5,6-dihydrothymine (BioDeep_00000228910)

Main id: BioDeep_00000001332

 

human metabolite PANOMIX_OTCML-2023


代谢物信息卡片


Dihydro-5-methyl-2,4(1H,3H)-pyrimidinedione

化学式: C5H8N2O2 (128.0586)
中文名称: 二氢朐腺嘧啶, 二氢胸腺嘧啶
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC1CNC(=O)NC1=O
InChI: InChI=1S/C5H8N2O2/c1-3-2-6-5(9)7-4(3)8/h3H,2H2,1H3,(H2,6,7,8,9)

描述信息

Dihydrothymine, also known as 5,6-dihydro-5-methyluracil or 5,6-dihydrothymine, (S)-isomer, is a member of the class of compounds known as hydropyrimidines. Hydropyrimidines are compounds containing a hydrogenated pyrimidine ring (i.e. containing less than the maximum number of double bonds.). Dihydrothymine is soluble (in water) and a very weakly acidic compound (based on its pKa). Dihydrothymine can be found in a number of food items such as hyssop, arrowroot, nopal, and red rice, which makes dihydrothymine a potential biomarker for the consumption of these food products. Dihydrothymine can be found primarily in blood, cerebrospinal fluid (CSF), saliva, and urine, as well as in human prostate tissue. Dihydrothymine exists in all living organisms, ranging from bacteria to humans. In humans, dihydrothymine is involved in the pyrimidine metabolism. Dihydrothymine is also involved in few metabolic disorders, which include beta ureidopropionase deficiency, dihydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and UMP synthase deficiency (orotic aciduria). Moreover, dihydrothymine is found to be associated with beta-ureidopropionase deficiency and dihydropyrimidinase deficiency. Dihydrothymine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Dihydrothymine is an intermediate in the metabolism of thymine . Dihydropyrimidine dehydrogenase catalyzes the reduction of thymine to 5, 6-dihydrothymine then dihydropyrimidinase hydrolyzes 5, 6-dihydrothymine to N-carbamyl-b-alanine. Finally, beta-ureidopropionase catalyzes the conversion of N-carbamyl-b-alanine to beta-alanine. Accumulation of dihydrothymine in the body has been shown to be toxic (T3DB).
COVID info from COVID-19 Disease Map
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
5,6-Dihydro-5-methyluracil (Dihydrothymine), an intermediate breakdown product of thymine, comes from animal or plants. 5,6-Dihydro-5-methyluracil (Dihydrothymine) can be toxic when present at abnormally high levels[1].

同义名列表

12 个代谢物同义名

Dihydro-5-methyl-2,4(1H,3H)-pyrimidinedione; 5-Methyldihydropyrimidine-2,4(1H,3H)-dione; 5-methyl-1,3-diazinane-2,4-dione; 5,6-Dihydrothymine, (S)-isomer; 5,6-Dihydro-5-methyluracil; 5-Methyl-5,6-dihydrouracil; 5-Methyldihydrouracil; 5-Methyl-hydrouracil; 5,6-Dihydrothymine; Dihydrothymine; 5,6-Dihydrothymine; Dihydrothymine



数据库引用编号

13 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(3)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

4 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 7 ALDH1A2, DPYD, HAP1, NEIL1, NMNAT2, POLB, PTPN2
Golgi apparatus, trans-Golgi network membrane 1 HAS3
Endoplasmic reticulum membrane 1 DGAT2
Cytoplasmic vesicle, autophagosome 1 HAP1
Nucleus 9 HAP1, HAS3, LIG4, NEIL1, NTHL1, OGG1, POLB, PTPN2, XRCC1
autophagosome 1 HAP1
cytosol 11 ALDH1A2, DGAT2, DHODH, DPYD, DPYS, HAP1, NEIL1, NMNAT2, OGG1, PTPN2, TYMP
dendrite 1 HAP1
trans-Golgi network 1 NMNAT2
centrosome 2 HAP1, NEIL1
nucleoplasm 9 DHODH, HAP1, LIG4, NEIL1, NTHL1, OGG1, POLB, PTPN2, XRCC1
Cell membrane 1 HAS3
Lipid-anchor 1 NMNAT2
Cell projection, axon 2 HAP1, NMNAT2
Cell projection, growth cone 1 HAP1
Multi-pass membrane protein 2 DGAT2, HAS3
Golgi apparatus membrane 3 HAS3, HS3ST4, NMNAT2
Synapse 1 NMNAT2
Golgi apparatus 2 HAS3, NMNAT2
Golgi membrane 4 HAS3, HS3ST4, INS, NMNAT2
growth cone 1 HAP1
mitochondrial inner membrane 1 DHODH
synaptic vesicle 1 HAP1
Lysosome 1 HAP1
Presynapse 1 HAP1
plasma membrane 3 ENPP2, HAS3, PTPN2
Membrane 5 DGAT2, DHODH, ENPP2, HAS3, PTPN2
axon 1 NMNAT2
extracellular exosome 1 DPYS
endoplasmic reticulum 3 DGAT2, HAP1, PTPN2
extracellular space 2 ENPP2, INS
perinuclear region of cytoplasm 3 ALDH1A2, DGAT2, HAP1
mitochondrion 5 DGAT2, DHODH, HAP1, NTHL1, OGG1
protein-containing complex 2 OGG1, POLB
intracellular membrane-bounded organelle 2 DGAT2, LIG4
Secreted 2 ENPP2, INS
extracellular region 2 ENPP2, INS
Single-pass membrane protein 1 DHODH
mitochondrial matrix 1 OGG1
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 NEIL1
actin cytoskeleton 1 HAP1
dendritic spine 1 HAP1
cytoplasmic vesicle 1 HAP1
nucleolus 2 HAP1, XRCC1
axon cytoplasm 1 HAP1
Early endosome 2 HAP1, HAS3
Single-pass type II membrane protein 1 HS3ST4
Cytoplasm, perinuclear region 1 DGAT2
Mitochondrion inner membrane 1 DHODH
Cytoplasm, cytoskeleton 1 HAP1
microtubule 1 POLB
perinuclear endoplasmic reticulum membrane 1 DGAT2
Cell projection, dendritic spine 1 HAP1
nuclear speck 2 HAP1, OGG1
Late endosome 1 NMNAT2
Cell projection, neuron projection 1 HAP1
chromatin 1 XRCC1
Chromosome 2 NEIL1, XRCC1
cytoskeleton 1 HAP1
centriole 1 HAP1
[Isoform 1]: Endoplasmic reticulum 1 PTPN2
chromosome, telomeric region 3 HAP1, LIG4, XRCC1
Endomembrane system 1 PTPN2
endosome lumen 2 INS, PTPN2
Lipid droplet 1 DGAT2
Cytoplasmic vesicle membrane 1 NMNAT2
Nucleus, nucleoplasm 1 OGG1
Cell projection, dendrite 1 HAP1
Nucleus speckle 1 OGG1
hyaluranon cable 1 HAS3
secretory granule lumen 1 INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 1 INS
nuclear matrix 1 OGG1
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
Nucleus matrix 1 OGG1
endoplasmic reticulum-Golgi intermediate compartment 1 PTPN2
spindle microtubule 1 POLB
condensed chromosome 1 LIG4
site of DNA damage 1 XRCC1
ribosome 1 HAP1
inclusion body 1 HAP1
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle 1 HAP1
ERCC4-ERCC1 complex 1 XRCC1
DNA-dependent protein kinase-DNA ligase 4 complex 1 LIG4
nonhomologous end joining complex 1 LIG4
DNA ligase IV complex 1 LIG4


文献列表

  • Ayshamgul Hasim, Hong Ma, Batur Mamtimin, Abulizi Abudula, Madiniyet Niyaz, Li-Wei Zhang, Juret Anwer, Ilyar Sheyhidin. Revealing the metabonomic variation of EC using ¹H-NMR spectroscopy and its association with the clinicopathological characteristics. Molecular biology reports. 2012 Sep; 39(9):8955-64. doi: 10.1007/s11033-012-1764-z. [PMID: 22736106]
  • Maurice C van Staveren, Barbara Theeuwes-Oonk, Henk Jan Guchelaar, André B P van Kuilenburg, Jan Gerard Maring. Pharmacokinetics of orally administered uracil in healthy volunteers and in DPD-deficient patients, a possible tool for screening of DPD deficiency. Cancer chemotherapy and pharmacology. 2011 Dec; 68(6):1611-7. doi: 10.1007/s00280-011-1661-5. [PMID: 21590448]
  • Le-Le Hu, Chen Chen, Tao Huang, Yu-Dong Cai, Kuo-Chen Chou. Predicting biological functions of compounds based on chemical-chemical interactions. PloS one. 2011; 6(12):e29491. doi: 10.1371/journal.pone.0029491. [PMID: 22220213]
  • André B P van Kuilenburg, Doreen Dobritzsch, Judith Meijer, Rutger Meinsma, Jean-François Benoist, Birgit Assmann, Susanne Schubert, Georg F Hoffmann, Marinus Duran, Maaike C de Vries, Gerd Kurlemann, François J M Eyskens, Lawrence Greed, Jörn Oliver Sass, K Otfried Schwab, Adrian C Sewell, John Walter, Andreas Hahn, Lida Zoetekouw, Antonia Ribes, Suzanne Lind, Raoul C M Hennekam. Dihydropyrimidinase deficiency: Phenotype, genotype and structural consequences in 17 patients. Biochimica et biophysica acta. 2010 Jul; 1802(7-8):639-48. doi: 10.1016/j.bbadis.2010.03.013. [PMID: 20362666]
  • Rita Zrenner, Heike Riegler, Cathleen R Marquard, Peter R Lange, Claudia Geserick, Caren E Bartosz, Celine T Chen, Robert D Slocum. A functional analysis of the pyrimidine catabolic pathway in Arabidopsis. The New phytologist. 2009; 183(1):117-132. doi: 10.1111/j.1469-8137.2009.02843.x. [PMID: 19413687]
  • André B P van Kuilenburg, Judith Meijer, Doreen Dobritzsch, Rutger Meinsma, Marinus Duran, Bernhard Lohkamp, Lida Zoetekouw, Nico G G M Abeling, Herman L G van Tinteren, Annet M Bosch. Clinical, biochemical and genetic findings in two siblings with a dihydropyrimidinase deficiency. Molecular genetics and metabolism. 2007 Jun; 91(2):157-64. doi: 10.1016/j.ymgme.2007.02.008. [PMID: 17383919]
  • Tomiko Kuhara, Chie Ohdoi, Morimasa Ohse, André B P van Kuilenburg, Albert H van Gennip, Satoshi Sumi, Tetsuya Ito, Yoshiro Wada, Isamu Matsumoto. Rapid gas chromatographic-mass spectrometric diagnosis of dihydropyrimidine dehydrogenase deficiency and dihydropyrimidinase deficiency. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2003 Jul; 792(1):107-15. doi: 10.1016/s1570-0232(03)00044-8. [PMID: 12829003]
  • Ute Hofmann, Matthias Schwab, Sonja Seefried, Claudia Marx, Ulrich M Zanger, Michel Eichelbaum, Thomas E Mürdter. Sensitive method for the quantification of urinary pyrimidine metabolites in healthy adults by gas chromatography-tandem mass spectrometry. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2003 Jul; 791(1-2):371-80. doi: 10.1016/s1570-0232(03)00251-4. [PMID: 12798197]
  • Morimasa Ohse, Masafumi Matsuo, Akihito Ishida, Tomiko Kuhara. Screening and diagnosis of beta-ureidopropionase deficiency by gas chromatographic/mass spectrometric analysis of urine. Journal of mass spectrometry : JMS. 2002 Sep; 37(9):954-62. doi: 10.1002/jms.354. [PMID: 12271438]
  • Teruko Honda, Hiroyuki Inagawa, Masakazu Fukushima, Akira Moriyama, Gen-Ichiro Soma. Development and characterization of a monoclonal antibody with cross-reactivity towards uracil and thymine, and its potential use in screening patients treated with 5-fluorouracil for possible risks. Clinica chimica acta; international journal of clinical chemistry. 2002 Aug; 322(1-2):59-66. doi: 10.1016/s0009-8981(02)00132-8. [PMID: 12104082]
  • T Kuhara, C Ohdoi, M Ohse. Simple gas chromatographic-mass spectrometric procedure for diagnosing pyrimidine degradation defects for prevention of severe anticancer side effects. Journal of chromatography. B, Biomedical sciences and applications. 2001 Jul; 758(1):61-74. doi: 10.1016/s0378-4347(01)00143-8. [PMID: 11482736]
  • A H Van Gennip, R A De Abreu, P Vreken, A B Van Kuilenburg. Clinical and biochemical aspects of dihydropyrimidinase deficiency. Advances in experimental medicine and biology. 1998; 431(?):125-8. doi: 10.1007/978-1-4615-5381-6_24. [PMID: 9598044]
  • S Ohba, K Kidouchi, S Sumi, M Imaeda, N Takeda, H Yoshizumi, A Tatematsu, K Kodama, K Yamanaka, M Kobayashi. Dihydropyrimidinuria: the first case in Japan. Advances in experimental medicine and biology. 1994; 370(?):383-6. doi: 10.1007/978-1-4615-2584-4_83. [PMID: 7660934]
  • A H van Gennip, S Busch, E G Scholten, L E Stroomer, N G Abeling. Simple method for the quantitative analysis of dihydropyrimidines and N-carbamyl-beta-amino acids in urine. Advances in experimental medicine and biology. 1991; 309B(?):15-9. doi: 10.1007/978-1-4615-7703-4_4. [PMID: 1781359]
  • R W Pero, D Johnson, A Olsson. Catabolism of exogenously supplied thymidine to thymine and dihydrothymine by platelets in human peripheral blood. Cancer research. 1984 Nov; 44(11):4955-61. doi: . [PMID: 6488159]