Nonadecanoic acid (BioDeep_00000011246)
Secondary id: BioDeep_00000864474
human metabolite PANOMIX_OTCML-2023 Endogenous PANOMIX LipidSearch BioNovoGene_Lab2019 natural product
描述信息
Nonadecanoic acid, also known as n-nonadecanoic acid or nonadecylic acid or C19:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms, with nonadecanoic acid (its ester is called nonadecanoate) having 19 carbon atoms. Nonadecanoic acid is a very hydrophobic molecule, practically insoluble (in water). It is a solid with a melting point of 69.4°C. It can be found in bacteria, plants, and animals (including animal milk) (Nature 176:882; PMID: 14168161). It is secreted by termites (Rhinotermes marginalis) as part of its defence mechanism (Comp. Biochem. Physiol. B 71:731).
Nonadecanoic acid is a C19 straight-chain fatty acid of plant or bacterial origin. An intermediate in the biodegradation of n-icosane, it has been shown to inhibit cancer growth. It has a role as a fungal metabolite. It is a straight-chain saturated fatty acid and a long-chain fatty acid. It is a conjugate acid of a nonadecanoate.
Nonadecanoic acid is a natural product found in Staphisagria macrosperma, Malva sylvestris, and other organisms with data available.
An odd-numbered long chain fatty acid, likely derived from bacterial or plant sources. Nonadecanoic acid has been found in ox fats and vegetable oils. It is also used by certain insects as a phermone. [HMDB].
A C19 straight-chain fatty acid of plant or bacterial origin. An intermediate in the biodegradation of n-icosane, it has been shown to inhibit cancer growth.
Nonadecanoic acid is a 19-carbon long saturated fatty acid. Nonadecanoic acid is the major constituent of the substance secreted by Rhinotermes marginalis to defence[1].
Nonadecanoic acid is a 19-carbon long saturated fatty acid. Nonadecanoic acid is the major constituent of the substance secreted by Rhinotermes marginalis to defence[1].
同义名列表
23 个代谢物同义名
9-(2-CARBOXYPHENYL)-3,6-BIS(DIMETHYLAMINO)XANTHYLIUMPERCHLORATE; Nonadecanoic acid, analytical standard; Nonadecanoic acid, >=98.0\\% (GC); Nonadecanoic acid, >=98\\% (GC); nonadecanoic-d37 acid; nonadecansäure; n-Nonadecanoic acid; n-Nonadecylic acid; Nonadecanoic acid; nonadecanoicacid; Nonadecylic acid; UNII-H6M3VYC62P; n-Nonadecanoate; n-Nonadecylate; Nonadecanoate; Nonadecylate; H6M3VYC62P; AI3-36442; FA(19:0); FA 19:0; 19:00; C19:0; EW8
数据库引用编号
26 个数据库交叉引用编号
- ChEBI: CHEBI:39246
- KEGG: C16535
- PubChem: 12591
- HMDB: HMDB0000772
- Metlin: METLIN4207
- ChEMBL: CHEMBL1169674
- Wikipedia: Nonadecylic_acid
- LipidMAPS: LMFA01010019
- MeSH: nonadecanoic acid
- ChemIDplus: 0000646300
- KNApSAcK: C00053569
- foodb: FDB004043
- chemspider: 12071
- CAS: 1219798-49-8
- CAS: 68002-88-0
- CAS: 646-30-0
- medchemexpress: HY-W004261
- PMhub: MS000025217
- MetaboLights: MTBLC39246
- PubChem: 51090864
- PDB-CCD: EW8
- NIKKAJI: J535E
- RefMet: Nonadecylic acid
- PANOMIX LipidSearch: C19
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-847
- LOTUS: LTS0212995
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
172 个相关的物种来源信息
- 52817 - Allamanda: LTS0212995
- 52818 - Allamanda cathartica: 10.1016/S0031-9422(98)00111-3
- 52818 - Allamanda cathartica: LTS0212995
- 4678 - Allium: LTS0212995
- 4679 - Allium cepa: 10.1021/JF60203A035
- 4679 - Allium cepa: LTS0212995
- 4668 - Amaryllidaceae: LTS0212995
- 178513 - Amphimedon: LTS0212995
- 178514 - Amphimedon compressa: 10.1021/NP50081A009
- 178514 - Amphimedon compressa: LTS0212995
- 4011 - Anacardiaceae: LTS0212995
- 6340 - Annelida: LTS0212995
- 13336 - Annona: LTS0212995
- 301693 - Annona squamosa: 10.1007/S10600-010-9538-0
- 301693 - Annona squamosa: LTS0212995
- 22140 - Annonaceae: LTS0212995
- 4150 - Antirrhinum: LTS0212995
- 4151 - Antirrhinum majus: 10.1515/BCHM2.1965.341.1.192
- 4151 - Antirrhinum majus: LTS0212995
- 4037 - Apiaceae: LTS0212995
- 121476 - Aplysina: LTS0212995
- 202113 - Aplysina fistularis: 10.1007/BF02536024
- 202113 - Aplysina fistularis: LTS0212995
- 289403 - Aplysina lacunosa: 10.1007/BF02536024
- 289403 - Aplysina lacunosa: LTS0212995
- 121475 - Aplysinidae: LTS0212995
- 4056 - Apocynaceae: LTS0212995
- 4454 - Araceae: LTS0212995
- 4890 - Ascomycota: LTS0212995
- 4210 - Asteraceae: LTS0212995
- 45118 - Axinellidae: LTS0212995
- 2 - Bacteria: LTS0212995
- 178537 - Callyspongia: LTS0212995
- 469326 - Callyspongia fallax: 10.1021/NP000537Q
- 469326 - Callyspongia fallax: LTS0212995
- 178536 - Callyspongiidae: LTS0212995
- 77071 - Cecropia: LTS0212995
- 1472306 - Cecropia pachystachya: 10.1002/ARDP.19803130303
- 1472306 - Cecropia pachystachya: LTS0212995
- 283502 - Cervicornia: LTS0212995
- 283503 - Cervicornia cuspidifera: 10.1007/BF02537064
- 283503 - Cervicornia cuspidifera: LTS0212995
- 6056 - Chalinidae: LTS0212995
- 76784 - Clionaidae: LTS0212995
- 42113 - Clitellata: LTS0212995
- 4312 - Corynocarpus laevigatus: 10.1007/BF02901546
- 46246 - Delphinium: LTS0212995
- 6042 - Demospongiae: LTS0212995
- 7586 - Echinodermata: LTS0212995
- 7625 - Echinoidea: LTS0212995
- 13054 - Epilobium: LTS0212995
- 33136 - Epilobium dodonaei: 10.1007/BF00579976
- 3932 - Eucalyptus: LTS0212995
- 2759 - Eukaryota: LTS0212995
- 147545 - Eurotiomycetes: LTS0212995
- 3803 - Fabaceae: LTS0212995
- 3616 - Fagopyrum: LTS0212995
- 3617 - Fagopyrum esculentum: 10.1007/BF00579976
- 3617 - Fagopyrum esculentum: LTS0212995
- 4751 - Fungi: LTS0212995
- 5314 - Ganoderma: -
- 6448 - Gastropoda: LTS0212995
- 6057 - Haliclona: LTS0212995
- 114748 - Haminoea: LTS0212995
- 114747 - Haminoeidae: LTS0212995
- 54723 - Hansenia: LTS0212995
- 165499 - Hansenia forbesii: 10.1016/J.TALANTA.2012.06.052
- 165499 - Hansenia forbesii: LTS0212995
- 9606 - Homo sapiens: -
- 33637 - Laminaria: 10.1248/YAKUSHI1947.103.6_683
- 33637 - Laminaria: LTS0212995
- 33636 - Laminariaceae: LTS0212995
- 147547 - Lecanoromycetes: LTS0212995
- 4447 - Liliopsida: LTS0212995
- 6392 - Lumbricidae: LTS0212995
- 6397 - Lumbricus: LTS0212995
- 6398 - Lumbricus terrestris: 10.1271/BBB1961.52.2379
- 6398 - Lumbricus terrestris: LTS0212995
- 3928 - Lythraceae: LTS0212995
- 85864 - Magnolia Officinalis Rehd Et Wils\uff0e: -
- 3398 - Magnoliopsida: LTS0212995
- 96479 - Malva: LTS0212995
- 145754 - Malva sylvestris: 10.1007/BF00629959
- 145754 - Malva sylvestris: LTS0212995
- 3629 - Malvaceae: LTS0212995
- 93787 - Malvaviscus: LTS0212995
- 93788 - Malvaviscus arboreus: 10.1016/S0031-9422(98)00111-3
- 93788 - Malvaviscus arboreus: LTS0212995
- 23461 - Mangifera: LTS0212995
- 29780 - Mangifera indica: 10.1007/BF02541638
- 29780 - Mangifera indica: LTS0212995
- 33208 - Metazoa: LTS0212995
- 6447 - Mollusca: LTS0212995
- 5097 - Monascus: LTS0212995
- 5098 - Monascus purpureus: 10.1016/0031-9422(96)00236-1
- 5098 - Monascus purpureus: LTS0212995
- 86015 - Mycale: LTS0212995
- 698782 - Mycale laevis: 10.1021/NP50081A009
- 698782 - Mycale laevis: LTS0212995
- 86014 - Mycalidae: LTS0212995
- 3931 - Myrtaceae: LTS0212995
- 178475 - Niphatidae: LTS0212995
- 3934 - Onagraceae: LTS0212995
- 48386 - Perilla Frutescens: -
- 46141 - Petiveria: LTS0212995
- 46142 - Petiveria alliacea: 10.1016/0031-9422(90)85294-P
- 46142 - Petiveria alliacea: LTS0212995
- 441552 - Petiveriaceae: LTS0212995
- 68562 - Petrosiidae: LTS0212995
- 2870 - Phaeophyceae: LTS0212995
- 233880 - Phyllanthaceae: LTS0212995
- 58880 - Phyllanthus: LTS0212995
- 296036 - Phyllanthus emblica: 10.1002/JCCS.200700228
- 3525 - Phytolaccaceae: LTS0212995
- 156152 - Plantaginaceae: LTS0212995
- 33090 - Plants: -
- 3615 - Polygonaceae: LTS0212995
- 3689 - Populus: LTS0212995
- 3693 - Populus tremuloides: 10.1021/JO01064A066
- 3693 - Populus tremuloides: LTS0212995
- 6040 - Porifera: LTS0212995
- 283540 - Pseudosuberites: 10.1021/NP50102A012
- 283540 - Pseudosuberites: LTS0212995
- 22662 - Punica: LTS0212995
- 22663 - Punica granatum: 10.1093/JAOAC/55.3.645
- 22663 - Punica granatum: LTS0212995
- 56479 - Ramalina: 10.1002/CHIN.199517179
- 56479 - Ramalina: LTS0212995
- 56478 - Ramalinaceae: LTS0212995
- 3440 - Ranunculaceae: LTS0212995
- 3688 - Salicaceae: LTS0212995
- 289408 - Smenospongia: LTS0212995
- 289409 - Smenospongia aurea: 10.1007/BF02536024
- 289409 - Smenospongia aurea: LTS0212995
- 78381 - Spathiphyllum: LTS0212995
- 258320 - Spathiphyllum cannifolium: 10.1016/0305-1978(96)00016-6
- 258320 - Spathiphyllum cannifolium: LTS0212995
- 104301 - Staphisagria macrosperma: 10.3109/13880208509070678
- 1883 - Streptomyces: 10.3389/FMICB.2018.01302
- 1883 - Streptomyces: LTS0212995
- 2062 - Streptomycetaceae: LTS0212995
- 35493 - Streptophyta: LTS0212995
- 55566 - Suberites: LTS0212995
- 279590 - Suberites massa: 10.1021/NP50102A012
- 279590 - Suberites massa: LTS0212995
- 55660 - Suberitidae: LTS0212995
- 49743 - Taraxacum: LTS0212995
- 1301465 - Taraxacum lapponicum: LTS0212995
- 50225 - Taraxacum officinale: 10.1007/BF00579976
- 50225 - Taraxacum officinale: LTS0212995
- 1342713 - Tectitethya: LTS0212995
- 34493 - Tethya: LTS0212995
- 45120 - Tethyidae: LTS0212995
- 121495 - Thorectidae: LTS0212995
- 31185 - Toxopneustidae: LTS0212995
- 58023 - Tracheophyta: LTS0212995
- 3898 - Trifolium: LTS0212995
- 57577 - Trifolium pratense: 10.1007/BF00579976
- 57577 - Trifolium pratense: LTS0212995
- 7672 - Tripneustes: LTS0212995
- 105367 - Tripneustes ventricosus: 10.1021/NP50107A008
- 105367 - Tripneustes ventricosus: LTS0212995
- 3499 - Urticaceae: LTS0212995
- 33090 - Viridiplantae: LTS0212995
- 36590 - Xanthium: LTS0212995
- 576365 - Xanthium sibiricum: 10.1080/14786419.2010.539182
- 576365 - Xanthium sibiricum: LTS0212995
- 318068 - Xanthium strumarium: 10.1080/14786419.2010.539182
- 318068 - Xanthium strumarium: LTS0212995
- 178550 - Xestospongia: LTS0212995
- 178552 - Xestospongia muta: 10.1007/BF02535668
- 178552 - Xestospongia muta: LTS0212995
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Hiroshi Nakahashi, Yuka Nishino, Hiroki Nakagawa, Nobuyuki Hara, Atsushi Usami, Mitsuo Miyazawa. Evaluation of the Key Odorants in Volatile Oils from Tubers of Apios americana Medikus.
Journal of oleo science.
2015; 64(11):1235-42. doi:
10.5650/jos.ess15132
. [PMID: 26521814] - Marco Reich, Christian Hannig, Ali Al-Ahmad, Richard Bolek, Klaus Kümmerer. A comprehensive method for determination of fatty acids in the initial oral biofilm (pellicle).
Journal of lipid research.
2012 Oct; 53(10):2226-2230. doi:
10.1194/jlr.d026260
. [PMID: 22829652] - Siham Yasari, Denis Prud'homme, Frédérique Tesson, Marek Jankowski, Jolanta Gutkowska, Emile Levy, Jean-Marc Lavoie. Effects of exercise training on molecular markers of lipogenesis and lipid partitioning in fructose-induced liver fat accumulation.
Journal of nutrition and metabolism.
2012; 2012(?):181687. doi:
10.1155/2012/181687
. [PMID: 21860785] - Ana S H Costa, Paula A Lopes, Marta Estevão, Susana V Martins, Susana P Alves, Rui M A Pinto, Hugo Pissarra, Jorge J Correia, Mário Pinho, Carlos M G A Fontes, José A M Prates. Contrasting cellularity and fatty acid composition in fat depots from Alentejana and Barrosã bovine breeds fed high and low forage diets.
International journal of biological sciences.
2012; 8(2):214-27. doi:
10.7150/ijbs.8.214
. [PMID: 22253565] - Petra Meeuwse, Johannes Tramper, Arjen Rinzema. Modeling lipid accumulation in oleaginous fungi in chemostat cultures: I. Development and validation of a chemostat model for Umbelopsis isabellina.
Bioprocess and biosystems engineering.
2011 Oct; 34(8):939-49. doi:
10.1007/s00449-011-0545-8
. [PMID: 21538015] - Suqin Kan, Guangying Chen, Changri Han, Zhong Chen, Xinming Song, Ming Ren, Hong Jiang. Chemical constituents from the roots of Xanthium sibiricum.
Natural product research.
2011 Aug; 25(13):1243-9. doi:
10.1080/14786419.2010.539182
. [PMID: 21854171] - Monica A Schmidt, W Brad Barbazuk, Michael Sandford, Greg May, Zhihong Song, Wenxu Zhou, Basil J Nikolau, Eliot M Herman. Silencing of soybean seed storage proteins results in a rebalanced protein composition preserving seed protein content without major collateral changes in the metabolome and transcriptome.
Plant physiology.
2011 May; 156(1):330-45. doi:
10.1104/pp.111.173807
. [PMID: 21398260] - Nimalie J Perera, Barry Lewis, Huy Tran, Michael Fietz, David R Sullivan. Refsum's Disease-Use of the Intestinal Lipase Inhibitor, Orlistat, as a Novel Therapeutic Approach to a Complex Disorder.
Journal of obesity.
2011; 2011(?):. doi:
10.1155/2011/482021
. [PMID: 20871815] - Céline Dejoye, Maryline Abert Vian, Guy Lumia, Christian Bouscarle, Frederic Charton, Farid Chemat. Combined extraction processes of lipid from Chlorella vulgaris microalgae: microwave prior to supercritical carbon dioxide extraction.
International journal of molecular sciences.
2011; 12(12):9332-41. doi:
10.3390/ijms12129332
. [PMID: 22272135] - Yunbao Liu, Muraleedharan G Nair. An efficient and economical MTT assay for determining the antioxidant activity of plant natural product extracts and pure compounds.
Journal of natural products.
2010 Jul; 73(7):1193-5. doi:
10.1021/np1000945
. [PMID: 20565070] - Martin Moche, Stefanie Stremlau, Lars Hecht, Cornelia Göbel, Ivo Feussner, Christine Stöhr. Effect of nitrate supply and mycorrhizal inoculation on characteristics of tobacco root plasma membrane vesicles.
Planta.
2010 Jan; 231(2):425-36. doi:
10.1007/s00425-009-1057-5
. [PMID: 19937342] - Ota Samek, Alexandr Jonáš, Zdeněk Pilát, Pavel Zemánek, Ladislav Nedbal, Jan Tříska, Petr Kotas, Martin Trtílek. Raman microspectroscopy of individual algal cells: sensing unsaturation of storage lipids in vivo.
Sensors (Basel, Switzerland).
2010; 10(9):8635-51. doi:
10.3390/s100908635
. [PMID: 22163676] - Wendy Maury, Jason P Price, Melinda A Brindley, ChoonSeok Oh, Jeffrey D Neighbors, David F Wiemer, Nickolas Wills, Susan Carpenter, Cathy Hauck, Patricia Murphy, Mark P Widrlechner, Kathleen Delate, Ganesh Kumar, George A Kraus, Ludmila Rizshsky, Basil Nikolau. Identification of light-independent inhibition of human immunodeficiency virus-1 infection through bioguided fractionation of Hypericum perforatum.
Virology journal.
2009 Jul; 6(?):101. doi:
10.1186/1743-422x-6-101
. [PMID: 19594941] - Claudia Urueña, Claudia Cifuentes, Diana Castañeda, Amparo Arango, Punit Kaur, Alexzander Asea, Susana Fiorentino. Petiveria alliacea extracts uses multiple mechanisms to inhibit growth of human and mouse tumoral cells.
BMC complementary and alternative medicine.
2008 Nov; 8(?):60. doi:
10.1186/1472-6882-8-60
. [PMID: 19017389] - Cai-Fang Wang, Yu Zhao, Jun-Ping Li, Na Wang, Yan-Bing Zhang. [Studies on the constituents from Cacalia ambigua].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2008 Nov; 31(11):1661-3. doi:
"
. [PMID: 19260274] - Ahmed I Rushdi, Bernd R T Simoneit. Abiotic condensation synthesis of glyceride lipids and wax esters under simulated hydrothermal conditions.
Origins of life and evolution of the biosphere : the journal of the International Society for the Study of the Origin of Life.
2006 Apr; 36(2):93-108. doi:
10.1007/s11084-005-9001-6
. [PMID: 16642268] - R Pantović, P Draganić, V Eraković, B Blagović, C Milin, A Simonić. Effect of indomethacin on motor activity and spinal cord free fatty acid content after experimental spinal cord injury in rabbits.
Spinal cord.
2005 Sep; 43(9):519-26. doi:
10.1038/sj.sc.3101763
. [PMID: 15852057] - Ahmed I Rushdi, Bernd R T Simoneit. Condensation reactions and formation of amides, esters, and nitriles under hydrothermal conditions.
Astrobiology.
2004; 4(2):211-24. doi:
10.1089/153110704323175151
. [PMID: 15253839] - Yanet Tejeda Díaz, Ernesto Méndez Antolín, Roxana Sierra Pérez, David Marrero Delange, Víctor González Canavaciolo, Abilio Laguna Granja. Gas chromatographic method for determining very long chain fatty acids that compose D003 in aqueous suspensions from 20 to 200 mg/ml, used in pharmacological and toxicological studies.
Farmaco (Societa chimica italiana : 1989).
2003 Jul; 58(7):521-5. doi:
10.1016/s0014-827x(03)00072-7
. [PMID: 12818691] - M V Artamonov, O D Zhukov, V M Marhitych, V M Klimashevs'kyĭ, N M Hula. [Effect of exogenous N-stearoylethanolamine on fatty acid composition of individual phospholipids in the isolated rat heart under postischemic reperfusion].
Ukrains'kyi biokhimichnyi zhurnal (1999 ).
2002 Mar; 74(2):86-94. doi:
"
. [PMID: 12152319] - S M Rocha, E L Angerami. [Study of urine pH and density in the rehydration of infants. Introduction to nursing care].
Boletin de la Oficina Sanitaria Panamericana. Pan American Sanitary Bureau.
1978 Feb; 84(2):146-56. doi:
NULL
. [PMID: 24456] - K A Ferguson, M Glaser, W H Bayer, P R Vagelos. Alteration of fatty acid composition of LM cells by lipid supplementation and temperature.
Biochemistry.
1975 Jan; 14(1):146-51. doi:
10.1021/bi00672a025
. [PMID: 1167335] - E H Kass. Bacterial antigen in the kidney.
The New England journal of medicine.
1969 Dec; 281(25):1420-1. doi:
10.1056/nejm196912182812510
. [PMID: 5355457]