brasilin (BioDeep_00001875897)

Main id: BioDeep_00000000345

 

PANOMIX_OTCML-2023


代谢物信息卡片


(+)-BRAZILIN

化学式: C16H14O5 (286.0841)
中文名称: 巴西苏木素
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1C2=CC(=C(C=C2C3C1(COC4=C3C=CC(=C4)O)O)O)O
InChI: InChI=1S/C16H14O5/c17-9-1-2-10-14(4-9)21-7-16(20)6-8-3-12(18)13(19)5-11(8)15(10)16/h1-5,15,17-20H,6-7H2

描述信息

Brazilin is a red dye precursor obtained from the heartwood of several species of tropical hardwoods. Brazilin inhibits the cells proliferation, promotes apoptosis, and induces autophagy through the AMPK/mTOR pathway. Brazilin shows chondroprotective and anti-inflammatory activities[1][2][3].
Brazilin is a red dye precursor obtained from the heartwood of several species of tropical hardwoods. Brazilin inhibits the cells proliferation, promotes apoptosis, and induces autophagy through the AMPK/mTOR pathway. Brazilin shows chondroprotective and anti-inflammatory activities[1][2][3].

同义名列表

4 个代谢物同义名

(+)-BRAZILIN; brasilin; Brazilin; Brazilin



数据库引用编号

8 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

4 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 7 ANXA5, BCL2, CASP3, NOS2, PTGS2, SNCA, SQSTM1
Peripheral membrane protein 3 ANXA5, GORASP1, PTGS2
Endoplasmic reticulum membrane 3 BCL2, HMOX1, PTGS2
Cytoplasmic vesicle, autophagosome 1 SQSTM1
Nucleus 8 BCL2, CASP3, GABPA, HMOX1, NOS2, PARP1, SNCA, SQSTM1
autophagosome 2 MAP1LC3A, SQSTM1
cytosol 10 ANXA5, BCL2, CASP3, HMOX1, MAP1LC3A, NOS2, PARP1, PRKCQ, SNCA, SQSTM1
nuclear body 1 PARP1
nucleoplasm 6 CASP3, GABPA, HMOX1, NOS2, PARP1, SQSTM1
Cell membrane 1 TNF
Lipid-anchor 1 MAP1LC3A
Cytoplasmic side 2 GORASP1, HMOX1
Cell projection, axon 1 SNCA
Golgi apparatus membrane 1 GORASP1
Synapse 1 SNCA
cell cortex 1 SNCA
cell surface 1 TNF
glutamatergic synapse 3 CASP3, MAP1LC3A, SQSTM1
Golgi apparatus 1 GORASP1
Golgi membrane 2 GORASP1, INS
growth cone 1 SNCA
neuronal cell body 3 CASP3, SNCA, TNF
postsynapse 1 SNCA
sarcolemma 1 ANXA5
Cytoplasm, cytosol 3 NOS2, PARP1, SQSTM1
Lysosome 2 SNCA, SQSTM1
plasma membrane 5 F2, NOS2, PRKCQ, SNCA, TNF
synaptic vesicle membrane 1 SNCA
Membrane 5 ANXA5, BCL2, HMOX1, PARP1, SNCA
axon 1 SNCA
caveola 1 PTGS2
extracellular exosome 3 ANXA5, F2, SQSTM1
endoplasmic reticulum 4 BCL2, HMOX1, PTGS2, SQSTM1
extracellular space 7 F2, HMOX1, IL2, IL6, INS, SNCA, TNF
perinuclear region of cytoplasm 3 HMOX1, NOS2, SNCA
mitochondrion 4 BCL2, PARP1, SNCA, SQSTM1
protein-containing complex 4 BCL2, PARP1, PTGS2, SNCA
intracellular membrane-bounded organelle 2 MAP1LC3A, SQSTM1
Microsome membrane 1 PTGS2
postsynaptic density 1 CASP3
Secreted 5 F2, IL2, IL6, INS, SNCA
extracellular region 7 ANXA5, F2, IL2, IL6, INS, SNCA, TNF
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 2 BCL2, HMOX1
transcription regulator complex 1 PARP1
centriolar satellite 1 PRKCQ
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 2 ANXA5, TNF
actin cytoskeleton 1 SNCA
cytoplasmic vesicle 1 SQSTM1
nucleolus 1 PARP1
Cytoplasm, P-body 1 NOS2
P-body 2 NOS2, SQSTM1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Cytoplasm, perinuclear region 1 NOS2
Membrane raft 1 TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton 1 MAP1LC3A
focal adhesion 1 ANXA5
microtubule 1 MAP1LC3A
cis-Golgi network 1 GORASP1
Peroxisome 1 NOS2
peroxisomal matrix 1 NOS2
Nucleus, PML body 1 SQSTM1
PML body 1 SQSTM1
collagen-containing extracellular matrix 2 ANXA5, F2
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Cytoplasm, myofibril, sarcomere 1 SQSTM1
Late endosome 2 MAP1LC3A, SQSTM1
sarcomere 1 SQSTM1
Zymogen granule membrane 1 ANXA5
neuron projection 1 PTGS2
chromatin 2 GABPA, PARP1
Cytoplasmic vesicle, autophagosome membrane 1 MAP1LC3A
autophagosome membrane 1 MAP1LC3A
phagocytic cup 1 TNF
supramolecular fiber 1 SNCA
Chromosome 1 PARP1
Nucleus, nucleolus 1 PARP1
nuclear replication fork 1 PARP1
chromosome, telomeric region 1 PARP1
blood microparticle 1 F2
sperm midpiece 1 SQSTM1
organelle membrane 1 MAP1LC3A
site of double-strand break 1 PARP1
nuclear envelope 1 PARP1
Endomembrane system 1 MAP1LC3A
endosome lumen 1 INS
phagophore assembly site 1 SQSTM1
myelin sheath 1 BCL2
secretory granule lumen 1 INS
Golgi lumen 2 F2, INS
endoplasmic reticulum lumen 4 F2, IL6, INS, PTGS2
axon terminus 1 SNCA
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 2 GORASP1, INS
immunological synapse 1 PRKCQ
aggresome 2 PRKCQ, SQSTM1
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
Single-pass type IV membrane protein 1 HMOX1
vesicle membrane 1 ANXA5
protein-DNA complex 1 PARP1
death-inducing signaling complex 1 CASP3
intracellular non-membrane-bounded organelle 1 SQSTM1
Lewy body 1 SQSTM1
Preautophagosomal structure 1 SQSTM1
site of DNA damage 1 PARP1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
cortical cytoskeleton 1 NOS2
Autolysosome 2 MAP1LC3A, SQSTM1
inclusion body 2 SNCA, SQSTM1
interleukin-6 receptor complex 1 IL6
endothelial microparticle 1 ANXA5
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
BAD-BCL-2 complex 1 BCL2
amphisome 1 SQSTM1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Shengxuan Li, Kun Wang, Kai Jiang, Dongmei Xing, Ruhua Deng, Yue Xu, Yue Ding, Huida Guan, Lin-Lin Chen, Dandan Wang, Yang Chen, Wenbo Bu, Yaozu Xiang. Brazilin-Ce nanoparticles attenuate inflammation by de/anti-phosphorylation of IKKβ. Biomaterials. 2024 Mar; 305(?):122466. doi: 10.1016/j.biomaterials.2023.122466. [PMID: 38184960]
  • Zhan Cui, Fang-Yan Guo, Li Li, Fuping Lu, Cheng-Hua Jin, Xiangming Wang, Fufeng Liu. Brazilin-7-acetate, a novel potential drug of Parkinson's disease, hinders the formation of α-synuclein fibril, mitigates cytotoxicity, and decreases oxidative stress. European journal of medicinal chemistry. 2024 Jan; 264(?):115965. doi: 10.1016/j.ejmech.2023.115965. [PMID: 38056304]
  • Chaiwat Arjin, Suriya Tateing, Nuttha Potapohn, Jirapat Arunorat, Kidsadagon Pringproa, Chompunut Lumsangkul, Mintra Seel-Audom, Warintorn Ruksiriwanich, Korawan Sringarm. Brazilin from Caesalpinia sappan inhibits viral infection against PRRSV via CD163ΔSRCR5 MARC-145 cells: an in silico and in vitro studies. Scientific reports. 2022 12; 12(1):21595. doi: 10.1038/s41598-022-26206-x. [PMID: 36517668]
  • Jong Il Park, Sung Jae Kim, Yong Jae Kim, Seung Ji Lee. Protective role of Caesalpinia sappan extract and its main component brazilin against blue light-induced damage in human fibroblasts. Journal of cosmetic dermatology. 2022 Dec; 21(12):7025-7034. doi: 10.1111/jocd.15354. [PMID: 36057446]
  • Biji Chatterjee, Krishna Ghosh, Aishwarya Swain, Kiran Kumar Nalla, Haritha Ravula, Archana Pan, Santosh R Kanade. The phytochemical brazilin suppress DNMT1 expression by recruiting p53 to its promoter resulting in the epigenetic restoration of p21 in MCF7cells. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2022 Jan; 95(?):153885. doi: 10.1016/j.phymed.2021.153885. [PMID: 34920321]
  • Anna Goc, Waldemar Sumera, Matthias Rath, Aleksandra Niedzwiecki. Phenolic compounds disrupt spike-mediated receptor-binding and entry of SARS-CoV-2 pseudo-virions. PloS one. 2021; 16(6):e0253489. doi: 10.1371/journal.pone.0253489. [PMID: 34138966]
  • Sukanya Settharaksa, Chaowalit Monton, Laksana Charoenchai. Optimization of Caesalpinia sappan L. heartwood extraction procedure to obtain the highest content of brazilin and greatest antibacterial activity. Journal of integrative medicine. 2019 Sep; 17(5):351-358. doi: 10.1016/j.joim.2019.05.003. [PMID: 31130448]
  • Yameng Jia, Xiaozhe Tong, Jingyan Fan. [Effect of brazilin on apoptosis and autophagy of tongue cancer Tca8113 cells and its molecular mechanism]. Nan fang yi ke da xue xue bao = Journal of Southern Medical University. 2019 Mar; 39(3):351-356. doi: 10.12122/j.issn.1673-4254.2019.03.14. [PMID: 31068315]
  • Xi Wang, Zi Xiu, Yuru Du, Yiming Li, Juxiang Yang, Yuan Gao, Fangfang Li, Xi Yin, Haishui Shi. Brazilin Treatment Produces Antidepressant- and Anxiolytic-Like Effects in Mice. Biological & pharmaceutical bulletin. 2019; 42(8):1268-1274. doi: 10.1248/bpb.b18-00882. [PMID: 31366864]
  • Daniela Weinmann, Monika Mueller, Sonja M Walzer, Gerhard M Hobusch, Richard Lass, Claudia Gahleitner, Helmut Viernstein, Reinhard Windhager, Stefan Toegel. Brazilin blocks catabolic processes in human osteoarthritic chondrocytes via inhibition of NFKB1/p50. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 2018 09; 36(9):2431-2438. doi: 10.1002/jor.24013. [PMID: 29704279]
  • Hyung Seo Hwang, Joong Hyun Shim. Brazilin and Caesalpinia sappan L. extract protect epidermal keratinocytes from oxidative stress by inducing the expression of GPX7. Chinese journal of natural medicines. 2018 Mar; 16(3):203-209. doi: 10.1016/s1875-5364(18)30048-7. [PMID: 29576056]
  • Rinrampai Puttipan, Sunee Chansakaow, Sakornrat Khongkhunthian, Siriporn Okonogi. Caesalpinia sappan: A promising natural source of antimicrobial agent for inhibition of cariogenic bacteria. Drug discoveries & therapeutics. 2018 ; 12(4):197-205. doi: 10.5582/ddt.2018.01035. [PMID: 30224592]
  • Zhan-Yuan Li, Yu Zheng, Yan Chen, Min Pan, Shu-Bei Zheng, Wen Huang, Zhi-Hong Zhou, Han-Yang Ye. Brazilin Ameliorates Diabetic Nephropathy and Inflammation in db/db Mice. Inflammation. 2017 Aug; 40(4):1365-1374. doi: 10.1007/s10753-017-0579-4. [PMID: 28497277]
  • Eun Byeol Lee, Ming Ming Xing, Dae Keun Kim. Lifespan-extending and stress resistance properties of brazilin from Caesalpinia sappan in Caenorhabditis elegans. Archives of pharmacal research. 2017 Jul; 40(7):825-835. doi: 10.1007/s12272-017-0920-3. [PMID: 28667441]
  • Yanyan Jia, Jinyi Zhao, Meiyou Liu, Bingling Li, Ying Song, Yuwen Li, Aidong Wen, Lei Shi. Brazilin exerts protective effects against renal ischemia-reperfusion injury by inhibiting the NF-κB signaling pathway. International journal of molecular medicine. 2016 Jul; 38(1):210-6. doi: 10.3892/ijmm.2016.2616. [PMID: 27247107]
  • Watsaka Siriangkhawut, Yaowalak Khanhuathon, Piyanete Chantiratikul, Kraingkrai Ponhong, Kate Grudpan. A Green Sequential Injection Spectrophotometric Approach Using Natural Reagent Extracts from Heartwood of Ceasalpinia sappan Linn. for Determination of Aluminium. Analytical sciences : the international journal of the Japan Society for Analytical Chemistry. 2016; 32(3):329-36. doi: 10.2116/analsci.32.329. [PMID: 26960614]
  • Ying-Yang Xu, Jia Yin. Contact dermatitis caused by brazilin in Caesalpinia sappan. Contact dermatitis. 2015 Sep; 73(3):189-90. doi: 10.1111/cod.12412. [PMID: 25960163]
  • Supinya Tewtrakul, Pattreeya Tungcharoen, Teeratad Sudsai, Chatchanok Karalai, Chanita Ponglimanont, Orapun Yodsaoue. Antiinflammatory and Wound Healing Effects of Caesalpinia sappan L. Phytotherapy research : PTR. 2015 Jun; 29(6):850-6. doi: 10.1002/ptr.5321. [PMID: 25760294]
  • Golam Mezbah Uddin, Chul Young Kim, Donghwa Chung, Kyung-A Kim, Sang Hoon Jung. One-step isolation of sappanol and brazilin from Caesalpinia sappan and their effects on oxidative stress-induced retinal death. BMB reports. 2015 May; 48(5):289-94. doi: 10.5483/bmbrep.2015.48.5.189. [PMID: 25248564]
  • Eui-Gil Jung, Kook-Il Han, Seon Gu Hwang, Hyun-Jung Kwon, Bharat Bhusan Patnaik, Yong Hyun Kim, Man-Deuk Han. Brazilin isolated from Caesalpinia sappan L. inhibits rheumatoid arthritis activity in a type-II collagen induced arthritis mouse model. BMC complementary and alternative medicine. 2015 Apr; 15(?):124. doi: 10.1186/s12906-015-0648-x. [PMID: 25896410]
  • S Ananth, P Vivek, G Saravana Kumar, P Murugakoothan. Performance of Caesalpinia sappan heartwood extract as photo sensitizer for dye sensitized solar cells. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2015 Feb; 137(?):345-50. doi: 10.1016/j.saa.2014.08.083. [PMID: 25233024]
  • Nilesh Prakash Nirmal, Pharkphoom Panichayupakaranant. Antioxidant, antibacterial, and anti-inflammatory activities of standardized brazilin-rich Caesalpinia sappan extract. Pharmaceutical biology. 2015; 53(9):1339-43. doi: 10.3109/13880209.2014.982295. [PMID: 25864864]
  • Seong-Hoon Kim, Ha-Na Lyu, Ye Seul Kim, Yong Hyun Jeon, Wanil Kim, Sangjune Kim, Jong-Kwan Lim, Ho Won Lee, Nam-In Baek, Kwan-Yong Choi, Jaetae Lee, Kyong-Tai Kim. Brazilin Isolated from Caesalpinia sappan suppresses nuclear envelope reassembly by inhibiting barrier-to-autointegration factor phosphorylation. The Journal of pharmacology and experimental therapeutics. 2015 Jan; 352(1):175-84. doi: 10.1124/jpet.114.218792. [PMID: 25369797]
  • Nilesh Prakash Nirmal, Pharkphoom Panichayupakaranant. Anti-Propionibacterium acnes assay-guided purification of brazilin and preparation of brazilin rich extract from Caesalpinia sappan heartwood. Pharmaceutical biology. 2014 Sep; 52(9):1204-7. doi: 10.3109/13880209.2014.884607. [PMID: 24963948]
  • Qing Zhang, Jing-Li Liu, Xiao-Man Qi, Chun-Ting Qi, Qiang Yu. Inhibitory activities of Lignum Sappan extractives on growth and growth-related signaling of tumor cells. Chinese journal of natural medicines. 2014 Aug; 12(8):607-12. doi: 10.1016/s1875-5364(14)60092-3. [PMID: 25156286]
  • G Y Zuo, Z Q Han, X Y Hao, J Han, Z S Li, G C Wang. Synergy of aminoglycoside antibiotics by 3-Benzylchroman derivatives from the Chinese drug Caesalpinia sappan against clinical methicillin-resistant Staphylococcus aureus (MRSA). Phytomedicine : international journal of phytotherapy and phytopharmacology. 2014 Jun; 21(7):936-41. doi: 10.1016/j.phymed.2014.03.004. [PMID: 24703330]
  • Thanasekaran Jayakumar, Chao-Chien Chang, Shoei-Loong Lin, Yung-Kai Huang, Chien-Ming Hu, Antoinet Ramola Elizebeth, Shih-Chang Lin, Cheuk-Sing Choy. Brazilin ameliorates high glucose-induced vascular inflammation via inhibiting ROS and CAMs production in human umbilical vein endothelial cells. BioMed research international. 2014; 2014(?):403703. doi: 10.1155/2014/403703. [PMID: 24716195]
  • Jia Yan-yan, Li Yan, Song Ying, Zhao Jinyi, Dou Fang, Sun Yuan, Wen Ai-dong. A simple high-performance liquid chromatographic method for the determination of brazilin and its application to a pharmacokinetic study in rats. Journal of ethnopharmacology. 2014; 151(1):108-13. doi: 10.1016/j.jep.2013.08.054. [PMID: 24095700]
  • Yanyan Jia, Hujun Wang, Ying Song, Kai Liu, Fang Dou, Chengtao Lu, Jie Ge, Ningjuan Chi, Yi Ding, Wenli Hai, Aidong Wen. Application of a liquid chromatography-tandem mass spectrometry method to the pharmacokinetics, tissue distribution and excretion studies of brazilin in rats. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2013 Jul; 931(?):61-7. doi: 10.1016/j.jchromb.2013.05.017. [PMID: 23777611]
  • Xiao-Zhe Tong, Hui Zhu, Yan Shi, Hai-Tao Xu, Biao Wang, Jiu-Han Zhao. An LC/MS/MS method for simultaneous quantitation of two homoisoflavones: protosappanin B and brazilin with hypoglycemic activity in rat plasma and its application to a comparative pharmacokinetic study in normal and streptozotocin-treated rats. Journal of ethnopharmacology. 2013 Jul; 148(2):682-90. doi: 10.1016/j.jep.2013.05.029. [PMID: 23707335]
  • Zhipeng Deng, Xin Wang, Huanxin Zhao, Shuxiang Cui, Qingqiang Yao, Hong Bai. A validated LC-MS/MS method for rapid determination of brazilin in rat plasma and its application to a pharmacokinetic study. Biomedical chromatography : BMC. 2013 Jun; 27(6):802-6. doi: 10.1002/bmc.2863. [PMID: 23303567]
  • Dipita Bhakta, Sajitha Lulu, G Jayaraman, S Babu, Ramamoorthy Siva. Interaction of plant pigment brazilin with synthetic and natural DNA: spectroscopic and in silico perspective. Interdisciplinary sciences, computational life sciences. 2013 Mar; 5(1):53-9. doi: 10.1007/s12539-013-0148-y. [PMID: 23605640]
  • Yi Chang, Steven Kuan-Hua Huang, Wan-Jung Lu, Chi-Li Chung, Wei-Lin Chen, Shun-Hua Lu, Kuan-Hung Lin, Joen-Rong Sheu. Brazilin isolated from Caesalpinia sappan L. acts as a novel collagen receptor agonist in human platelets. Journal of biomedical science. 2013 Jan; 20(?):4. doi: 10.1186/1423-0127-20-4. [PMID: 23350663]
  • Pingping Xu, Shuhong Guan, Ruihong Feng, Renneng Tang, Dean Guo. Separation of four homoisoflavonoids from Caesalpinia sappan by high-speed counter-current chromatography. Phytochemical analysis : PCA. 2012 May; 23(3):228-31. doi: 10.1002/pca.1347. [PMID: 21853494]
  • Yohei Sasaki, Maemi Suzuki, Takayuki Matsumoto, Tomokazu Hosokawa, Tsuneo Kobayashi, Katsuo Kamata, Seiji Nagumo. Vasorelaxant activity of Sappan Lignum constituents and extracts on rat aorta and mesenteric artery. Biological & pharmaceutical bulletin. 2010; 33(9):1555-60. doi: 10.1248/bpb.33.1555. [PMID: 20823574]
  • Yohei Sasaki, Tomokazu Hosokawa, Masahiro Nagai, Seiji Nagumo. In vitro study for inhibition of NO production about constituents of Sappan Lignum. Biological & pharmaceutical bulletin. 2007 Jan; 30(1):193-6. doi: 10.1248/bpb.30.193. [PMID: 17202686]
  • Byung-Min Choi, Ju-A Lee, Shang Shang Gao, Sang Yong Eun, Young-Sup Kim, Shi-Yong Ryu, Yeon-Hee Choi, Raekil Park, Dae Young Kwon, Bok-Ryang Kim. Brazilin and the extract from Caesalpinia sappan L. protect oxidative injury through the expression of heme oxygenase-1. BioFactors (Oxford, England). 2007; 30(3):149-57. doi: 10.1002/biof.5520300302. [PMID: 18525109]
  • Hong-Xi Xu, Song F Lee. The antibacterial principle of Caesalpina sappan. Phytotherapy research : PTR. 2004 Aug; 18(8):647-51. doi: 10.1002/ptr.1524. [PMID: 15476302]
  • Chien Ming Hu, Jaw Jou Kang, Chen Chen Lee, Ching Hao Li, Jiunn Wang Liao, Yu Wen Cheng. Induction of vasorelaxation through activation of nitric oxide synthase in endothelial cells by brazilin. European journal of pharmacology. 2003 May; 468(1):37-45. doi: 10.1016/s0014-2999(03)01639-x. [PMID: 12729841]
  • Woongchon Mar, Hyun-Tai Lee, Kang-Hoon Je, Hye-Young Choi, Eun-Kyoung Seo. A DNA strand-nicking principle of a higher plant, Caesalpinia sappan. Archives of pharmacal research. 2003 Feb; 26(2):147-50. doi: 10.1007/bf02976661. [PMID: 12643592]
  • Y W Xie, D S Ming, H X Xu, H Dong, P P But. Vasorelaxing effects of Caesalpinia sappan involvement of endogenous nitric oxide. Life sciences. 2000 Sep; 67(15):1913-8. doi: 10.1016/s0024-3205(00)00772-4. [PMID: 11043613]
  • L Y Khil, S S Han, S G Kim, T S Chang, S D Jeon, D S So, C K Moon. Effects of brazilin on GLUT4 recruitment in isolated rat epididymal adipocytes. Biochemical pharmacology. 1999 Dec; 58(11):1705-12. doi: 10.1016/s0006-2952(99)00275-0. [PMID: 10571244]
  • S Y Choi, K M Yang, S D Jeon, J H Kim, L Y Khil, T S Chang, C K Moon. Brazilin modulates immune function mainly by augmenting T cell activity in halothane administered mice. Planta medica. 1997 Oct; 63(5):405-8. doi: 10.1055/s-2006-957722. [PMID: 9342942]
  • C K Moon, S H Lee, M O Lee, S G Kim. Effects of Brazilin on glucose oxidation, lipogenesis and therein involved enzymes in adipose tissues from diabetic KK-mice. Life sciences. 1993; 53(16):1291-7. doi: 10.1016/0024-3205(93)90574-m. [PMID: 8412489]
  • C K Moon, K S Park, S G Kim, H S Won, J H Chung. Brazilin protects cultured rat hepatocytes from BrCCl3-induced toxicity. Drug and chemical toxicology. 1992; 15(1):81-91. doi: 10.3109/01480549209035174. [PMID: 1555525]
  • H Puchtler, S N Meloan, F S Waldrop. Application of current chemical concepts to metal-hematein and -brazilein stains. Histochemistry. 1986; 85(5):353-64. doi: 10.1007/bf00982665. [PMID: 2430916]