L-Cysteinesulfinic acid (BioDeep_00000399895)

Main id: BioDeep_00000001365

 

natural product PANOMIX_OTCML-2023 BioNovoGene_Lab2019


代谢物信息卡片


L-Cysteinesulfinic acid

化学式: C3H7NO4S (153.0096)
中文名称: L-半胱氨酸亚磺酸, L-半胱亚磺酸 一水合物
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C(C(C(=O)O)N)S(=O)O
InChI: InChI=1S/C3H7NO4S/c4-2(3(5)6)1-9(7)8/h2H,1,4H2,(H,5,6)(H,7,8)/t2-/m0/s1

描述信息

L-Cysteinesulfinic acid is a potent agonist at several rat metabotropic glutamate receptors (mGluRs) with pEC50s of 3.92, 4.6, 3.9, 2.7, 4.0, and 3.94 for mGluR1, mGluR5, mGluR2, mGluR4, mGluR6, and mGluR8, respectively[1].
L-Cysteinesulfinic acid is a potent agonist at several rat metabotropic glutamate receptors (mGluRs) with pEC50s of 3.92, 4.6, 3.9, 2.7, 4.0, and 3.94 for mGluR1, mGluR5, mGluR2, mGluR4, mGluR6, and mGluR8, respectively[1].

同义名列表

4 个代谢物同义名

L-Cysteinesulfinic acid; 3-Sulfino-L-alanine; 3-Sulfino-L-alanine; L-Cysteinesulfinic acid



数据库引用编号

17 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 6 ADA, CA1, CBS, CSAD, GRM5, IGHMBP2
Peripheral membrane protein 1 ADA
Nucleus 5 BHMT, CBS, GRM1, IGHMBP2, PLCZ1
cytosol 9 ADA, ADO, ADSL, BHMT, CA1, CBS, CDO1, PLCZ1, PRKCQ
dendrite 3 GRM1, GRM5, SLC6A6
nuclear body 1 IGHMBP2
trans-Golgi network 1 PCSK1N
nucleoplasm 2 IGHMBP2, PLCZ1
Cell membrane 6 ADA, GRID1, GRM1, GRM5, SLC1A2, SLC6A6
Cell projection, axon 1 IGHMBP2
Multi-pass membrane protein 5 GRID1, GRM1, GRM5, SLC1A2, SLC6A6
cell junction 1 ADA
cell surface 2 ADA, SLC1A2
dendritic shaft 1 GRM5
glutamatergic synapse 4 GRID1, GRM1, GRM5, SLC1A2
growth cone 1 IGHMBP2
neuronal cell body 2 GRM5, SLC6A6
postsynapse 1 GRM5
presynaptic membrane 1 SLC1A2
Cytoplasm, cytosol 1 BHMT
Lysosome 1 ADA
plasma membrane 8 ADA, EDNRA, GRID1, GRM1, GRM5, PRKCQ, SLC1A2, SLC6A6
Membrane 5 ADA, GRM5, IGHMBP2, SLC1A2, SLC6A6
apical plasma membrane 1 SLC6A6
axon 1 IGHMBP2
basolateral plasma membrane 1 SLC6A6
extracellular exosome 3 BHMT, CA1, GRID1
extracellular space 2 CXCL8, PCSK1N
perinuclear region of cytoplasm 1 PLCZ1
Schaffer collateral - CA1 synapse 2 GRM1, GRM5
mitochondrion 2 AADAT, ADO
protein-containing complex 1 ADSL
pronucleus 1 PLCZ1
Secreted 2 CXCL8, PCSK1N
extracellular region 1 CXCL8
mitochondrial matrix 1 AADAT
Extracellular side 1 ADA
Cytoplasmic vesicle lumen 1 ADA
anchoring junction 1 ADA
centriolar satellite 1 PRKCQ
external side of plasma membrane 1 ADA
dendritic spine 1 GRM5
nucleolus 1 PLCZ1
vesicle 1 SLC1A2
postsynaptic membrane 2 GRID1, SLC6A6
Cytoplasm, perinuclear region 1 PLCZ1
Membrane raft 1 SLC1A2
axolemma 1 SLC1A2
GABA-ergic synapse 2 GRID1, SLC6A6
secretory granule 1 PCSK1N
Postsynaptic cell membrane 2 GRID1, GRM1
cell projection 1 SLC6A6
plasma membrane protein complex 1 SLC6A6
Golgi apparatus, trans-Golgi network 1 PCSK1N
microvillus membrane 1 SLC6A6
cell body 1 SLC1A2
postsynaptic density membrane 3 GRID1, GRM1, GRM5
immunological synapse 1 PRKCQ
aggresome 1 PRKCQ
ribonucleoprotein complex 1 IGHMBP2
astrocyte projection 2 GRM5, SLC1A2
sperm head 1 PLCZ1
neuron projection terminus 1 SLC1A2
membrane protein complex 1 SLC1A2
G protein-coupled receptor dimeric complex 1 GRM1
G protein-coupled receptor homodimeric complex 1 GRM1


文献列表

  • Francesco Vieceli Dalla Sega, Cecilia Prata, Laura Zambonin, Cristina Angeloni, Benedetta Rizzo, Silvana Hrelia, Diana Fiorentini. Intracellular cysteine oxidation is modulated by aquaporin-8-mediated hydrogen peroxide channeling in leukaemia cells. BioFactors (Oxford, England). 2017 Mar; 43(2):232-242. doi: 10.1002/biof.1340. [PMID: 27862460]
  • Jessica R Terrill, Miranda D Grounds, Peter G Arthur. Taurine deficiency, synthesis and transport in the mdx mouse model for Duchenne Muscular Dystrophy. The international journal of biochemistry & cell biology. 2015 Sep; 66(?):141-8. doi: 10.1016/j.biocel.2015.07.016. [PMID: 26239309]
  • Glyn B Steventon, Stephen C Mitchell, Santigo Angulo, Coral Barbas. An investigation into possible xenobiotic-endobiotic inter-relationships involving the amino acid analogue drug, S-carboxymethyl-L-cysteine and plasma amino acids in humans. Amino acids. 2012 May; 42(5):1967-73. doi: 10.1007/s00726-011-0926-y. [PMID: 21559953]
  • S G Rhee, W Jeong, T-S Chang, H A Woo. Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin: its discovery, mechanism of action, and biological significance. Kidney international. Supplement. 2007 Aug; ?(106):S3-8. doi: 10.1038/sj.ki.5002380. [PMID: 17653208]
  • Olga Boudker, Renae M Ryan, Dinesh Yernool, Keiko Shimamoto, Eric Gouaux. Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature. 2007 Jan; 445(7126):387-93. doi: 10.1038/nature05455. [PMID: 17230192]
  • H Nakamura, J Yatsuki, T Ubuka. Production of hypotaurine, taurine and sulfate in rats and mice injected with L-cysteinesulfinate. Amino acids. 2006 Jul; 31(1):27-33. doi: 10.1007/s00726-005-0277-7. [PMID: 16680400]
  • Xian Peng Liu, Xue Ying Liu, Juan Zhang, Zong Liang Xia, Xin Liu, Huan Ju Qin, Dao Wen Wang. Molecular and functional characterization of sulfiredoxin homologs from higher plants. Cell research. 2006 Mar; 16(3):287-96. doi: 10.1038/sj.cr.7310036. [PMID: 16541127]
  • J David Van Horn, Grzegorz Bulaj, David P Goldenberg, Cynthia J Burrows. The Cys-Xaa-His metal-binding motif: [N] versus [S] coordination and nickel-mediated formation of cysteinyl sulfinic acid. Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry. 2003 Jul; 8(6):601-10. doi: 10.1007/s00775-003-0454-7. [PMID: 12827456]
  • M J Croucher, L S Thomas, H Ahmadi, V Lawrence, J R Harris. Endogenous sulphur-containing amino acids: potent agonists at presynaptic metabotropic glutamate autoreceptors in the rat central nervous system. British journal of pharmacology. 2001 Jul; 133(6):815-24. doi: 10.1038/sj.bjp.0704138. [PMID: 11454654]
  • S E Edgar, C A Kirk, Q R Rogers, J G Morris. Taurine status in cats is not maintained by dietary cysteinesulfinic acid. The Journal of nutrition. 1998 Apr; 128(4):751-7. doi: 10.1093/jn/128.4.751. [PMID: 9521639]
  • T Togawa, A Ohsawa, K Kawanabe, S Tanabe. Simultaneous determination of cysteine sulfinic acid and hypotaurine in rat tissues by column-switching high-performance liquid chromatography with electrochemical detection. Journal of chromatography. B, Biomedical sciences and applications. 1997 Dec; 704(1-2):83-8. doi: 10.1016/s0378-4347(97)00449-0. [PMID: 9518181]
  • C T Quinn, J C Griener, T Bottiglieri, K Hyland, A Farrow, B A Kamen. Elevation of homocysteine and excitatory amino acid neurotransmitters in the CSF of children who receive methotrexate for the treatment of cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 1997 Aug; 15(8):2800-6. doi: 10.1200/jco.1997.15.8.2800. [PMID: 9256122]
  • M E Suliman, B Anderstam, J Bergström. Evidence of taurine depletion and accumulation of cysteinesulfinic acid in chronic dialysis patients. Kidney international. 1996 Nov; 50(5):1713-7. doi: 10.1038/ki.1996.490. [PMID: 8914041]
  • P Guérin, Y Ménézo. Hypotaurine and taurine in gamete and embryo environments: de novo synthesis via the cysteine sulfinic acid pathway in oviduct cells. Zygote (Cambridge, England). 1995 Nov; 3(4):333-43. doi: 10.1017/s0967199400002768. [PMID: 8730898]
  • C R Santhosh-Kumar, J C Deutsch, J C Kolhouse, K L Hassell, J F Kolhouse. Measurement of excitatory sulfur amino acids, cysteine sulfinic acid, cysteic acid, homocysteine sulfinic acid, and homocysteic acid in serum by stable isotope dilution gas chromatography-mass spectrometry and selected ion monitoring. Analytical biochemistry. 1994 Aug; 220(2):249-56. doi: 10.1006/abio.1994.1335. [PMID: 7978266]
  • R H Juang, K F McCue, D W Ow. Two purine biosynthetic enzymes that are required for cadmium tolerance in Schizosaccharomyces pombe utilize cysteine sulfinate in vitro. Archives of biochemistry and biophysics. 1993 Aug; 304(2):392-401. doi: 10.1006/abbi.1993.1367. [PMID: 8346915]
  • J Dunlop, A Grieve, I Damgaard, A Schousboe, R Griffiths. Sulphur-containing excitatory amino acid-evoked Ca(2+)-independent release of D-[3H]aspartate from cultured cerebellar granule cells: the role of glutamate receptor activation coupled to reversal of the acidic amino acid plasma membrane carrier. Neuroscience. 1992 Sep; 50(1):107-15. doi: 10.1016/0306-4522(92)90385-f. [PMID: 1357589]
  • M H Stipanuk, J De la Rosa, L L Hirschberger. Catabolism of cyst(e)ine by rat renal cortical tubules. The Journal of nutrition. 1990 May; 120(5):450-8. doi: 10.1093/jn/120.5.450. [PMID: 2111378]
  • A Pastuszko, D F Wilson. Amino acids modulate calcium permeability of the plasma membrane of human neuroblastoma cells. Cancer biochemistry biophysics. 1988 May; 9(4):359-66. doi: NULL. [PMID: 2899454]
  • A Pastuszko, D F Wilson. Cysteine sulfinate modulated calcium permeability in synaptosomes from rat brain. Neuroscience letters. 1987 Nov; 82(1):71-6. doi: 10.1016/0304-3940(87)90173-x. [PMID: 3696486]
  • K Kuriyama, Y Tanaka. Cysteinesulfinic acid and cysteic acid: high-performance liquid chromatography. Methods in enzymology. 1987; 143(?):164-6. doi: 10.1016/0076-6879(87)43030-9. [PMID: 3657531]
  • D F Wilson, A Pastuszko. Transport of cysteate by synaptosomes isolated from rat brain: evidence that it utilizes the same transporter as aspartate, glutamate, and cysteine sulfinate. Journal of neurochemistry. 1986 Oct; 47(4):1091-7. doi: 10.1111/j.1471-4159.1986.tb00725.x. [PMID: 2875128]
  • L L Hirschberger, J De La Rosa, M H Stipanuk. Determination of cysteinesulfinate, hypotaurine and taurine in physiological samples by reversed-phase high-performance liquid chromatography. Journal of chromatography. 1985 Oct; 343(2):303-13. doi: 10.1016/s0378-4347(00)84599-5. [PMID: 2866194]
  • A Baba, Y Kumagae, T Tatsuno, H Iwata. Modulation by bovine serum albumin of stimulated formation of cyclic AMP in guinea pig hippocampus. Japanese journal of pharmacology. 1984 Oct; 36(2):272-4. doi: 10.1254/jjp.36.272. [PMID: 6151013]
  • O W Griffith. Cysteinesulfinate metabolism. altered partitioning between transamination and decarboxylation following administration of beta-methyleneaspartate. The Journal of biological chemistry. 1983 Feb; 258(3):1591-8. doi: NULL. [PMID: 6822523]
  • P FROMAGEOT, U PATINO-BUN. [Polarographic study of the desulfination of cysteinesulfinic acid by oat leaf extracts]. Biochimica et biophysica acta. 1961 Jan; 46(?):533-44. doi: 10.1016/0006-3002(61)90584-4. [PMID: 13702219]
  • H PEREZ-MILAN, J SCHLIACK, P FROMAGEOT. [Transamination of cysteinesulfinic acid by extracts of oat leaves]. Biochimica et biophysica acta. 1959 Nov; 36(?):73-83. doi: 10.1016/0006-3002(59)90071-x. [PMID: 14431823]
  • F CHAPEVILLE, P FROMAGEOT. [Enzymatic formation of cysteinesulfinic acid from sulfite]. Biochimica et biophysica acta. 1954 Jul; 14(3):415-20. doi: 10.1016/0006-3002(54)90201-2. [PMID: 13181899]
  • H TABECHIAN, B BERGERET, F CHATAGNER. [Metabolism of L. cysteinesulfinic acid in the liver and kidneys of rat in vivo]. Bulletin de la Societe de chimie biologique. 1953; 35(7):615-22. doi: NULL. [PMID: 13094388]
  • . . . . doi: . [PMID: 23038267]