Rotenone (BioDeep_00000000136)

 

Secondary id: BioDeep_00000270590

human metabolite PANOMIX_OTCML-2023 Toxin


代谢物信息卡片


[1]Benzopyrano[3,4-b]furo[2,3-h][1]benzopyran-6(6aH)-one, 1,2,12,12a-tetrahydro-8,9-dimethoxy-2-(1-methylethenyl)-, [2R-(2alpha,6aalpha,12aalpha)]-

化学式: C23H22O6 (394.1416312)
中文名称: 鱼藤酮
谱图信息: 最多检出来源 Macaca mulatta(otcml) 0.22%

分子结构信息

SMILES: C12O[C@@]([H])(C(=C)C)CC1=C1O[C@]3([H])COC4C=C(OC)C(OC)=CC=4[C@]3([H])C(=O)C1=CC=2
InChI: InChI=1S/C23H22O6/c1-11(2)16-8-14-15(28-16)6-5-12-22(24)21-13-7-18(25-3)19(26-4)9-17(13)27-10-20(21)29-23(12)14/h5-7,9,16,20-21H,1,8,10H2,2-4H3/t16-,20-,21+/m1/s1

描述信息

Rotenone appears as colorless to brownish crystals or a white to brownish-white crystalline powder. Has neither odor nor taste. (NTP, 1992)
Rotenone is a member of the class of rotenones that consists of 1,2,12,12a-tetrahydrochromeno[3,4-b]furo[2,3-h]chromen-6(6aH)-one substituted at position 2 by a prop-1-en-2-yl group and at positions 8 and 9 by methoxy groups (the 2R,6aS,12aS-isomer). A non-systemic insecticide, it is the principal insecticidal constituent of derris (the dried rhizome and root of Derris elliptica). It has a role as a phytogenic insecticide, a mitochondrial NADH:ubiquinone reductase inhibitor, a metabolite, an antineoplastic agent, a toxin and a piscicide. It is an organic heteropentacyclic compound and a member of rotenones.
Rotenone is an isoflavone compound that naturally occurs in the jicama vine plant as well as many Fabaceae plants. It has broad spectrum insecticide and pesticide activity and is also toxic to fish.
Rotenone is a natural product found in Pachyrhizus erosus, Millettia ferruginea, and other organisms with data available.
Rotenone is a naturally occurring organic heteropentacyclic compound and member of rotenones that is found in the roots of several plant species. It is a mitochondrial NADH:ubiquinone reductase inhibitor, toxin, and metabolite, and is used as an antineoplastic agent and insecticide. It is characterized as a colorless to brownish or a white to brownish-white crystalline solid that is odorless. Exposure occurs by inhalation, ingestion, or contact.
Rotenone is found in jicama. Rotenone is widely distributed in the Leguminosae (Papilionoideae) e.g. Pachyrrhizus erosus (yam bean).Rotenone is an odorless chemical that is used as a broad-spectrum insecticide, piscicide, and pesticide. It occurs naturally in the roots and stems of several plants such as the jicama vine plant. In mammals, including humans, it is linked to the development of Parkinsons disease. (Wikipedia) Rotenone has been shown to exhibit apoptotic, neuroprotectant and neuroprotective functions (A7776, A7777, A7777).Rotenone belongs to the family of Rotenoids. These are phenolic compounds containing aA cis-fused tetrahydrochromeno[3,4-b]chromenenucleus. Many rotenoids contain an additional ring, e.g rotenone[1]. (Reference: [1] IUPAC. Compendium of Chemical Terminology, 2nd ed. (the Gold Book). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: http://goldbook.iupac.org (2006-) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. ISBN 0-9678550-9-8. doi:10.1351/goldbook. (PAC, 1995, 67, 1307 (Glossary of class names of organic compounds and reactivity intermediates based on structure (IUPAC Recommendations 1995)) on page 1364)).
A botanical insecticide that is an inhibitor of mitochondrial electron transport.
Rotenone is found in jicama. Rotenone is widely distributed in the Leguminosae (Papilionoideae) e.g. Pachyrrhizus erosus (yam bean).Rotenone is an odorless chemical that is used as a broad-spectrum insecticide, piscicide, and pesticide. It occurs naturally in the roots and stems of several plants such as the jicama vine plant. In mammals, including humans, it is linked to the development of Parkinsons disease.
A member of the class of rotenones that consists of 1,2,12,12a-tetrahydrochromeno[3,4-b]furo[2,3-h]chromen-6(6aH)-one substituted at position 2 by a prop-1-en-2-yl group and at positions 8 and 9 by methoxy groups (the 2R,6aS,12aS-isomer). A non-systemic insecticide, it is the principal insecticidal constituent of derris (the dried rhizome and root of Derris elliptica).
Widely distrib. in the Leguminosae (Papilionoideae) e.g. Pachyrrhizus erosus (yam bean)
D004791 - Enzyme Inhibitors > D014475 - Uncoupling Agents
D010575 - Pesticides > D007306 - Insecticides
D016573 - Agrochemicals
Rotenone is a mitochondrial electron transport chain complex I inhibitor. Rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production.
Rotenone is a mitochondrial electron transport chain complex I inhibitor. Rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production.
Rotenone is a mitochondrial electron transport chain complex I inhibitor. Rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production.

同义名列表

130 个代谢物同义名

[1]Benzopyrano[3,4-b]furo[2,3-h][1]benzopyran-6(6aH)-one, 1,2,12,12a-tetrahydro-8,9-dimethoxy-2-(1-methylethenyl)-, [2R-(2alpha,6aalpha,12aalpha)]-; (1S,6R,13S)-16,17-dimethoxy-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0^{3,11}.0^{4,8}.0^{14,19}]henicosa-3,8,10,14(19),15,17-hexaen-12-one; (1)Benzopyrano(3,4-b)furo(2,3-h)(1)benzopyran-6(6aH)-one, 1,2,12,12a-tetrahydro-8,9-dimethoxy-2-(1-methylethenyl)-, (2R-(2alpha,6aalpha,12aalpha))-; [2R-(2alpha,6aalpha,12aalpha)]-1,2,12,12a-tetrahydro-8,9-dimethoxy-2-(1-methylethenyl)[1]benzopyrano[3,4-b]furo[2,3-H][1]benzopyran-6(6aH)-one; [1]Benzopyrano[3,3-h][1]benzopyran-6(6aH)-one, 1,2,12,12a-tetrahydro-8,9-dimethoxy-2-(1-methylethenyl)-, [2R-(2.alpha.,6a.alpha.,12a.alpha.)]-; (2R-(2alpha,6aalpha,12aalpha))-1,2,12,12a-Tetrahydro-8,9-dimethoxy-2-(1-methylethenyl)(1)benzopyrano(3,4-b)furo(2,3-h)benzopyran-6(6aH)-one; [2R-(2a,6Aalpha,12aalpha)]-1,2,12,12a-tetrahydro-8,9-dimethoxy-2-(1-methylethenyl)[1]benzopyrano[3,4-b]furo[2,3-H][1]benzopyran-6(6ah)-one; (1S,6R,13S)-16,17-dimethoxy-6-prop-1-en-2-yl-2,7,20-trioxapentacyclo[11.8.0.03,11.04,8.014,19]henicosa-3(11),4(8),9,14,16,18-hexaen-12-one; [2R-(2Α,6aalpha,12aalpha)]-1,2,12,12a-tetrahydro-8,9-dimethoxy-2-(1-methylethenyl)[1]benzopyrano[3,4-b]furo[2,3-H][1]benzopyran-6(6ah)-one; [1]Benzopyrano[3,4-b]furo[2,3-h][1]benzopyran-6(6aH)-one, 1,2,12,12a-tetrahydro-8,9-dimethoxy-2-(1-methylethenyl)-, (2R,6aS,12aS)- (9CI); [1]Benzopyrano[3,4-b]furo[2,3-h][1]benzopyran-6(6aH)-one, 1,2,12,12a-tetrahydro-8,9-dimethoxy-2-(1-methylethenyl)-, (2R,6aS,12aS)-; (1)Benzopyrano(3,4-b)furo(2,3-h)(1)benzopyran-6(6aH)-one, 1,2,12,12a-tetrahydro-8,9-dimethoxy-2-(1-methylethenyl)-, (2R,6aS,12aS)-; [1]Benzopyrano[3,4-b]furo[2,3-h][1]benzopyran-6(6aalphaH)-one, 1,2,12,12aalpha-tetrahydro-2alpha-isopropenyl-8,9-dimethoxy- (8CI); (2R,6aS,12aS)-8,9-Dimethoxy-2-(prop-1-en-2-yl)-1,2,12,12a-tetrahydrofuro[2,3:7,8][1]benzopyrano[2,3-c][1]benzopyran-6(6aH)-one; (2R,6aS,12aS)-1,2,12,12a-Tetrahydro-8,9-dimethoxy-2-(1-methylethenyl)-[1]benzopyrano[3,4-b]furo[2,3-h][1]benzopyran-6(6aH)-one; (2R,6AS,12AS)-1,2,12,12A-TETRAHYDRO-8,9-DIMETHOXY-2-(1-METHYLETHENYL)(1)BENZOPYRANO(3,4-B)FURO(2,3-H)(1)BENZOPYRAN-6(6AH)-ONE; Tubatoxin 1,2,12,12a,-Tetrahydro-8,9-dimethoxy-2-(1-methylethenyl)-[1]benzopyrano[3,4-b]furo[2,3-h][1]-benzopyran-6(6aH)-one; [1]Benzopyrano[3,3-h][1]benzopyran-6(6a.alpha.H)-one, 1,2,12,12a.alpha.-tetrahydro-2.alpha.-isopropenyl-8,9-dimethoxy-; 1,2,12,12a-Tetrahydro-8,9-dimethoxy-2-(1-methylethenyl)-[1]benzopyrano[3,4-b]furo[2,3-h][1]benzopyran-6(6aH)-one, 9CI; (1)Benzopyrano(3,4-b)furo(2,3-h)(1)benzopyran-6(6aH)-one, 1,2,12,12a-tetrahydro-2-alpha-isopropenyl-8,9-dimethoxy-; 1,2,12,12a-Tetrahydro-8,9-dimethoxy-2-(1-methylethenyl)-(1)benzopyrano(3,4-b)furo(2,3-h)(1)benzopyran-6(6aH)-one; (2R,6aS,12aS)-8,9-dimethoxy-2-(prop-1-en-2-yl)-1,2,12,12a-tetrahydrochromeno[3,4-b]furo[2,3-h]chromen-6(6aH)-one; 1,2,12,12aalpha-Tetrahydro-2a-isopropenyl-8,9-dimethoxy(1)benzopyrano(3,4-b)furo(2,3-h)(1)benzopyran-6(6aH)-one; (2R,6aS,12aS)-1,2,6,6a,12,12a- hexahydro-2-isopropenyl-8,9- dimethoxychromeno[3,4-b] furo(2,3-h)chromen-6-one; (2R,6aS,12aS)-2-isopropenyl-8,9-dimethoxy-1,2,12,12a-tetrahydrochromeno[3,4-b]furo[2,3-h]chromen-6(6aH)-one; (2R,6aS,12aS)-1,2,6,6a,12,12a-hexahydro-2-isopropenyl-8,9-dimethoxychromeno[3,4-b]furo[2,3-h]chromen-6-one; (2R,6aS,12aS)-1,2,6,6a,12,12a-hexahydro-2-isopropenyl-8,9-dimethoxychromeno(3,4-b)furo(2,3-h)chromen-6-one; (1)Benzopyrano[3,3-h](1)benzopyran-6(6aH)-one, 1,2,12,12a-tetrahydro-2-.alpha.-iospropenyl-8,9-dimethoxy-; [1]Benzopyrano[3,3-h][1]benzopyran-6(6aH)-one, 1,2,12,12a-tetrahydro-2-.alpha.-isopropenyl-8,9-dimethoxy-; (2R-(6aalpha,12aalpha)-1,2-Dihydro-2-isopropenyl-8,9-dimethoxychromano(3,4-b)furo(2,3-h)chroman-6-one; (2R-(6aalpha,12aalpha)-1,2-Dihydro-2-isopropenyl-8,9-dimethoxychromano(3,4-b)furo(2,3-h)chroman-6-on; (12aS,6aS,2R)-8,9-dimethoxy-2-(1-methylvinyl)-1,2-dihydrochromano[3,4-b]furano [2,3-h]chroman-6-one; [1]Benzopyrano[3,3-h][1]benzopyran-6(6aH)-one, 1,2,12,12a-tetrahydro-2-isopropenyl-8,9-dimethoxy-; WLN: T G5 D6 B666 CV HO MO POT&TT&J IY1&U1 SO1 TO1; Rotenone, PESTANAL(R), analytical standard; inhibits NADH2 oxidation to NAD; isopropenyl(dimethoxy)[?]one; JUVIOZPCNVVQFO-HBGVWJBISA-N; Green Cross Warble Powder; ROTENONE [GREEN BOOK]; Derris (insecticide); Rotenone, commercial; Rotenona [Spanish]; Rotenone [BSI:ISO]; Curex flea duster; Cenol garden dust; Rotenone, dehydro; (-)-cis-Rotenone; Spectrum4_001638; Spectrum2_000457; ROTENONE [MART.]; Spectrum5_000455; Rotenone, >=95\\%; 5.beta.-Rotenone; Spectrum3_000158; ROTENONE [HSDB]; 5-beta-Rotenone; UNII-03L9OT429T; ROTENONE [ISO]; Foliafume E.C.; Tox21_110819_1; Rotenone (7CI); 5beta-rotenone; 5beta-Rotenone; Rotocide E.C.; Derris resins; DivK1c_000947; ROTENONE [MI]; Lopac0_001112; Liquid Derris; Rotacide E.C.; Tox21_110819; (-)-Rotenone; KBio2_003033; KBio2_000465; KBio3_001116; KBio2_005601; KBio1_000947; NCI60_002093; Derris, JMAF; Tox21_300695; Tox21_201904; Tox21_501112; 5Β-rotenone; CAS-83-79-4; Rotenox 5EC; IDI1_000947; 5b-Rotenone; Cube-Pulver; Rotessenol; 03L9OT429T; Nicouline; Tubotoxin; Paraderil; AI3-00133; Roteonone; Chem-Mite; Tubatoxin; Rotefour; C23H22O6; Rotocide; Rotefive; Dactinol; Rotenona; Rotenone; Barbasco; Rotenoid; Synpren; Dri-Kil; Noxfire; Rotenox; Prentox; Rotenon; Noxfish; Derrin; Ronone; Gerane; Haiari; Protax; Pb-nox; Mexide; Extrax; Derris; Nekoe; Canex; Ro-Ko; Deril; Cubor; CUBE; (2R,6aS,12aS)-1,2,6,6a,12,12a- hexahydro-2-isopropenyl-8,9- dimethoxychromeno[3,4-b] furo(2,3-h)chromen-6-one



数据库引用编号

24 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

4 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(2)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(2)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

57 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Aruna Chanu Hijam, Yaiphabi Chanu Tongbram, Pooja Devi Nongthombam, Heikrujam Nilkanta Meitei, Arunkumar Singh Koijam, Yallapa Rajashekar, Reena Haobam. Neuroprotective potential of traditionally used medicinal plants of Manipur against rotenone-induced neurotoxicity in SH-SY5Y neuroblastoma cells. Journal of ethnopharmacology. 2024 Aug; 330(?):118197. doi: 10.1016/j.jep.2024.118197. [PMID: 38636579]
  • Lu Tian, Peiyan Tang, Jianing Liu, Yiyang Liu, Liyan Hou, Jie Zhao, Qingshan Wang. Microglial gp91phox-mediated neuroinflammation and ferroptosis contributes to learning and memory deficits in rotenone-treated mice. Free radical biology & medicine. 2024 Aug; 220(?):56-66. doi: 10.1016/j.freeradbiomed.2024.04.240. [PMID: 38697489]
  • Ricardo Gomes Dos Santos Nunes, Luciclaudio Cassimiro de Amorim, Iverson Conrado Bezerra, Artur José da Silva, Carlos Alonso Leite Dos Santos, Priscila Gubert, Irwin Rose Alencar de Menezesa, Antonia Eliene Duarte, Luiz Marivando Barros, Belmira Lara da Silveira Andrade-da-Costa, Márcia Vanusa Dos Santos, Maria Tereza Dos Santos Correia, Michelle Melgarejo da Rosa. Syagrus coronata fixed oil prevents rotenone-induced movement disorders and oxidative stress in Drosophila melanogaster. Journal of toxicology and environmental health. Part A. 2024 Jun; 87(12):497-515. doi: 10.1080/15287394.2024.2338431. [PMID: 38619158]
  • Min Hong, Juan Wang, Haobin Chen, Jiayu Qi, Qinghong Ji, Xiaoyan Liu, Qiaoli Yue, Lei Li, Shuang Cheng. Synthesis and biological evaluation of folic acid-rotenol conjugate as a potent targeted anticancer prodrug. European journal of pharmacology. 2024 May; 970(?):176482. doi: 10.1016/j.ejphar.2024.176482. [PMID: 38452835]
  • Ivan Kiganda, Jonathan Bogaerts, Lianne H E Wieske, Tsegaye Deyou, Yoseph Atilaw, Colores Uwamariya, Masum Miah, Joanna Said, Albert Ndakala, Hoseah M Akala, Wouter Herrebout, Edward Trybala, Tomas Bergström, Abiy Yenesew, Mate Erdelyi. Antiviral Rotenoids and Isoflavones Isolated from Millettia oblata ssp. teitensis. Journal of natural products. 2024 Apr; 87(4):1003-1012. doi: 10.1021/acs.jnatprod.3c01288. [PMID: 38579352]
  • Rosanna Mallamaci, Debora Musarò, Marco Greco, Antonello Caponio, Stefano Castellani, Anas Munir, Lorenzo Guerra, Marina Damato, Giuseppe Fracchiolla, Chiara Coppola, Rosa Angela Cardone, Mehdi Rashidi, Roberta Tardugno, Sara Sergio, Adriana Trapani, Michele Maffia. Dopamine- and Grape-Seed-Extract-Loaded Solid Lipid Nanoparticles: Interaction Studies between Particles and Differentiated SH-SY5Y Neuronal Cell Model of Parkinson's Disease. Molecules (Basel, Switzerland). 2024 Apr; 29(8):. doi: 10.3390/molecules29081774. [PMID: 38675592]
  • Emmanuel Makinde, Linlin Ma, George D Mellick, Yunjiang Feng. A High-Throughput Screening of a Natural Products Library for Mitochondria Modulators. Biomolecules. 2024 Apr; 14(4):. doi: 10.3390/biom14040440. [PMID: 38672457]
  • Emad Albadawi, Ahmed El-Tokhy, Muayad Albadrani, Mohammed Adel, Randa El-Gamal, Wael Zaarina, Mosaab Salah El-Din El-Agawy, Hassan Reda Hassan Elsayed. The role of stinging nettle (Urtica dioica L.) in the management of rotenone-induced Parkinson's disease in rats. Tissue & cell. 2024 Apr; 87(?):102328. doi: 10.1016/j.tice.2024.102328. [PMID: 38387425]
  • Taiwo G Olubodun-Obadun, Ismail O Ishola, Oluwabusayo R Folarin, Farouk A Oladoja, Taidinda T Gilbert, Ifunanya M Aniekwensi, Afolabi Bisiriyu, Nkem A Joseph-Iwebi, Foluke O Adebanjo, James O Olopade, Olufunmilayo O Adeyemi. Cajanus cajan (L) Millsp seeds extract prevents rotenone-induced motor- and non-motor features of Parkinson disease in mice: Insight into mechanisms of neuroprotection. Journal of ethnopharmacology. 2024 Mar; 322(?):117623. doi: 10.1016/j.jep.2023.117623. [PMID: 38128890]
  • Chun Dai, Wei Ge, Tianyu Li, Xiuqi Kong, Minggang Tian, Jie Niu. Single Fluorescent Probe for Multiple Tasks: Illuminating Lipid Droplets and Lysosomes in Dual Channels and Distinguishing Autophagy and Apoptosis. Analytical chemistry. 2024 Mar; 96(10):4013-4022. doi: 10.1021/acs.analchem.3c03653. [PMID: 38426215]
  • Sara Linjacki, Yuehong Wang, Navjeet Baath, Devin Mantle, Guangdong Yang. H2S Protects from Rotenone-Induced Ferroptosis by Stabilizing Fe-S Clusters in Rat Cardiac Cells. Cells. 2024 Feb; 13(5):. doi: 10.3390/cells13050371. [PMID: 38474335]
  • Qingquan Sun, Yan Wang, Liyan Hou, Sheng Li, Jau-Shyong Hong, Qingshan Wang, Jie Zhao. Clozapine-N-oxide protects dopaminergic neurons against rotenone-induced neurotoxicity by preventing ferritinophagy-mediated ferroptosis. Free radical biology & medicine. 2024 02; 212(?):384-402. doi: 10.1016/j.freeradbiomed.2023.12.045. [PMID: 38182072]
  • Yu-Juan Yao, Ning-Na Yin, Lin-Mei Pu, An-Jing Yang, Nai-Yong Liu. Three chemosensory proteins enriched in antennae and tarsi of Rhaphuma horsfieldi differentially contribute to the binding of insecticides. Pesticide biochemistry and physiology. 2024 Feb; 199(?):105797. doi: 10.1016/j.pestbp.2024.105797. [PMID: 38458690]
  • Rosanne Wouters, Igor Beletchi, Chris Van den Haute, Veerle Baekelandt, Shaun Martin, Jan Eggermont, Peter Vangheluwe. The lipid flippase ATP10B enables cellular lipid uptake under stress conditions. Biochimica et biophysica acta. Molecular cell research. 2024 02; 1871(2):119652. doi: 10.1016/j.bbamcr.2023.119652. [PMID: 38086447]
  • Jingbo Liu, Bingyan Guo, Siying Zhong, Yabing Shi, Zhengping Li, Zhenwu Yu, Zesheng Hao, Li Zhang, Fengyun Li, Yuanhong Wang, Yuxin Li. Novel Evodiamine-Based Sulfonamide Derivatives as Potent Insecticide Candidates Targeting Insect Ryanodine Receptors. Journal of agricultural and food chemistry. 2024 Jan; 72(2):1292-1301. doi: 10.1021/acs.jafc.3c05680. [PMID: 38178001]
  • Jieteng Chen, Xiaohuan Mu, Huiling Liu, Qiyao Yong, Xiaoman Ouyang, Yan Liu, Li Zheng, Hao Chen, Yifan Zhai, Jie Ma, Liang Meng, Shanshan Liu, Hao Zheng. Rotenone impairs brain glial energetics and locomotor behavior in bumblebees. The Science of the total environment. 2024 Jan; 907(?):167870. doi: 10.1016/j.scitotenv.2023.167870. [PMID: 37865240]
  • Wenyuan Xu, You Dai. Lipid Carrier Nanostructured Astilbin Ameliorates Rotenone-Induced Neurodegeneration in Mice Brain via Modulation of GSK3β-Nrf2 Signaling Pathways. Journal of oleo science. 2024; 73(3):371-387. doi: 10.5650/jos.ess23173. [PMID: 38433001]
  • Rabia Anjum, Chand Raza, Mehwish Faheem, Arif Ullah, Maham Chaudhry. Neuroprotective potential of Mentha piperita extract prevents motor dysfunctions in mouse model of Parkinson's disease through anti-oxidant capacities. PloS one. 2024; 19(4):e0302102. doi: 10.1371/journal.pone.0302102. [PMID: 38625964]
  • Si Ling Yeoh, Pheik Sian Choong, Rahmad Zakaria, Nur Azzalia Kamaruzaman, Sazaroni Md Rashid, Mohd Fadhli Razali, Ahmad Khaldun Ismail. A case of rotenone poisoning from ingesting Derris trifoliata Lour. (Tuba fruit/pod) in Malaysia. Toxicon : official journal of the International Society on Toxinology. 2024 Jan; 237(?):107557. doi: 10.1016/j.toxicon.2023.107557. [PMID: 38072318]
  • Noha Nabil Mohammed, Mariane G Tadros, Mina Y George. Empagliflozin repurposing in Parkinson's disease; modulation of oxidative stress, neuroinflammation, AMPK/SIRT-1/PGC-1α, and wnt/β-catenin pathways. Inflammopharmacology. 2023 Dec; ?(?):. doi: 10.1007/s10787-023-01384-w. [PMID: 38038781]
  • Piyong Sola, Kusuma Kumari Garikapati, Praveen Thaggikuppe Krishnamurthy, Mamta Kumari. Polysorbate 80 surface modified SLNs of formoterol suppress SNCA gene and mitochondrial oxidative stress in mice model of Parkinson's disease. Scientific reports. 2023 11; 13(1):19942. doi: 10.1038/s41598-023-46511-3. [PMID: 37968340]
  • Yujing Zhao, Jingjie An, Zhihong Dang, Jianglong Guo, Zhanlin Gao, Shujie Ma, Yaofa Li. Identification of highly active compounds from insecticidal plant Oroxylum indicum L. (Vent.) and the induction of apoptosis by lapachol on Sf9 cells. In vitro cellular & developmental biology. Animal. 2023 Nov; ?(?):. doi: 10.1007/s11626-023-00821-y. [PMID: 37966689]
  • Leysan Vasileva, Gulnara Gaynanova, Darya Kuznetsova, Farida Valeeva, Anna Lyubina, Syumbelya Amerhanova, Alexandra Voloshina, Guzel Sibgatullina, Dmitry Samigullin, Konstantin Petrov, Lucia Zakharova. Mitochondria-Targeted Lipid Nanoparticles Loaded with Rotenone as a New Approach for the Treatment of Oncological Diseases. Molecules (Basel, Switzerland). 2023 Oct; 28(20):. doi: 10.3390/molecules28207229. [PMID: 37894708]
  • Syeda Madiha, Zehra Batool, Sidrah Shahzad, Saiqa Tabassum, Laraib Liaquat, Asia Afzal, Sadia Sadir, Irfan Sajid, Bushra Jabeen Mehdi, Saara Ahmad, Saida Haider. Naringenin, a Functional Food Component, Improves Motor and Non-Motor Symptoms in Animal Model of Parkinsonism Induced by Rotenone. Plant foods for human nutrition (Dordrecht, Netherlands). 2023 Oct; ?(?):. doi: 10.1007/s11130-023-01103-4. [PMID: 37796415]
  • Wangjin Xu, Dianjing Shen, Xiaojun Chen, Ming Zhao, Tianle Fan, Qinchao Wu, Zhiyuan Meng, Jiajia Cui. Rotenone nanoparticles based on mesoporous silica to improve the stability, translocation and insecticidal activity of rotenone. Environmental science and pollution research international. 2023 Sep; ?(?):. doi: 10.1007/s11356-023-29842-6. [PMID: 37723398]
  • Yilmaz Kocak, Gokhan Oto, Zubeyir Huyut, Hamit Hakan Alp, Fikret Turkan, Ezgi Onay. Effects of fluoride on oxidative DNA damage, nitric oxide level, lipid peroxidation and cholinesterase enzyme activity in a rotenone-induced experimental Parkinson's model. Neurological research. 2023 Sep; ?(?):1-9. doi: 10.1080/01616412.2023.2257452. [PMID: 37699078]
  • Derya Cansiz, Ismail Unal, Merih Beler, Unsal Veli Ustundag, Esin Ak, Ebru Emekli-Alturfan, Ahmet Ata Alturfan. The Effect of Acetic Acid-Induced Pain in Parkinson's Disease Model in Zebrafish. Neurotoxicology. 2023 Sep; ?(?):. doi: 10.1016/j.neuro.2023.09.004. [PMID: 37683694]
  • Yu Zhang, Sheng Li, Liyan Hou, Mingyang Wu, Jianing Liu, Ruonan Wang, Qingshan Wang, Jie Zhao. NLRP3 mediates the neuroprotective effects of SVHRSP derived from scorpion venom in rotenone-induced experimental Parkinson's disease model. Journal of ethnopharmacology. 2023 Aug; 312(?):116497. doi: 10.1016/j.jep.2023.116497. [PMID: 37072089]
  • Qian Zhou, Bin Chen, Yijiao Xu, Yue Wang, Ziheng He, Xueting Cai, Yu Qin, Juan Ye, Yang Yang, Jianping Shen, Peng Cao. Geniposide protects against neurotoxicity in mouse models of rotenone-induced Parkinson's disease involving the mTOR and Nrf2 pathways. Journal of ethnopharmacology. 2023 Jul; ?(?):116914. doi: 10.1016/j.jep.2023.116914. [PMID: 37451492]
  • Eman Abdelrazik, Hend M Hassan, Eman Hamza, Farah M Ezz Elregal, Marwa H Elnagdy, Eman A Abdulhai. Beneficial role of rosemary extract on oxidative stress-mediated neuronal apoptosis in rotenone-induced attention deficit hyperactivity disease in juvenile rat model. Acta bio-medica : Atenei Parmensis. 2023 Jun; 94(3):e2023104. doi: 10.23750/abm.v94i3.14260. [PMID: 37326266]
  • Sheikh Azimullah, Mohamed Fizur Nagoor Meeran, Khatija Ayoob, Seenipandi Arunachalam, Shreesh Ojha, Rami Beiram. Tannic Acid Mitigates Rotenone-Induced Dopaminergic Neurodegeneration by Inhibiting Inflammation, Oxidative Stress, Apoptosis, and Glutamate Toxicity in Rats. International journal of molecular sciences. 2023 Jun; 24(12):. doi: 10.3390/ijms24129876. [PMID: 37373023]
  • Adeola Oluwatosin Adedara, Titilayomi A Otenaike, Oluwabukola M Farodoye, Amos Olalekan Abolaji. Ellagic acid mitigates rotenone-induced damage via modulating mitochondria function in Drosophila melanogaster. Journal of biochemical and molecular toxicology. 2023 Jun; 37(6):e23332. doi: 10.1002/jbt.23332. [PMID: 37294177]
  • Sadegh Moradi Vastegani, Seyed Esmaeil Khoshnam, Esrafil Mansouri, Samireh Ghafouri, Nima Bakhtiari, Yaghoob Farbood, Alireza Sarkaki. Anti-inflammatory, anti-apoptotic, and neuroprotective potentials of anethole in Parkinson's disease-like motor and non-motor symptoms induced by rotenone in rats. Metabolic brain disease. 2023 May; ?(?):. doi: 10.1007/s11011-023-01230-6. [PMID: 37204660]
  • Mahmoud A Desouky, Mina Y George, Haidy E Michel, Doaa A Elsherbiny. Roflumilast escalates α-synuclein aggregate degradation in rotenone-induced Parkinson's disease in rats: Modulation of the ubiquitin-proteasome system and endoplasmic reticulum stress. Chemico-biological interactions. 2023 Apr; 379(?):110491. doi: 10.1016/j.cbi.2023.110491. [PMID: 37105514]
  • Fatemeh Mamashli, Ali Akbar Meratan, Atiyeh Ghasemi, Nahal Obeidi, Bahram Salmani, Deyhim Atarod, Mitra Pirhaghi, Faezeh Moosavi-Movahedi, Mahya Mohammad-Zaheri, Mohammad Bagher Shahsavani, Zahra Habibi-Kelishomi, Bahram Goliaei, Mahdi Gholami, Ali Akbar Saboury. Neuroprotective Effect of Propolis Polyphenol-Based Nanosheets in Cellular and Animal Models of Rotenone-Induced Parkinson's Disease. ACS chemical neuroscience. 2023 03; 14(5):851-863. doi: 10.1021/acschemneuro.2c00605. [PMID: 36750431]
  • Yijun Cheng, Ziqian Zhang, Hao Tang, Bin Chen, Yu Cai, Yongxu Wei, Weiguo Zhao, Zhe Bao Wu, Hanbing Shang. Mitochondrial Inhibitor Rotenone Triggers and Enhances Neuronal Ferroptosis Following Intracerebral Hemorrhage. ACS chemical neuroscience. 2023 Feb; ?(?):. doi: 10.1021/acschemneuro.2c00308. [PMID: 36848438]
  • İsmail Ünal, Derya Cansız, Mustafa Gani Sürmen, Saime Sürmen, Zehra Sezer, Merih Beler, Ünsal Veli Üstündağ, Elif Güzel, A Ata Alturfan, Ebru Emekli-Alturfan. Identification of molecular network of gut-brain axis associated with neuroprotective effects of PPARδ-ligand erucic acid in rotenone-induced Parkinson's disease model in zebrafish. The European journal of neuroscience. 2023 Feb; 57(4):585-606. doi: 10.1111/ejn.15904. [PMID: 36564343]
  • Li-Zhe-Xiong Song, Na Xu, Zhi Yu, Hui Yang, Cheng-Cheng Xu, Zi Qiu, Jing-Wen Dai, Bin Xu, Xuan-Ming Hu. The effect of electroacupuncture at ST25 on Parkinson's disease constipation through regulation of autophagy in the enteric nervous system. Anatomical record (Hoboken, N.J. : 2007). 2023 Jan; ?(?):. doi: 10.1002/ar.25148. [PMID: 36655864]
  • Ping Li, Yongqing Tian, Mingyi Du, Qingrong Xie, Yingying Chen, Lianlian Ma, Yudi Huang, Zhibin Yin, Hanhong Xu, Xinzhou Wu. Mechanism of Rotenone Toxicity against Plutella xylostella: New Perspective from a Spatial Metabolomics and Lipidomics Study. Journal of agricultural and food chemistry. 2023 Jan; 71(1):211-222. doi: 10.1021/acs.jafc.2c06292. [PMID: 36538414]
  • Sheikh Azimullah, Richard L Jayaraj, Mohamed Fizur Nagoor Meeran, Fakhreya Y Jalal, Abdu Adem, Shreesh Ojha, Rami Beiram. Myrcene Salvages Rotenone-Induced Loss of Dopaminergic Neurons by Inhibiting Oxidative Stress, Inflammation, Apoptosis, and Autophagy. Molecules (Basel, Switzerland). 2023 Jan; 28(2):. doi: 10.3390/molecules28020685. [PMID: 36677744]
  • Nurinee Dolrahman, Waritsara Mukkhaphrom, Jeanjira Sutirek, Wachiryah Thong-Asa. Benefits of p-coumaric acid in mice with rotenone-induced neurodegeneration. Metabolic brain disease. 2023 01; 38(1):373-382. doi: 10.1007/s11011-022-01113-2. [PMID: 36308586]
  • Dalia E Ali, Samar M Bassam, Soha Elatrebi, Esraa S Habiba, Eman A Allam, Eman M Omar, Doaa A Ghareeb, Shaymaa A Abdulmalek, Essam Abdel-Sattar. HR LC-MS/MS metabolomic profiling of Yucca aloifolia fruit and the potential neuroprotective effect on rotenone-induced Parkinson's disease in rats. PloS one. 2023; 18(2):e0282246. doi: 10.1371/journal.pone.0282246. [PMID: 36854038]
  • Nelson Tibashailwa, Flora Stephano, Daniel M Shadrack, Joan J E Munissi, Stephen S Nyandoro. Neuroprotective potential of cinnamoyl derivatives against Parkinson's disease indicators in Drosophila melanogaster and in silico models. Neurotoxicology. 2023 01; 94(?):147-157. doi: 10.1016/j.neuro.2022.11.010. [PMID: 36410467]
  • Sadegh Moradi Vastegani, Seyed Esmaeil Khoshnam, Samireh Ghafouri, Nima Bakhtiari, Yaghoob Farbood, Alireza Sarkaki. Anethole attenuates motor dysfunctions, striatal neuronal activity deficiency and blood brain barrier permeability by decreasing striatal α-synuclein and oxidative stress in rotenone-induced Parkinson's disease of male rats. PloS one. 2023; 18(11):e0294612. doi: 10.1371/journal.pone.0294612. [PMID: 37972114]
  • Willcyn Tang, John Thundyil, Grace Gui Yin Lim, Teddy J W Tng, Sean Qing Zhang Yeow, Aditya Nair, Chou Chai, Tso-Pang Yao, Kah-Leong Lim. Parkin regulates neuronal lipid homeostasis through SREBP2-lipoprotein lipase pathway-implications for Parkinson's disease. Human molecular genetics. 2022 Dec; ?(?):. doi: 10.1093/hmg/ddac297. [PMID: 36519761]
  • Lingyan Liu, Xueqing Qian, Tao Yang, Dongmei Fang, Zhangyi Qin, Bo Ren, Guoyou Li. Cyclopiazonic Acid and Okaramine Analogues, Including Chlorinated Compounds, from Chrysosporium undulatum YT-1. Journal of natural products. 2022 11; 85(11):2547-2556. doi: 10.1021/acs.jnatprod.2c00445. [PMID: 36268672]
  • Xue Ma, Qiang Wang, Yuan Wang, Wei Yuan, Zhi-Bin Liu, Hai-Fa Qiao. [Effects of early electroacupuncture on the expression of Iba-1 and TNF-α in Parkinson's disease mice]. Zhen ci yan jiu = Acupuncture research. 2022 Nov; 47(11):993-8. doi: 10.13702/j.1000-0607.20211111. [PMID: 36453676]
  • Qili Lu, Noha A Gouda, Guofeng Quan, Hossam Nada, Ahmed Elkamhawy, Dongho Lee, Chang Hoon Lee, Jungsook Cho, Kyeong Lee. Novel cudraisoflavone J derivatives as potent neuroprotective agents for the treatment of Parkinson's disease via the activation of Nrf2/HO-1 signaling. European journal of medicinal chemistry. 2022 Nov; 242(?):114692. doi: 10.1016/j.ejmech.2022.114692. [PMID: 36029560]
  • Ali Altharawi, Khalid M Alharthy, Hassan N Althurwi, Faisal F Albaqami, Sami I Alzarea, Fahad A Al-Abbasi, Muhammad Shahid Nadeem, Imran Kazmi. Europinidin Inhibits Rotenone-Activated Parkinson's Disease in Rodents by Decreasing Lipid Peroxidation and Inflammatory Cytokines Pathways. Molecules (Basel, Switzerland). 2022 Oct; 27(21):. doi: 10.3390/molecules27217159. [PMID: 36363986]
  • Mingrong Liang, Senquan Zhang, Xiaobin Zheng, Jiefu Deng, Jiaqi Yang, Yuling Liang, Zhiqiang Li, Xinlu Yue, Yongyue Lu, Yijuan Xu, Lei Wang. Efficacy of Matrine, Rotenone, and Pyrethrin Against Red Imported Fire Ant Solenopsis invicta (Hymenoptera: Formicidae) and Their Impact on Aquatic Organisms. Environmental entomology. 2022 10; 51(5):948-957. doi: 10.1093/ee/nvac072. [PMID: 36130186]
  • Nuramatjan Ablat, Runzhe Liu, Mihray Ablimit, Yi Sun, Feng Xu, Xin Zhao, Hongbin Han, Xiaoping Pu. Preventive effects of a standardized flavonoid extract of safflower in rotenone-induced Parkinson's disease rat model. Neuropharmacology. 2022 10; 217(?):109209. doi: 10.1016/j.neuropharm.2022.109209. [PMID: 35940347]
  • Sina Shadfar, Shristi Khanal, Ganesh Bohara, Geumjin Kim, Saeed Sadigh-Eteghad, Saeid Ghavami, Hyukjae Choi, Dong-Young Choi. Methanolic Extract of Boswellia serrata Gum Protects the Nigral Dopaminergic Neurons from Rotenone-Induced Neurotoxicity. Molecular neurobiology. 2022 Sep; 59(9):5874-5890. doi: 10.1007/s12035-022-02943-y. [PMID: 35804280]
  • Huan Wang, Mohan Huo, Yinzhu Jin, Yao Wang, Xuewei Wang, Wenhui Yu, Xiaowen Jiang. Rotenone induces hepatotoxicity in rats by activating the mitochondrial pathway of apoptosis. Toxicology mechanisms and methods. 2022 Sep; 32(7):510-517. doi: 10.1080/15376516.2022.2049940. [PMID: 35253580]
  • I O Ishola, I O Awogbindin, T G Olubodun-Obadun, O A Oluwafemi, J E Onuelu, O O Adeyemi. Morin ameliorates rotenone-induced Parkinson disease in mice through antioxidation and anti-neuroinflammation: gut-brain axis involvement. Brain research. 2022 08; 1789(?):147958. doi: 10.1016/j.brainres.2022.147958. [PMID: 35654119]
  • Wenbing Zhang, Hao Ren, Feilong Sun, Tingting Shen, Shuai Yuan, Xiwu Gao, Yao Tan. Evaluation of the Toxicity of Chemical and Biogenic Insecticides to Three Outbreaking Insects in Desert Steppes of Northern China. Toxins. 2022 08; 14(8):. doi: 10.3390/toxins14080546. [PMID: 36006208]
  • Yoko Hirata, Ruidai Okazaki, Mina Sato, Kentaro Oh-Hashi, Hiroshi Takemori, Kyoji Furuta. Effect of ferroptosis inhibitors oxindole-curcumin hybrid compound and N,N-dimethylaniline derivatives on rotenone-induced oxidative stress. European journal of pharmacology. 2022 Aug; 928(?):175119. doi: 10.1016/j.ejphar.2022.175119. [PMID: 35753403]
  • Olusegun G Adebayo, Wadioni Aduema, Modo U Emmanuel, Benneth Ben-Azu, Blessing O Orji, Ekam Akpakpan, Oluwakemi Rachael Adebayo, Ogechukwu G Onuoha, Abayomi M Ajayi. The Anti-Parkinson Potential of Gingko biloba-Supplement Mitigates Cortico-Cerebellar Degeneration and Neuropathobiological Alterations via Inflammatory and Apoptotic Mediators in Mice. Neurochemical research. 2022 Aug; 47(8):2211-2229. doi: 10.1007/s11064-022-03600-5. [PMID: 35532872]
  • Fuminori Imafuku, Ikuko Miyazaki, Jin Sun, Sunao Kamimai, Takashi Shimizu, Toshiaki Toyota, Yusei Okamoto, Nami Isooka, Ryo Kikuoka, Yoshihisa Kitamura, Masato Asanuma. Central and Enteric Neuroprotective Effects by Eucommia ulmoides Extracts on Neurodegeneration in Rotenone-induced Parkinsonian Mouse. Acta medica Okayama. 2022 Aug; 76(4):373-383. doi: 10.18926/amo/63889. [PMID: 36123151]
  • Zhiyan Liu, Meiyue Han, Xiaoting Yan, Wanqing Cheng, Zhenshuai Tang, Liping Cui, Ruige Yang, Yong Guo. Design, Synthesis, and Biological Evaluation of Novel Osthole-Based Isoxazoline Derivatives as Insecticide Candidates. Journal of agricultural and food chemistry. 2022 Jul; 70(26):7921-7928. doi: 10.1021/acs.jafc.2c01925. [PMID: 35731949]
  • P Pramod Kumar, Saliya S Bawani, Duraiswamy Usha Anandhi, K V Harish Prashanth. Rotenone mediated developmental toxicity in Drosophila melanogaster. Environmental toxicology and pharmacology. 2022 Jul; 93(?):103892. doi: 10.1016/j.etap.2022.103892. [PMID: 35654372]
  • İlknur Yurtsever, Ünsal Veli Üstündağ, İsmail Ünal, Perihan Seda Ateş, Ebru Emekli-Alturfan. Rifampicin decreases neuroinflammation to maintain mitochondrial function and calcium homeostasis in rotenone-treated zebrafish. Drug and chemical toxicology. 2022 Jul; 45(4):1544-1551. doi: 10.1080/01480545.2020.1846549. [PMID: 33187454]
  • Na Dong, Zhilong Yang. Glycitein exerts neuroprotective effects in Rotenone-triggered oxidative stress and apoptotic cell death in the cellular model of Parkinson's disease. Acta biochimica Polonica. 2022 Jun; 69(2):447-452. doi: 10.18388/abp.2020_5963. [PMID: 35691030]
  • Haidy E Michel, Mariam M Tadros, Moataz S Hendy, Shereen Mowaka, Bassam M Ayoub. Omarigliptin attenuates rotenone-induced Parkinson's disease in rats: Possible role of oxidative stress, endoplasmic reticulum stress and immune modulation. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2022 Jun; 164(?):113015. doi: 10.1016/j.fct.2022.113015. [PMID: 35439590]
  • Romgase Sakamula, Teerapong Yata, Wachiryah Thong-Asa. Nanostructure lipid carriers enhance alpha-mangostin neuroprotective efficacy in mice with rotenone-induced neurodegeneration. Metabolic brain disease. 2022 06; 37(5):1465-1476. doi: 10.1007/s11011-022-00967-w. [PMID: 35353275]
  • Fümet Duygu Üstündağ, İsmail Ünal, Ünsal Veli Üstündağ, Derya Cansız, Merih Beler, Atakan Karagöz, Hülya Kara Subaşat, A Ata Alturfan, Pınar Mega Tiber, Ebru Emekli-Alturfan. 3-Pyridinylboronic Acid Ameliorates Rotenone-Induced Oxidative Stress Through Nrf2 Target Genes in Zebrafish Embryos. Neurochemical research. 2022 Jun; 47(6):1553-1564. doi: 10.1007/s11064-022-03548-6. [PMID: 35142995]
  • Jingbo Liu, Yabing Shi, Shuting Chen, Fengyun Li, Wen Wen, Yuanhong Wang. Discovery of evodiamine derivatives as potent insecticide candidates. Bioorganic & medicinal chemistry. 2022 05; 62(?):116727. doi: 10.1016/j.bmc.2022.116727. [PMID: 35366437]
  • Peiwen Zhang, Mengzi Zhang, Terri A Mellich, Brian J Pearson, Jianjun Chen, Zhixiang Zhang. Variation in Rotenone and Deguelin Contents among Strains across Four Tephrosia Species and Their Activities against Aphids and Whiteflies. Toxins. 2022 05; 14(5):. doi: 10.3390/toxins14050339. [PMID: 35622585]
  • Jingbo Liu, Yabing Shi, Zhicheng Tian, Fengyun Li, Zesheng Hao, Wen Wen, Li Zhang, Yuanhong Wang, Yuxin Li, Zhijin Fan. Bioactivity-Guided Synthesis Accelerates the Discovery of Evodiamine Derivatives as Potent Insecticide Candidates. Journal of agricultural and food chemistry. 2022 Apr; 70(16):5197-5206. doi: 10.1021/acs.jafc.1c08297. [PMID: 35435667]
  • Gloria A Benavides, Toni Mueller, Victor Darley-Usmar, Jianhua Zhang. Optimization of measurement of mitochondrial electron transport activity in postmortem human brain samples and measurement of susceptibility to rotenone and 4-hydroxynonenal inhibition. Redox biology. 2022 04; 50(?):102241. doi: 10.1016/j.redox.2022.102241. [PMID: 35066289]
  • Cheng-Neng Chen, Mao-Hsien Wang, Hung-Sheng Soung, Shu-Mei Chen, Chih-Hsiang Fang, Yi-Wen Lin, Hsiang-Chien Tseng. L-Theanine Ameliorated Rotenone-Induced Parkinsonism-like Symptoms in Rats. Neurotoxicity research. 2022 Feb; 40(1):241-258. doi: 10.1007/s12640-021-00451-w. [PMID: 34988886]
  • Zhenzhen Yan, Fan Yang, Shirong Wen, Wencai Ding, Yao Si, Ruihua Li, Kai Wang, Lifen Yao. Longitudinal metabolomics profiling of serum amino acids in rotenone-induced Parkinson's mouse model. Amino acids. 2022 Jan; 54(1):111-121. doi: 10.1007/s00726-021-03117-1. [PMID: 35028704]
  • Yongyi Huang, Xin Liu, Ya Feng, Xiaoli Nie, Qiang Liu, Xiling Du, Yuncheng Wu, Te Liu, Xiaoying Zhu. Rotenone, an environmental toxin, causes abnormal methylation of the mouse brain organoid's genome and ferroptosis. International journal of medical sciences. 2022; 19(7):1184-1197. doi: 10.7150/ijms.74569. [PMID: 35919817]
  • Sabrina Hadjira, Amira Mansour, Ramdane Seghiri, Ahmed Menad, Fadila Benayache, Samir Benayache, Souad Ameddah. Neuroinflammation and Behavioral Deficit in Rotenone-Induced Neurotoxicity in Rats and the Possible Effects of Butanolic Extract of Centaurea africana. Recent advances in inflammation & allergy drug discovery. 2022; 15(1):35-43. doi: 10.2174/2772270816666220105124730. [PMID: 34986781]
  • Daiane Pan, Larissa Machado, Claudia Giuliano Bica, Alencar Kolinski Machado, Jovani Antônio Steffani, Francine Carla Cadoná. In Vitro Evaluation of Antioxidant and Anticancer Activity of Lemongrass (Cymbopogon citratus (D.C.) Stapf). Nutrition and cancer. 2022; 74(4):1474-1488. doi: 10.1080/01635581.2021.1952456. [PMID: 34282694]
  • Attilio Marino, Matteo Battaglini, Andrea Desii, Chiara Lavarello, Giada Genchi, Andrea Petretto, Gianni Ciofani. Liposomes loaded with polyphenol-rich grape pomace extracts protect from neurodegeneration in a rotenone-based in vitro model of Parkinson's disease. Biomaterials science. 2021 Dec; 9(24):8171-8188. doi: 10.1039/d1bm01202a. [PMID: 34617936]
  • Zhe Zhao, Jingwen Ning, Xiu-Qi Bao, Meiyu Shang, Jingwei Ma, Gen Li, Dan Zhang. Fecal microbiota transplantation protects rotenone-induced Parkinson's disease mice via suppressing inflammation mediated by the lipopolysaccharide-TLR4 signaling pathway through the microbiota-gut-brain axis. Microbiome. 2021 11; 9(1):226. doi: 10.1186/s40168-021-01107-9. [PMID: 34784980]
  • Nelzi Ferreira Queiroz Junior, Jovani Antônio Steffani, Larissa Machado, Pâmela Jéssyca Hoss Longhi, Marco Aurélio Echart Montano, Mathias Martins, Sérgio Abreu Machado, Alencar Kolinski Machado, Francine Carla Cadoná. Antioxidant and cytoprotective effects of avocado oil and extract (Persea americana Mill) against rotenone using monkey kidney epithelial cells (Vero). Journal of toxicology and environmental health. Part A. 2021 11; 84(21):875-890. doi: 10.1080/15287394.2021.1945515. [PMID: 34256683]
  • Shu-Shong Hsu, Yung-Shang Lin, Wei-Zhe Liang. Inhibition of the pesticide rotenone-induced Ca2+ signaling, cytotoxicity and oxidative stress in HCN-2 neuronal cells by the phenolic compound hydroxytyrosol. Pesticide biochemistry and physiology. 2021 Nov; 179(?):104979. doi: 10.1016/j.pestbp.2021.104979. [PMID: 34802529]
  • E D Kryl'skii, G A Razuvaev, T N Potapova, A I Akinina, L E Nihaev. Functioning of the Antioxidant Defense System in Rotenone-Induced Parkinson's Disease. Bulletin of experimental biology and medicine. 2021 Oct; 171(6):716-721. doi: 10.1007/s10517-021-05302-4. [PMID: 34705173]
  • Guoxue Zhu, Wang Wang, Chang Chen, Lili Tang, Yan Liang, Zhennian Zhang, Yan Lu, Yang Zhao. UHPLC-MS-based metabolomics and chemoinformatics study reveals the neuroprotective effect and chemical characteristic in Parkinson's disease mice after oral administration of Wen-Shen-Yang-Gan decoction. Aging. 2021 08; 13(15):19510-19528. doi: 10.18632/aging.203361. [PMID: 34339394]
  • Zhaoqiang Zhang, Xiao Sun, Kun Wang, Yang Yu, Li Zhang, Keping Zhang, Jinglongfei Gu, Xiaofan Yuan, Guohua Song. Hydrogen-saturated saline mediated neuroprotection through autophagy via PI3K/AKT/mTOR pathway in early and medium stages of rotenone-induced Parkinson's disease rats. Brain research bulletin. 2021 07; 172(?):1-13. doi: 10.1016/j.brainresbull.2021.04.003. [PMID: 33838212]
  • Paula Perez-Pardo, Yvonne Grobben, Nicole Willemsen-Seegers, Mitch Hartog, Michaela Tutone, Michelle Muller, Youri Adolfs, Ronald Jeroen Pasterkamp, Diep Vu-Pham, Antoon M van Doornmalen, Freek van Cauter, Joeri de Wit, Jan Gerard Sterrenburg, Joost C M Uitdehaag, Jos de Man, Rogier C Buijsman, Guido J R Zaman, Aletta D Kraneveld. Pharmacological validation of TDO as a target for Parkinson's disease. The FEBS journal. 2021 07; 288(14):4311-4331. doi: 10.1111/febs.15721. [PMID: 33471408]
  • Gayathree Karthikkeyan, Ravishankar Pervaje, Sameera Krishna Pervaje, Thottethodi Subrahmanya Keshava Prasad, Prashant Kumar Modi. Prevention of MEK-ERK-1/2 hyper-activation underlines the neuroprotective effect of Glycyrrhiza glabra L. (Yashtimadhu) against rotenone-induced cellular and molecular aberrations. Journal of ethnopharmacology. 2021 Jun; 274(?):114025. doi: 10.1016/j.jep.2021.114025. [PMID: 33775804]
  • Derya Cansız, İsmail Ünal, Ünsal Veli Üstündağ, Ahmet Ata Alturfan, Meriç A Altinoz, İlhan Elmacı, Ebru Emekli-Alturfan. Caprylic acid ameliorates rotenone induced inflammation and oxidative stress in the gut-brain axis in Zebrafish. Molecular biology reports. 2021 Jun; 48(6):5259-5273. doi: 10.1007/s11033-021-06532-5. [PMID: 34228274]
  • Xiao-Ling Zhang, Wen-Min Huang, Pei-Chen Tang, Ying Sun, Xin Zhang, Lu Qiu, Bo-Cheng Yu, Xiao-Yan Zhang, Yu-Xin Hong, Yun He, Xiao-Qun Ge. Anti-inflammatory and neuroprotective effects of natural cordycepin in rotenone-induced PD models through inhibiting Drp1-mediated mitochondrial fission. Neurotoxicology. 2021 05; 84(?):1-13. doi: 10.1016/j.neuro.2021.02.002. [PMID: 33549657]
  • Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell reports. 2021 04; 35(4):109040. doi: 10.1016/j.celrep.2021.109040. [PMID: 33910017]
  • Rachel M McQuade, Lewis M Singleton, Hongyi Wu, Sophie Lee, Remy Constable, Madeleine Di Natale, Mitchell T Ringuet, Joel P Berger, Jessica Kauhausen, Clare L Parish, David I Finkelstein, John B Furness, Shanti Diwakarla. The association of enteric neuropathy with gut phenotypes in acute and progressive models of Parkinson's disease. Scientific reports. 2021 04; 11(1):7934. doi: 10.1038/s41598-021-86917-5. [PMID: 33846426]
  • Li Liu, Yi Chen, Rui-Feng Zeng, Yun Liu, Sai-Sai Xie, Jin-Shuai Lan, Yue Ding, Yi-Ting Yang, Jun Yang, Tong Zhang. Design and synthesis of novel 3,4-dihydrocoumarins as potent and selective monoamine oxidase-B inhibitors with the neuroprotection against Parkinson's disease. Bioorganic chemistry. 2021 04; 109(?):104685. doi: 10.1016/j.bioorg.2021.104685. [PMID: 33640631]
  • Hardeep Singh Tuli, Sonam Mittal, Mariam Loka, Vaishali Aggarwal, Diwakar Aggarwal, Akshara Masurkar, Ginpreet Kaur, Mehmet Varol, Katrin Sak, Manoj Kumar, Gautam Sethi, Anupam Bishayee. Deguelin targets multiple oncogenic signaling pathways to combat human malignancies. Pharmacological research. 2021 04; 166(?):105487. doi: 10.1016/j.phrs.2021.105487. [PMID: 33581287]
  • Monika Kurpik, Przemysław Zalewski, Małgorzata Kujawska, Małgorzata Ewertowska, Ewa Ignatowicz, Judyta Cielecka-Piontek, Jadwiga Jodynis-Liebert. Can Cranberry Juice Protect against Rotenone-Induced Toxicity in Rats?. Nutrients. 2021 Mar; 13(4):. doi: 10.3390/nu13041050. [PMID: 33805023]
  • Glaucia Dal Santo, Bruno Oliveira de Veras, Eduardo Rico, Jacir Dal Magro, Jotele Fontana Agostini, Leucio Duarte Vieira, Jean Felipe Fossá Calisto, Ricieri Mocelin, Vitória de Sá Fonseca, Almir Gonçalves Wanderley. Hexane extract from SpoSndias mombin L. (Anacardiaceae) prevents behavioral and oxidative status changes on model of Parkinson's disease in zebrafish. Comparative biochemistry and physiology. Toxicology & pharmacology : CBP. 2021 Mar; 241(?):108953. doi: 10.1016/j.cbpc.2020.108953. [PMID: 33310063]
  • Zhipeng Sun, Li Xue, Yun Li, Gaofeng Cui, Ranran Sun, Meiying Hu, Guohua Zhong. Rotenone-induced necrosis in insect cells via the cytoplasmic membrane damage and mitochondrial dysfunction. Pesticide biochemistry and physiology. 2021 Mar; 173(?):104801. doi: 10.1016/j.pestbp.2021.104801. [PMID: 33771250]
  • Rengasamy Balakrishnan, Dhanraj Vijayraja, Thangavel Mohankumar, Dharmar Manimaran, Palanivel Ganesan, Dong-Kug Choi, Namasivayam Elangovan. Isolongifolene mitigates rotenone-induced dopamine depletion and motor deficits through anti-oxidative and anti-apoptotic effects in a rat model of Parkinson's disease. Journal of chemical neuroanatomy. 2021 03; 112(?):101890. doi: 10.1016/j.jchemneu.2020.101890. [PMID: 33220427]
  • Bahattin Avcı, Caner Günaydın, Tolga Güvenç, Canan Kulcu Yavuz, Nilufer Kuruca, S Sirri Bilge. Idebenone Ameliorates Rotenone-Induced Parkinson's Disease in Rats Through Decreasing Lipid Peroxidation. Neurochemical research. 2021 Mar; 46(3):513-522. doi: 10.1007/s11064-020-03186-w. [PMID: 33247801]
  • Hany H Arab, Marwa M Safar, Nancy N Shahin. Targeting ROS-Dependent AKT/GSK-3β/NF-κB and DJ-1/Nrf2 Pathways by Dapagliflozin Attenuates Neuronal Injury and Motor Dysfunction in Rotenone-Induced Parkinson's Disease Rat Model. ACS chemical neuroscience. 2021 02; 12(4):689-703. doi: 10.1021/acschemneuro.0c00722. [PMID: 33543924]
  • Frederic Mármol, Juan Sanchez, Albert Martínez-Pinteño. Effects of uric acid on oxidative and nitrosative stress and other related parameters in SH-SY5Y human neuroblastoma cells. Prostaglandins, leukotrienes, and essential fatty acids. 2021 02; 165(?):102237. doi: 10.1016/j.plefa.2020.102237. [PMID: 33429354]
  • Ami Oguro, Yasuhiro Ishihara, Ferbian Milas Siswanto, Takeshi Yamazaki, Atsuhiko Ishida, Hiromasa Imaishi, Susumu Imaoka. Contribution of DHA diols (19,20-DHDP) produced by cytochrome P450s and soluble epoxide hydrolase to the beneficial effects of DHA supplementation in the brains of rotenone-induced rat models of Parkinson's disease. Biochimica et biophysica acta. Molecular and cell biology of lipids. 2021 02; 1866(2):158858. doi: 10.1016/j.bbalip.2020.158858. [PMID: 33279658]
  • A A Mosentsov, E V Rozova, N V Belosludtseva, I N Mankovskaya, Yu V Putiy, I N Karaban, I B Mikheeva, G D Mironova. Does the Operation of Mitochondrial ATP-Dependent Potassium Channels Affect the Structural Component of Mitochondrial and Endothelial Dysfunctions in Experimental Parkinsonism?. Bulletin of experimental biology and medicine. 2021 Feb; 170(4):431-435. doi: 10.1007/s10517-021-05081-y. [PMID: 33725242]
  • Dongdong Zhang, Sheng Li, Liyan Hou, Lu Jing, Zhengzheng Ruan, Bingjie Peng, Xiaomeng Zhang, Jau-Shyong Hong, Jie Zhao, Qingshan Wang. Microglial activation contributes to cognitive impairments in rotenone-induced mouse Parkinson's disease model. Journal of neuroinflammation. 2021 Jan; 18(1):4. doi: 10.1186/s12974-020-02065-z. [PMID: 33402167]