Withaferin_A (BioDeep_00000000864)

 

Secondary id: BioDeep_00000361840, BioDeep_00000404182, BioDeep_00000637440, BioDeep_00000637441, BioDeep_00000637466

PANOMIX_OTCML-2023 Antitumor activity


代谢物信息卡片


(4S,4aR,5aR,6aS,6bS,9R,9aS,11aS,11bR)-4-hydroxy-9-((S)-1-((R)-5-(hydroxymethyl)-4-methyl-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-9a,11b-dimethyl-5a,6,6a,6b,7,8,9,9a,10,11,11a,11b-dodecahydrocyclopenta[1,2]phenanthro[8a,9-b]oxiren-1(4H)-one

化学式: C28H38O6 (470.2668)
中文名称: 醉茄素A, 醉茄素 A
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 69.74%

分子结构信息

SMILES: CC1=C(C(=O)OC(C1)C(C)C2CCC3C2(CCC4C3CC5C6(C4(C(=O)C=CC6O)C)O5)C)CO
InChI: InChI=1S/C28H38O6/c1-14-11-21(33-25(32)17(14)13-29)15(2)18-5-6-19-16-12-24-28(34-24)23(31)8-7-22(30)27(28,4)20(16)9-10-26(18,19)3/h7-8,15-16,18-21,23-24,29,31H,5-6,9-13H2,1-4H3/t15-,16-,18+,19-,20-,21+,23-,24+,26+,27-,28+/m0/s1

描述信息

Withaferin A is a withanolide that is 5,6:22,26-diepoxyergosta-2,24-diene-1,26-dione substituted by hydroxy groups at positions 4 and 27 (the 4beta,5beta,6beta,22R stereoisomer). Isolated from Physalis longifolia, it exhibits cytotoxic activity. It has a role as an antineoplastic agent and an apoptosis inducer. It is a delta-lactone, a 4-hydroxy steroid, an enone, an ergostanoid, a secondary alcohol, a withanolide, a 27-hydroxy steroid, a primary alcohol and an epoxy steroid.
Ashwagandha is a popular Ayurvedic herb used as a general tonic, to increase energy and reduce stress. Ashwagandha has not been implicated in causing serum enzyme elevations during therapy, but recently has been implicated in rare cases of clinically apparent liver injury.
Withaferin A is a natural product found in Vassobia breviflora, Withania somnifera, and other organisms with data available.
A withanolide that is 5,6:22,26-diepoxyergosta-2,24-diene-1,26-dione substituted by hydroxy groups at positions 4 and 27 (the 4beta,5beta,6beta,22R stereoisomer). Isolated from Physalis longifolia, it exhibits cytotoxic activity.
Withaferin A is a steroidal lactone isolated from Withania somnifera, inhibits NF-kB activation and targets vimentin, with potent antiinflammatory and anticancer activities. Withaferin A is an inhibitor of endothelial protein C receptor (EPCR) shedding.
Withaferin A is a steroidal lactone isolated from Withania somnifera, inhibits NF-kB activation and targets vimentin, with potent antiinflammatory and anticancer activities. Withaferin A is an inhibitor of endothelial protein C receptor (EPCR) shedding.

同义名列表

34 个代谢物同义名

(4S,4aR,5aR,6aS,6bS,9R,9aS,11aS,11bR)-4-hydroxy-9-((S)-1-((R)-5-(hydroxymethyl)-4-methyl-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-9a,11b-dimethyl-5a,6,6a,6b,7,8,9,9a,10,11,11a,11b-dodecahydrocyclopenta[1,2]phenanthro[8a,9-b]oxiren-1(4H)-one; (1S,2R,6S,7R,9R,11S,12S,15R,16S)-6-hydroxy-15-[(1S)-1-[(2R)-5-(hydroxymethyl)-4-methyl-6-oxo-2,3-dihydropyran-2-yl]ethyl]-2,16-dimethyl-8-oxapentacyclo[9.7.0.02,7.07,9.012,16]octadec-4-en-3-one; (6S,7R,9R)-6-Hydroxy-15-[(2R,3R)-3-hydroxy-4-(4-methyl-5-oxo-2H-furan-3-yl)butan-2-yl]-2,16-dimethyl-8-oxapentacyclo[9.7.0.02,7.07,9.012,16]octadec-4-en-3-one; 5-beta-Ergosta-2,24-dien-26-oic acid, 5,6-beta-epoxy-4-beta,22,27-trihydroxy-1-oxo-, delta-lactone, (20S,22R)-; 5beta-Ergosta-2,24-dien-26-oic acid, 5,6beta-epoxy-4beta,22,27-trihydroxy-1-oxo-, delta-lactone, (20S,22R)-; Ergosta-2,24-dien-26-oic acid, 5,6-epoxy-4,22,27-trihydroxy-1-oxo-, gamma-lactone, (4bta,5beta,6beta,22R)-; (4beta,5beta,6beta,22R)-5,6-Epoxy-4,22,27-trihydroxy-1-oxoergosta-2,24-dien-26-oic acid, delta-lactone; 5.beta.-Ergosta-2, 5,6.beta.-epoxy-4.beta.,22,27-trihydroxy-1-oxo-, .delta.-lactone, (20S,22R)-; Ergosta-2, 5,6-epoxy-4,22,27-trihydroxy-1-oxo-, .delta.-lactone, (4.beta.,5.beta.,6.beta.,22R)-; Ergosta-2,24-dien-26-oicacid, 5,6-epoxy-4,22,27-trihydroxy-1-oxo-, d-lactone, (4b,5b,6b,22R)-; (4.BETA.,5.BETA.,6.BETA.,22R)-4,27-DIHYDROXY-5,6:22,26-DIEPOXYERGOSTA-2,24-DIENE-1,26-DIONE; (4beta,5beta,6beta,22R)-4,27-dihydroxy-5,6:22,26-diepoxyergosta-2,24-diene-1,26-dione; 5beta,6beta:22R,26-diepoxyergosta-4beta,27-dihydroxy-2,24-diene-1,26-dione; 5,6-epoxy-4,22,27-trihydroxy-1-oxoergosta-2,24-dienoic acid delta-lactone; WLN: T3 F5 E666 1A R AXO OV PU CH&TTTTJ J1 N1 RQ IY1&- FT6OV CUTJ C1Q D1; 4beta,27-dihydroxy-1-oxo-5beta,6beta-epoxywitha-2,24-dienolide; 5-19-06-00604 (Beilstein Handbook Reference); WITHAFERIN DERIV JPR, IOWA U. COMPOUND; Withaferin A, analytical standard; Withaferin A, >=95\\% (HPLC); WITHAFERIN A [MI]; UNII-L6DO3QW4K5; Withaferine A; NCI60_000031; Withaferin A; Ashwagandha; NSC 273757; L6DO3QW4K5; NSC-101088; ST 28:6;O6; NSC101088; A1-06845; LSM-6721; Withaferin A



数据库引用编号

22 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

10 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 15 AKT1, ANG, ANXA5, BCL2, CASP3, CTNNB1, GFAP, HSPA9, MAP2, MAPK8, MTOR, NFE2L2, PIK3CA, TP53, VIM
Peripheral membrane protein 2 ANXA5, MTOR
Endosome membrane 1 NOTCH1
Endoplasmic reticulum membrane 3 BCL2, MTOR, NOTCH1
Nucleus 12 AKT1, ANG, BCL2, CASP3, CTNNB1, HSPA9, MAPK8, MTOR, NFE2L2, NOTCH1, PARP1, TP53
cytosol 16 AKT1, ANG, ANXA5, BCL2, CASP3, CTNNB1, GFAP, MAP2, MAPK8, MTOR, NFE2L2, NOTCH1, PARP1, PIK3CA, TP53, VIM
dendrite 2 MAP2, MTOR
nuclear body 1 PARP1
phagocytic vesicle 2 MTOR, VIM
centrosome 3 CTNNB1, NFE2L2, TP53
nucleoplasm 9 AKT1, CASP3, CTNNB1, MAPK8, MTOR, NFE2L2, NOTCH1, PARP1, TP53
RNA polymerase II transcription regulator complex 1 NFE2L2
Cell membrane 4 AKT1, CTNNB1, NOTCH1, VIM
Cytoplasmic side 1 MTOR
lamellipodium 3 AKT1, CTNNB1, PIK3CA
Golgi apparatus membrane 1 MTOR
Synapse 2 CTNNB1, MAPK8
cell cortex 2 AKT1, CTNNB1
cell junction 1 CTNNB1
cell surface 1 NOTCH1
dendritic shaft 1 MAP2
glutamatergic synapse 4 AKT1, CASP3, CTNNB1, NOTCH1
Golgi apparatus 1 NFE2L2
Golgi membrane 3 INS, MTOR, NOTCH1
growth cone 1 ANG
lysosomal membrane 1 MTOR
mitochondrial inner membrane 1 HSPA9
neuronal cell body 3 ANG, CASP3, MAP2
postsynapse 1 AKT1
presynaptic membrane 1 CTNNB1
sarcolemma 1 ANXA5
Cytoplasm, cytosol 2 NFE2L2, PARP1
Lysosome 1 MTOR
acrosomal vesicle 1 NOTCH1
plasma membrane 6 AKT1, CTNNB1, NFE2L2, NOTCH1, PIK3CA, VIM
Membrane 8 AKT1, ANXA5, BCL2, CTNNB1, MTOR, NOTCH1, PARP1, TP53
apical plasma membrane 1 NOTCH1
axon 2 MAPK8, VIM
basolateral plasma membrane 1 CTNNB1
extracellular exosome 4 ANXA5, CTNNB1, HSPA9, VIM
Lysosome membrane 1 MTOR
endoplasmic reticulum 3 BCL2, NOTCH1, TP53
extracellular space 4 ANG, IL10, IL6, INS
perinuclear region of cytoplasm 2 CTNNB1, PIK3CA
Schaffer collateral - CA1 synapse 2 CTNNB1, NOTCH1
adherens junction 2 CTNNB1, NOTCH1
apicolateral plasma membrane 1 CTNNB1
bicellular tight junction 1 CTNNB1
intercalated disc 1 PIK3CA
mitochondrion 4 BCL2, HSPA9, PARP1, TP53
protein-containing complex 5 AKT1, BCL2, CTNNB1, PARP1, TP53
Microsome membrane 1 MTOR
postsynaptic density 1 CASP3
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 1 NOTCH1
Secreted 4 ANG, IL10, IL6, INS
extracellular region 6 ANG, ANXA5, IL10, IL6, INS, NOTCH1
Mitochondrion outer membrane 2 BCL2, MTOR
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 2 BCL2, MTOR
astrocyte end-foot 1 GFAP
Mitochondrion matrix 2 HSPA9, TP53
mitochondrial matrix 2 HSPA9, TP53
transcription regulator complex 3 CTNNB1, PARP1, TP53
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 TP53
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 1 ANXA5
actin cytoskeleton 1 ANG
Z disc 1 CTNNB1
beta-catenin destruction complex 1 CTNNB1
microtubule cytoskeleton 1 AKT1
nucleolus 4 ANG, HSPA9, PARP1, TP53
Wnt signalosome 1 CTNNB1
apical part of cell 1 CTNNB1
cell-cell junction 2 AKT1, CTNNB1
vesicle 1 AKT1
postsynaptic membrane 1 CTNNB1
pore complex 1 BCL2
Cytoplasm, cytoskeleton 4 CTNNB1, MAP2, TP53, VIM
focal adhesion 4 ANXA5, CTNNB1, HSPA9, VIM
microtubule 1 MAP2
spindle 1 AKT1
Cell junction, adherens junction 1 CTNNB1
flotillin complex 1 CTNNB1
mitochondrial nucleoid 1 HSPA9
Peroxisome 1 VIM
basement membrane 1 ANG
Nucleus, PML body 2 MTOR, TP53
PML body 2 MTOR, TP53
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
collagen-containing extracellular matrix 1 ANXA5
fascia adherens 1 CTNNB1
intermediate filament 2 GFAP, VIM
lateral plasma membrane 1 CTNNB1
dendrite cytoplasm 1 MAP2
receptor complex 1 NOTCH1
Zymogen granule membrane 1 ANXA5
neuron projection 2 MAP2, VIM
ciliary basal body 1 AKT1
chromatin 3 NFE2L2, PARP1, TP53
mediator complex 1 NFE2L2
cell leading edge 1 VIM
microtubule associated complex 1 MAP2
Late endosome membrane 1 NOTCH1
cell projection 1 GFAP
cell periphery 1 CTNNB1
Chromosome 2 ANG, PARP1
cytoskeleton 1 VIM
Cytoplasm, cytoskeleton, cilium basal body 1 CTNNB1
Nucleus, nucleolus 3 ANG, HSPA9, PARP1
spindle pole 1 CTNNB1
nuclear replication fork 1 PARP1
chromosome, telomeric region 1 PARP1
postsynaptic density, intracellular component 1 CTNNB1
microvillus membrane 1 CTNNB1
site of double-strand break 2 PARP1, TP53
nuclear envelope 2 MTOR, PARP1
Endomembrane system 2 CTNNB1, MTOR
endosome lumen 1 INS
microtubule organizing center 1 VIM
axon initial segment 1 MAP2
Cell projection, dendrite 1 MAP2
Cytoplasm, Stress granule 1 ANG
cytoplasmic stress granule 1 ANG
euchromatin 1 CTNNB1
cell body 1 GFAP
germ cell nucleus 1 TP53
replication fork 1 TP53
dendritic growth cone 1 MAP2
myelin sheath 1 BCL2
intermediate filament cytoskeleton 2 GFAP, VIM
secretory granule lumen 1 INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 IL6, INS
nuclear matrix 2 TP53, VIM
transcription repressor complex 1 TP53
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
proximal neuron projection 1 MAP2
endocytic vesicle 1 ANG
transport vesicle 1 INS
beta-catenin-TCF complex 1 CTNNB1
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
postsynaptic density membrane 1 NOTCH1
Nucleus matrix 1 VIM
presynaptic active zone cytoplasmic component 1 CTNNB1
vesicle membrane 1 ANXA5
TIM23 mitochondrial import inner membrane translocase complex 1 HSPA9
axon hillock 1 MAP2
[Isoform 1]: Nucleus 1 TP53
protein-DNA complex 3 CTNNB1, NFE2L2, PARP1
basal dendrite 2 MAP2, MAPK8
death-inducing signaling complex 1 CASP3
Cytoplasmic vesicle, phagosome 1 MTOR
catenin complex 1 CTNNB1
site of DNA damage 1 PARP1
MIB complex 1 HSPA9
SAM complex 1 HSPA9
cytoplasmic side of lysosomal membrane 1 GFAP
angiogenin-PRI complex 1 ANG
interleukin-6 receptor complex 1 IL6
endothelial microparticle 1 ANXA5
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
BAD-BCL-2 complex 1 BCL2
apical distal dendrite 1 MAP2
dendritic branch 1 MAP2
dendritic filopodium 1 MAP2
distal dendrite 1 MAP2
primary dendrite 1 MAP2
proximal dendrite 1 MAP2
beta-catenin-TCF7L2 complex 1 CTNNB1
beta-catenin-ICAT complex 1 CTNNB1
Scrib-APC-beta-catenin complex 1 CTNNB1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[Notch 1 intracellular domain]: Nucleus 1 NOTCH1
MAML1-RBP-Jkappa- ICN1 complex 1 NOTCH1


文献列表

  • Geetanjali Devabattula, Biswajit Panda, Rachana Yadav, Chandraiah Godugu. The Potential Pharmacological Effects of Natural Product Withaferin A in Cancer: Opportunities and Challenges for Clinical Translation. Planta medica. 2024 May; 90(6):440-453. doi: 10.1055/a-2289-9600. [PMID: 38588695]
  • Mahbobeh Karami, Mohammad Reza Naghavi, Jaber Nasiri, Narjes Farzin, Codruta Ignea. Enhanced production of withaferin A from the hairy root culture of Withania somnifera via synergistic effect of Methyl jasmonate and β-cyclodextrin. Plant physiology and biochemistry : PPB. 2024 Mar; 208(?):108440. doi: 10.1016/j.plaphy.2024.108440. [PMID: 38412705]
  • Nuria Vilaboa, Richard Voellmy. Withaferin A and Celastrol Overwhelm Proteostasis. International journal of molecular sciences. 2023 Dec; 25(1):. doi: 10.3390/ijms25010367. [PMID: 38203539]
  • J D Sheng, J Liu, J W Du, Y P Wang. Withaferin A alleviates inflammation and joint injury in arthritic rats via elevating microRNA-1297 to target karyopherin alpha2. Journal of physiology and pharmacology : an official journal of the Polish Physiological Society. 2023 Dec; 74(6):. doi: 10.26402/jpp.2023.6.08. [PMID: 38345447]
  • Pawan Kumar, Samudra P Banik, Apurva Goel, Sanjoy Chakraborty, Manashi Bagchi, Debasis Bagchi. Revisiting the Multifaceted Therapeutic Potential of Withaferin A (WA), a Novel Steroidal Lactone, W-ferinAmax (Ashwagandha), from Withania Somnifera (L) Dunal. Journal of the American Nutrition Association. 2023 Jul; ?(?):1-16. doi: 10.1080/27697061.2023.2228863. [PMID: 37410676]
  • Raghul Murugan, Senthil Subramaniyan, Snega Priya, Chinnasamy Ragavendran, Mariadhas Valan Arasu, Naif Abdullah Al-Dhabi, Ki Choon Choi, Ajay Guru, Jesu Arockiaraj. Bacterial clearance and anti-inflammatory effect of Withaferin A against human pathogen of Staphylococcus aureus in infected zebrafish. Aquatic toxicology (Amsterdam, Netherlands). 2023 May; 260(?):106578. doi: 10.1016/j.aquatox.2023.106578. [PMID: 37244123]
  • Eun-Ryeong Hahm, Su-Hyeong Kim, Shivendra V Singh. Withaferin A inhibits breast cancer-induced osteoclast differentiation. Molecular carcinogenesis. 2023 Apr; ?(?):. doi: 10.1002/mc.23545. [PMID: 37067392]
  • Rahul Checker, H N Bhilwade, Shivani R Nandha, Raghavendra S Patwardhan, Deepak Sharma, Santosh K Sandur. Withaferin A, a steroidal lactone, selectively protects normal lymphocytes against ionizing radiation induced apoptosis and genotoxicity via activation of ERK/Nrf-2/HO-1 axis. Toxicology and applied pharmacology. 2023 Feb; 461(?):116389. doi: 10.1016/j.taap.2023.116389. [PMID: 36716864]
  • Krishna B Singh, Eun-Ryeong Hahm, Su-Hyeong Kim, Shivendra V Singh. Withaferin A Inhibits Fatty Acid Synthesis in Rat Mammary Tumors. Cancer prevention research (Philadelphia, Pa.). 2023 01; 16(1):5-16. doi: 10.1158/1940-6207.capr-22-0193. [PMID: 36251722]
  • Raghul Murugan, Ravi Rajesh, Boopathi Seenivasan, B Haridevamuthu, Gokul Sudhakaran, Ajay Guru, Rajakrishnan Rajagopal, Palaniselvam Kuppusamy, Annie Juliet, Pushparathinam Gopinath, Jesu Arockiaraj. Withaferin A targets the membrane of Pseudomonas aeruginosa and mitigates the inflammation in zebrafish larvae; an in vitro and in vivo approach. Microbial pathogenesis. 2022 Nov; 172(?):105778. doi: 10.1016/j.micpath.2022.105778. [PMID: 36116607]
  • Zheyi Yan, Yuanlin Zhang, Chunfang Wang, Yanjie Li, Qiang Su, Jimin Cao, Xiaoming Cao. Withaferin a Attenuates Retinal Ischemia-Reperfusion Injury via Akt-Dependent Inhibition of Oxidative Stress. Cells. 2022 10; 11(19):. doi: 10.3390/cells11193113. [PMID: 36231074]
  • Liwei Zhang, Yan Shi, Mingzhu Yan, Guangping Zhang. Modulatory action of withaferin-A on oxidative damage through regulation of inflammatory mediators and apoptosis via PI3K/AKT signaling pathway in high cholesterol-induced atherosclerosis in experimental rats. Journal of biochemical and molecular toxicology. 2022 Oct; 36(10):e23154. doi: 10.1002/jbt.23154. [PMID: 35734936]
  • Remi Patouret, Sofia Barluenga, Nicolas Winssinger. Withaferin A, a polyfunctional pharmacophore that includes covalent engagement of IPO5, is an inhibitor of influenza A replication. Bioorganic & medicinal chemistry. 2022 09; 69(?):116883. doi: 10.1016/j.bmc.2022.116883. [PMID: 35772286]
  • Altevir Rossato Viana, B Godoy Noro, J C Lenz, M Luiza Machado Teixeira, M Bolson Serafin, R Hörner, C Franco, L Maria Fontanari Krause, B Stefanello Vizzotto, B Jalfim Maraschin. Cytotoxic screening and antibacterial activity of Withaferin A. Journal of toxicology and environmental health. Part A. 2022 08; 85(16):685-698. doi: 10.1080/15287394.2022.2071787. [PMID: 35579288]
  • Yangliu Xia, Mingrui Yan, Ping Wang, Keisuke Hamada, Nana Yan, Haiping Hao, Frank J Gonzalez, Tingting Yan. Withaferin A in the Treatment of Liver Diseases: Progress and Pharmacokinetic Insights. Drug metabolism and disposition: the biological fate of chemicals. 2022 05; 50(5):685-693. doi: 10.1124/dmd.121.000455. [PMID: 34903587]
  • Keisuke Hamada, Ping Wang, Yangliu Xia, Nana Yan, Shogo Takahashi, Kristopher W Krausz, Haiping Hao, Tingting Yan, Frank J Gonzalez. Withaferin A alleviates ethanol-induced liver injury by inhibiting hepatic lipogenesis. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2022 Feb; 160(?):112807. doi: 10.1016/j.fct.2022.112807. [PMID: 34995708]
  • Vipul Kumar, Jaspreet Kaur Dhanjal, Priyanshu Bhargava, Ashish Kaul, Jia Wang, Huayue Zhang, Sunil C Kaul, Renu Wadhwa, Durai Sundar. Withanone and Withaferin-A are predicted to interact with transmembrane protease serine 2 (TMPRSS2) and block entry of SARS-CoV-2 into cells. Journal of biomolecular structure & dynamics. 2022 01; 40(1):1-13. doi: 10.1080/07391102.2020.1775704. [PMID: 32469279]
  • Tahira Sultana, Mohammad K Okla, Madiha Ahmed, Nosheen Akhtar, Abdulrahman Al-Hashimi, Hamada Abdelgawad, Ihsan-Ul- Haq. Withaferin A: From Ancient Remedy to Potential Drug Candidate. Molecules (Basel, Switzerland). 2021 Dec; 26(24):. doi: 10.3390/molecules26247696. [PMID: 34946778]
  • Xia Zhao, Jing Wang, Liying Tang, Pei Li, Jing Ru, Yuzhi Bai. Withaferin A protects against hyperuricemia induced kidney injury and its possible mechanisms. Bioengineered. 2021 12; 12(1):589-600. doi: 10.1080/21655979.2021.1882761. [PMID: 33517833]
  • Jia Wang, Huayue Zhang, Ashish Kaul, Kejuan Li, Didik Priyandoko, Sunil C Kaul, Renu Wadhwa. Effect of Ashwagandha Withanolides on Muscle Cell Differentiation. Biomolecules. 2021 10; 11(10):. doi: 10.3390/biom11101454. [PMID: 34680087]
  • Tripti Joshi, Vipendra Kumar, Elena V Kaznacheyeva, Nihar Ranjan Jana. Withaferin A Induces Heat Shock Response and Ameliorates Disease Progression in a Mouse Model of Huntington's Disease. Molecular neurobiology. 2021 Aug; 58(8):3992-4006. doi: 10.1007/s12035-021-02397-8. [PMID: 33904021]
  • Tatsunosuke Tomita, Renu Wadhwa, Sunil C Kaul, Ryoji Kurita, Naoshi Kojima, Yoshiaki Onishi. Withanolide Derivative 2,3-Dihydro-3β-methoxy Withaferin-A Modulates the Circadian Clock via Interaction with RAR-Related Orphan Receptor α (RORa). Journal of natural products. 2021 07; 84(7):1882-1888. doi: 10.1021/acs.jnatprod.0c01276. [PMID: 34152143]
  • Regan Odongo, Asuman Demiroglu-Zergeroglu, Tunahan Çakır. A systems pharmacology approach based on oncogenic signalling pathways to determine the mechanisms of action of natural products in breast cancer from transcriptome data. BMC complementary medicine and therapies. 2021 Jun; 21(1):181. doi: 10.1186/s12906-021-03340-z. [PMID: 34193143]
  • Elisa Bonandi, Mattia Mori, Paola Infante, Irene Basili, Lucia Di Marcotullio, Andrea Calcaterra, Federica Catti, Bruno Botta, Daniele Passarella. Design and Synthesis of New Withaferin A Inspired Hedgehog Pathway Inhibitors. Chemistry (Weinheim an der Bergstrasse, Germany). 2021 Jun; 27(32):8350-8357. doi: 10.1002/chem.202100315. [PMID: 33811701]
  • Franz Ewendt, Martina Feger, Michael Föller. Myostatin regulates the production of fibroblast growth factor 23 (FGF23) in UMR106 osteoblast-like cells. Pflugers Archiv : European journal of physiology. 2021 06; 473(6):969-976. doi: 10.1007/s00424-021-02561-y. [PMID: 33895875]
  • Kenjiro Kumano, Mazhar A Kanak, Prathab Balaji Saravanan, J P Blanck, Yang Liu, Srividya Vasu, Michael Lawrence, Bashoo Naziruddin. Withaferin A inhibits lymphocyte proliferation, dendritic cell maturation in vitro and prolongs islet allograft survival. Scientific reports. 2021 05; 11(1):10661. doi: 10.1038/s41598-021-90181-y. [PMID: 34021233]
  • Simona Bungau, Cosmin Mihai Vesa, Areha Abid, Tapan Behl, Delia Mirela Tit, Anamaria Lavinia Purza, Bianca Pasca, Laura Maghiar Todan, Laura Endres. Withaferin A-A Promising Phytochemical Compound with Multiple Results in Dermatological Diseases. Molecules (Basel, Switzerland). 2021 Apr; 26(9):. doi: 10.3390/molecules26092407. [PMID: 33919088]
  • Su-Hyeong Kim, Krishna B Singh, Eun-Ryeong Hahm, Shivendra V Singh. The Role of Forkhead Box Q1 Transcription Factor in Anticancer Effects of Withaferin A in Breast Cancer. Cancer prevention research (Philadelphia, Pa.). 2021 04; 14(4):421-432. doi: 10.1158/1940-6207.capr-20-0590. [PMID: 33509807]
  • Arabinda Ghosh, Monoswi Chakraborty, Anshuman Chandra, Mohamad Parvez Alam. Structure-activity relationship (SAR) and molecular dynamics study of withaferin-A fragment derivatives as potential therapeutic lead against main protease (Mpro) of SARS-CoV-2. Journal of molecular modeling. 2021 Feb; 27(3):97. doi: 10.1007/s00894-021-04703-6. [PMID: 33641023]
  • Yangliu Xia, Ping Wang, Nana Yan, Frank J Gonzalez, Tingting Yan. Withaferin A alleviates fulminant hepatitis by targeting macrophage and NLRP3. Cell death & disease. 2021 02; 12(2):174. doi: 10.1038/s41419-020-03243-w. [PMID: 33574236]
  • Harshini Mallipeddi, Anita Thyagarajan, Ravi P Sahu. Implications of Withaferin-A for triple-negative breast cancer chemoprevention. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2021 Feb; 134(?):111124. doi: 10.1016/j.biopha.2020.111124. [PMID: 33434782]
  • Rajanandh Muhasaparur Ganesan, Dinesh Kumar Settu, Yogeshkumar Murkunde, Chamundeeswari Duraipandian. Pharmacological and pharmacokinetic effect of a polyherbal combination with Withania somnifera (L.) Dunal for the management of anxiety. Journal of ethnopharmacology. 2021 Jan; 265(?):113337. doi: 10.1016/j.jep.2020.113337. [PMID: 32890709]
  • Liubov Koval, Nadezhda Zemskaya, Alexander Aliper, Alex Zhavoronkov, Alexey Moskalev. Evaluation of the geroprotective effects of withaferin A in Drosophila melanogaster. Aging. 2021 01; 13(2):1817-1841. doi: 10.18632/aging.202572. [PMID: 33498013]
  • Sunny Kumar, Daniel Phaneuf, Jean-Pierre Julien. Withaferin-A Treatment Alleviates TAR DNA-Binding Protein-43 Pathology and Improves Cognitive Function in a Mouse Model of FTLD. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics. 2021 01; 18(1):286-296. doi: 10.1007/s13311-020-00952-0. [PMID: 33078279]
  • Chang-Mu Chen, Yao-Pang Chung, Chia-Hung Liu, Kuo-Tong Huang, Siao-Syun Guan, Chih-Kang Chiang, Chen-Tien Wu, Shing-Hwa Liu. Withaferin A protects against endoplasmic reticulum stress-associated apoptosis, inflammation, and fibrosis in the kidney of a mouse model of unilateral ureteral obstruction. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2020 Dec; 79(?):153352. doi: 10.1016/j.phymed.2020.153352. [PMID: 33007732]
  • Zsuzsanna Nagy, Belamy B Cheung, Wing Tsang, Owen Tan, Mika Herath, Olivia C Ciampa, Fatima Shadma, Daniel R Carter, Glenn M Marshall. Withaferin A activates TRIM16 for its anti-cancer activity in melanoma. Scientific reports. 2020 11; 10(1):19724. doi: 10.1038/s41598-020-76722-x. [PMID: 33184347]
  • Sayed Mehdi Dehdashti, Sumita Acharjee, Alireza Nomani, Manab Deka. Production of pharmaceutical active recombinant globular adiponectin as a secretory protein in Withania Somnifera hairy root culture. Journal of biotechnology. 2020 Nov; 323(?):302-312. doi: 10.1016/j.jbiotec.2020.07.012. [PMID: 32682804]
  • Mehrnaz Karimi, Farhad Raofie. Preparation of Withaferin A nanoparticles extracted from Withania somnifera by the expansion of supercritical fluid solution. Phytochemical analysis : PCA. 2020 Nov; 31(6):957-967. doi: 10.1002/pca.2968. [PMID: 32666662]
  • Eun-Ryeong Hahm, Su-Hyeong Kim, Krishna B Singh, Kamayani Singh, Shivendra V Singh. A Comprehensive Review and Perspective on Anticancer Mechanisms of Withaferin A in Breast Cancer. Cancer prevention research (Philadelphia, Pa.). 2020 09; 13(9):721-734. doi: 10.1158/1940-6207.capr-20-0259. [PMID: 32727824]
  • Rafael Zúñiga, Guierdy Concha, Angel Cayo, Rocio Cikutović-Molina, Bárbara Arevalo, Wendy González, Marcelo A Catalán, Leandro Zúñiga. Withaferin A suppresses breast cancer cell proliferation by inhibition of the two-pore domain potassium (K2P9) channel TASK-3. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2020 Sep; 129(?):110383. doi: 10.1016/j.biopha.2020.110383. [PMID: 32563149]
  • Alex R Straughn, Sham S Kakar. Withaferin A: a potential therapeutic agent against COVID-19 infection. Journal of ovarian research. 2020 Jul; 13(1):79. doi: 10.1186/s13048-020-00684-x. [PMID: 32684166]
  • Vishnu Sankar Sivasankarapillai, Reshmi Madhu Kumar Nair, Abbas Rahdar, Simona Bungau, Dana Carmen Zaha, Lotfi Aleya, Delia Mirela Tit. Overview of the anticancer activity of withaferin A, an active constituent of the Indian ginseng Withania somnifera. Environmental science and pollution research international. 2020 Jul; 27(21):26025-26035. doi: 10.1007/s11356-020-09028-0. [PMID: 32405942]
  • Miten Mehta, Dievya Gohil, Navin Khattry, Rajiv Kumar, Santosh Sandur, Deepak Sharma, Rahul Checker, Beamon Agarwal, Dhruv Jha, Anuradha Majumdar, Vikram Gota. Prevention of acute graft-versus-host-disease by Withaferin a via suppression of AKT/mTOR pathway. International immunopharmacology. 2020 Jul; 84(?):106575. doi: 10.1016/j.intimp.2020.106575. [PMID: 32416453]
  • Da-Hye Lee, Jiyun Ahn, Young-Jin Jang, Hyo-Deok Seo, Tae-Youl Ha, Min Jung Kim, Yang Hoon Huh, Chang Hwa Jung. Withania somnifera Extract Enhances Energy Expenditure via Improving Mitochondrial Function in Adipose Tissue and Skeletal Muscle. Nutrients. 2020 Feb; 12(2):. doi: 10.3390/nu12020431. [PMID: 32046183]
  • Sunayna Choudhary, Indu Pal Kaur, Jai Malik. Development and Validation of a Novel, Rapid Gradient HPLC Method for Simultaneous Estimation of Bioactive Marker Compounds in a Mixture of Convolvulus pluricaulis, Withania somnifera and Bacopa monnieri Extracts. Journal of chromatographic science. 2020 Jan; 57(10):920-930. doi: 10.1093/chromsci/bmz075. [PMID: 31644789]
  • Md Abdul Hannan, Raju Dash, Md Nazmul Haque, Sung Min Choi, Il Soo Moon. Integrated System Pharmacology and In Silico Analysis Elucidating Neuropharmacological Actions of Withania somnifera in the Treatment of Alzheimer's Disease. CNS & neurological disorders drug targets. 2020; 19(7):541-556. doi: 10.2174/1871527319999200730214807. [PMID: 32748763]
  • Jingya Gu, Chang Chen, Jue Wang, Tingting Chen, Wenjuan Yao, Tingdong Yan, Zhaoguo Liu. Withaferin A Exerts Preventive Effect on Liver Fibrosis through Oxidative Stress Inhibition in a Sirtuin 3-Dependent Manner. Oxidative medicine and cellular longevity. 2020; 2020(?):2452848. doi: 10.1155/2020/2452848. [PMID: 33029279]
  • Mohammad A Ali, Mohammad Abul Farah, Khalid M Al-Anazi, Syed H Basha, Fang Bai, Joongku Lee, Fahad M A Al-Hemaid, Ahmed H Mahmoud, Waleed A Q Hailan. In Silico Elucidation of the Plausible Inhibitory Potential of Withaferin A of Withania Somnifera Medicinal Herb Against Breast Cancer Targeting Estrogen Receptor. Current pharmaceutical biotechnology. 2020; 21(9):842-851. doi: 10.2174/1389201021666200129121843. [PMID: 31995002]
  • Chérif Rabhi, Guillaume Arcile, Géraldine Le Goff, Christian Da Costa Noble, Jamal Ouazzani. Neuroprotective Effect of CR-777, a Glutathione Derivative of Withaferin A, Obtained through the Bioconversion of Withania somnifera (L.) Dunal Extract by the Fungus Beauveria bassiana. Molecules (Basel, Switzerland). 2019 Dec; 24(24):. doi: 10.3390/molecules24244599. [PMID: 31888204]
  • Nilofer Sayed, Amit Khurana, Mohd Aslam Saifi, Mandip Singh, Chandraiah Godugu. Withaferin A reverses bile duct ligation-induced liver fibrosis by modulating extracellular matrix deposition: Role of LOXL2/Snail1, vimentin, and NFκB signaling. BioFactors (Oxford, England). 2019 Nov; 45(6):959-974. doi: 10.1002/biof.1546. [PMID: 31336025]
  • Daxesh P Patel, Tingting Yan, Donghwan Kim, Henrique B Dias, Kristopher W Krausz, Shioko Kimura, Frank J Gonzalez. Withaferin A Improves Nonalcoholic Steatohepatitis in Mice. The Journal of pharmacology and experimental therapeutics. 2019 11; 371(2):360-374. doi: 10.1124/jpet.119.256792. [PMID: 31420528]
  • Raman Preet, Raghbir Chand Gupta. Quantification of withaferin-A and withanolide-A in diploid (n = 12) and tetraploid cytotypes (n = 24) of "Rassbhary", Physalis angulata L. Natural product research. 2019 Nov; 33(21):3157-3160. doi: 10.1080/14786419.2018.1519815. [PMID: 30445854]
  • Eun-Ryeong Hahm, Joomin Lee, Terric Abella, Shivendra V Singh. Withaferin A inhibits expression of ataxia telangiectasia and Rad3-related kinase and enhances sensitivity of human breast cancer cells to cisplatin. Molecular carcinogenesis. 2019 11; 58(11):2139-2148. doi: 10.1002/mc.23104. [PMID: 31441116]
  • Rinku Dutta, Roukiah Khalil, Ryan Green, Shyam S Mohapatra, Subhra Mohapatra. Withania Somnifera (Ashwagandha) and Withaferin A: Potential in Integrative Oncology. International journal of molecular sciences. 2019 Oct; 20(21):. doi: 10.3390/ijms20215310. [PMID: 31731424]
  • Florence Pare Ngoungoure, Brice Ayissi Owona. Withaferin A modulates AIM2 inflammasome and caspase-1 expression in THP-1 polarized macrophages. Experimental cell research. 2019 10; 383(2):111564. doi: 10.1016/j.yexcr.2019.111564. [PMID: 31442452]
  • Tianming Dai, Weifan Jiang, Zizheng Guo, Zhenyu Wang, Mingping Huang, Guorui Zhong, Chuxin Liang, Xuzhe Pei, Renke Dai. Studies on oral bioavailability and first-pass metabolism of withaferin A in rats using LC-MS/MS and Q-TRAP. Biomedical chromatography : BMC. 2019 Sep; 33(9):e4573. doi: 10.1002/bmc.4573. [PMID: 31062367]
  • Chandra S Peddakkulappagari, Mohd A Saifi, Amit Khurana, Pratibha Anchi, Mandip Singh, Chandraiah Godugu. Withaferin A ameliorates renal injury due to its potent effect on inflammatory signaling. BioFactors (Oxford, England). 2019 Sep; 45(5):750-762. doi: 10.1002/biof.1534. [PMID: 31188510]
  • Fan Wang, Jinyi Zhao, Juan Bai, Kai Gao, Dongxiao Cui, Yuan Chen, Ying Song, Yanyan Jia, Aidong Wen. Liquid chromatography-tandem mass spectrometry to assess the pharmacokinetics and tissue distribution of withaferin A in rats. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2019 Aug; 1122-1123(?):90-95. doi: 10.1016/j.jchromb.2019.05.016. [PMID: 31173997]
  • Rui Guo, Lu Gan, Wayne Bond Lau, Zheyi Yan, Dina Xie, Erhe Gao, Theodore A Christopher, Bernard L Lopez, Xinliang Ma, Yajing Wang. Withaferin A Prevents Myocardial Ischemia/Reperfusion Injury by Upregulating AMP-Activated Protein Kinase-Dependent B-Cell Lymphoma2 Signaling. Circulation journal : official journal of the Japanese Circulation Society. 2019 07; 83(8):1726-1736. doi: 10.1253/circj.cj-18-1391. [PMID: 31217391]
  • Anuradha Sehrawat, Suman K Samanta, Eun-Ryeong Hahm, Claudette St Croix, Simon Watkins, Shivendra V Singh. Withaferin A-mediated apoptosis in breast cancer cells is associated with alterations in mitochondrial dynamics. Mitochondrion. 2019 07; 47(?):282-293. doi: 10.1016/j.mito.2019.01.003. [PMID: 30685490]
  • Vijay P Sonar, Benedetta Fois, Simona Distinto, Elias Maccioni, Rita Meleddu, Filippo Cottiglia, Elio Acquas, Sanjay Kasture, Costantino Floris, Daniele Colombo, Claudia Sissi, Enrico Sanna, Giuseppe Talani. Ferulic Acid Esters and Withanolides: In Search of Withania somnifera GABAA Receptor Modulators. Journal of natural products. 2019 05; 82(5):1250-1257. doi: 10.1021/acs.jnatprod.8b01023. [PMID: 30998355]
  • Nayra R Perestelo, Gabriel G Llanos, Carolina P Reyes, Angel Amesty, Kartheek Sooda, Saeed Afshinjavid, Ignacio A Jiménez, Farideh Javid, Isabel L Bazzocchi. Expanding the Chemical Space of Withaferin A by Incorporating Silicon To Improve Its Clinical Potential on Human Ovarian Carcinoma Cells. Journal of medicinal chemistry. 2019 05; 62(9):4571-4585. doi: 10.1021/acs.jmedchem.9b00146. [PMID: 31008605]
  • Mohamad Hafizi Abu Bakar, Mohamad Nurul Azmi, Khairul Anuar Shariff, Joo Shun Tan. Withaferin A Protects Against High-Fat Diet-Induced Obesity Via Attenuation of Oxidative Stress, Inflammation, and Insulin Resistance. Applied biochemistry and biotechnology. 2019 May; 188(1):241-259. doi: 10.1007/s12010-018-2920-2. [PMID: 30417321]
  • Jitendra Kumar, Murli Dhar Mitra, Ahmad Hussain, Gautam Kaul. Exploration of immunomodulatory and protective effect of Withania somnifera on trace metal oxide (zinc oxide nanoparticles) induced toxicity in Balb/c mice. Molecular biology reports. 2019 Apr; 46(2):2447-2459. doi: 10.1007/s11033-019-04705-x. [PMID: 30847852]
  • Ramesh Kumar Kushwaha, Sucheta Singh, Shiv Shanker Pandey, Alok Kalra, C S Vivek Babu. Fungal endophytes attune withanolide biosynthesis in Withania somnifera, prime to enhanced withanolide A content in leaves and roots. World journal of microbiology & biotechnology. 2019 Jan; 35(2):20. doi: 10.1007/s11274-019-2593-1. [PMID: 30656434]
  • Mohamed A Morsy, Snehal S Patel, Azza A K El-Sheikh, Jignasa K Savjani, Anroop B Nair, Jigar N Shah, Katharigatta N Venugopala. Computational and Biological Comparisons of Plant Steroids as Modulators of Inflammation through Interacting with Glucocorticoid Receptor. Mediators of inflammation. 2019; 2019(?):3041438. doi: 10.1155/2019/3041438. [PMID: 31263381]
  • Manizheh Khalilpourfarshbafi, Dharmani Devi Murugan, Munavvar Zubaid Abdul Sattar, Yamuna Sucedaram, Nor Azizan Abdullah. Withaferin A inhibits adipogenesis in 3T3-F442A cell line, improves insulin sensitivity and promotes weight loss in high fat diet-induced obese mice. PloS one. 2019; 14(6):e0218792. doi: 10.1371/journal.pone.0218792. [PMID: 31226166]
  • Hong Mei Zhao, Zhi Wei Gao, Shou Xiang Xie, Xiang Han, Qing Song Sun. Withaferin A attenuates ovalbumin induced airway inflammation. Frontiers in bioscience (Landmark edition). 2019 01; 24(3):576-596. doi: 10.2741/4737. [PMID: 30468675]
  • Eleni Kyriakou, Stefanie Schmidt, Garron T Dodd, Katrin Pfuhlmann, Stephanie E Simonds, Dominik Lenhart, Arie Geerlof, Sonja C Schriever, Meri De Angelis, Karl-Werner Schramm, Oliver Plettenburg, Michael A Cowley, Tony Tiganis, Matthias H Tschöp, Paul T Pfluger, Michael Sattler, Ana C Messias. Celastrol Promotes Weight Loss in Diet-Induced Obesity by Inhibiting the Protein Tyrosine Phosphatases PTP1B and TCPTP in the Hypothalamus. Journal of medicinal chemistry. 2018 12; 61(24):11144-11157. doi: 10.1021/acs.jmedchem.8b01224. [PMID: 30525586]
  • Widad Ben Bakrim, Laila El Bouzidi, Jean-Marc Nuzillard, Sylvian Cretton, Noémie Saraux, Aymeric Monteillier, Philippe Christen, Muriel Cuendet, Khalid Bekkouche. Bioactive metabolites from the leaves of Withania adpressa. Pharmaceutical biology. 2018 Dec; 56(1):505-510. doi: 10.1080/13880209.2018.1499781. [PMID: 30451050]
  • Vijaya Lakshmi Tiruveedi, Swarna Bale, Amit Khurana, Chandraiah Godugu. Withaferin A, a novel compound of Indian ginseng (Withania somnifera), ameliorates Cerulein-induced acute pancreatitis: Possible role of oxidative stress and inflammation. Phytotherapy research : PTR. 2018 Dec; 32(12):2586-2596. doi: 10.1002/ptr.6200. [PMID: 30307087]
  • Niraj Tripathi, Divya Shrivastava, Bilal Ahmad Mir, Shailesh Kumar, Sumit Govil, Maryam Vahedi, Prakash S Bisen. Metabolomic and biotechnological approaches to determine therapeutic potential of Withania somnifera (L.) Dunal: A review. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2018 Nov; 50(?):127-136. doi: 10.1016/j.phymed.2017.08.020. [PMID: 30466971]
  • Satyanshu Kumar, Raghuraj Singh, Narendra Gajbhiye, Tushar Dhanani. Extraction Optimization for Phenolic- and Withanolide-Rich Fractions from Withania somnifera Roots: Identification and Quantification of Withaferin A, 12-Deoxywithastromonolide, and Withanolide A in Plant Materials and Marketed Formulations Using a Reversed-Phase HPLC-Photodiode Array Detection Method. Journal of AOAC International. 2018 Nov; 101(6):1773-1780. doi: 10.5740/jaoacint.18-0081. [PMID: 29945694]
  • Al Hassan Kyakulaga, Farrukh Aqil, Radha Munagala, Ramesh C Gupta. Withaferin A inhibits Epithelial to Mesenchymal Transition in Non-Small Cell Lung Cancer Cells. Scientific reports. 2018 10; 8(1):15737. doi: 10.1038/s41598-018-34018-1. [PMID: 30356176]
  • Zheyi Yan, Rui Guo, Lu Gan, Wayne Bond Lau, Xiaoming Cao, Jianli Zhao, Xinliang Ma, Theodore A Christopher, Bernard L Lopez, Yajing Wang. Withaferin A inhibits apoptosis via activated Akt-mediated inhibition of oxidative stress. Life sciences. 2018 Oct; 211(?):91-101. doi: 10.1016/j.lfs.2018.09.020. [PMID: 30213729]
  • Shuxian Xia, Yinglei Miao, Side Liu. Withaferin A induces apoptosis by ROS-dependent mitochondrial dysfunction in human colorectal cancer cells. Biochemical and biophysical research communications. 2018 09; 503(4):2363-2369. doi: 10.1016/j.bbrc.2018.06.162. [PMID: 29966656]
  • Aradhana Mishra, Satyendra Pratap Singh, Sahil Mahfooz, Arpita Bhattacharya, Nishtha Mishra, Pramod Arvind Shirke, C S Nautiyal. Bacterial endophytes modulates the withanolide biosynthetic pathway and physiological performance in Withania somnifera under biotic stress. Microbiological research. 2018 Jul; 212-213(?):17-28. doi: 10.1016/j.micres.2018.04.006. [PMID: 29853165]
  • Martin Dom, Fritz Offner, Wim Vanden Berghe, Xaveer Van Ostade. Proteomic characterization of Withaferin A-targeted protein networks for the treatment of monoclonal myeloma gammopathies. Journal of proteomics. 2018 05; 179(?):17-29. doi: 10.1016/j.jprot.2018.02.013. [PMID: 29448055]
  • Bharadwaja Vadloori, A K Sharath, N Prakash Prabhu, Radheshyam Maurya. Homology modelling, molecular docking, and molecular dynamics simulations reveal the inhibition of Leishmania donovani dihydrofolate reductase-thymidylate synthase enzyme by Withaferin-A. BMC research notes. 2018 Apr; 11(1):246. doi: 10.1186/s13104-018-3354-1. [PMID: 29661206]
  • Dharmendra Choudhary, Sulekha Adhikary, Naseer Ahmad, Priyanka Kothari, Ashwni Verma, Prabodh Kumar Trivedi, Prabhat Ranjan Mishra, Ritu Trivedi. Prevention of articular cartilage degeneration in a rat model of monosodium iodoacetate induced osteoarthritis by oral treatment with Withaferin A. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2018 Mar; 99(?):151-161. doi: 10.1016/j.biopha.2017.12.113. [PMID: 29331761]
  • Dong Wook Lim, Jae Goo Kim, Eun Yeong Lim, Yun Tai Kim. Antihyperalgesic effects of ashwagandha (Withania somnifera root extract) in rat models of postoperative and neuropathic pain. Inflammopharmacology. 2018 Feb; 26(1):207-215. doi: 10.1007/s10787-017-0389-1. [PMID: 28849547]
  • Prashant Joshi, Vinay R Sonawane, Ibidapo S Williams, Glen J P McCann, Linda Gatchie, Rajni Sharma, Naresh Satti, Bhabatosh Chaudhuri, Sandip B Bharate. Identification of karanjin isolated from the Indian beech tree as a potent CYP1 enzyme inhibitor with cellular efficacy via screening of a natural product repository. MedChemComm. 2018 Feb; 9(2):371-382. doi: 10.1039/c7md00388a. [PMID: 30108931]
  • Amandeep Kaur, Baldev Singh, Puja Ohri, Jia Wang, Renu Wadhwa, Sunil C Kaul, Pratap Kumar Pati, Arvinder Kaur. Organic cultivation of Ashwagandha with improved biomass and high content of active Withanolides: Use of Vermicompost. PloS one. 2018; 13(4):e0194314. doi: 10.1371/journal.pone.0194314. [PMID: 29659590]
  • Seema Dubey, Hyunho Yoon, Mark Steven Cohen, Prakash Nagarkatti, Mitzi Nagarkatti, Dev Karan. Withaferin A Associated Differential Regulation of Inflammatory Cytokines. Frontiers in immunology. 2018; 9(?):195. doi: 10.3389/fimmu.2018.00195. [PMID: 29479354]
  • Gabriel G Llanos, Liliana M Araujo, Ignacio A Jiménez, Laila M Moujir, Jaime Rodríguez, Carlos Jiménez, Isabel L Bazzocchi. Structure-based design, synthesis, and biological evaluation of withaferin A-analogues as potent apoptotic inducers. European journal of medicinal chemistry. 2017 Nov; 140(?):52-64. doi: 10.1016/j.ejmech.2017.09.004. [PMID: 28923386]
  • Faheem Rasool, Debasis Nayak, Archana Katoch, Mir Mohd Faheem, Syed Khalid Yousuf, Nazar Hussain, Chetan Belawal, N K Satti, Anindya Goswami, Debaraj Mukherjee. Regiospecific Synthesis of Ring A Fused Withaferin A Isoxazoline Analogues: Induction of Premature Senescence by W-2b in Proliferating Cancer Cells. Scientific reports. 2017 10; 7(1):13749. doi: 10.1038/s41598-017-13664-x. [PMID: 29062040]
  • Anup Kumar Singh, Sarma Rajeev Kumar, Varun Dwivedi, Avanish Rai, Shaifali Pal, Ajit K Shasany, Dinesh A Nagegowda. A WRKY transcription factor from Withania somnifera regulates triterpenoid withanolide accumulation and biotic stress tolerance through modulation of phytosterol and defense pathways. The New phytologist. 2017 Aug; 215(3):1115-1131. doi: 10.1111/nph.14663. [PMID: 28649699]
  • Katarzyna Szarc Vel Szic, Ken Declerck, René A J Crans, Jolien Diddens, David B Scherf, Clarissa Gerhäuser, Wim Vanden Berghe. Epigenetic silencing of triple negative breast cancer hallmarks by Withaferin A. Oncotarget. 2017 Jun; 8(25):40434-40453. doi: 10.18632/oncotarget.17107. [PMID: 28467815]
  • Suman K Samanta, Anuradha Sehrawat, Su-Hyeong Kim, Eun-Ryeong Hahm, Yongli Shuai, Ruchi Roy, Subrata K Pore, Krishna B Singh, Susan M Christner, Jan H Beumer, Nancy E Davidson, Shivendra V Singh. Disease Subtype-Independent Biomarkers of Breast Cancer Chemoprevention by the Ayurvedic Medicine Phytochemical Withaferin A. Journal of the National Cancer Institute. 2017 06; 109(6):. doi: 10.1093/jnci/djw293. [PMID: 28040797]
  • Seema Ahlawat, Parul Saxena, Athar Ali, Shazia Khan, Malik Z Abdin. Comparative study of withanolide production and the related transcriptional responses of biosynthetic genes in fungi elicited cell suspension culture of Withania somnifera in shake flask and bioreactor. Plant physiology and biochemistry : PPB. 2017 May; 114(?):19-28. doi: 10.1016/j.plaphy.2017.02.013. [PMID: 28249222]
  • Yue Yu, Shashank P Katiyar, Durai Sundar, Zeenia Kaul, Eijiro Miyako, Zhenya Zhang, Sunil C Kaul, Roger R Reddel, Renu Wadhwa. Withaferin-A kills cancer cells with and without telomerase: chemical, computational and experimental evidences. Cell death & disease. 2017 04; 8(4):e2755. doi: 10.1038/cddis.2017.33. [PMID: 28425984]
  • Ya-Ming Xu, Alan D Brooks, E M Kithsiri Wijeratne, Curtis J Henrich, Poonam Tewary, Thomas J Sayers, A A Leslie Gunatilaka. 17β-Hydroxywithanolides as Sensitizers of Renal Carcinoma Cells to Tumor Necrosis Factor-α Related Apoptosis Inducing Ligand (TRAIL) Mediated Apoptosis: Structure-Activity Relationships. Journal of medicinal chemistry. 2017 04; 60(7):3039-3051. doi: 10.1021/acs.jmedchem.7b00069. [PMID: 28257574]
  • Mazhar A Kanak, Rauf Shahbazov, Gumpei Yoshimatsu, Marlon F Levy, Michael C Lawrence, Bashoo Naziruddin. A small molecule inhibitor of NFκB blocks ER stress and the NLRP3 inflammasome and prevents progression of pancreatitis. Journal of gastroenterology. 2017 Mar; 52(3):352-365. doi: 10.1007/s00535-016-1238-5. [PMID: 27418337]
  • Qi-Zhi Zhang, Yu-Dong Guo, Hao-Mei Li, Rui-Zheng Wang, Shou-Gang Guo, Yi-Feng Du. Protection against cerebral infarction by Withaferin A involves inhibition of neuronal apoptosis, activation of PI3K/Akt signaling pathway, and reduced intimal hyperplasia via inhibition of VSMC migration and matrix metalloproteinases. Advances in medical sciences. 2017 Mar; 62(1):186-192. doi: 10.1016/j.advms.2016.09.003. [PMID: 28282606]
  • Subrata Pandit, Satyajyoti Kanjilal, Anshumali Awasthi, Anika Chaudhary, Dipankar Banerjee, B N Bhatt, Avinash Narwaria, Rahul Singh, Kakoli Dutta, Manu Jaggi, Anu T Singh, Neena Sharma, Chandra Kant Katiyar. Evaluation of herb-drug interaction of a polyherbal Ayurvedic formulation through high throughput cytochrome P450 enzyme inhibition assay. Journal of ethnopharmacology. 2017 Feb; 197(?):165-172. doi: 10.1016/j.jep.2016.07.061. [PMID: 27457692]
  • Mark E Issa, Muriel Cuendet. Withaferin A induces cell death and differentiation in multiple myeloma cancer stem cells. MedChemComm. 2017 Jan; 8(1):112-121. doi: 10.1039/c6md00410e. [PMID: 30108696]
  • Wei-Chen Hou, Xiao-Hui Miao, Lian-Jun Ma, Xiao-Xue Bai, Qun Liu, Lei Song. WITHAFERIN A INDUCES APOPTOSIS IN RAT C6 GLIOMA CELLS THROUGH REGULATING NF-KB NUCLEAR TRANSLOCATION AND ACTIVATION OF CASPASE CASCADE. African journal of traditional, complementary, and alternative medicines : AJTCAM. 2017; 14(2):319-324. doi: 10.21010/ajtcam.v14i2.33. [PMID: 28573248]
  • Liang Piao, Zhao Canguo, Lu Wenjie, Cheng Xiaoli, Shi Wenli, Lu Li. Lipopolysaccharides-stimulated macrophage products enhance Withaferin A-induced apoptosis via activation of caspases and inhibition of NF-κB pathway in human cancer cells. Molecular immunology. 2017 01; 81(?):92-101. doi: 10.1016/j.molimm.2016.10.010. [PMID: 27915154]
  • Shaifali Pal, Akhilesh Kumar Yadav, Anup Kumar Singh, Shubhra Rastogi, Madan Mohan Gupta, Rajesh Kumar Verma, Dinesh A Nagegowda, Anirban Pal, Ajit Kumar Shasany. Nitrogen treatment enhances sterols and withaferin A through transcriptional activation of jasmonate pathway, WRKY transcription factors, and biosynthesis genes in Withania somnifera (L.) Dunal. Protoplasma. 2017 Jan; 254(1):389-399. doi: 10.1007/s00709-016-0959-x. [PMID: 26971099]