenoconazol; DFZ; Difenoconazole; Difenoconazole



数据库引用编号

23 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 ARHGAP45, ATG5, BCL2, CASP3, CASP9, CAT, DCTN4, GAPDH, HPGDS, NFE2L2, PIK3CA
Peripheral membrane protein 3 ACHE, ATG5, CYP1B1
Endoplasmic reticulum membrane 4 BCL2, CYP1B1, CYP51A1, STAR
Nucleus 7 ACHE, BCL2, CASP3, CASP9, DCTN4, GAPDH, NFE2L2
autophagosome 1 ATG5
cytosol 11 ARHGAP45, ATG5, BCL2, CASP3, CASP9, CAT, DCTN4, GAPDH, HPGDS, NFE2L2, PIK3CA
centrosome 2 DCTN4, NFE2L2
nucleoplasm 3 CASP3, HPGDS, NFE2L2
RNA polymerase II transcription regulator complex 1 NFE2L2
Cell membrane 3 ACHE, STAR, TNF
lamellipodium 1 PIK3CA
ruffle membrane 1 ARHGAP45
Multi-pass membrane protein 1 MT-CYB
Synapse 1 ACHE
cell cortex 1 DCTN4
cell surface 2 ACHE, TNF
glutamatergic synapse 2 ATG5, CASP3
Golgi apparatus 2 ACHE, NFE2L2
mitochondrial inner membrane 1 MT-CYB
neuromuscular junction 1 ACHE
neuronal cell body 2 CASP3, TNF
postsynapse 1 ATG5
Cytoplasm, cytosol 2 GAPDH, NFE2L2
plasma membrane 8 ACHE, ARHGAP45, BCHE, GAPDH, NFE2L2, PIK3CA, STAR, TNF
Membrane 9 ACHE, ARHGAP45, ATG5, BCL2, CAT, CYP1B1, CYP51A1, GAPDH, MT-CYB
axon 1 ATG5
extracellular exosome 2 CAT, GAPDH
endoplasmic reticulum 1 BCL2
extracellular space 5 ACHE, BCHE, IL10, IL6, TNF
perinuclear region of cytoplasm 3 ACHE, GAPDH, PIK3CA
Schaffer collateral - CA1 synapse 1 ATG5
intercalated disc 1 PIK3CA
mitochondrion 6 BCL2, CASP9, CAT, CYP1B1, MT-CYB, STAR
protein-containing complex 4 ATG5, BCL2, CASP9, CAT
intracellular membrane-bounded organelle 5 CAT, CYP1B1, CYP51A1, GAPDH, HPGDS
Microsome membrane 2 CYP1B1, CYP51A1
postsynaptic density 1 CASP3
Single-pass type I membrane protein 1 STAR
Secreted 4 ACHE, BCHE, IL10, IL6
extracellular region 7 ACHE, ARHGAP45, BCHE, CAT, IL10, IL6, TNF
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 2 BCL2, CYP51A1
mitochondrial outer membrane 1 BCL2
mitochondrial matrix 2 CAT, STAR
Extracellular side 1 ACHE
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 DCTN4
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 2 BCL2, GAPDH
external side of plasma membrane 1 TNF
microtubule cytoskeleton 1 GAPDH
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 GAPDH
Cell projection, ruffle membrane 1 ARHGAP45
Cytoplasm, perinuclear region 1 GAPDH
Mitochondrion inner membrane 1 MT-CYB
Membrane raft 1 TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton 2 DCTN4, GAPDH
focal adhesion 2 CAT, DCTN4
Peroxisome 1 CAT
basement membrane 1 ACHE
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
mitochondrial intermembrane space 1 STAR
axoneme 1 ATG5
Cytoplasm, myofibril, sarcomere 1 DCTN4
sarcomere 1 DCTN4
chromatin 1 NFE2L2
mediator complex 1 NFE2L2
phagocytic cup 1 TNF
phagocytic vesicle membrane 1 ATG5
cytoskeleton 1 GAPDH
spindle pole 1 DCTN4
Cytoplasm, cell cortex 1 DCTN4
blood microparticle 1 BCHE
Lipid-anchor, GPI-anchor 1 ACHE
Lipid droplet 1 GAPDH
Preautophagosomal structure membrane 1 ATG5
Atg12-Atg5-Atg16 complex 1 ATG5
mitochondria-associated endoplasmic reticulum membrane contact site 1 ATG5
phagophore assembly site membrane 1 ATG5
side of membrane 1 ACHE
myelin sheath 1 BCL2
stress fiber 1 DCTN4
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 2 ARHGAP45, CAT
endoplasmic reticulum lumen 2 BCHE, IL6
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
dynactin complex 1 DCTN4
kinetochore 1 DCTN4
azurophil granule lumen 1 ARHGAP45
cytoplasmic dynein complex 1 DCTN4
nuclear envelope lumen 1 BCHE
apoptosome 1 CASP9
respiratory chain complex III 1 MT-CYB
Cytoplasm, cytoskeleton, stress fiber 1 DCTN4
ribonucleoprotein complex 1 GAPDH
synaptic cleft 1 ACHE
protein-DNA complex 1 NFE2L2
death-inducing signaling complex 1 CASP3
GAIT complex 1 GAPDH
transferase complex 1 ATG5
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
interleukin-6 receptor complex 1 IL6
BAD-BCL-2 complex 1 BCL2
[Isoform H]: Cell membrane 1 ACHE
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
caspase complex 1 CASP9
phagophore 1 ATG5
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Antonio Jesús Maldonado-Reina, Rosalía López-Ruiz, Jesús Marín Sáez, Roberto Romero-González, Antonia Garrido Frenich. Tracing the dissipation of difenoconazole, its metabolites and co-formulants in tomato: A comprehensive analysis by chromatography coupled to high resolution mass spectrometry in laboratory and greenhouse trials. Environmental pollution (Barking, Essex : 1987). 2024 May; 349(?):123924. doi: 10.1016/j.envpol.2024.123924. [PMID: 38580058]
  • Xiaomeng Ji, Jiajia Guo, Yeyun Ma, Shuai Zhang, Zuwang Yang, Yuanyuan Li, Kaixin Ping, Yue Xin, Zibo Dong. Quercetin alleviates the toxicity of difenoconazole to the respiratory system of carp by reducing ROS accumulation and maintaining mitochondrial dynamic balance. Toxicology and applied pharmacology. 2024 Mar; 484(?):116860. doi: 10.1016/j.taap.2024.116860. [PMID: 38342444]
  • Ke Fang, Yu-Xin Xiang, Han Wang, Ming-Kun Li, Si-Yuan Jiang, Chen-Jun Liu, Xin Yang, Su-Wan Wei, Jin-Jing Xiao, Yan-Hong Shi, Hai-Qun Cao. In vitro inhalation bioaccessibility and health risk assessment of difenoconazole in the atmosphere. Pest management science. 2024 Feb; 80(2):837-845. doi: 10.1002/ps.7811. [PMID: 37794292]
  • Yajie Chen, Xiaojian Feng, Xingang Liu, Lan Zhang, Liangang Mao, Lizhen Zhu, Yongquan Zheng. Bioavailability assessment of difenoconazole to earthworms (Eisenia fetida) in soil by oleic acid-embedded cellulose acetate membrane. The Science of the total environment. 2023 Dec; 905(?):167276. doi: 10.1016/j.scitotenv.2023.167276. [PMID: 37741384]
  • Jingchong Li, Zhixiang Tian, Aohui Han, Jingkun Li, Aodi Luo, Runqiang Liu, Zhiyong Zhang. Integrative physiological, critical plant endogenous hormones, and transcriptomic analyses reveal the difenoconazole stress response mechanism in wheat (Triticum aestivum L.). Pesticide biochemistry and physiology. 2023 Dec; 197(?):105688. doi: 10.1016/j.pestbp.2023.105688. [PMID: 38072543]
  • Yajie Chen, Xingang Liu, Yanming Zhou, Lan Zhang, Liangang Mao, Lizhen Zhu, Yongquan Zheng. Bioavailability evaluation of epoxiconazole and difenoconazole in rice and the influence of dissolved organic matter in reducing uptake and translocation. Chemosphere. 2023 Sep; 341(?):140060. doi: 10.1016/j.chemosphere.2023.140060. [PMID: 37673178]
  • Nuo Wei, Ze Lv, Xiaohan Meng, Qianwei Liang, Tianzhen Jiang, Shaoyang Sun, Yan Li, Jianguo Feng. Sodium alginate-carboxymethyl chitosan hydrogels loaded with difenoconazole for pH-responsive release to control wheat crown rot. International journal of biological macromolecules. 2023 Aug; 252(?):126396. doi: 10.1016/j.ijbiomac.2023.126396. [PMID: 37625754]
  • Kangliang Pan, Zhiwei Liu, Zhaodong Li, Mindan Chen, Qiqi Quan, Xiaoqin Yu, Yi Lei, Qiuhua Mo, Bingzhi Wang, Tian Guan, Hongtao Lei. Identifying fungicide difenoconazole as illegal growth regulator in vegetable: Computer-aided hapten similarity to enhance immunoassay sensitivity. Analytica chimica acta. 2023 Jun; 1258(?):341182. doi: 10.1016/j.aca.2023.341182. [PMID: 37087291]
  • Niuniu Shi, Dezhu Qiu, Furu Chen, Ying-Qing Yang, Yixin Du. Analysis of the difenoconazole-resistance risk and its molecular basis in Colletotrichum truncatum from soybean. Plant disease. 2023 May; ?(?):. doi: 10.1094/pdis-12-22-2983-re. [PMID: 37172974]
  • Jing Jing, Yang Zhou, Zhengyu Zhang, Lanxin Wu, Feifei Bao, Hongyan Zhang. Uptake, Translocation, and Terminal Residue of Chlorantraniliprole and Difenoconazole in Rice: Effect of the Mixed-Application with Adjuvant. Journal of agricultural and food chemistry. 2023 May; ?(?):. doi: 10.1021/acs.jafc.3c00166. [PMID: 37129183]
  • Yiming Chang, Huimin Fu, Haitao Yu, Liangang Mao, Lan Zhang, Yanning Zhang, Lizhen Zhu, Jin Yang, Xingang Liu, Hongyun Jiang. Developmental defects and potential mechanisms in F1 generation of parents exposed to difenoconazole at different life stages of zebrafish (Danio rerio). The Science of the total environment. 2023 Apr; 883(?):163529. doi: 10.1016/j.scitotenv.2023.163529. [PMID: 37068689]
  • Bojan Nataraj, Devan Hemalatha, Guilherme Malafaia, Kannan Maharajan, Mathan Ramesh. "Fishcide" effect of the fungicide difenoconazole in freshwater fish (Labeo rohita): A multi-endpoint approach. The Science of the total environment. 2023 Jan; 857(Pt 2):159425. doi: 10.1016/j.scitotenv.2022.159425. [PMID: 36244480]
  • Qingshan Feng, Lei Han, Qiong Wu, Xiaomao Wu. Dissipation, residue and dietary risk assessment of difenoconazole in Rosa roxburghii. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes. 2023; 58(11):651-658. doi: 10.1080/03601234.2023.2263325. [PMID: 37800694]
  • Meiling Zheng, Yue Deng, Yihui Zhou, Rui Liu, Yuping Liu, Hongmei Wang, Wentao Zhu, Zhiqiang Zhou, Jinling Diao. Multifaceted effects of difenoconazole in tomato fruit ripening: Physiology, flavour and nutritional quality. Plant physiology and biochemistry : PPB. 2023 Jan; 194(?):223-235. doi: 10.1016/j.plaphy.2022.11.015. [PMID: 36434985]
  • A I Nasonov, G V Yakuba, I L Astapchuk. Sensitivity of Krasnodar Venturia inaequalis Populations to the Sterol Demethylation Inhibitor Difenoconazole. Doklady biological sciences : proceedings of the Academy of Sciences of the USSR, Biological sciences sections. 2022 Dec; 507(1):463-472. doi: 10.1134/s001249662206014x. [PMID: 36781541]
  • Feixue Liu, Yan Wang, Li Chen, Babatunde Kazeem Bello, Tianmeng Zhang, Haitao Yang, Xueqing Li, Enzhuang Pan, Huimiao Feng, Jingquan Dong. Difenoconazole disrupts the blood-brain barrier and results in neurotoxicity in carp by inhibiting the Nrf2 pathway mediated ROS accumulation. Ecotoxicology and environmental safety. 2022 Oct; 244(?):114081. doi: 10.1016/j.ecoenv.2022.114081. [PMID: 36113268]
  • Zhijian Liang, Huihui Hua, Chunyan Wu, Tao Zhou, Xuehong Wu. A Botybirnavirus Isolated from Alternaria tenuissima Confers Hypervirulence and Decreased Sensitivity of Its Host Fungus to Difenoconazole. Viruses. 2022 09; 14(10):. doi: 10.3390/v14102093. [PMID: 36298649]
  • Xiangguang Chen, Junyue Zheng, Jie Zhang, Manman Duan, Hao Xu, Wentian Zhao, Yang Yang, Chengju Wang, Yong Xu. Exposure to difenoconazole induces reproductive toxicity in zebrafish by interfering with gamete maturation and reproductive behavior. The Science of the total environment. 2022 Sep; 838(Pt 1):155610. doi: 10.1016/j.scitotenv.2022.155610. [PMID: 35504380]
  • Xueming Xu, Yongqiang Wang, Ting Lei, Muhammad Aamir Sohail, Jie Wang, Hongyan Wang. Synergistic Effects of Bacillus amyloliquefaciens SDTB009 and Difenoconazole on Fusarium Wilt of Tomato. Plant disease. 2022 Aug; 106(8):2165-2171. doi: 10.1094/pdis-12-21-2650-re. [PMID: 35077231]
  • Jinhua Jiang, Changpeng Zhang, Luyan Wang, Xiangyun Wang, Hongmei He, Shenggan Wu, Xueping Zhao. Insights into the combined effects of environmental concentration of difenoconazole and tebuconazole on zebrafish early life stage. The Science of the total environment. 2022 Jul; 830(?):154687. doi: 10.1016/j.scitotenv.2022.154687. [PMID: 35314214]
  • Jianzhong Yu, Jiayin Hou, Ruixian Yu, Xiuqing Hu, Zhenlan Xu, Xueping Zhao, Liezhong Chen. Dissipation and dietary exposure risk assessment of pyraclostrobin, fluxapyroxad, difenoconazole, and azoxystrobin in the Fritillaria field ecosystem. Environmental science and pollution research international. 2022 Jul; 29(34):51758-51767. doi: 10.1007/s11356-022-19511-5. [PMID: 35253103]
  • Junli Cao, Xingang Liu, Xiaohu Wu, Jun Xu, Fengshou Dong, Yongquan Zheng. Uptake and distribution of difenoconazole in rice plants under different culture patterns. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment. 2022 Jun; 39(6):1100-1108. doi: 10.1080/19440049.2022.2056640. [PMID: 35357266]
  • Soad A Khwanes, Rania A Mohamed, Khairy A Ibrahim, Heba Ali Abd El-Rahman. Ginger reserves testicular spermatogenesis and steroidogenesis in difenoconazole-intoxicated rats by conducting oxidative stress, apoptosis and proliferation. Andrologia. 2022 Feb; 54(1):e14241. doi: 10.1111/and.14241. [PMID: 34519103]
  • Chao Shen, Xinglu Pan, Xiaohu Wu, Jun Xu, Fengshou Dong, Yongquan Zheng. Ecological risk assessment for difenoconazole in aquatic ecosystems using a web-based interspecies correlation estimation (ICE)-species sensitivity distribution (SSD) model. Chemosphere. 2022 Feb; 289(?):133236. doi: 10.1016/j.chemosphere.2021.133236. [PMID: 34896421]
  • Hu Zhang, Guiling Yang, Zhiwei Bao, Yuanxiang Jin, Jianmei Wang, Jing Chen, Mingrong Qian. Stereoselective effects of fungicide difenoconazole and its four stereoisomers on gut barrier, microbiota, and glucolipid metabolism in male mice. The Science of the total environment. 2022 Jan; 805(?):150454. doi: 10.1016/j.scitotenv.2021.150454. [PMID: 34818760]
  • Praveen Satapute, Sudisha Jogaiah. A biogenic microbial biosurfactin that degrades difenoconazole fungicide with potential antimicrobial and oil displacement properties. Chemosphere. 2022 Jan; 286(Pt 1):131694. doi: 10.1016/j.chemosphere.2021.131694. [PMID: 34346344]
  • Chenguang Wang, Luxi Xu, Xiaoyu Liang, Jing Wang, Xinwei Xian, Yu Zhang, Ye Yang. Molecular characterization and overexpression of the difenoconazole resistance gene CYP51 in Lasiodiplodia theobromae field isolates. Scientific reports. 2021 12; 11(1):24299. doi: 10.1038/s41598-021-03601-4. [PMID: 34934102]
  • Jinhua Jiang, Liezhong Chen, Xingang Liu, Luyan Wang, Shengan Wu, Xueping Zhao. Histology and multi-omic profiling reveal the mixture toxicity of tebuconazole and difenoconazole in adult zebrafish. The Science of the total environment. 2021 Nov; 795(?):148777. doi: 10.1016/j.scitotenv.2021.148777. [PMID: 34229239]
  • Janete Brigante, Joyce Oliveira Costa, Evaldo L G Espíndola, Michiel A Daam. Acute toxicity of the insecticide abamectin and the fungicide difenoconazole (individually and in mixture) to the tropical stingless bee Melipona scutellaris. Ecotoxicology (London, England). 2021 Nov; 30(9):1872-1879. doi: 10.1007/s10646-021-02458-7. [PMID: 34379243]
  • Yanli Man, Marianne Stenrød, Chi Wu, Marit Almvik, Roger Holten, Jihong Liu Clarke, Shankui Yuan, Xiaohu Wu, Jun Xu, Fengshou Dong, Yongquan Zheng, Xingang Liu. Degradation of difenoconazole in water and soil: Kinetics, degradation pathways, transformation products identification and ecotoxicity assessment. Journal of hazardous materials. 2021 09; 418(?):126303. doi: 10.1016/j.jhazmat.2021.126303. [PMID: 34329017]
  • Natalia Karpova, Balzhima Shagdarova, Alexey Lunkov, Alla Il'ina, Valery Varlamov. Antifungal action of chitosan in combination with fungicides in vitro and chitosan conjugate with gallic acid on tomatoes against Botrytis cinerea. Biotechnology letters. 2021 Aug; 43(8):1565-1574. doi: 10.1007/s10529-021-03138-6. [PMID: 33974182]
  • Katherine Jiménez, Karla Solano, Carola Scholz, Sergei Redondo-López, Freylan Mena. Early Toxic Effects in a Central American Native Fish (Parachromis dovii) Exposed to Chlorpyrifos and Difenoconazole. Environmental toxicology and chemistry. 2021 07; 40(7):1940-1949. doi: 10.1002/etc.5048. [PMID: 33749893]
  • Chunxia Sun, Fengjie Li, Mengdi Wei, Zengxu Xiang, Changjun Chen, Deliang Xu. Detection and Biological Characteristics of Alternaria alternata Resistant to Difenoconazole from Paris polyphylla var. chinensis, an Indigenous Medicinal Herb. Plant disease. 2021 May; 105(5):1546-1554. doi: 10.1094/pdis-12-19-2699-re. [PMID: 33349004]
  • Can Zhang, Muhammad Imran, Lu Xiao, Zhihong Hu, Guixiang Li, Fan Zhang, Xili Liu. Difenoconazole Resistance Shift in Botrytis cinerea From Tomato in China Associated With Inducible Expression of CYP51. Plant disease. 2021 Feb; 105(2):400-407. doi: 10.1094/pdis-03-20-0508-re. [PMID: 32729807]
  • Qingmei Song, Ye Wang, Shouying Tang, Xiurou Meng, Fei Wang, Deyu Hu, Yuping Zhang. Enantioselective Analysis and Degradation Studies of Four Stereoisomers of Difenoconazole in Citrus by Chiral Liquid Chromatography-Tandem Mass Spectrometry. Journal of agricultural and food chemistry. 2021 Jan; 69(1):501-510. doi: 10.1021/acs.jafc.0c05938. [PMID: 33393780]
  • Raquel Aparecida Moreira, Giuliana Seraphim de Araujo, Ana Rita Rego Gouveia Silva, Michiel Adriaan Daam, Odete Rocha, Amadeu M V M Soares, Susana Loureiro. Effects of abamectin-based and difenoconazole-based formulations and their mixtures in Daphnia magna: a multiple endpoint approach. Ecotoxicology (London, England). 2020 Nov; 29(9):1486-1499. doi: 10.1007/s10646-020-02218-z. [PMID: 32388636]
  • Hanine Almasri, Daiana Antonia Tavares, Maryline Pioz, Déborah Sené, Sylvie Tchamitchian, Marianne Cousin, Jean-Luc Brunet, Luc P Belzunces. Mixtures of an insecticide, a fungicide and a herbicide induce high toxicities and systemic physiological disturbances in winter Apis mellifera honey bees. Ecotoxicology and environmental safety. 2020 Oct; 203(?):111013. doi: 10.1016/j.ecoenv.2020.111013. [PMID: 32888588]
  • Jinhua Jiang, Liezhong Chen, Shenggan Wu, Lu Lv, Xinju Liu, Qiang Wang, Xueping Zhao. Effects of difenoconazole on hepatotoxicity, lipid metabolism and gut microbiota in zebrafish (Danio rerio). Environmental pollution (Barking, Essex : 1987). 2020 Oct; 265(Pt A):114844. doi: 10.1016/j.envpol.2020.114844. [PMID: 32480235]
  • Nattapatphon Kongcharoen, Nipon Kaewsalong, Tida Dethoup. Efficacy of fungicides in controlling rice blast and dirty panicle diseases in Thailand. Scientific reports. 2020 10; 10(1):16233. doi: 10.1038/s41598-020-73222-w. [PMID: 33004846]
  • Franz J Lichtner, Verneta L Gaskins, Kerik D Cox, Wayne M Jurick. Global transcriptomic responses orchestrate difenoconazole resistance in Penicillium spp. causing blue mold of stored apple fruit. BMC genomics. 2020 Aug; 21(1):574. doi: 10.1186/s12864-020-06987-z. [PMID: 32831018]
  • Andre B Gama, Juliana S Baggio, Carolina S Rebello, Silvia de Afonseca Lourenço, Maria Cândida de G Gasparoto, Geraldo José da Silva Junior, Natalia A Peres, Lilian Amorim. Sensitivity of Colletotrichum acutatum Isolates from Citrus to Carbendazim, Difenoconazole, Tebuconazole, and Trifloxystrobin. Plant disease. 2020 Jun; 104(6):1621-1628. doi: 10.1094/pdis-10-19-2195-re. [PMID: 32320371]
  • Livia Pitombeira de Figueirêdo, Danillo B Athayde, Michiel A Daam, Cornelis A M van Gestel, Glauce da Silva Guerra, Paulo José Duarte-Neto, Evaldo L G Espíndola. Impact of temperature on the toxicity of Kraft 36 EC® (a.s. abamectin) and Score 250 EC® (a.s. difenoconazole) to soil organisms under realistic environmental exposure scenarios. Ecotoxicology and environmental safety. 2020 May; 194(?):110446. doi: 10.1016/j.ecoenv.2020.110446. [PMID: 32171122]
  • Yue Zhang, Qian Zhou, Peiyu Tian, Yuan Li, Guohua Duan, Dongliang Li, Jiasui Zhan, Fengping Chen. Induced expression of CYP51 associated with difenoconazole resistance in the pathogenic Alternaria sect. on potato in China. Pest management science. 2020 May; 76(5):1751-1760. doi: 10.1002/ps.5699. [PMID: 31785067]
  • Yuan Li, Susan Satie Tsuji, Mengjun Hu, Marcos Paz Saraiva Câmara, Sami Jorge Michereff, Guido Schnabel, Fengping Chen. Characterization of difenoconazole resistance in Lasiodiplodia theobromae from papaya in Brazil. Pest management science. 2020 Apr; 76(4):1344-1352. doi: 10.1002/ps.5645. [PMID: 31605502]
  • Li-Na Yang, Meng-Han He, Hai-Bing Ouyang, Wen Zhu, Zhe-Chao Pan, Qi-Jun Sui, Li-Ping Shang, Jiasui Zhan. Cross-resistance of the pathogenic fungus Alternaria alternata to fungicides with different modes of action. BMC microbiology. 2019 09; 19(1):205. doi: 10.1186/s12866-019-1574-8. [PMID: 31477005]
  • Wayne M Jurick, Otilia Macarisin, Verneta L Gaskins, Wojciech J Janisiewicz, Kari A Peter, Kerik D Cox. Baseline Sensitivity of Penicillium spp. to Difenoconazole. Plant disease. 2019 Feb; 103(2):331-337. doi: 10.1094/pdis-05-18-0860-re. [PMID: 30562129]
  • Vanessa Bezerra de Menezes Oliveira, Miriam de Oliveira Bianchi, Evaldo Luiz Gaeta Espíndola. Hazard assessment of the pesticides KRAFT 36 EC and SCORE in a tropical natural soil using an ecotoxicological test battery. Environmental toxicology and chemistry. 2018 11; 37(11):2919-2924. doi: 10.1002/etc.4056. [PMID: 29236312]
  • Jennifer M Foster, Mary Ruth McDonald. Evaluation of the TOM-CAST Forecasting Model in Asparagus for Management of Stemphylium Leaf Spot in Ontario, Canada. Plant disease. 2018 11; 102(11):2253-2257. doi: 10.1094/pdis-10-17-1631-re. [PMID: 30145949]
  • Pankaj Kumar, Sushil Ahlawat, Reena Chauhan, Anil Kumar, Ram Singh, Ashwani Kumar. In vitro and field efficacy of fungicides against sheath blight of rice and post-harvest fungicide residue in soil, husk, and brown rice using gas chromatography-tandem mass spectrometry. Environmental monitoring and assessment. 2018 Aug; 190(9):503. doi: 10.1007/s10661-018-6897-7. [PMID: 30088099]
  • Ya Wang, Chaonan Li, Yuxiang Wang, Ying Zhang, Xiaogang Li. Compound pesticide controlled release system based on the mixture of poly(butylene succinate) and PLA. Journal of microencapsulation. 2018 Aug; 35(5):494-503. doi: 10.1080/02652048.2018.1538265. [PMID: 30395751]
  • Sri Noegrohati, Elan Hernadi, Syanti Asviastuti. Matrix Effect Evaluation and Method Validation of Azoxystrobin and Difenoconazole Residues in Red Flesh Dragon Fruit (Hylocereus polyrhizus) Matrices Using QuEChERS Sample Preparation Methods Followed by LC-MS/MS Determination. Bulletin of environmental contamination and toxicology. 2018 Jun; 100(6):821-826. doi: 10.1007/s00128-018-2317-5. [PMID: 29602949]
  • Lauana Pellanda de Souza, Lêda Rita D'Antonino Faroni, Fernanda Fernandes Heleno, Frederico Garcia Pinto, Maria Eliana Lopes Ribeiro de Queiroz, Lucas Henrique Figueiredo Prates. Ozone treatment for pesticide removal from carrots: Optimization by response surface methodology. Food chemistry. 2018 Mar; 243(?):435-441. doi: 10.1016/j.foodchem.2017.09.134. [PMID: 29146362]
  • Siwei Wang, Yanping Liu, Haibin Sun, Lanjuan DU, Nengli Xu. [Determination of myclobutanil and difenoconazole residues in pollen and honey of litchi by high performance liquid chromatography-tandem mass spectrometry]. Se pu = Chinese journal of chromatography. 2018 Jan; 36(1):17-22. doi: 10.3724/sp.j.1123.2017.09034. [PMID: 29582608]
  • Miaomiao Teng, Wentao Zhu, Dezhen Wang, Suzhen Qi, Yao Wang, Jin Yan, Kai Dong, Mingqi Zheng, Chengju Wang. Metabolomics and transcriptomics reveal the toxicity of difenoconazole to the early life stages of zebrafish (Danio rerio). Aquatic toxicology (Amsterdam, Netherlands). 2018 Jan; 194(?):112-120. doi: 10.1016/j.aquatox.2017.11.009. [PMID: 29175743]
  • Ofir Degani, Shlomit Dor, Daniel Movshowitz, Eyal Fraidman, Onn Rabinovitz, Shaul Graph. Effective chemical protection against the maize late wilt causal agent, Harpophora maydis, in the field. PloS one. 2018; 13(12):e0208353. doi: 10.1371/journal.pone.0208353. [PMID: 30562344]
  • Yan-Hong Shi, Jin-Jing Xiao, Rong-Peng Feng, Yu-Ying Liu, Min Liao, Xiang-Wei Wu, Ri-Mao Hua, Hai-Qun Cao. Factors Affecting the Bioaccessibility and Intestinal Transport of Difenoconazole, Hexaconazole, and Spirodiclofen in Human Caco-2 Cells Following in Vitro Digestion. Journal of agricultural and food chemistry. 2017 Oct; 65(41):9139-9146. doi: 10.1021/acs.jafc.7b02781. [PMID: 28915046]
  • Jing Ge, Kai Cui, Huangqian Yan, Yong Li, Yangyang Chai, Xianjin Liu, Jiangfeng Cheng, Xiangyang Yu. Uptake and translocation of imidacloprid, thiamethoxam and difenoconazole in rice plants. Environmental pollution (Barking, Essex : 1987). 2017 Jul; 226(?):479-485. doi: 10.1016/j.envpol.2017.04.043. [PMID: 28454637]
  • Ewa Szpyrka, Stanisław Walorczyk. Dissipation of difenoconazole in apples used for production of baby food. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes. 2017 Feb; 52(2):131-137. doi: 10.1080/03601234.2016.1248141. [PMID: 27820667]
  • Xiaocui Dong, Yan Li, Lemeng Zhang, Zhenghong Zuo, Chonggang Wang, Meng Chen. Influence of difenoconazole on lipid metabolism in marine medaka (Oryzias melastigma). Ecotoxicology (London, England). 2016 Jul; 25(5):982-90. doi: 10.1007/s10646-016-1655-5. [PMID: 27112457]
  • Xiyan Mu, Tingting Chai, Kai Wang, Lizhen Zhu, Ying Huang, Gongming Shen, Yingren Li, Xuefeng Li, Chengju Wang. The developmental effect of difenoconazole on zebrafish embryos: A mechanism research. Environmental pollution (Barking, Essex : 1987). 2016 May; 212(?):18-26. doi: 10.1016/j.envpol.2016.01.035. [PMID: 26840512]
  • Min He, Chunhong Jia, Ercheng Zhao, Li Chen, Pingzhong Yu, Junjie Jing, Yongquan Zheng. Concentrations and dissipation of difenoconazole and fluxapyroxad residues in apples and soil, determined by ultrahigh-performance liquid chromatography electrospray ionization tandem mass spectrometry. Environmental science and pollution research international. 2016 Mar; 23(6):5618-26. doi: 10.1007/s11356-015-5750-6. [PMID: 26578373]
  • Beth A Polidoro, Matthew J Morra. An ecological risk assessment of pesticides and fish kills in the Sixaola watershed, Costa Rica. Environmental science and pollution research international. 2016 Mar; 23(6):5983-91. doi: 10.1007/s11356-016-6144-0. [PMID: 26832877]
  • Mudasir Bhat, Ashraf Alam Wani, Malik Mukhtar, Asma Sherwani, Arif Hussain Bhat, Abid Showkat. Dissipation patterns of the fungicide difenoconazole (25\% EC) in apples grown in Kashmir, India. Environmental monitoring and assessment. 2015 Jul; 187(7):398. doi: 10.1007/s10661-015-4625-0. [PMID: 26038317]
  • Caixia Sun, Tao Cang, Zhiwei Wang, Xinquan Wang, Ruixian Yu, Qiang Wang, Xueping Zhao. Degradation of three fungicides following application on strawberry and a risk assessment of their toxicity under greenhouse conditions. Environmental monitoring and assessment. 2015 May; 187(5):303. doi: 10.1007/s10661-015-4539-x. [PMID: 25925157]
  • Xiyan Mu, Tingting Chai, Kai Wang, Jie Zhang, Lizhen Zhu, Xuefeng Li, Chengju Wang. Occurrence and origin of sensitivity toward difenoconazole in zebrafish (Danio reio) during different life stages. Aquatic toxicology (Amsterdam, Netherlands). 2015 Mar; 160(?):57-68. doi: 10.1016/j.aquatox.2015.01.001. [PMID: 25621397]
  • K Heungens, E Pauwels. EFFICACY OF FUNGICIDES AGAINST CALONECTRIA PAUCIRAMOSA IN POT AZALEA. Communications in agricultural and applied biological sciences. 2015; 80(3):523-32. doi: . [PMID: 27141747]
  • Magdalena Słowik-Borowiec, Ewa Szpyrka, Julian Rupar, Aneta Matyaszek, Magdalena Podbielska. Pesticide residues in stone fruits from the south-eastern region of Poland in 2012-2104. Roczniki Panstwowego Zakladu Higieny. 2015; 66(3):211-6. doi: . [PMID: 26400116]
  • Sherif H Abd-Alrahman, Manal Ea Elhalwagy, Gamila Ahmed Kotb, Hoda Farid, Ahmed Ag Farag, Hossam M Draz, Ahmed M Isa, S Sabico. Exposure to difenoconazole, diclofop-methyl alone and combination alters oxidative stress and biochemical parameters in albino rats. International journal of clinical and experimental medicine. 2014; 7(10):3637-46. doi: . [PMID: 25419412]
  • Jordana Alves Ferreira, Luís Fabrício Santana Santos, Nicaellen Roberta da Silva Souza, Sandro Navickiene, Frederico Alberto de Oliveira, Viviane Talamini. MSPD sample preparation approach for reversed-phase liquid chromatographic analysis of pesticide residues in stem of coconut palm. Bulletin of environmental contamination and toxicology. 2013 Aug; 91(2):160-4. doi: 10.1007/s00128-013-1018-3. [PMID: 23722654]
  • Fengshou Dong, Jing Li, Bezhan Chankvetadze, Yongpu Cheng, Jun Xu, Xingang Liu, Yuanbo Li, Xiu Chen, Carlo Bertucci, Daniele Tedesco, Riccardo Zanasi, Yongquan Zheng. Chiral triazole fungicide difenoconazole: absolute stereochemistry, stereoselective bioactivity, aquatic toxicity, and environmental behavior in vegetables and soil. Environmental science & technology. 2013 Apr; 47(7):3386-94. doi: 10.1021/es304982m. [PMID: 23451708]
  • Aneta Matyaszek, Ewa Szpyrka, Magdalena Podbielska, Magdalena Słowik-Borowiec, Anna Kurdziel. Pesticide residues in berries harvested from South-Eastern Poland (2009-2011). Roczniki Panstwowego Zakladu Higieny. 2013; 64(1):25-9. doi: . [PMID: 23789309]
  • K Wang, J X Wu, H Y Zhang. Dissipation of difenoconazole in rice, paddy soil, and paddy water under field conditions. Ecotoxicology and environmental safety. 2012 Dec; 86(?):111-5. doi: 10.1016/j.ecoenv.2012.08.026. [PMID: 23062559]
  • Caixia Sun, Hu Zhang, Tao Tang, Mingrong Qian, Yuwei Yuan, Zhiheng Zhang. Comparison of greenhouse and field degradation behaviour of isoprocarb, hexaflumuron and difenoconazole in Perilla frutescens. Bulletin of environmental contamination and toxicology. 2012 Oct; 89(4):868-72. doi: 10.1007/s00128-012-0765-x. [PMID: 22872377]
  • Jing Li, Fengshou Dong, Youpu Cheng, Xingang Liu, Jun Xu, Yuanbo Li, Xiu Chen, Zhiqiang Kong, Yongquan Zheng. Simultaneous enantioselective determination of triazole fungicide difenoconazole and its main chiral metabolite in vegetables and soil by normal-phase high-performance liquid chromatography. Analytical and bioanalytical chemistry. 2012 Oct; 404(6-7):2017-31. doi: 10.1007/s00216-012-6240-z. [PMID: 22885971]
  • Yingzi Yun, Fangwei Yu, Ning Wang, Huaigu Chen, Yanni Yin, Zhonghua Ma. Sensitivity to silthiofam, tebuconazole and difenoconazole of Gaeumannomyces graminis var. tritici isolates from China. Pest management science. 2012 Aug; 68(8):1156-63. doi: 10.1002/ps.3277. [PMID: 22411909]
  • Hu Zhang, Mingrong Qian, Xinquan Wang, Xiangyun Wang, Hao Xu, Qiang Wang, Minghua Wang. HPLC-MS/MS enantioseparation of triazole fungicides using polysaccharide-based stationary phases. Journal of separation science. 2012 Apr; 35(7):773-81. doi: 10.1002/jssc.201100889. [PMID: 22532344]
  • Emily E Pfeufer, Henry K Ngugi. Orchard factors associated with resistance and cross resistance to sterol demethylation inhibitor fungicides in populations of Venturia inaequalis from Pennsylvania. Phytopathology. 2012 Mar; 102(3):272-82. doi: 10.1094/phyto-04-11-0117. [PMID: 22007614]
  • Melvin D Bolton, Keshav Birla, Viviana Rivera-Varas, Kurt D Rudolph, Gary A Secor. Characterization of CbCyp51 from field isolates of Cercospora beticola. Phytopathology. 2012 Mar; 102(3):298-305. doi: 10.1094/phyto-07-11-0212. [PMID: 22085297]
  • Vitaly Dzhavakhiya, Larisa Shcherbakova, Yulia Semina, Natalia Zhemchuzhina, Bruce Campbell. Chemosensitization of plant pathogenic fungi to agricultural fungicides. Frontiers in microbiology. 2012; 3(?):87. doi: 10.3389/fmicb.2012.00087. [PMID: 22408641]
  • Eveline Snelders, Simone M T Camps, Anna Karawajczyk, Gijs Schaftenaar, Gert H J Kema, Henrich A van der Lee, Corné H Klaassen, Willem J G Melchers, Paul E Verweij. Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus. PloS one. 2012; 7(3):e31801. doi: 10.1371/journal.pone.0031801. [PMID: 22396740]
  • Rubik J Sommerhalder, Bruce A McDonald, Fabio Mascher, Jiasui Zhan. Effect of hosts on competition among clones and evidence of differential selection between pathogenic and saprophytic phases in experimental populations of the wheat pathogen Phaeosphaeria nodorum. BMC evolutionary biology. 2011 Jul; 11(?):188. doi: 10.1186/1471-2148-11-188. [PMID: 21718545]
  • Guan-Ping Yu, Liang-Zhong Xu, Xu Yi, Wen-Zhao Bi, Qi Zhu, Zhi-Wei Zhai. Synthesis and fungicidal evaluation of 2-arylphenyl ether-3-(1H-1,2,4-triazol-1-yl)propan-2-ol derivatives. Journal of agricultural and food chemistry. 2009 Jun; 57(11):4854-60. doi: 10.1021/jf900222s. [PMID: 19422214]
  • Yuxiu Liu, Shaohua Liu, Yonghong Li, Haibin Song, Qingmin Wang. Synthesis and biological evaluation of arylhydrazinocyanoacrylates and N-aryl pyrazolecarboxylates. Bioorganic & medicinal chemistry letters. 2009 Jun; 19(11):2953-6. doi: 10.1016/j.bmcl.2009.04.048. [PMID: 19406637]
  • Hai-Tao Liu, Hong-Ke Liu, Jian Xue, You-Lan Zheng, Feng Chen, Ben-Gang Zhang. [Study on safe use of 10\% difenoconazole in GAP of Gentiana scabra]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2008 Sep; 33(18):2096-8. doi: ". [PMID: 19160793]
  • B A Fraaije, H J Cools, S-H Kim, J Motteram, W S Clark, J A Lucas. A novel substitution I381V in the sterol 14alpha-demethylase (CYP51) of Mycosphaerella graminicola is differentially selected by azole fungicides. Molecular plant pathology. 2007 May; 8(3):245-54. doi: 10.1111/j.1364-3703.2007.00388.x. [PMID: 20507496]
  • Elislene Dias Drummond, Juliana Quero Reimão, Amanda Latercia Tranches Dias, Antônio Martins de Siqueira. [Behaviour azole fungicide and fluconazole in Cryptococcus neoformans clinical and environmental isolates]. Revista da Sociedade Brasileira de Medicina Tropical. 2007 Mar; 40(2):209-11. doi: 10.1590/s0037-86822007000200012. [PMID: 17568890]
  • O Iordanescu, R Micu, I Angelache, N Nicorici, C Calin, A Blidaru, G Simeria, E Draganescu, J Helsen, A Verberne, R Aerts. Management of apple scab (Venturia inaequalis) in Romania based on electronic warnings. Communications in agricultural and applied biological sciences. 2007; 72(4):1003-9. doi: ". [PMID: 18396842]
  • Richard H Bromilow, Renato F de Carvalho, Avis A Evans, Peter H Nicholls. Behavior of pesticides in sediment/water systems in outdoor mesocosms. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes. 2006; 41(1):1-16. doi: 10.1080/03601230500234844. [PMID: 16393891]
  • Mikio Tsuda, Hiroyuki Itoh, Shigehiro Kato. Evaluation of the systemic activity of simeconazole in comparison with that of other DMI fungicides. Pest management science. 2004 Sep; 60(9):875-80. doi: 10.1002/ps.907. [PMID: 15382501]