Pyrrolnitrin (BioDeep_00000009352)
natural product Chemicals and Drugs Antibiotics
代谢物信息卡片
化学式: C10H6Cl2N2O2 (255.9806)
中文名称: 硝吡咯菌素
谱图信息:
最多检出来源 Homo sapiens(viridiplantae) 4.83%
分子结构信息
SMILES: C1=CC(=C(C(=C1)Cl)[N+](=O)[O-])C2=CNC=C2Cl
InChI: InChI=1S/C10H6Cl2N2O2/c11-8-3-1-2-6(10(8)14(15)16)7-4-13-5-9(7)12/h1-5,13H
描述信息
A member of the class of pyrroles carrying chloro and 3-chloro-2-nitrophenyl substituents at positions 3 and 4 respectively.
D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AA - Antibiotics
D000890 - Anti-Infective Agents > D000935 - Antifungal Agents
C254 - Anti-Infective Agent > C514 - Antifungal Agent
Same as: D01094
同义名列表
数据库引用编号
19 个数据库交叉引用编号
- ChEBI: CHEBI:32079
- KEGG: C12491
- KEGGdrug: D01094
- PubChem: 13916
- Metlin: METLIN69449
- DrugBank: DB13603
- ChEMBL: CHEMBL97972
- MeSH: Pyrrolnitrin
- KNApSAcK: C00018726
- CAS: 1018-71-9
- MoNA: CCMSLIB00004746758
- MoNA: CCMSLIB00004746756
- MoNA: CCMSLIB00004746757
- PMhub: MS000023124
- MetaboLights: MTBLC32079
- PubChem: 582881
- NIKKAJI: J7.221D
- KNApSAcK: 32079
- LOTUS: LTS0221465
分类词条
相关代谢途径
Reactome(0)
PlantCyc(0)
代谢反应
1 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(1)
- pyrrolnitrin biosynthesis:
7-chloro-L-tryptophan + A(H2) + O2 ⟶ A + CO2 + H2O + monodechloroaminopyrrolnitrin
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
49 个相关的物种来源信息
- 469 - Acinetobacter: LTS0221465
- 29430 - Acinetobacter haemolyticus: 10.1007/S11274-013-1426-X
- 29430 - Acinetobacter haemolyticus: LTS0221465
- 2 - Bacteria: LTS0221465
- 28216 - Betaproteobacteria: LTS0221465
- 32008 - Burkholderia: LTS0221465
- 292 - Burkholderia cepacia:
- 292 - Burkholderia cepacia: 10.1016/S1049-9644(02)00044-0
- 292 - Burkholderia cepacia: 10.1021/JF00092A044
- 292 - Burkholderia cepacia: 10.1128/AEM.60.6.2031-2039.1994
- 292 - Burkholderia cepacia: LTS0221465
- 60550 - Burkholderia pyrrocinia: 10.1002/ANIE.199403521
- 60550 - Burkholderia pyrrocinia: 10.1080/00021369.1964.10858275
- 60550 - Burkholderia pyrrocinia: 10.1093/OXFORDJOURNALS.JBCHEM.A128208
- 60550 - Burkholderia pyrrocinia: 10.1094/MPMI-10-14-0326-FI
- 60550 - Burkholderia pyrrocinia: 10.1371/JOURNAL.PONE.0123184
- 60550 - Burkholderia pyrrocinia: 10.5507/BP.2012.090
- 60550 - Burkholderia pyrrocinia: LTS0221465
- 119060 - Burkholderiaceae: LTS0221465
- 543 - Enterobacteriaceae: LTS0221465
- 1903409 - Erwiniaceae: LTS0221465
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 1236 - Gammaproteobacteria: LTS0221465
- 468 - Moraxellaceae: LTS0221465
- 53335 - Pantoea: LTS0221465
- 549 - Pantoea agglomerans: 10.1007/S002849900037
- 549 - Pantoea agglomerans: LTS0221465
- 135621 - Pseudomonadaceae: LTS0221465
- 286 - Pseudomonas: 10.1080/00021369.1964.10858275
- 286 - Pseudomonas: 10.1094/MPMI-10-14-0326-FI
- 286 - Pseudomonas: 10.1248/CPB.14.1314
- 286 - Pseudomonas: 10.1371/JOURNAL.PONE.0123184
- 286 - Pseudomonas: 10.5507/BP.2012.090
- 286 - Pseudomonas: LTS0221465
- 287 - Pseudomonas aeruginosa: LTS0221465
- 587753 - Pseudomonas chlororaphis:
- 587753 - Pseudomonas chlororaphis: 10.1094/MPMI-10-14-0326-FI
- 587753 - Pseudomonas chlororaphis: 10.1111/J.1574-6941.2009.00792.X
- 587753 - Pseudomonas chlororaphis: 10.1371/JOURNAL.PONE.0123184
- 587753 - Pseudomonas chlororaphis: LTS0221465
- 587851 - Pseudomonas chlororaphis subsp. aureofaciens: 10.7164/ANTIBIOTICS.34.555
- 587851 - Pseudomonas chlororaphis subsp. aureofaciens: 10.7164/ANTIBIOTICS.36.1735
- 587851 - Pseudomonas chlororaphis subsp. aureofaciens: 10.7164/ANTIBIOTICS.50.742
- 587851 - Pseudomonas chlororaphis subsp. aureofaciens: LTS0221465
- 316 - Pseudomonas stutzeri: 10.5507/BP.2012.090
- 1883 - Streptomyces: LTS0221465
- 1923 - Streptomyces phaeochromogenes: 10.1016/0014-5793(84)81005-4
- 1923 - Streptomyces phaeochromogenes: LTS0221465
- 2062 - Streptomycetaceae: LTS0221465
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Eva Arrebola, Francesca R Aprile, Claudia E Calderón, Antonio de Vicente, Francisco M Cazorla. Insecticidal features displayed by the beneficial rhizobacterium Pseudomonas chlororaphis PCL1606.
International microbiology : the official journal of the Spanish Society for Microbiology.
2022 Nov; 25(4):679-689. doi:
10.1007/s10123-022-00253-w
. [PMID: 35670867] - Xiaoyan Chi, Yanhua Wang, Jing Miao, Wei Wang, Yanyang Sun, Zhifen Yu, Zhibin Feng, Shiwei Cheng, Lijuan Chen, Yihe Ge. EppR, a new LysR-family transcription regulator, positively influences phenazine biosynthesis in the plant growth-promoting rhizobacterium Pseudomonas chlororaphis G05.
Microbiological research.
2022 Jul; 260(?):127050. doi:
10.1016/j.micres.2022.127050
. [PMID: 35504237] - Charlotte B Francoeur, Daniel S May, Margaret W Thairu, Don Q Hoang, Olivia Panthofer, Tim S Bugni, Mônica T Pupo, Jon Clardy, Adrián A Pinto-Tomás, Cameron R Currie. Burkholderia from Fungus Gardens of Fungus-Growing Ants Produces Antifungals That Inhibit the Specialized Parasite Escovopsis.
Applied and environmental microbiology.
2021 06; 87(14):e0017821. doi:
10.1128/aem.00178-21
. [PMID: 33962985] - Nazia R Zaman, Umar F Chowdhury, Rifath N Reza, Farhana T Chowdhury, Mrinmoy Sarker, Muhammad M Hossain, Md Ahedul Akbor, Al Amin, Mohammad Riazul Islam, Haseena Khan. Plant growth promoting endophyte Burkholderia contaminans NZ antagonizes phytopathogen Macrophomina phaseolina through melanin synthesis and pyrrolnitrin inhibition.
PloS one.
2021; 16(9):e0257863. doi:
10.1371/journal.pone.0257863
. [PMID: 34591915] - Jibin Zhang, Dmitri V Mavrodi, Mingming Yang, Linda S Thomashow, Olga V Mavrodi, Jason Kelton, David M Weller. Pseudomonas synxantha 2-79 Transformed with Pyrrolnitrin Biosynthesis Genes Has Improved Biocontrol Activity Against Soilborne Pathogens of Wheat and Canola.
Phytopathology.
2020 May; 110(5):1010-1017. doi:
10.1094/phyto-09-19-0367-r
. [PMID: 32065038] - Anne J Anderson, Young Cheol Kim. Insights into plant-beneficial traits of probiotic Pseudomonas chlororaphis isolates.
Journal of medical microbiology.
2020 Mar; 69(3):361-371. doi:
10.1099/jmm.0.001157
. [PMID: 32043956] - Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Molecular pharmacology.
2019 11; 96(5):629-640. doi:
10.1124/mol.119.115964
. [PMID: 31515284] - Shraddha Pawar, Ambalal Chaudhari, Ratna Prabha, Renu Shukla, Dhananjaya P Singh. Microbial Pyrrolnitrin: Natural Metabolite with Immense Practical Utility.
Biomolecules.
2019 09; 9(9):. doi:
10.3390/biom9090443
. [PMID: 31484394] - Marco Andreolli, Giacomo Zapparoli, Elisa Angelini, Gianluca Lucchetta, Silvia Lampis, Giovanni Vallini. Pseudomonas protegens MP12: A plant growth-promoting endophytic bacterium with broad-spectrum antifungal activity against grapevine phytopathogens.
Microbiological research.
2019 Feb; 219(?):123-131. doi:
10.1016/j.micres.2018.11.003
. [PMID: 30642463] - Run Huang, Zhibin Feng, Xiaoyan Chi, Xiaoqiang Sun, Yang Lu, Baoshen Zhang, Ruiyang Lu, Wangtai Luo, Yanhua Wang, Jing Miao, Yihe Ge. Pyrrolnitrin is more essential than phenazines for Pseudomonas chlororaphis G05 in its suppression of Fusarium graminearum.
Microbiological research.
2018 Oct; 215(?):55-64. doi:
10.1016/j.micres.2018.06.008
. [PMID: 30172309] - Xiaoguang Liu, Xiaoli Yu, Yang Yang, Stephan Heeb, Shao Gao, Kok Gan Chan, Miguel Cámara, Kexiang Gao. Functional identification of the prnABCD operon and its regulation in Serratia plymuthica.
Applied microbiology and biotechnology.
2018 Apr; 102(8):3711-3721. doi:
10.1007/s00253-018-8857-0
. [PMID: 29511844] - Qingxia Zhang, Yanyan Ji, Qi Xiao, Soonie Chng, Yunhui Tong, Xijun Chen, Fengquan Liu. Role of Vfr in the regulation of antifungal compound production by Pseudomonas fluorescens FD6.
Microbiological research.
2016 Jul; 188-189(?):106-112. doi:
10.1016/j.micres.2016.04.013
. [PMID: 27296968] - Qingxia Zhang, Qi Xiao, Jingyou Xu, Yunhui Tong, Jia Wen, Xijun Chen, Lihui Wei. Effect of retS gene on antibiotics production in Pseudomonas fluorescens FD6.
Microbiological research.
2015 Nov; 180(?):23-9. doi:
10.1016/j.micres.2015.07.005
. [PMID: 26505308] - Claudia E Calderón, Cayo Ramos, Antonio de Vicente, Francisco M Cazorla. Comparative Genomic Analysis of Pseudomonas chlororaphis PCL1606 Reveals New Insight into Antifungal Compounds Involved in Biocontrol.
Molecular plant-microbe interactions : MPMI.
2015 Mar; 28(3):249-60. doi:
10.1094/mpmi-10-14-0326-fi
. [PMID: 25679537] - Munmun Nandi, Carrie Selin, Ann Karen C Brassinga, Mark F Belmonte, W G Dilantha Fernando, Peter C Loewen, Teresa R de Kievit. Pyrrolnitrin and Hydrogen Cyanide Production by Pseudomonas chlororaphis Strain PA23 Exhibits Nematicidal and Repellent Activity against Caenorhabditis elegans.
PloS one.
2015; 10(4):e0123184. doi:
10.1371/journal.pone.0123184
. [PMID: 25901993] - Shilpa S Mujumdar, Shradha P Bashetti, Balu A Chopade. Plasmid pUPI126-encoded pyrrolnitrin production by Acinetobacter haemolyticus A19 isolated from the rhizosphere of wheat.
World journal of microbiology & biotechnology.
2014 Feb; 30(2):495-505. doi:
10.1007/s11274-013-1426-x
. [PMID: 23990066] - Annelise Chapalain, Ludovic Vial, Natacha Laprade, Valérie Dekimpe, Jonathan Perreault, Eric Déziel. Identification of quorum sensing-controlled genes in Burkholderia ambifaria.
MicrobiologyOpen.
2013 Apr; 2(2):226-42. doi:
10.1002/mbo3.67
. [PMID: 23382083] - Maren Stella Müller, Stefan Scheu, Alexandre Jousset. Protozoa Drive the Dynamics of Culturable Biocontrol Bacterial Communities.
PloS one.
2013; 8(6):e66200. doi:
10.1371/journal.pone.0066200
. [PMID: 23840423] - Paula Cordero, Andrea Cavigliasso, Analía Príncipe, Agustina Godino, Edgardo Jofré, Gladys Mori, Sonia Fischer. Genetic diversity and antifungal activity of native Pseudomonas isolated from maize plants grown in a central region of Argentina.
Systematic and applied microbiology.
2012 Jul; 35(5):342-51. doi:
10.1016/j.syapm.2012.04.005
. [PMID: 22748594] - Rita Mozes-Koch, Ofer Gover, Edna Tanne, Yuval Peretz, Eyal Maori, Leonid Chernin, Ilan Sela. Expression of an entire bacterial operon in plants.
Plant physiology.
2012 Apr; 158(4):1883-92. doi:
10.1104/pp.111.186197
. [PMID: 22353575] - Carrie Selin, W G Dilantha Fernando, Teresa de Kievit. The PhzI/PhzR quorum-sensing system is required for pyrrolnitrin and phenazine production, and exhibits cross-regulation with RpoS in Pseudomonas chlororaphis PA23.
Microbiology (Reading, England).
2012 Apr; 158(Pt 4):896-907. doi:
10.1099/mic.0.054254-0
. [PMID: 22262095] - Eva Arrebola, Víctor J Carrión, Francisco M Cazorla, Alejandro Pérez-García, Jesús Murillo, Antonio de Vicente. Characterisation of the mgo operon in Pseudomonas syringae pv. syringae UMAF0158 that is required for mangotoxin production.
BMC microbiology.
2012 Jan; 12(?):10. doi:
10.1186/1471-2180-12-10
. [PMID: 22251433] - Sabine Fillinger, Sakhr Ajouz, Philippe C Nicot, Pierre Leroux, Marc Bardin. Functional and structural comparison of pyrrolnitrin- and iprodione-induced modifications in the class III histidine-kinase Bos1 of Botrytis cinerea.
PloS one.
2012; 7(8):e42520. doi:
10.1371/journal.pone.0042520
. [PMID: 22912706] - Jerrylynn Manuel, Carrie Selin, W G Dilantha Fernando, Teresa de Kievit. Stringent response mutants of Pseudomonas chlororaphis PA23 exhibit enhanced antifungal activity against Sclerotinia sclerotiorum in vitro.
Microbiology (Reading, England).
2012 Jan; 158(Pt 1):207-216. doi:
10.1099/mic.0.053082-0
. [PMID: 22016568] - Min Zhou, Kexiang Gao, Jun Zeng, Xiaoli Yu, Yan Wu, Jun Ge, Yunfei Duan, Xiaoguang Liu. Role of the RNA-binding protein Hfq in Serratia plymuthica.
Frontiers in bioscience (Elite edition).
2012 01; 4(4):1263-75. doi:
10.2741/457
. [PMID: 22201952] - Ming-Ming Yang, Dmitri V Mavrodi, Olga V Mavrodi, Robert F Bonsall, James A Parejko, Timothy C Paulitz, Linda S Thomashow, He-Tong Yang, David M Weller, Jian-Hua Guo. Biological control of take-all by fluorescent Pseudomonas spp. from Chinese wheat fields.
Phytopathology.
2011 Dec; 101(12):1481-91. doi:
10.1094/phyto-04-11-0096
. [PMID: 22070279] - Ashutosh Upadhyay, Sheela Srivastava. Phenazine-1-carboxylic acid is a more important contributor to biocontrol Fusarium oxysporum than pyrrolnitrin in Pseudomonas fluorescens strain Psd.
Microbiological research.
2011 May; 166(4):323-35. doi:
10.1016/j.micres.2010.06.001
. [PMID: 20813512] - J Y Park, S A Oh, A J Anderson, J Neiswender, J-C Kim, Y C Kim. Production of the antifungal compounds phenazine and pyrrolnitrin from Pseudomonas chlororaphis O6 is differentially regulated by glucose.
Letters in applied microbiology.
2011 May; 52(5):532-7. doi:
10.1111/j.1472-765x.2011.03036.x
. [PMID: 21362001] - Nina Neidig, Rüdiger J Paul, Stefan Scheu, Alexandre Jousset. Secondary metabolites of Pseudomonas fluorescens CHA0 drive complex non-trophic interactions with bacterivorous nematodes.
Microbial ecology.
2011 May; 61(4):853-9. doi:
10.1007/s00248-011-9821-z
. [PMID: 21360140] - Jang Hoon Lee, Kyung Cheol Ma, Sug Ju Ko, Beom Ryong Kang, In Seon Kim, Young Cheol Kim. Nematicidal activity of a nonpathogenic biocontrol bacterium, Pseudomonas chlororaphis O6.
Current microbiology.
2011 Mar; 62(3):746-51. doi:
10.1007/s00284-010-9779-y
. [PMID: 20963417] - Xiaoguang Liu, Jinli Jia, Roman Popat, Catherine A Ortori, Jun Li, Stephen P Diggle, Kexiang Gao, Miguel Cámara. Characterisation of two quorum sensing systems in the endophytic Serratia plymuthica strain G3: differential control of motility and biofilm formation according to life-style.
BMC microbiology.
2011 Feb; 11(1):26. doi:
10.1186/1471-2180-11-26
. [PMID: 21284858] - N Dandurishvili, N Toklikishvili, M Ovadis, P Eliashvili, N Giorgobiani, R Keshelava, M Tediashvili, A Vainstein, I Khmel, E Szegedi, L Chernin. Broad-range antagonistic rhizobacteria Pseudomonas fluorescens and Serratia plymuthica suppress Agrobacterium crown gall tumours on tomato plants.
Journal of applied microbiology.
2011 Jan; 110(1):341-52. doi:
10.1111/j.1365-2672.2010.04891.x
. [PMID: 21091861] - Olubukola Oluranti Babalola. Beneficial bacteria of agricultural importance.
Biotechnology letters.
2010 Nov; 32(11):1559-70. doi:
10.1007/s10529-010-0347-0
. [PMID: 20635120] - Sakhr Ajouz, Véronique Decognet, Philippe C Nicot, Marc Bardin. Microsatellite stability in the plant pathogen Botrytis cinerea after exposure to different selective pressures.
Fungal biology.
2010 Nov; 114(11-12):949-54. doi:
10.1016/j.funbio.2010.09.004
. [PMID: 21036339] - Laurène Rochat, Maria Péchy-Tarr, Eric Baehler, Monika Maurhofer, Christoph Keel. Combination of fluorescent reporters for simultaneous monitoring of root colonization and antifungal gene expression by a biocontrol pseudomonad on cereals with flow cytometry.
Molecular plant-microbe interactions : MPMI.
2010 Jul; 23(7):949-61. doi:
10.1094/mpmi-23-7-0949
. [PMID: 20521957] - Ashutosh Upadhyay, Sheela Srivastava. Evaluation of multiple plant growth promoting traits of an isolate of Pseudomonas fluorescens strain Psd.
Indian journal of experimental biology.
2010 Jun; 48(6):601-9. doi:
. [PMID: 20882763]
- Barbara Drigo, Johannes A van Veen, George A Kowalchuk. Specific rhizosphere bacterial and fungal groups respond differently to elevated atmospheric CO(2).
The ISME journal.
2009 Oct; 3(10):1204-17. doi:
10.1038/ismej.2009.65
. [PMID: 19536195] - David De Vleesschauwer, Leonid Chernin, Monica M Höfte. Differential effectiveness of Serratia plymuthica IC1270-induced systemic resistance against hemibiotrophic and necrotrophic leaf pathogens in rice.
BMC plant biology.
2009 Jan; 9(?):9. doi:
10.1186/1471-2229-9-9
. [PMID: 19161601] - Dmitri V Mavrodi, Joyce E Loper, Ian T Paulsen, Linda S Thomashow. Mobile genetic elements in the genome of the beneficial rhizobacterium Pseudomonas fluorescens Pf-5.
BMC microbiology.
2009 Jan; 9(?):8. doi:
10.1186/1471-2180-9-8
. [PMID: 19144133] - Rodrigo Costa, Ingrid M van Aarle, Rodrigo Mendes, Jan Dirk van Elsas. Genomics of pyrrolnitrin biosynthetic loci: evidence for conservation and whole-operon mobility within gram-negative bacteria.
Environmental microbiology.
2009 Jan; 11(1):159-75. doi:
10.1111/j.1462-2920.2008.01750.x
. [PMID: 18793314] - Popavath Ravindra Naik, Gurusamy Raman, Kannan Badri Narayanan, Natarajan Sakthivel. Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil.
BMC microbiology.
2008 Dec; 8(?):230. doi:
10.1186/1471-2180-8-230
. [PMID: 19099598] - Popavath Ravindra Naik, Nirakar Sahoo, Devrishi Goswami, Niraikulam Ayyadurai, Natarajan Sakthivel. Genetic and functional diversity among fluorescent pseudomonads isolated from the rhizosphere of banana.
Microbial ecology.
2008 Oct; 56(3):492-504. doi:
10.1007/s00248-008-9368-9
. [PMID: 18347847] - A Upadhyay, S Srivastava. Characterization of a new isolate of Pseudomonas fluorescens strain Psd as a potential biocontrol agent.
Letters in applied microbiology.
2008 Aug; 47(2):98-105. doi:
10.1111/j.1472-765x.2008.02390.x
. [PMID: 18565138] - Patrice de Werra, Eric Baehler, Aurélie Huser, Christoph Keel, Monika Maurhofer. Detection of plant-modulated alterations in antifungal gene expression in Pseudomonas fluorescens CHA0 on roots by flow cytometry.
Applied and environmental microbiology.
2008 Mar; 74(5):1339-49. doi:
10.1128/aem.02126-07
. [PMID: 18165366] - Rodrigo Mendes, Aline A Pizzirani-Kleiner, Welington L Araujo, Jos M Raaijmakers. Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates.
Applied and environmental microbiology.
2007 Nov; 73(22):7259-67. doi:
10.1128/aem.01222-07
. [PMID: 17905875] - M Perneel, J Heyrman, A Adiobo, K De Maeyer, J M Raaijmakers, P De Vos, M Höfte. Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity.
Journal of applied microbiology.
2007 Oct; 103(4):1007-20. doi:
10.1111/j.1365-2672.2007.03345.x
. [PMID: 17897205] - Xiaoguang Liu, Mohammed Bimerew, Yingxin Ma, Henry Müller, Marianna Ovadis, Leo Eberl, Gabriele Berg, Leonid Chernin. Quorum-sensing signaling is required for production of the antibiotic pyrrolnitrin in a rhizospheric biocontrol strain of Serratia plymuthica.
FEMS microbiology letters.
2007 May; 270(2):299-305. doi:
10.1111/j.1574-6968.2007.00681.x
. [PMID: 17355597] - Walter De Laurentis, Khim Leang, Katrin Hahn, Bianca Podemski, Ariane Adam, Sonja Kroschwald, Lester G Carter, Karl-Heinz van Pee, James H Naismith. Preliminary crystallographic characterization of PrnB, the second enzyme in the pyrrolnitrin biosynthetic pathway.
Acta crystallographica. Section F, Structural biology and crystallization communications.
2006 Nov; 62(Pt 11):1134-7. doi:
10.1107/s1744309106041649
. [PMID: 17077497] - Y Zhang, W G D Fernando, T R de Kievit, C Berry, F Daayf, T C Paulitz. Detection of antibiotic-related genes from bacterial biocontrol agents with polymerase chain reaction.
Canadian journal of microbiology.
2006 May; 52(5):476-81. doi:
10.1139/w05-152
. [PMID: 16699573] - E Baehler, M Bottiglieri, M Péchy-Tarr, M Maurhofer, C Keel. Use of green fluorescent protein-based reporters to monitor balanced production of antifungal compounds in the biocontrol agent Pseudomonas fluorescens CHA0.
Journal of applied microbiology.
2005; 99(1):24-38. doi:
10.1111/j.1365-2672.2005.02597.x
. [PMID: 15960662] - Jorge T Souza, Jos M Raaijmakers. Polymorphisms within the prnD and pltC genes from pyrrolnitrin and pyoluteorin-producing Pseudomonas and Burkholderia spp.
FEMS microbiology ecology.
2003 Feb; 43(1):21-34. doi:
10.1111/j.1574-6941.2003.tb01042.x
. [PMID: 19719693] - Dieter Haas, Christoph Keel. Regulation of antibiotic production in root-colonizing Peudomonas spp. and relevance for biological control of plant disease.
Annual review of phytopathology.
2003; 41(?):117-53. doi:
10.1146/annurev.phyto.41.052002.095656
. [PMID: 12730389] - B K Duffy, G Défago. Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains.
Applied and environmental microbiology.
1999 Jun; 65(6):2429-38. doi:
10.1128/aem.65.6.2429-2438.1999
. [PMID: 10347023] - P E Hammer, D S Hill, S T Lam, K H Van Pée, J M Ligon. Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin.
Applied and environmental microbiology.
1997 Jun; 63(6):2147-54. doi:
10.1128/aem.63.6.2147-2154.1997
. [PMID: 9172332] - C Kalbe, P Marten, G Berg. Strains of the genus Serratia as beneficial rhizobacteria of oilseed rape with antifungal properties.
Microbiological research.
1996 Dec; 151(4):433-9. doi:
10.1016/s0944-5013(96)80014-0
. [PMID: 9022304] - N Corbell, J E Loper. A global regulator of secondary metabolite production in Pseudomonas fluorescens Pf-5.
Journal of bacteriology.
1995 Nov; 177(21):6230-6. doi:
10.1128/jb.177.21.6230-6236.1995
. [PMID: 7592389] - R K Jayaswal, M Fernandez, R S Upadhyay, L Visintin, M Kurz, J Webb, K Rinehart. Antagonism of Pseudomonas cepacia against phytopathogenic fungi.
Current microbiology.
1993 Jan; 26(1):17-22. doi:
10.1007/bf01577237
. [PMID: 7679303] - R K Jayaswal, M A Fernandez, L Visintin, R S Upadhyay. Transposon Tn5-259 mutagenesis of Pseudomonas cepacia to isolate mutants deficient in antifungal activity.
Canadian journal of microbiology.
1992 Apr; 38(4):309-12. doi:
10.1139/m92-051
. [PMID: 1377094] - T Leisinger, R Margraff. Secondary metabolites of the fluorescent pseudomonads.
Microbiological reviews.
1979 Sep; 43(3):422-42. doi:
10.1128/mr.43.3.422-442.1979
. [PMID: 120492] - D Gradmann, C L Slayman. Oscillations of an electrogenic pump in the plasma membrane of Neurospora.
The Journal of membrane biology.
1975 Aug; 23(2):181-212. doi:
10.1007/bf01870250
. [PMID: 126326]