Gene Association: HSP90B1
UniProt Search:
HSP90B1 (PROTEIN_CODING)
Function Description: heat shock protein 90 beta family member 1
found 500 associated metabolites with current gene based on the text mining result from the pubmed database.
Betulafolienetriol
Protopanaxadiol is found in tea. Sapogenin of Ginsenosides Rb1, Rb2 and Re from Panax ginseng (ginseng) Protopanaxadiol (PPD) is an organic coumpound characterizing a group of ginsenosides. It is a dammarane-type tetracyclic terpene sapogenin found in ginseng (Panax ginseng) and in notoginseng (Panax pseudoginseng) (20S)-protopanaxadiol is a diastereomer of protopanaxadiol in which the 20-hydroxy substituent has been introduced at the pro-S position. (20S)-Protopanaxadiol is a natural product found in Gynostemma pentaphyllum, Panax ginseng, and Aralia elata with data available. 20S-protopanaxadiol (aPPD) is a metabolite of ginseng saponins, inhibits Akt activity and induces apoptosis in various tumor cells[1]. 20S-protopanaxadiol (aPPD) is a metabolite of ginseng saponins, inhibits Akt activity and induces apoptosis in various tumor cells[1].
Elliptisine
Ellipticine is a organic heterotetracyclic compound that is pyrido[4,3-b]carbazole carrying two methyl substituents at positions 5 and 11. It has a role as an antineoplastic agent and a plant metabolite. It is an organic heterotetracyclic compound, an organonitrogen heterocyclic compound, a polycyclic heteroarene and an indole alkaloid. Ellipticine (NSC 71795) is a potent antineoplastic agent; inhibits DNA topoisomerase II activities. Ellipticine (NSC 71795) is a potent antineoplastic agent; inhibits DNA topoisomerase II activities.
Ailanthone
Ailanthone is a triterpenoid. Ailanthone (Δ13-Dehydrochaparrinone) is a potent inhibitor of both full-length androgen receptor (AR) (IC50=69?nM) and constitutively active truncated AR splice variants (AR1-651 IC50=309?nM). Ailanthone (Δ13-Dehydrochaparrinone) is a potent inhibitor of both full-length androgen receptor (AR) (IC50=69?nM) and constitutively active truncated AR splice variants (AR1-651 IC50=309?nM).
Geraniin
Geraniin is a tannin. Geraniin is a natural product found in Euphorbia makinoi, Macaranga tanarius, and other organisms with data available. Geraniin is a TNF-α releasing inhibitor with numerous activities including anticancer, anti-inflammatory, and anti-hyperglycemic activities, with an IC50 of 43 μM. Geraniin is a TNF-α releasing inhibitor with numerous activities including anticancer, anti-inflammatory, and anti-hyperglycemic activities, with an IC50 of 43 μM.
Marmesin
Marmesin is a member of psoralens and a tertiary alcohol. 2-(2-Hydroxypropan-2-yl)-2,3-dihydrofuro[3,2-g]chromen-7-one is a natural product found in Zanthoxylum beecheyanum, Zanthoxylum arnottianum, and other organisms with data available. Nodakenetin is found in wild celery. Nodakenetin is a constituent of Angelica species Constituent of Angelica subspecies Nodakenetin is found in wild celery. (+)-marmesin is a marmesin. It is an enantiomer of a nodakenetin. Marmesin is a natural product found in Coronilla scorpioides, Clausena dunniana, and other organisms with data available. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity. (+)-Marmesin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=13849-08-6 (retrieved 2024-09-04) (CAS RN: 13849-08-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Ursodeoxycholate
Ursodeoxycholic acid is a bile acid found in the bile of bears (Ursidae) as a conjugate with taurine. Used therapeutically, it prevents the synthesis and absorption of cholesterol and can lead to the dissolution of gallstones. It has a role as a human metabolite and a mouse metabolite. It is a bile acid, a dihydroxy-5beta-cholanic acid and a C24-steroid. It is a conjugate acid of an ursodeoxycholate. Ursodeoxycholic acid is an epimer of [chenodeoxycholic acid]. It is a mammalian bile acid found first in the bear and is apparently either a precursor or a product of chenodeoxycholate. Its administration changes the composition of bile and may dissolve gallstones. It is used as a cholagogue and choleretic. Ursodiol is a Bile Acid. Ursodeoxycholic acid or ursodiol is a naturally occurring bile acid that is used dissolve cholesterol gall stones and to treat cholestatic forms of liver diseases including primary biliary cirrhosis. Ursodiol has been linked to rare instances of transient and mild serum aminotransferase elevations during therapy and to rare instances of jaundice and worsening of liver disease in patients with preexisting cirrhosis. Ursodeoxycholic acid is a natural product found in Myocastor coypus with data available. Ursodiol is a synthetically-derived form of ursodiol, a bile acid produced by the liver and secreted and stored in the gallbladder. Also produced by the Chinese black bear liver, ursodiol has been used in the treatment of liver disease for centuries. This agent dissolves or prevents cholesterol gallstones by blocking hepatic cholesterol production and decreasing bile cholesterol. Ursodiol also reduces the absorption of cholesterol from the intestinal tract. An epimer of chenodeoxycholic acid. It is a mammalian bile acid found first in the bear and is apparently either a precursor or a product of chenodeoxycholate. Its administration changes the composition of bile and may dissolve gallstones. It is used as a cholagogue and choleretic. See also: Dimethicone; pancrelipase; ursodiol (component of). Ursodeoxycholic acid, also known as ursodeoxycholate or acid deoxyursocholic, belongs to the class of organic compounds known as dihydroxy bile acids, alcohols and derivatives. Dihydroxy bile acids, alcohols and derivatives are compounds containing or derived from a bile acid or alcohol, and which bears exactly two carboxylic acid groups. Ursodeoxycholic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. An epimer of chenodeoxycholic acid. It is a mammalian bile acid found first in the bear and is apparently either a precursor or a product of chenodeoxycholate. Its administration changes the composition of bile and may dissolve gallstones. It is used as a cholagogue and choleretic. [HMDB] Ursodeoxycholic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=128-13-2 (retrieved 2024-07-02) (CAS RN: 128-13-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Phlorizin
Phlorizin, also known as phlorizoside or phlorrhizen, belongs to the class of organic compounds known as flavonoid o-glycosides. Flavonoid O-glycosides are compounds containing a carbohydrate moiety which is O-glycosidically linked to the 2-phenylchromen-4-one flavonoid backbone. Phlorizin (also referred to as phloridzin; chemical name phloretin-2-‚âà√≠‚Äö√¢¬ß-D-glucopyranoside) is a glucoside of phloretin, a dihydrochalcone, a family of bicyclic flavonoids, which in turn is a subgroup in the diverse phenylpropanoid synthesis pathway in plants. In humans, phlorizin is involved in lactose degradation. Phlorizin is a bitter tasting compound. phlorizin is found, on average, in the highest concentration in a few different foods, such as mexican oregano, european plums, and apples and in a lower concentration in pomegranates and apricots. phlorizin has also been detected, but not quantified, in several different foods, such as epazotes, durians, chinese broccoli, sesames, and sweet potato. This could make phlorizin a potential biomarker for the consumption of these foods. It is of sweet taste and contains four molecules of water in the crystal. Phlorizin is found primarily in unripe Malus (apple), root bark of apple, trace amounts have been found in strawberry. It is poorly soluble in ether and cold water, but soluble in ethanol and hot water. Closely related species, such as pear (Pyrus communis), cherry, and other fruit trees in the Rosaceae do not contain phloridzin. Phlorizin was studied as a potential pharmaceutical treatment for type 2 diabetes, but has since been superseded by more selective and more promising synthetic analogs, such as empagliflozin, canagliflozin and dapagliflozin. Phlorizin is a competitive inhibitor of SGLT1 and SGLT2 because it competes with D-glucose for binding to the carrier; this reduces renal glucose transport, lowering the amount of glucose in the blood. Phlorizin is not an effective drug because when orally consumed, it is nearly entirely converted into phloretin by hydrolytic enzymes in the small intestine. Above 200 °C, it decomposes. Phlorizin is an aryl beta-D-glucoside that is phloretin attached to a beta-D-glucopyranosyl residue at position 2 via a glycosidic linkage. It has a role as a plant metabolite and an antioxidant. It is an aryl beta-D-glucoside, a member of dihydrochalcones and a monosaccharide derivative. It is functionally related to a phloretin. Phlorizin is a natural product found in Malus doumeri, Vaccinium macrocarpon, and other organisms with data available. See also: ... View More ... An aryl beta-D-glucoside that is phloretin attached to a beta-D-glucopyranosyl residue at position 2 via a glycosidic linkage. Isolated from apple leaves and bark Phlorizin (Floridzin) is a non-selective SGLT inhibitor with Kis of 300 and 39 nM for hSGLT1 and hSGLT2, respectively. Phlorizin is also a Na+/K+-ATPase inhibitor. Phlorizin (Floridzin) is a non-selective SGLT inhibitor with Kis of 300 and 39 nM for hSGLT1 and hSGLT2, respectively. Phlorizin is also a Na+/K+-ATPase inhibitor.
griffonin
Lithospermoside is a glycoside. Lithospermoside is a natural product found in Tylosema fassoglense, Semiaquilegia adoxoides, and other organisms with data available. Lithospermoside (Griffonin) is a nature product isolated from the stem bark of Semiaquilegia adoxoides [1]. Lithospermoside (Griffonin) is a nature product isolated from the stem bark of Semiaquilegia adoxoides [1].
Mesaconitine
Mesaconitine is a diterpenoid. Mesaconitine is a natural product found in Aconitum anthora, Aconitum napellus, and other organisms with data available. Origin: Plant; SubCategory_DNP: Terpenoid alkaloids, Diterpene alkaloid, Aconitum alkaloid Annotation level-1 Mesaconitine is the main active component of genus aconitum plants. IC50 value: Target: in vitro: In HUVECs, 30 microM mesaconitine increased the [Ca(2+)](i) level in the presence of extracellular CaCl(2) and NaCl, and the response was inhibited by KBR7943. Mesaconitine increased intracellular Na(+) concentration level in HUVECs. The [Ca(2+)](i) response by mesaconitine was inhibited by 100 microM D-tubocurarine [1]. Mesaconitine at 30 microM inhibited 3 microM phenylephrine-induced contraction in the endothelium-intact, but not endothelium-denuded, aortic rings [2]. MA promoted the alpha-MT-induced decrease in NE levels in hippocampus, medulla oblongata plus pons and spinal cord [3]. Mesaconitine is the main active component of genus aconitum plants. IC50 value: Target: in vitro: In HUVECs, 30 microM mesaconitine increased the [Ca(2+)](i) level in the presence of extracellular CaCl(2) and NaCl, and the response was inhibited by KBR7943. Mesaconitine increased intracellular Na(+) concentration level in HUVECs. The [Ca(2+)](i) response by mesaconitine was inhibited by 100 microM D-tubocurarine [1]. Mesaconitine at 30 microM inhibited 3 microM phenylephrine-induced contraction in the endothelium-intact, but not endothelium-denuded, aortic rings [2]. MA promoted the alpha-MT-induced decrease in NE levels in hippocampus, medulla oblongata plus pons and spinal cord [3].
Coumarin
Coumarin appears as colorless crystals, flakes or colorless to white powder with a pleasant fragrant vanilla odor and a bitter aromatic burning taste. (NTP, 1992) Coumarin is a chromenone having the keto group located at the 2-position. It has a role as a fluorescent dye, a plant metabolite and a human metabolite. Coumarin is a natural product found in Eupatorium cannabinum, Eupatorium japonicum, and other organisms with data available. Coumarin is o hydroxycinnamic acid. Pleasant smelling compound found in many plants and released on wilting. Has anticoagulant activity by competing with Vitamin K. Coumarin is a chemical compound/poison found in many plants, notably in high concentration in the tonka bean, woodruff, and bison grass. It has a sweet scent, readily recognised as the scent of newly-mown hay. It has clinical value as the precursor for several anticoagulants, notably warfarin. --Wikipedia. Coumarins, as a class, are comprised of numerous naturally occurring benzo-alpha-pyrone compounds with important and diverse physiological activities. The parent compound, coumarin, occurs naturally in many plants, natural spices, and foods such as tonka bean, cassia (bastard cinnamon or Chinese cinnamon), cinnamon, melilot (sweet clover), green tea, peppermint, celery, bilberry, lavender, honey (derived both from sweet clover and lavender), and carrots, as well as in beer, tobacco, wine, and other foodstuffs. Coumarin concentrations in these plants, spices, and foods range from <1 mg/kg in celery, 7000 mg/kg in cinnamon, and up to 87,000 mg/kg in cassia. An estimate of human exposure to coumarin from the diet has been calculated to be 0.02 mg/kg/day. Coumarin is used as an additive in perfumes and fragranced consumer products at concentrations ranging from <0.5\\\\% to 6.4\\\\% in fine fragrances to <0.01\\\\% in detergents. An estimate for systemic exposure of humans from the use of fragranced cosmetic products is 0.04 mg/kg BW/day, assuming complete dermal penetration. The use of coumarin as a food additive was banned by the FDA in 1954 based on reports of hepatotoxicity in rats. Due to its potential hepatotoxic effects in humans, the European Commission restricted coumarin from naturals as a direct food additive to 2 mg/kg food/day, with exceptions granting higher levels for alcoholic beverages, caramel, chewing gum, and certain traditional foods. In addition to human exposure to coumarin from dietary sources and consumer products, coumarin is also used clinically as an antineoplastic and for the treatment of lymphedema and venous insufficiency. Exposure ranges from 11 mg/day for consumption of natural food ingredients to 7 g/day following clinical administration. Although adverse effects in humans following coumarin exposure are rare, and only associated with clinical doses, recent evidence indicates coumarin causes liver tumors in rats and mice and Clara cell toxicity and lung tumors in mice. The multiple effects as well as the ongoing human exposure to coumarin have resulted in a significant research effort focused on understanding the mechanism of coumarin induced toxicity/carcinogenicity and its human relevance. These investigations have revealed significant species differences in coumarin metabolism and toxicity such that the mechanism of coumarin induced effects in rodents, and the relevance of these findings for the safety assessment of coumarin exposure in humans are now better understood. In October 2004, the European Food Safety Authority (EFSA, 2004) reviewed coumarin to establish a tolerable daily intake (TDI) in foods. EFSA issued an opinion indicating that coumarin is not genotoxic, and that a threshold approach to safety assessment was most appropriate. EFSA recommended a TDI of 0 to 0.1 mg/kg BW/day. Including dietary contributions, the total human exposure is estimated to be 0.06 mg/kg/day. As a pharmaceutical, coumarin has been used in diverse applications with a wide variety of dosing regimens. Unlike coumadin and ... Coumarin belongs to the class of chemicals known as chromenones. Specifically it is a chromenone having the keto group located at the 2-position. A chromenone is a benzene molecule with two adjacent hydrogen atoms replaced by a lactone-like chain forming a second six-membered heterocycle that shares two carbons with the benzene ring. Coumarin is also described as a benzopyrone and is considered as a lactone. Coumarin is a colorless crystalline solid with a bitter taste and sweet odor resembling the scent of vanilla or the scent of newly-mowed or recently cut hay. It is a chemical poison found in many plants where it may serve as a chemical defense against predators. Coumarin occurs naturally in many plants and foods such as the tonka bean, woodruff, bison grass, cassia (bastard cinnamon or Chinese cinnamon), cinnamon, melilot (sweet clover), green tea, peppermint, celery, bilberry, lavender, honey (derived both from sweet clover and lavender), and carrots, as well as in beer, tobacco, wine, and other foodstuffs. Coumarin concentrations in these plants, spices, and foods range from <1 mg/kg in celery, to 7000 mg/kg in cinnamon, and up to 87,000 mg/kg in cassia. An estimate of human exposure to coumarin from the diet has been calculated to be 0.02 mg/kg/day. Coumarin is used as an additive in perfumes and fragranced consumer products at concentrations ranging from <0.5\\\\% To 6.4\\\\% In fine fragrances to <0.01\\\\% In detergents. An estimate for systemic exposure of humans from the use of fragranced cosmetic products is 0.04 mg/kg BW/day, assuming complete dermal penetration. The use of coumarin as a food additive was banned by the FDA in 1954 based on reports of hepatotoxicity in rats. It has clinical value as the precursor for several anticoagulants, notably warfarin. Coumarins, as a class, are comprised of numerous naturally occurring benzo-alpha-pyrone compounds with important and diverse physiological activities. Due to its potential hepatotoxic effects in humans, the European Commission restricted coumarin from naturals as a direct food additive to 2 mg/kg food/day, with exceptions granting higher levels for alcoholic beverages, caramel, chewing gum, and certain traditional foods. In addition to human exposure to coumarin from dietary sources and consumer products, coumarin is also used clinically as an antineoplastic and for the treatment of lymphedema and venous insufficiency. Exposure ranges from 11 mg/day for consumption of natural food ingredients to 7 g/day following clinical administration. Although adverse effects in humans following coumarin exposure are rare, and only associated with clinical doses, recent evidence indicates coumarin causes liver tumors in rats and mice and Clara cell toxicity and lung tumors in mice. The multiple effects as well as the ongoing human exposure to coumarin have resulted in a significant research effort focused on understanding the mechanism of coumarin induced toxicity/carcinogenicity and its human relevance. These investigations have revealed significant species differences in coumarin metabolism and toxicity such that the mechanism of coumarin induced effects in rodents, and the relevance of these findings for the safety assessment of coumarin exposure in humans are now better understood. In October 2004, the European Food Safety Authority (EFSA, 2004) reviewed coumarin to establish a tolerable daily intake (TDI) in foods. EFSA issued an opinion indicating that coumarin is not genotoxic, and that a threshold approach to safety assessment was most appropriate. EFSA recommended a TDI of 0 to 0.1 Mg/kg BW/day. Including dietary contributions, the total human exposure is estimated to be 0.06 Mg/kg/day. As a pharmaceutical, coumarin has been used in diverse applications with a wide variety of dosing regimens. Unlike coumadin and other coumarin derivatives, coumarin has no anti-coagulant activity. However, at low doses (typically 7 to 10 mg/day), coumarin has been used as a venotonic to promote... C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent A chromenone having the keto group located at the 2-position. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Raw Data] CB013_Coumarin_pos_20eV_CB000008.txt [Raw Data] CB013_Coumarin_pos_30eV_CB000008.txt [Raw Data] CB013_Coumarin_pos_10eV_CB000008.txt [Raw Data] CB013_Coumarin_pos_50eV_CB000008.txt [Raw Data] CB013_Coumarin_pos_40eV_CB000008.txt Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities. Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities.
Decursin
Decursin is a member of coumarins. Decursin is a natural product found in Scutellaria lateriflora, Angelica glauca, and other organisms with data available. See also: Angelica gigas root (part of). D020536 - Enzyme Activators Decursinol angelate is a natural product found in Angelica glauca and Angelica gigas with data available. See also: Angelica gigas root (part of). Decursin ((+)-Decursin) is a potent anti-tumor agent. Decursin also is a cytotoxic agent and a potent protein kinase C activator. Decursin induces apoptosis and cell cycle arrest at G1 phase. Decursin decreases the expression of CDK2, CDK4, CDK6, cyclin D1 protein at 48 h. Decursin inhibits cell proliferation and migration. Decursin shows anti-tumor, anti-inflammatory and analgesic activities[1][2][3][4]. Decursin ((+)-Decursin) is a potent anti-tumor agent. Decursin also is a cytotoxic agent and a potent protein kinase C activator. Decursin induces apoptosis and cell cycle arrest at G1 phase. Decursin decreases the expression of CDK2, CDK4, CDK6, cyclin D1 protein at 48 h. Decursin inhibits cell proliferation and migration. Decursin shows anti-tumor, anti-inflammatory and analgesic activities[1][2][3][4]. Decursinol angelate, a cytotoxic and protein kinase C (PKC) activating agent from the root of Angelica gigas, possesses anti-tumor and anti-inflammatory activities[1][2].
Sucrose
Sucrose is a nonreducing disaccharide composed of glucose and fructose linked via their anomeric carbons. It is obtained commercially from sugarcane (Saccharum officinarum), sugar beet (Beta vulgaris), and other plants and used extensively as a food and a sweetener. Sucrose is derived by crushing and extracting sugarcane with water or by extracting sugar beet with water, evaporating, and purifying with lime, carbon, and various liquids. Sucrose is also obtainable from sorghum. Sucrose occurs in low percentages in honey and maple syrup. Sucrose is used as a sweetener in foods and soft drinks, in the manufacture of syrups, in invert sugar, confectionery, preserves and jams, demulcent, pharmaceutical products, and caramel. Sucrose is also a chemical intermediate for detergents, emulsifying agents, and other sucrose derivatives. Sucrose is widespread in the seeds, leaves, fruits, flowers, and roots of plants, where it functions as an energy store for metabolism and as a carbon source for biosynthesis. The annual world production of sucrose is in excess of 90 million tons mainly from the juice of sugar cane (20\\\%) and sugar beet (17\\\%). In addition to its use as a sweetener, sucrose is used in food products as a preservative, antioxidant, moisture control agent, stabilizer, and thickening agent. BioTransformer predicts that sucrose is a product of 6-O-sinapoyl sucrose metabolism via a hydrolysis-of-carboxylic-acid-ester-pattern1 reaction occurring in human gut microbiota and catalyzed by the liver carboxylesterase 1 (P23141) enzyme (PMID: 30612223). Sucrose appears as white odorless crystalline or powdery solid. Denser than water. Sucrose is a glycosyl glycoside formed by glucose and fructose units joined by an acetal oxygen bridge from hemiacetal of glucose to the hemiketal of the fructose. It has a role as an osmolyte, a sweetening agent, a human metabolite, an algal metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. A nonreducing disaccharide composed of glucose and fructose linked via their anomeric carbons. It is obtained commercially from sugarcane, sugar beet (beta vulgaris), and other plants and used extensively as a food and a sweetener. Sucrose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Sucrose is a natural product found in Haplophyllum ramosissimum, Cyperus esculentus, and other organisms with data available. Sucrose is a metabolite found in or produced by Saccharomyces cerevisiae. A nonreducing disaccharide composed of GLUCOSE and FRUCTOSE linked via their anomeric carbons. It is obtained commercially from SUGARCANE, sugar beet (BETA VULGARIS), and other plants and used extensively as a food and a sweetener. See also: Anise; ferrous disulfide; sucrose (component of); Phosphoric acid; sucrose (component of); Sucrose caramel (related) ... View More ... In chemistry, sugar loosely refers to a number of carbohydrates, such as monosaccharides, disaccharides, or oligosaccharides. In food, sugar refers to a class of edible crystalline carbohydrates, mainly sucrose, lactose, and fructose characterized by a sweet flavor. Other sugars are used in industrial food preparation, but are usually known by more specific names - glucose, fructose or fruit sugar, high fructose corn syrup, etc. Sugars is found in many foods, some of which are ucuhuba, butternut squash, common walnut, and miso. A glycosyl glycoside formed by glucose and fructose units joined by an acetal oxygen bridge from hemiacetal of glucose to the hemiketal of the fructose. Sucrose, a disaccharide, is a sugar composed of glucose and fructose subunits. It is produced naturally in plants and is the main constituent of white sugar. It has the molecular formula C 12H 22O 11. For human consumption, sucrose is extracted and refined from either sugarcane or sugar beet. Sugar mills – typically located in tropical regions near where sugarcane is grown – crush the cane and produce raw sugar which is shipped to other factories for refining into pure sucrose. Sugar beet factories are located in temperate climates where the beet is grown, and process the beets directly into refined sugar. The sugar-refining process involves washing the raw sugar crystals before dissolving them into a sugar syrup which is filtered and then passed over carbon to remove any residual colour. The sugar syrup is then concentrated by boiling under a vacuum and crystallized as the final purification process to produce crystals of pure sucrose that are clear, odorless, and sweet. Sugar is often an added ingredient in food production and recipes. About 185 million tonnes of sugar were produced worldwide in 2017.[6] Sucrose is particularly dangerous as a risk factor for tooth decay because Streptococcus mutans bacteria convert it into a sticky, extracellular, dextran-based polysaccharide that allows them to cohere, forming plaque. Sucrose is the only sugar that bacteria can use to form this sticky polysaccharide.[7] Sucrose. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=8030-20-4 (retrieved 2024-06-29) (CAS RN: 57-50-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Allantoin
Allantoin is an imidazolidine-2,4-dione that is 5-aminohydantoin in which a carbamoyl group is attached to the exocyclic nitrogen. It has a role as a vulnerary, a human metabolite, a Saccharomyces cerevisiae metabolite and an Escherichia coli metabolite. It is a member of ureas and an imidazolidine-2,4-dione. It is functionally related to a hydantoin. It is a tautomer of a 1-(5-hydroxy-2-oxo-2,3-dihydroimidazol-4-yl)urea. Allantoin is a substance that is endogenous to the human body and also found as a normal component of human diets. In healthy human volunteers, the mean plasma concentration of allantoin is about 2-3 mg/l. During exercise, the plasma allantoin concentration rapidly increases about two fold and remains elevated. In human muscle, urate is oxidized to allantoin during such exercise. The concentration of allantoin in muscles increases from a resting value of about 5000 ug/kg to about 16000 ug/kg immediately after short-term exhaustive cycling exercise. More specifically, allantoin is a diureide of glyoxylic acid that is produced from uric acid. It is a major metabolic intermediate in most organisms. Allantoin is found in OTC cosmetic products and other commercial products such as oral hygiene products, in shampoos, lipsticks, anti-acne products, sun care products, and clarifying lotions. Allantoin has also demonstrated to ameliorate the wound healing process in some studies. Allantoin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Allantoin is a natural product found in Aristolochia gigantea, Rhinacanthus, and other organisms with data available. Allantoin is a mineral with formula of C4H6N4O3. The corresponding IMA (International Mineralogical Association) number is IMA2020-004a. The IMA symbol is Aan. Allantoin is a diureide of glyoxylic acid with the chemical formula C4H6N4O3. It is also called 5-ureidohydantoin, glyoxyldiureide, and 5-ureidohydantoin. It is a product of oxidation of uric acid. It is a product of purine metabolism in most mammals except higher apes, and it is present in their urine. In humans, uric acid is excreted instead of allantoin. The presence of allantoin in the urine can be an indication of microbial overgrowth or it can be created via non-enzymatic means through high levels of reactive oxygen species. In this regard Allantoin is sometimes used as a marker of oxidative stress. Allantoin can be isolated from cow urine or as a botanical extract of the comfrey plant. It has long been used for its healing, soothing, and anti-irritating properties. Allantoin helps to heal wounds and skin irritations and stimulates the growth of healthy tissue. Allantoin can be found in anti-acne products, sun care products, and clarifying lotions because of its ability to help heal minor wounds and promote healthy skin. Allantoin is frequently present in toothpaste, mouthwash, and other oral hygiene products as well as shampoos, lipsticks, various cosmetic lotions and creams and other cosmetic and pharmaceutical products. Allantoin is a metabolite found in or produced by Saccharomyces cerevisiae. A urea hydantoin that is found in URINE and PLANTS and is used in dermatological preparations. See also: Alcloxa (active moiety of); Comfrey Leaf (part of); Comfrey Root (part of) ... View More ... Allantoin is a chemical compound with formula C4H6N4O3. It is also called 5-ureidohydantoin or glyoxyldiureide. It is a diureide of glyoxylic acid. Named after the allantois, an amniote embryonic excretory organ in which it concentrates during development in most mammals except humans and higher apes, it is a product of oxidation of uric acid by purine catabolism. After birth, it is the predominant means by which nitrogenous waste is excreted in the urine of these animals. In humans and higher apes, the metabolic pathway for conversion of uric acid to allantoin is not present, so the former is excreted. Recombinant rasburicase is sometimes used as a drug to catalyze this metabolic conversion in patients. In fish, allantoin is broken down further (into ammonia) before excretion. Allantoin is a major metabolic intermediate in many other organisms including plants and bacteria.; Its chemical formula is C4H6N4O3. It is also called 5-ureidohydantoin, glyoxyldiureide, and 5-ureidohydantoin. It is a product of oxidation of uric acid. It is a diureide of glyoxylic acid. It is a product of purine metabolism in most mammals except higher apes, and it is present in their urine. Allantoin is a botanical extract of the comfrey plant and is used for its healing, soothing, and anti-irritating properties. Allantoin helps to heal wounds and skin irritations and stimulate growth of healthy tissue. This extract can be found in anti-acne products, sun care products, and clarifying lotions because of its ability to help heal minor wounds and promote healthy skin. Allantoin is a diureide of glyoxylic acid with the chemical formula C4H6N4O3. It is also called 5-ureidohydantoin or glyoxyldiureide. It is a product of the oxidation of uric acid. It is also a product of purine metabolism in most mammals except for higher apes, and it is present in their urine. In humans, uric acid is excreted instead of allantoin. The presence of allantoin in the urine can be an indication of microbial overgrowth or it can be created via non-enzymatic means through high levels of reactive oxygen species. In this regard, allantoin is sometimes used as a marker of oxidative stress. Allantoin can be isolated from cow urine or as a botanical extract of the comfrey plant. It has long been used for its healing, soothing, and anti-irritating properties. Allantoin helps to heal wounds and skin irritations and stimulates the growth of healthy tissue. Allantoin can be found in anti-acne products, sun care products, and clarifying lotions because of its ability to help heal minor wounds and promote healthy skin. Allantoin is frequently present in toothpaste, mouthwash, and other oral hygiene products as well as in shampoos, lipsticks, various cosmetic lotions and creams, and other cosmetic and pharmaceutical products. It is also a metabolite of Bacillus (PMID: 18302748) and Streptomyces (PMID: 24292080). An imidazolidine-2,4-dione that is 5-aminohydantoin in which a carbamoyl group is attached to the exocyclic nitrogen. Allantoin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=5377-33-3 (retrieved 2024-06-29) (CAS RN: 97-59-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Allantoin is a skin conditioning agent that promotes healthy skin, stimulates new and healthy tissue growth. Allantoin is a skin conditioning agent that promotes healthy skin, stimulates new and healthy tissue growth.
Deoxycholic acid
Deoxycholic acid is a bile acid that is 5beta-cholan-24-oic acid substituted by hydroxy groups at positions 3 and 12 respectively. It has a role as a human blood serum metabolite. It is a bile acid, a dihydroxy-5beta-cholanic acid and a C24-steroid. It is a conjugate acid of a deoxycholate. Deoxycholic acid is a a bile acid which emulsifies and solubilizes dietary fats in the intestine, and when injected subcutaneously, it disrupts cell membranes in adipocytes and destroys fat cells in that tissue. In April 2015, deoxycholic acid was approved by the FDA for the treatment submental fat to improve aesthetic appearance and reduce facial fullness or convexity. It is marketed under the brand name Kybella by Kythera Biopharma and is the first pharmacological agent available for submental fat reduction, allowing for a safer and less invasive alternative than surgical procedures. Deoxycholic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Deoxycholic acid is a Cytolytic Agent. The physiologic effect of deoxycholic acid is by means of Decreased Cell Membrane Integrity. Deoxycholic acid is a natural product found in Pseudomonas syringae and Homo sapiens with data available. Deoxycholic Acid is a steroidal acid that is a secondary bile acid, with cytolytic activity. Upon subcutaneous administration, deoxycholic acid causes lysis of adipocytes and improves the appearance of fullness associated with submental fat. Also, it may potentially be able to reduce fat in other subcutaneous fatty tissues. Deoxycholic acid, naturally produced by the metabolism of cholic acid by intestinal bacteria, is involved in the emulsification of dietary fats in the intestine. Deoxycholic acid is a bile acid formed by bacterial action from cholate. It is usually conjugated with glycine or taurine. Deoxycholic acid acts as a detergent to solubilize fats for intestinal absorption, is reabsorbed itself, and is used as a choleretic and detergent. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. (A3407, A3408, A3409, A3410). A bile acid formed by bacterial action from cholate. It is usually conjugated with glycine or taurine. Deoxycholic acid acts as a detergent to solubilize fats for intestinal absorption, is reabsorbed itself, and is used as a choleretic and detergent. Deoxycholic acid is a secondary bile acid produced in the liver and is usually conjugated with glycine or taurine. It facilitates fat absorption and cholesterol excretion. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, and depends only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine, and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH, and consequently require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). When present in sufficiently high levels, deoxycholic acid can act as a hepatotoxin, a metabotoxin, and an oncometabolite. A hepatotoxin causes damage to the liver or liver cells. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. An oncometabolite is a compound, when present at chronically high levels, that promotes tumour growth and survival. Among the primary bile acids, cholic acid is considered to be the least hepatotoxic while deoxycholic acid is the most hepatoxic (PMID: 1641875). The liver toxicity of bile acids appears to be due to their ability to peroxidate lipids and to lyse liver cells. High bile acid levels lead to the generation of reactive oxygen species and reactive nitrogen species, disruption of the cell membrane and mitochondria, induction of DNA damage, mutation and apoptosis, and the development of reduced apoptosis capability upon chronic exposure (PMID: 24884764). Chronically high levels of deoxycholic acid are associated with familial hypercholanemia. In hypercholanemia, bile acids, including deoxycholic acid, are elevated in the blood. This disease causes liver damage, extensive itching, poor fat absorption, and can lead to rickets due to lack of calcium in bones. The deficiency of normal bile acids in the intestines results in a deficiency of vitamin K, which also adversely affects clotting of the blood. The bile acid ursodiol (ursodeoxycholic acid) can improve symptoms associated with familial hypercholanemia. Chronically high levels of deoxycholic acid are also associated with several forms of cancer including colon cancer, pancreatic cancer, esophageal cancer, and many other GI cancers. A bile acid that is 5beta-cholan-24-oic acid substituted by hydroxy groups at positions 3 and 12 respectively. Deoxycholic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=83-44-3 (retrieved 2024-07-01) (CAS RN: 83-44-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Deoxycholic acid (cholanoic acid), a bile acid, is a by-product of intestinal metabolism, that activates the G protein-coupled bile acid receptorTGR5[1][2]. Deoxycholic acid (cholanoic acid), a bile acid, is a by-product of intestinal metabolism, that activates the G protein-coupled bile acid receptorTGR5[1][2].
Evodiamine
Evodiamine is a member of beta-carbolines. Evodiamine is a natural product found in Vepris soyauxii, Cryptocarya, and other organisms with data available. Origin: Plant; Formula(Parent): C19H17N3O; Bottle Name:Evodiamine; PRIME Parent Name:Evodiamine; PRIME in-house No.:V0296; SubCategory_DNP: Monoterpenoid indole alkaloids, Indoloquinolizidine alkaloids, Indole alkaloids Formula(Parent): C19H17N3O; Bottle Name:Evodiamine; Origin: Plant; PRIME Parent Name:Evodiamine; PRIME in-house No.:V0296; SubCategory_DNP: Monoterpenoid indole alkaloids, Indoloquinolizidine alkaloids, Indole alkaloids Annotation level-1 (±)-Evodiamine, a quinazolinocarboline alkaloid, is a Top1 inhibitor. Evodiamine exhibits anti-inflammatory, antiobesity, and antitumor effects. (±)-Evodiamine inhibits the proliferation of a wide variety of tumor cells by inducing their apoptosis[1]. Evodiamine is an alkaloid isolated from the fruit of Evodia rutaecarpa Bentham with diverse biological activities including anti-inflammatory, anti-obesity, and antitumor. Evodiamine is an alkaloid isolated from the fruit of Evodia rutaecarpa Bentham with diverse biological activities including anti-inflammatory, anti-obesity, and antitumor.
Glycocholic acid
Glycocholic acid is an acyl glycine and a bile acid-glycine conjugate. It is a secondary bile acid produced by the action of enzymes existing in the microbial flora of the colonic environment. Bacteroides, Bifidobacterium, Clostridium and Lactobacillus are involved in bile acid metabolism and produce glycocholic acid (PMID: 6265737; 10629797). In hepatocytes, both primary and secondary bile acids undergo amino acid conjugation at the C-24 carboxylic acid on the side chain, and almost all bile acids in the bile duct therefore exist in a glycine conjugated form (PMID: 16949895). More specifically, glycocholic acid or cholylglycine, is a crystalline bile acid involved in the emulsification of fats. It occurs as a sodium salt in the bile of mammals. Its anion is called glycocholate. As the glycine conjugate of cholic acid, this compound acts as a detergent to solubilize fats for absorption and is itself absorbed (PubChem). Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). Glycocholic acid is found to be associated with alpha-1-antitrypsin deficiency, which is an inborn error of metabolism. Glycocholic acid is a bile acid glycine conjugate having cholic acid as the bile acid component. It has a role as a human metabolite. It is functionally related to a cholic acid and a glycochenodeoxycholic acid. It is a conjugate acid of a glycocholate. Glycocholic acid is a natural product found in Caenorhabditis elegans and Homo sapiens with data available. The glycine conjugate of CHOLIC ACID. It acts as a detergent to solubilize fats for absorption and is itself absorbed. Glycocholic acid, or cholylglycine, is a crystalline bile acid involved in the emulsification of fats. It occurs as a sodium salt in the bile of mammals. It is a conjugate of cholic acid with glycine. Its anion is called glycocholate. [Wikipedia] A bile acid glycine conjugate having cholic acid as the bile acid component. Glycocholic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=475-31-0 (retrieved 2024-07-01) (CAS RN: 475-31-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1]. Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1].
Aristolochic acid
Aristolochic acid A is an aristolochic acid that is phenanthrene-1-carboxylic acid that is substituted by a methylenedioxy group at the 3,4 positions, by a methoxy group at position 8, and by a nitro group at position 10. It is the most abundant of the aristolochic acids and is found in almost all Aristolochia (birthworts or pipevines) species. It has been tried in a number of treatments for inflammatory disorders, mainly in Chinese and folk medicine. However, there is concern over their use as aristolochic acid is both carcinogenic and nephrotoxic. It has a role as a nephrotoxin, a carcinogenic agent, a mutagen, a toxin and a metabolite. It is a monocarboxylic acid, a C-nitro compound, a cyclic acetal, an organic heterotetracyclic compound, an aromatic ether and a member of aristolochic acids. Aristolochic acid is a natural product found in Thottea duchartrei, Aristolochia, and other organisms with data available. Aristolochic acids are a family of carcinogenic, mutagenic, and nephrotoxic compounds commonly found in the Aristolochiaceae family of plants, including Aristolochia and Asarum (wild ginger), which are commonly used in Chinese herbal medicine. Aristolochic acid I is the most abundant of the aristolochic acids and is found in almost all Aristolochia species. Aristolochic acids are often accompanied by aristolactams. See also: Aristolochia fangchi root (part of). D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1]. Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1].
Cholic acid
Cholic acid is a bile acid that is 5beta-cholan-24-oic acid bearing three alpha-hydroxy substituents at position 3, 7 and 12. It has a role as a human metabolite and a mouse metabolite. It is a bile acid, a C24-steroid, a 3alpha-hydroxy steroid, a 7alpha-hydroxy steroid, a 12alpha-hydroxy steroid and a trihydroxy-5beta-cholanic acid. It is a conjugate acid of a cholate. Cholic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Cholic acid is a Bile Acid. Cholic acid is a naturally occurring bile acid that is used to treat patients with genetic deficiencies in the synthesis of bile acids. When given in high doses, cholic acid replacement therapy has been linked to minor elevations in serum aminotransferase levels, but it has not been linked to instances of clinically apparent acute liver injury with jaundice. Cholic acid is a natural product found in Caenorhabditis elegans, Bufo bufo, and Homo sapiens with data available. Cholic acid is a major primary bile acid produced in the liver and usually conjugated with glycine or taurine. It facilitates fat absorption and cholesterol excretion. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. (A3407, A3408, A3409, A3410). A major primary bile acid produced in the liver and usually conjugated with glycine or taurine. It facilitates fat absorption and cholesterol excretion. See also: Cholic acid; ferrous gluconate; honey (component of). Cholic acid is a major primary bile acid produced in the liver and is usually conjugated with glycine or taurine. It facilitates fat absorption and cholesterol excretion. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, and depends only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine, and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH, and consequently require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). When present in sufficiently high levels, cholic acid can act as a hepatotoxin and a metabotoxin. A hepatotoxin causes damage to the liver or liver cells. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Among the primary bile acids, cholic acid is considered to be the least hepatotoxic while deoxycholic acid is the most hepatoxic (PMID: 1641875). The liver toxicity of bile acids appears to be due to their ability to peroxidate lipids and to lyse liver cells. Chronically high levels of cholic acid are associated with familial hypercholanemia. In hypercholanemia, bile acids, including cholic acid, are elevated in the blood. This disease causes liver damage, extensive itching, poor fat absorption, and can lead to rickets due to lack of calcium in bones. The deficiency of normal bile acids in the intestines results in a deficiency of vitamin K, which also adversely affects clotting of the blood. The bile acid ursodiol (ursodeoxycholic acid) can improve symptoms associated with familial hypercholanemia. Cholic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=81-25-4 (retrieved 2024-06-29) (CAS RN: 81-25-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Cholic acid is a major primary bile acid produced in the liver and usually conjugated with glycine or taurine. It facilitates fat absorption and cholesterol excretion. Cholic acid is orally active[1][2]. Cholic acid is a major primary bile acid produced in the liver and usually conjugated with glycine or taurine. It facilitates fat absorption and cholesterol excretion. Cholic acid is orally active[1][2].
Colchicine
Colchicine appears as odorless or nearly odorless pale yellow needles or powder that darkens on exposure to light. Used to treat gouty arthritis, pseudogout, sarcoidal arthritis and calcific tendinitis. (EPA, 1998) (S)-colchicine is a colchicine that has (S)-configuration. It is a secondary metabolite, has anti-inflammatory properties and is used to treat gout, crystal-induced joint inflammation, familial Mediterranean fever, and many other conditions. It has a role as a mutagen, an anti-inflammatory agent and a gout suppressant. It is a colchicine and an alkaloid. It is an enantiomer of a (R)-colchicine. Colchicine is an Alkaloid. Colchicine is a plant alkaloid that is widely used for treatment of gout. Colchicine has not been associated with acute liver injury or liver test abnormalities except with serious overdoses. Colchicine is a natural product found in Colchicum arenarium, Colchicum bivonae, and other organisms with data available. Colchicine is an alkaloid isolated from Colchicum autumnale with anti-gout and anti-inflammatory activities. The exact mechanism of action by which colchicines exerts its effect has not been completely established. Colchicine binds to tubulin, thereby interfering with the polymerization of tubulin, interrupting microtubule dynamics, and disrupting mitosis. This leads to an inhibition of migration of leukocytes and other inflammatory cells, thereby reducing the inflammatory response to deposited urate crystals. Colchicine may also interrupt the cycle of monosodium urate crystal deposition in joint tissues, thereby also preventing the resultant inflammatory response. Overall, colchicine decreases leukocyte chemotaxis/migration and phagocytosis to inflamed areas, and inhibits the formation and release of a chemotactic glycoprotein that is produced during phagocytosis of urate crystals. A major alkaloid from Colchicum autumnale L. and found also in other Colchicum species. Its primary therapeutic use is in the treatment of gout, but it has been used also in the therapy of familial Mediterranean fever (PERIODIC DISEASE). See also: Colchicine; probenecid (component of). Colchicine is only found in individuals that have used or taken this drug. It is a major alkaloid from Colchicum autumnale L. and found also in other Colchicum species. Its primary therapeutic use is in the treatment of gout, but it has been used also in the therapy of familial Mediterranean fever (periodic disease). [PubChem]The precise mechanism of action has not been completely established. In patients with gout, colchicine apparently interrupts the cycle of monosodium urate crystal deposition in joint tissues and the resultant inflammatory response that initiates and sustains an acute attack. Colchicine decreases leukocyte chemotaxis and phagocytosis and inhibits the formation and release of a chemotactic glycoprotein that is produced during phagocytosis of urate crystals. Colchicine also inhibits urate crystal deposition, which is enhanced by a low pH in the tissues, probably by inhibiting oxidation of glucose and subsequent lactic acid production in leukocytes. Colchicine has no analgesic or antihyperuricemic activity. Colchicine inhibits microtubule assembly in various cells, including leukocytes, probably by binding to and interfering with polymerization of the microtubule subunit tubulin. Although some studies have found that this action probably does not contribute significantly to colchicines antigout action, a recent in vitro study has shown that it may be at least partially involved. CONFIDENCE standard compound; INTERNAL_ID 328; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7704; ORIGINAL_PRECURSOR_SCAN_NO 7702 CONFIDENCE standard compound; INTERNAL_ID 328; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7690; ORIGINAL_PRECURSOR_SCAN_NO 7687 CONFIDENCE standard compound; INTERNAL_ID 328; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7668; ORIGINAL_PRECURSOR_SCAN_NO 7666 CONFIDENCE standard compound; INTERNAL_ID 328; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7693; ORIGINAL_PRECURSOR_SCAN_NO 7689 CONFIDENCE standard compound; INTERNAL_ID 328; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7645; ORIGINAL_PRECURSOR_SCAN_NO 7643 CONFIDENCE standard compound; INTERNAL_ID 328; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7687; ORIGINAL_PRECURSOR_SCAN_NO 7684 M - Musculo-skeletal system > M04 - Antigout preparations > M04A - Antigout preparations > M04AC - Preparations with no effect on uric acid metabolism COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, Guide to PHARMACOLOGY C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents D018501 - Antirheumatic Agents > D006074 - Gout Suppressants CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2258 INTERNAL_ID 2258; CONFIDENCE Reference Standard (Level 1) [Raw Data] CB194_Colchicine_pos_30eV_CB000068.txt [Raw Data] CB194_Colchicine_pos_50eV_CB000068.txt [Raw Data] CB194_Colchicine_pos_10eV_CB000068.txt [Raw Data] CB194_Colchicine_pos_20eV_CB000068.txt [Raw Data] CB194_Colchicine_pos_40eV_CB000068.txt CONFIDENCE standard compound; INTERNAL_ID 1171 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Colchicine is a tubulin inhibitor and a microtubule disrupting agent. Colchicine inhibits microtubule polymerization with an IC50 of 3 nM[1][2][3]. Colchicine is also a competitive antagonist of the α3 glycine receptors (GlyRs)[4]. Colchicine is a tubulin inhibitor and a microtubule disrupting agent. Colchicine inhibits microtubule polymerization with an IC50 of 3 nM[1][2][3]. Colchicine is also a competitive antagonist of the α3 glycine receptors (GlyRs)[4].
Rotenone
Rotenone appears as colorless to brownish crystals or a white to brownish-white crystalline powder. Has neither odor nor taste. (NTP, 1992) Rotenone is a member of the class of rotenones that consists of 1,2,12,12a-tetrahydrochromeno[3,4-b]furo[2,3-h]chromen-6(6aH)-one substituted at position 2 by a prop-1-en-2-yl group and at positions 8 and 9 by methoxy groups (the 2R,6aS,12aS-isomer). A non-systemic insecticide, it is the principal insecticidal constituent of derris (the dried rhizome and root of Derris elliptica). It has a role as a phytogenic insecticide, a mitochondrial NADH:ubiquinone reductase inhibitor, a metabolite, an antineoplastic agent, a toxin and a piscicide. It is an organic heteropentacyclic compound and a member of rotenones. Rotenone is an isoflavone compound that naturally occurs in the jicama vine plant as well as many Fabaceae plants. It has broad spectrum insecticide and pesticide activity and is also toxic to fish. Rotenone is a natural product found in Pachyrhizus erosus, Millettia ferruginea, and other organisms with data available. Rotenone is a naturally occurring organic heteropentacyclic compound and member of rotenones that is found in the roots of several plant species. It is a mitochondrial NADH:ubiquinone reductase inhibitor, toxin, and metabolite, and is used as an antineoplastic agent and insecticide. It is characterized as a colorless to brownish or a white to brownish-white crystalline solid that is odorless. Exposure occurs by inhalation, ingestion, or contact. Rotenone is found in jicama. Rotenone is widely distributed in the Leguminosae (Papilionoideae) e.g. Pachyrrhizus erosus (yam bean).Rotenone is an odorless chemical that is used as a broad-spectrum insecticide, piscicide, and pesticide. It occurs naturally in the roots and stems of several plants such as the jicama vine plant. In mammals, including humans, it is linked to the development of Parkinsons disease. (Wikipedia) Rotenone has been shown to exhibit apoptotic, neuroprotectant and neuroprotective functions (A7776, A7777, A7777).Rotenone belongs to the family of Rotenoids. These are phenolic compounds containing aA cis-fused tetrahydrochromeno[3,4-b]chromenenucleus. Many rotenoids contain an additional ring, e.g rotenone[1]. (Reference: [1] IUPAC. Compendium of Chemical Terminology, 2nd ed. (the Gold Book). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: http://goldbook.iupac.org (2006-) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. ISBN 0-9678550-9-8. doi:10.1351/goldbook. (PAC, 1995, 67, 1307 (Glossary of class names of organic compounds and reactivity intermediates based on structure (IUPAC Recommendations 1995)) on page 1364)). A botanical insecticide that is an inhibitor of mitochondrial electron transport. Rotenone is found in jicama. Rotenone is widely distributed in the Leguminosae (Papilionoideae) e.g. Pachyrrhizus erosus (yam bean).Rotenone is an odorless chemical that is used as a broad-spectrum insecticide, piscicide, and pesticide. It occurs naturally in the roots and stems of several plants such as the jicama vine plant. In mammals, including humans, it is linked to the development of Parkinsons disease. A member of the class of rotenones that consists of 1,2,12,12a-tetrahydrochromeno[3,4-b]furo[2,3-h]chromen-6(6aH)-one substituted at position 2 by a prop-1-en-2-yl group and at positions 8 and 9 by methoxy groups (the 2R,6aS,12aS-isomer). A non-systemic insecticide, it is the principal insecticidal constituent of derris (the dried rhizome and root of Derris elliptica). Widely distrib. in the Leguminosae (Papilionoideae) e.g. Pachyrrhizus erosus (yam bean) D004791 - Enzyme Inhibitors > D014475 - Uncoupling Agents D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Rotenone is a mitochondrial electron transport chain complex I inhibitor. Rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. Rotenone is a mitochondrial electron transport chain complex I inhibitor. Rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. Rotenone is a mitochondrial electron transport chain complex I inhibitor. Rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production.
Caffeine
Caffeine is a methyl xanthine alkaloid that is also classified as a purine. Formally, caffeine belongs to the class of organic compounds known as xanthines. These are purine derivatives with a ketone group conjugated at carbons 2 and 6 of the purine moiety. Caffeine is chemically related to the adenine and guanine bases of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). It is found in the seeds, nuts, or leaves of a number of plants native to Africa, East Asia and South America and helps to protect them against predator insects and to prevent germination of nearby seeds. The most well-known source of caffeine is the coffee bean. Caffeine is the most widely consumed psychostimulant drug in the world. 85\\\% of American adults consumed some form of caffeine daily, consuming 164 mg on average. Caffeine is mostly is consumed in the form of coffee. Caffeine is a central nervous system stimulant that reduces fatigue and drowsiness. At normal doses, caffeine has variable effects on learning and memory, but it generally improves reaction time, wakefulness, concentration, and motor coordination. Caffeine is a proven ergogenic aid in humans. Caffeine improves athletic performance in aerobic (especially endurance sports) and anaerobic conditions. Moderate doses of caffeine (around 5 mg/kg) can improve sprint performance, cycling and running time trial performance, endurance and cycling power output (PMID: 32551869). At intake levels associated with coffee consumption, caffeine appears to exert most of its biological effects through the antagonism of the A1 and A2A subtypes of the adenosine receptor. Adenosine is an endogenous neuromodulator with mostly inhibitory effects, and adenosine antagonism by caffeine results in effects that are generally stimulatory. Some physiological effects associated with caffeine administration include central nervous system stimulation, acute elevation of blood pressure, increased metabolic rate, and diuresis. A number of in vitro and in vivo studies have demonstrated that caffeine modulates both innate and adaptive immune responses. For instance, studies indicate that caffeine and its major metabolite paraxanthine suppress neutrophil and monocyte chemotaxis, and also suppress production of the pro-inflammatory cytokine tumor necrosis factor (TNF) alpha from human blood. Caffeine has also been reported to suppress human lymphocyte function as indicated by reduced T-cell proliferation and impaired production of Th1 (interleukin [IL]-2 and interferon [IFN]-gamma), Th2 (IL-4, IL-5) and Th3 (IL-10) cytokines. Studies also indicate that caffeine suppresses antibody production. The evidence suggests that at least some of the immunomodulatory actions of caffeine are mediated via inhibition of cyclic adenosine monophosphate (cAMP)-phosphodiesterase (PDE), and consequential increase in intracellular cAMP concentrations. Overall, these studies indicate that caffeine, like other members of the methylxanthine family, is largely anti-inflammatory in nature, and based on the pharmacokinetics of caffeine, many of its immunomodulatory effects occur at concentrations that are relevant to normal human consumption. (PMID: 16540173). Caffeine is rapidly and almost completely absorbed in the stomach and small intestine and distributed to all tissues, including the brain. Caffeine metabolism occurs primarily in the liver, where the activity of the cytochrome P450 isoform CYP1A2 accounts for almost 95\\\% of the primary metabolism of caffeine. CYP1A2-catalyzed 3-demethylation of caffeine results in the formation of 1,7-dimethylxanthine (paraxanthine). Paraxanthine may be demethylated by CYP1A2 to form 1-methylxanthine, which may be oxidized to 1-methyluric acid by xanthine oxidase. Paraxanthine may also be hydroxylated by CYP2A6 to form 1,7-dimethyluric acid, or acetylated by N-acetyltransferase 2 (NAT2) to form 5-acetylamino-6-formylamino-3-methyluracil, an unstable compound that may be deformylated nonenzymatically to form ... Caffeine appears as odorless white powder or white glistening needles, usually melted together. Bitter taste. Solutions in water are neutral to litmus. Odorless. (NTP, 1992) Caffeine is a trimethylxanthine in which the three methyl groups are located at positions 1, 3, and 7. A purine alkaloid that occurs naturally in tea and coffee. It has a role as a central nervous system stimulant, an EC 3.1.4.* (phosphoric diester hydrolase) inhibitor, an adenosine receptor antagonist, an EC 2.7.11.1 (non-specific serine/threonine protein kinase) inhibitor, a ryanodine receptor agonist, a fungal metabolite, an adenosine A2A receptor antagonist, a psychotropic drug, a diuretic, a food additive, an adjuvant, a plant metabolite, an environmental contaminant, a xenobiotic, a human blood serum metabolite, a mouse metabolite, a geroprotector and a mutagen. It is a purine alkaloid and a trimethylxanthine. Caffeine is a drug of the methylxanthine class used for a variety of purposes, including certain respiratory conditions of the premature newborn, pain relief, and to combat drowsiness. Caffeine is similar in chemical structure to [Theophylline] and [Theobromine]. It can be sourced from coffee beans, but also occurs naturally in various teas and cacao beans, which are different than coffee beans. Caffeine is also used in a variety of cosmetic products and can be administered topically, orally, by inhalation, or by injection. The caffeine citrate injection, used for apnea of the premature newborn, was initially approved by the FDA in 1999. According to an article from 2017, more than 15 million babies are born prematurely worldwide. This correlates to about 1 in 10 births. Premature birth can lead to apnea and bronchopulmonary dysplasia, a condition that interferes with lung development and may eventually cause asthma or early onset emphysema in those born prematurely. Caffeine is beneficial in preventing and treating apnea and bronchopulmonary dysplasia in newborns, improving the quality of life of premature infants. Caffeine is a Central Nervous System Stimulant and Methylxanthine. The physiologic effect of caffeine is by means of Central Nervous System Stimulation. Caffeine is xanthine alkaloid that occurs naturally in seeds, leaves and fruit of several plants and trees that acts as a natural pesticide. Caffeine is a major component of coffee, tea and chocolate and in humans acts as a central nervous system (CNS) stimulant. Consumption of caffeine, even in high doses, has not been associated with elevations in serum enzyme elevations or instances of clinically apparent liver injury. Caffeine is a natural product found in Mus musculus, Herrania cuatrecasana, and other organisms with data available. Caffeine is a methylxanthine alkaloid found in the seeds, nuts, or leaves of a number of plants native to South America and East Asia that is structurally related to adenosine and acts primarily as an adenosine receptor antagonist with psychotropic and anti-inflammatory activities. Upon ingestion, caffeine binds to adenosine receptors in the central nervous system (CNS), which inhibits adenosine binding. This inhibits the adenosine-mediated downregulation of CNS activity; thus, stimulating the activity of the medullary, vagal, vasomotor, and respiratory centers in the brain. This agent also promotes neurotransmitter release that further stimulates the CNS. The anti-inflammatory effects of caffeine are due the nonselective competitive inhibition of phosphodiesterases (PDEs). Inhibition of PDEs raises the intracellular concentration of cyclic AMP (cAMP), activates protein kinase A, and inhibits leukotriene synthesis, which leads to reduced inflammation and innate immunity. Caffeine is the most widely consumed psychostimulant drug in the world that mostly is consumed in the form of coffee. Whether caffeine and/or coffee consumption contribute to the development of cardiovascular disease (CVD), the single leading cause of death in the US, is uncle... Component of coffee beans (Coffea arabica), many other Coffea subspecies, chocolate (Theobroma cacao), tea (Camellia thea), kolanut (Cola acuminata) and several other Cola subspecies and several other plants. It is used in many cola-type beverages as a flavour enhancer. Caffeine is found in many foods, some of which are black cabbage, canola, jerusalem artichoke, and yellow bell pepper. A trimethylxanthine in which the three methyl groups are located at positions 1, 3, and 7. A purine alkaloid that occurs naturally in tea and coffee. [Raw Data] CBA01_Caffeine_pos_50eV.txt [Raw Data] CBA01_Caffeine_pos_20eV.txt [Raw Data] CBA01_Caffeine_pos_40eV.txt [Raw Data] CBA01_Caffeine_pos_10eV.txt [Raw Data] CBA01_Caffeine_pos_30eV.txt Caffeine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-08-2 (retrieved 2024-06-29) (CAS RN: 58-08-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Cycloheximide
Cycloheximide appears as colorless crystals. Used as a fungicide and as a anticancer drug. (EPA, 1998) Cycloheximide is a dicarboximide that is 4-(2-hydroxyethyl)piperidine-2,6-dione in which one of the hydrogens attached to the carbon bearing the hydroxy group is replaced by a 3,5-dimethyl-2-oxocyclohexyl group. It is an antibiotic produced by the bacterium Streptomyces griseus. It has a role as a bacterial metabolite, a protein synthesis inhibitor, a neuroprotective agent, an anticoronaviral agent and a ferroptosis inhibitor. It is a member of piperidones, a piperidine antibiotic, an antibiotic fungicide, a dicarboximide, a secondary alcohol and a cyclic ketone. It is functionally related to a piperidine-2,6-dione. Cycloheximide is a natural product found in Streptomyces, Streptomyces griseus, and Streptomyces pulveraceus with data available. Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis. A dicarboximide that is 4-(2-hydroxyethyl)piperidine-2,6-dione in which one of the hydrogens attached to the carbon bearing the hydroxy group is replaced by a 3,5-dimethyl-2-oxocyclohexyl group. It is an antibiotic produced by the bacterium Streptomyces griseus. D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent Origin: Microbe; SubCategory_DNP: Alkaloids derived from lysine, Piperidine alkaloids relative retention time with respect to 9-anthracene Carboxylic Acid is 0.773 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.776 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.777 [Raw Data] CBA53_Cycloheximid_pos_50eV.txt [Raw Data] CBA53_Cycloheximid_pos_20eV.txt [Raw Data] CBA53_Cycloheximid_pos_10eV.txt [Raw Data] CBA53_Cycloheximid_pos_40eV.txt [Raw Data] CBA53_Cycloheximid_pos_30eV.txt
Azelaic acid
Nonanedioic acid is an alpha,omega-dicarboxylic acid that is heptane substituted at positions 1 and 7 by carboxy groups. It has a role as an antibacterial agent, an antineoplastic agent, a dermatologic drug and a plant metabolite. It is a dicarboxylic fatty acid and an alpha,omega-dicarboxylic acid. It is a conjugate acid of an azelaate(2-) and an azelaate. Azelaic acid is a saturated dicarboxylic acid found naturally in wheat, rye, and barley. It is also produced by Malassezia furfur, also known as Pityrosporum ovale, which is a species of fungus that is normally found on human skin. Azelaic acid is effective against a number of skin conditions, such as mild to moderate acne, when applied topically in a cream formulation of 20\\\\\%. It works in part by stopping the growth of skin bacteria that cause acne, and by keeping skin pores clear. Azelaic acids antimicrobial action may be attributable to inhibition of microbial cellular protein synthesis. Azelaic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). The physiologic effect of azelaic acid is by means of Decreased Protein Synthesis, and Decreased Sebaceous Gland Activity. Azelaic Acid is a naturally occurring dicarboxylic acid produced by Malassezia furfur and found in whole grain cereals, rye, barley and animal products. Azelaic acid possesses antibacterial, keratolytic, comedolytic, and anti-oxidant activity. Azelaic acid is bactericidal against Proprionibacterium acnes and Staphylococcus epidermidis due to its inhibitory effect on the synthesis of microbial cellular proteins. Azelaic acid exerts its keratolytic and comedolytic effects by reducing the thickness of the stratum corneum and decreasing the number of keratohyalin granules by reducing the amount and distribution of filaggrin in epidermal layers. Azelaic acid also possesses a direct anti-inflammatory effect due to its scavenger activity of free oxygen radical. This drug is used topically to reduce inflammation associated with acne and rosacea. Azelaic acid is a saturated dicarboxylic acid found naturally in wheat, rye, and barley. It is a natural substance that is produced by Malassezia furfur (also known as Pityrosporum ovale), a yeast that lives on normal skin. It is effective against a number of skin conditions, such as mild to moderate acne, when applied topically in a cream formulation of 20\\\\\%. It works in part by stopping the growth of skin bacteria that cause acne, and by keeping skin pores clear. Azelaic acids antimicrobial action may be attributable to inhibition of microbial cellular protein synthesis. See also: Azelaic acid; niacinamide (component of) ... View More ... Azelaic acid (AZA) is a naturally occurring saturated nine-carbon dicarboxylic acid (COOH (CH2)7-COOH). It possesses a variety of biological actions both in vitro and in vivo. Interest in the biological activity of AZA arose originally out of studies of skin surface lipids and the pathogenesis of hypochromia in pityriasis versicolor infection. Later, it was shown that Pityrosporum can oxidize unsaturated fatty acids to C8-C12 dicarboxylic acids that are cornpetitive inhibitors of tyrosinase in vitro. Azelaic acid was chosen for further investigation and development of a new topical drug for treating hyperpigmentary disorders for the following reasons: it possesses a middle-range of antityrosinase activity, is inexpensive, and more soluble to be incorporated into a base cream than other dicarboxylic acids. Azelaic acid is another option for the topical treatment of mild to moderate inflammatory acne vulgaris. It offers effectiveness similar to that of other agents without the systemic side effects of oral antibiotics or the allergic sensitization of topical benzoyl peroxide and with less irritation than tretinoin. Azelaic acid is less expensive than certain other prescription acne preparations, but it is much more expensive than nonprescription benzoyl peroxide preparations. Whether it is safe and effective when used in combination with other agents is not known. (PMID: 7737781, 8961845). An alpha,omega-dicarboxylic acid that is heptane substituted at positions 1 and 7 by carboxy groups. Plants biology In plants, azelaic acid serves as a "distress flare" involved in defense responses after infection.[7] It serves as a signal that induces the accumulation of salicylic acid, an important component of a plant's defensive response.[8] Human biology The mechanism of action in humans is thought to be through the inhibition of hyperactive protease activity that converts cathelicidin into the antimicrobial skin peptide LL-37.[9] Polymers and related materials Esters of this dicarboxylic acid find applications in lubrication and plasticizers. In lubricant industries it is used as a thickening agent in lithium complex grease. With hexamethylenediamine, azelaic acid forms Nylon-6,9, which finds specialized uses as a plastic.[4] Medical Azelaic acid is used to treat mild to moderate acne, both comedonal acne and inflammatory acne.[10][11] It belongs to a class of medication called dicarboxylic acids. It works by killing acne bacteria that infect skin pores. It also decreases the production of keratin, which is a natural substance that promotes the growth[clarification needed] of acne bacteria.[12] Azelaic acid is also used as a topical gel treatment for rosacea, due to its ability to reduce inflammation.[11] It clears the bumps and swelling caused by rosacea. In topical pharmaceutical preparations and scientific research AzA is typically used in concentrations between 15\\\% and 20\\\% but some research demonstrates that in certain vehicle formulations the pharmaceutical effects of 10\\\% Azelaic acid has the potential to be fully comparable to that of some 20\\\% creams.[13] Acne treatment Azelaic acid is effective for mild to moderate acne when applied topically at a 15\\\%-20\\\% concentration.[14][15][16][17] In patients with moderate acne, twice daily application over 3 months of 20\\\% AzA significantly reduced the number of comedones, papules, and pustules;[18][19] at this strength, it’s considered to be as effective as benzoyl peroxide 5\\\%, tretinoin 0.05\\\%, erythromycin 2\\\%, and oral tetracycline at 500 mg-1000 mg.[20][21] In a comparative review of effects of topical AzA, Salicylic acid, Nicotinamide, Sulfur, Zinc, and alpha-hydroxy acid, AzA had more high-quality evidence of effectiveness than the rest.[22] Results can be expected after 4 weeks of twice-daily treatment. The effectiveness of long term use is unclear, but it’s been recommended that AzA be used for at least 6 months continuously for maintenance.[20] Whitening agent Azelaic acid is used for treatment of skin pigmentation, including melasma and postinflammatory hyperpigmentation, particularly in those with darker skin types. It has been recommended as an alternative to hydroquinone.[23] As a tyrosinase inhibitor,[5] azelaic acid reduces synthesis of melanin.[24] According to one report in 1988, azelaic acid in combination with zinc sulfate in vitro was found to be a potent (90\\\% inhibition) 5α-reductase inhibitor, similar to the hair loss drugs finasteride and dutasteride.[25] In vitro research during mid-1980s evaluating azelaic acid's depigmenting (whitening) capability concluded it is effective (cytotoxic to melanocytes) at only high concentrations.[26] A 1996 review claimed 20\\\% AzA is as potent as 4\\\% hydroquinone after a period of application of three months without the latter's adverse effects and even more effective if applied along with tretinoin for the same period of time.[27][19] Azelaic acid is a nine-carbon dicarboxylic acid. Azelaic acid has antimicrobial activity against Propionibacterium acnes and Staphylococcus epidermidis through inhibition of microbial cellular prorein synthesis. Azelaic acid has hypopigmentation action resulting from its ability to scavenge free radicals[1][2]. Azelaic acid is a nine-carbon dicarboxylic acid. Azelaic acid has antimicrobial activity against Propionibacterium acnes and Staphylococcus epidermidis through inhibition of microbial cellular prorein synthesis. Azelaic acid has hypopigmentation action resulting from its ability to scavenge free radicals[1][2].
Ginsenoside
Ginsenoside Rf is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy group at position 6 has been converted to the corresponding beta-D-glucopyranosyl-(1->2)-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite, an apoptosis inducer and an antineoplastic agent. It is a 12beta-hydroxy steroid, a 3beta-hydroxy steroid, a beta-D-glucoside, a disaccharide derivative, a ginsenoside, a tetracyclic triterpenoid, a 20-hydroxy steroid and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Ginsenoside Rf is a natural product found in Gynostemma pentaphyllum, Panax ginseng, and other organisms with data available. See also: Asian Ginseng (part of). A ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy group at position 6 has been converted to the corresponding beta-D-glucopyranosyl-(1->2)-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. Ginsenoside Rg1 is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding beta-D-glucopyranosides, and in which a double bond has been introduced at the 24-25 position. It has a role as a neuroprotective agent and a pro-angiogenic agent. It is a 12beta-hydroxy steroid, a beta-D-glucoside, a tetracyclic triterpenoid, a ginsenoside and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Ginsenosides are a class of steroid glycosides, and triterpene saponins, found exclusively in the plant genus Panax (ginseng). Ginsenosides have been the target of research, as they are viewed as the active compounds behind the claims of ginsengs efficacy. Because ginsenosides appear to affect multiple pathways, their effects are complex and difficult to isolate. Rg1 Appears to be most abundant in Panax ginseng (Chinese/Korean Ginseng). It improves spatial learning and increase hippocampal synaptophysin level in mice, plus demonstrates estrogen-like activity. Ginsenoside RG1 is a natural product found in Panax vietnamensis, Panax ginseng, and Panax notoginseng with data available. See also: Asian Ginseng (part of); American Ginseng (part of); Panax notoginseng root (part of). A ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding beta-D-glucopyranosides, and in which a double bond has been introduced at the 24-25 position. D002491 - Central Nervous System Agents Ginsenoside Rf is a trace component of ginseng root. Ginsenoside Rf inhibits N-type Ca2+ channel. Ginsenoside Rf is a trace component of ginseng root. Ginsenoside Rf inhibits N-type Ca2+ channel. Ginsenoside Rg1 is one of the major active components of Panax ginseng. Ginsenoside Rg1 ameliorates the impaired cognitive function, displays promising effects by reducing cerebral Aβ levels. Ginsenoside Rg1 also reduces NF-κB nuclear translocation. Ginsenoside Rg1 is one of the major active components of Panax ginseng. Ginsenoside Rg1 ameliorates the impaired cognitive function, displays promising effects by reducing cerebral Aβ levels. Ginsenoside Rg1 also reduces NF-κB nuclear translocation.
Sudan_IV
Sudan IV is a bis(azo) compound that is 2-naphthol substituted at position 1 by a {2-methyl-4-[(2-methylphenyl)diazenyl]phenyl}diazenyl group. A fat-soluble dye predominantly used for demonstrating triglycerides in frozen sections, but which may also stain some protein bound lipids in paraffin sections. It has a role as a histological dye, a fluorochrome and a carcinogenic agent. It is a bis(azo) compound, a member of naphthols and a member of azobenzenes. It is functionally related to a 2-naphthol. D004396 - Coloring Agents
Ginsenoside F1
Ginsenoside F1 is a ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy group at position 20 has been converted to the corresponding beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite and an apoptosis inhibitor. It is a 12beta-hydroxy steroid, a 3beta-hydroxy steroid, a beta-D-glucoside, a ginsenoside, a tetracyclic triterpenoid, a 6alpha-hydroxy steroid and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Ginsenoside F1 is a natural product found in Panax ginseng, Panax notoginseng, and Gynostemma yixingense with data available. Ginsenoside F1 is found in tea. Ginsenoside F1 is isolated from Panax species. Isolated from Panax subspecies Ginsenoside F1 is found in tea. Ginsenoside F1, an enzymatically modified derivative of Ginsenoside Rg1, demonstrates competitive inhibition of CYP3A4 activity and weaker inhibition of CYP2D6 activity. Ginsenoside F1, an enzymatically modified derivative of Ginsenoside Rg1, demonstrates competitive inhibition of CYP3A4 activity and weaker inhibition of CYP2D6 activity.
linolenate(18:3)
alpha-Linolenic acid (ALA) is a polyunsaturated fatty acid (PUFA). It is a member of the group of essential fatty acids called omega-3 fatty acids. alpha-Linolenic acid, in particular, is not synthesized by mammals and therefore is an essential dietary requirement for all mammals. Certain nuts (English walnuts) and vegetable oils (canola, soybean, flaxseed/linseed, olive) are particularly rich in alpha-linolenic acid. Omega-3 fatty acids get their name based on the location of one of their first double bond. In all omega-3 fatty acids, the first double bond is located between the third and fourth carbon atom counting from the methyl end of the fatty acid (n-3). Although humans and other mammals can synthesize saturated and some monounsaturated fatty acids from carbon groups in carbohydrates and proteins, they lack the enzymes necessary to insert a cis double bond at the n-6 or the n-3 position of a fatty acid. Omega-3 fatty acids like alpha-linolenic acid are important structural components of cell membranes. When incorporated into phospholipids, they affect cell membrane properties such as fluidity, flexibility, permeability, and the activity of membrane-bound enzymes. Omega-3 fatty acids can modulate the expression of a number of genes, including those involved with fatty acid metabolism and inflammation. alpha-Linolenic acid and other omega-3 fatty acids may regulate gene expression by interacting with specific transcription factors, including peroxisome proliferator-activated receptors (PPARs) and liver X receptors (LXRs). alpha-Linolenic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. α-Linolenic acid can be obtained by humans only through their diets. Humans lack the desaturase enzymes required for processing stearic acid into A-linoleic acid or other unsaturated fatty acids. Dietary α-linolenic acid is metabolized to stearidonic acid, a precursor to a collection of polyunsaturated 20-, 22-, 24-, etc fatty acids (eicosatetraenoic acid, eicosapentaenoic acid, docosapentaenoic acid, tetracosapentaenoic acid, 6,9,12,15,18,21-tetracosahexaenoic acid, docosahexaenoic acid).[12] Because the efficacy of n−3 long-chain polyunsaturated fatty acid (LC-PUFA) synthesis decreases down the cascade of α-linolenic acid conversion, DHA synthesis from α-linolenic acid is even more restricted than that of EPA.[13] Conversion of ALA to DHA is higher in women than in men.[14] α-Linolenic acid, also known as alpha-linolenic acid (ALA) (from Greek alpha meaning "first" and linon meaning flax), is an n−3, or omega-3, essential fatty acid. ALA is found in many seeds and oils, including flaxseed, walnuts, chia, hemp, and many common vegetable oils. In terms of its structure, it is named all-cis-9,12,15-octadecatrienoic acid.[2] In physiological literature, it is listed by its lipid number, 18:3 (n−3). It is a carboxylic acid with an 18-carbon chain and three cis double bonds. The first double bond is located at the third carbon from the methyl end of the fatty acid chain, known as the n end. Thus, α-linolenic acid is a polyunsaturated n−3 (omega-3) fatty acid. It is a regioisomer of gamma-linolenic acid (GLA), an 18:3 (n−6) fatty acid (i.e., a polyunsaturated omega-6 fatty acid with three double bonds). Alpha-linolenic acid is a linolenic acid with cis-double bonds at positions 9, 12 and 15. Shown to have an antithrombotic effect. It has a role as a micronutrient, a nutraceutical and a mouse metabolite. It is an omega-3 fatty acid and a linolenic acid. It is a conjugate acid of an alpha-linolenate and a (9Z,12Z,15Z)-octadeca-9,12,15-trienoate. Alpha-linolenic acid (ALA) is a polyunsaturated omega-3 fatty acid. It is a component of many common vegetable oils and is important to human nutrition. alpha-Linolenic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Linolenic Acid is a natural product found in Prunus mume, Dipteryx lacunifera, and other organisms with data available. Linolenic Acid is an essential fatty acid belonging to the omega-3 fatty acids group. It is highly concentrated in certain plant oils and has been reported to inhibit the synthesis of prostaglandin resulting in reduced inflammation and prevention of certain chronic diseases. Alpha-linolenic acid (ALA) is a polyunsaturated omega-3 fatty acid. It is a component of many common vegetable oils and is important to human nutrition. A fatty acid that is found in plants and involved in the formation of prostaglandins. Seed oils are the richest sources of α-linolenic acid, notably those of hempseed, chia, perilla, flaxseed (linseed oil), rapeseed (canola), and soybeans. α-Linolenic acid is also obtained from the thylakoid membranes in the leaves of Pisum sativum (pea leaves).[3] Plant chloroplasts consisting of more than 95 percent of photosynthetic thylakoid membranes are highly fluid due to the large abundance of ALA, evident as sharp resonances in high-resolution carbon-13 NMR spectra.[4] Some studies state that ALA remains stable during processing and cooking.[5] However, other studies state that ALA might not be suitable for baking as it will polymerize with itself, a feature exploited in paint with transition metal catalysts. Some ALA may also oxidize at baking temperatures. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].
L-Threonine
L-threonine is an optically active form of threonine having L-configuration. It has a role as a nutraceutical, a micronutrient, a Saccharomyces cerevisiae metabolite, a plant metabolite, an Escherichia coli metabolite, a human metabolite, an algal metabolite and a mouse metabolite. It is an aspartate family amino acid, a proteinogenic amino acid, a threonine and a L-alpha-amino acid. It is a conjugate base of a L-threoninium. It is a conjugate acid of a L-threoninate. It is an enantiomer of a D-threonine. It is a tautomer of a L-threonine zwitterion. An essential amino acid occurring naturally in the L-form, which is the active form. It is found in eggs, milk, gelatin, and other proteins. L-Threonine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Threonine is an essential amino acid in humans (provided by food), Threonine is an important residue of many proteins, such as tooth enamel, collagen, and elastin. An important amino acid for the nervous system, threonine also plays an important role in porphyrin and fat metabolism and prevents fat buildup in the liver. Useful with intestinal disorders and indigestion, threonine has also been used to alleviate anxiety and mild depression. (NCI04) Threonine is an essential amino acid in humans. It is abundant in human plasma, particularly in newborns. Severe deficiency of threonine causes neurological dysfunction and lameness in experimental animals. Threonine is an immunostimulant which promotes the growth of thymus gland. It also can probably promote cell immune defense function. This amino acid has been useful in the treatment of genetic spasticity disorders and multiple sclerosis at a dose of 1 gram daily. It is highly concentrated in meat products, cottage cheese and wheat germ. The threonine content of most of the infant formulas currently on the market is approximately 20\\\\\\% higher than the threonine concentration in human milk. Due to this high threonine content the plasma threonine concentrations are up to twice as high in premature infants fed these formulas than in infants fed human milk. The whey proteins which are used for infant formulas are sweet whey proteins. Sweet whey results from cheese production. Threonine catabolism in mammals appears to be due primarily (70-80\\\\\\%) to the activity of threonine dehydrogenase (EC 1.1.1.103) that oxidizes threonine to 2-amino-3-oxobutyrate, which forms glycine and acetyl CoA, whereas threonine dehydratase (EC 4.2.1.16) that catabolizes threonine into 2-oxobutyrate and ammonia, is significantly less active. Increasing the threonine plasma concentrations leads to accumulation of threonine and glycine in the brain. Such accumulation affects the neurotransmitter balance which may have consequences for the brain development during early postnatal life. Thus, excessive threonine intake during infant feeding should be avoided. (A3450). An essential amino acid occurring naturally in the L-form, which is the active form. It is found in eggs, milk, gelatin, and other proteins. See also: Amlisimod (monomer of) ... View More ... Threonine (Thr) or L-threonine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-threonine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Threonine is found in all organisms ranging from bacteria to plants to animals. It is classified as a polar, uncharged (at physiological pH), aliphatic amino acid. Threonine is sometimes considered as a branched chain amino acid. Threonine was actually the last of the 20 amino acids to be discovered (in 1938). It was named threonine because it was similar in structure to threonic acid, a four-carbon monosaccharide. Threonine is an essential amino acid in humans, meaning the body cannot synthesize it and that it must be obtained from the diet. Foods high in threonine include cottage cheese, poultry, fish, meat, lentils, black turtle bean and sesame seeds. Adult humans require about 20 mg/kg body weight/day. In plants and microorganisms, threonine is synthesized from aspartic acid via alpha-aspartyl-semialdehyde and homoserine. In proteins, the threonine residue is susceptible to numerous posttranslational modifications. The hydroxyl side-chain can undergo O-linked glycosylation and phosphorylation through the action of a threonine kinase. Threonine is abundant in human plasma, particularly in newborns. Severe deficiency of threonine causes neurological dysfunction and lameness in experimental animals. Threonine is an immunostimulant which promotes the growth of thymus gland. It also can probably promote cell immune defense function. The threonine content of most of the infant formulas currently on the market is approximately 20\\\\\\% higher than the threonine concentration in human milk. Due to this high threonine content the plasma threonine concentrations are up to twice as high in premature infants fed these formulas than in infants fed human milk. The whey proteins which are used for infant formulas are sweet whey proteins. Sweet whey results from cheese production. Increasing the threonine plasma concentrations leads to accumulation of threonine and glycine in the brain. Such accumulation affects the neurotransmitter balance which may have consequences for the brain development during early postnatal life. Thus, excessive threonine intake during infant feeding should be avoided. (PMID 9853925). Threonine is metabolized in at least two ways. In many animals it is converted to pyruvate via threonine dehydrogenase. An intermediate in this pathway can undergo thiolysis with CoA to produce acetyl-CoA and glycine. In humans the gene for threonine dehydrogenase is an inactive pseudogene, so threonine is converted to alpha-ketobutyrate. From wide variety of protein hydrolysates. Dietary supplement, nutrient L-Threonine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=72-19-5 (retrieved 2024-07-01) (CAS RN: 72-19-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-Threonine, an essential amino acid, has the potential to treat hypostatic leg ulceration[1]. L-Threonine is a natural amino acid, can be produced by microbial fermentation, and is used in food, medicine, or feed[1]. L-Threonine is a natural amino acid, can be produced by microbial fermentation, and is used in food, medicine, or feed[1].
Nicotine
Nicotine is an alkaloid found in the nightshade family of plants (Solanaceae), predominantly in tobacco and in lower quantities in tomato, potato, eggplant (aubergine), and green pepper. Nicotine alkaloids are also found in the leaves of the coca plant. Nicotine constitutes 0.3 to 5\\\% of the tobacco plant by dry weight, with biosynthesis taking place in the root and accumulation in the leaves. It is a potent neurotoxin with particular specificity to insects; therefore nicotine was widely used as an insecticide in the past and nicotine derivatives such as imidacloprid continue to be widely used. It has been noted that the majority of people diagnosed with schizophrenia smoke tobacco. Estimates for the number of schizophrenics that smoke range from 75\\\% to 90\\\%. It was recently argued that the increased level of smoking in schizophrenia may be due to a desire to self-medicate with nicotine. More recent research has found the reverse: it is a risk factor without long-term benefit, used only for its short-term effects. However, research on nicotine as administered through a patch or gum is ongoing. As nicotine enters the body, it is distributed quickly through the bloodstream and can cross the blood-brain barrier. On average, it takes about seven seconds for the substance to reach the brain. The half-life of nicotine in the body is around 2 hours. The amount of nicotine inhaled with tobacco smoke is a fraction of the amount contained in the tobacco leaves (most of the substance is destroyed by the heat). The amount of nicotine absorbed by the body from smoking depends on many factors, including the type of tobacco, whether the smoke is inhaled, and whether a filter is used. For chewing tobacco, often called dip, snuff, or sinus, which is held in the mouth between the lip and gum, the amount released into the body tends to be much greater than smoked tobacco. The currently available literature indicates that nicotine, on its own, does not promote the development of cancer in healthy tissue and has no mutagenic properties. Its teratogenic properties have not yet been adequately researched, and while the likelihood of birth defects caused by nicotine is believed to be very small or nonexistent, nicotine replacement product manufacturers recommend consultation with a physician before using a nicotine patch or nicotine gum while pregnant or nursing. However, nicotine and the increased acetylcholinic activity it causes have been shown to impede apoptosis, which is one of the methods by which the body destroys unwanted cells (programmed cell death). Since apoptosis helps to remove mutated or damaged cells that may eventually become cancerous, the inhibitory actions of nicotine create a more favourable environment for cancer to develop. Thus, nicotine plays an indirect role in carcinogenesis. It is also important to note that its addictive properties are often the primary motivating factor for tobacco smoking, contributing to the proliferation of cancer. Nicotine is a highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine is a hygroscopic, oily liquid that is miscible with water in its base form. As a nitrogenous base, nicotine forms salts with acids that are usually solid and water soluble. Nicotine easily penetrates the skin. As shown by the physical data, free base nicotine will burn at a temperature below its boiling point, and its vapours will combust at 95 °C in the air despite a low vapour pressure. Because of this, most nicotine is burned when a cigarette is smoked; however, enough is inhaled to provide the desired effects. Nicotine is a stimulant drug that acts as an agonist at nicotinic acetylcholine receptors. These are ionotropic receptors composed of five homomeric or heteromeric subunits. In the brain, nicotine binds to nic... Nicotine appears as a colorless to light yellow or brown liquid. Combustible. Toxic by inhalation and by skin absorption. Produces toxic oxides of nitrogen during combustion. (S)-nicotine is a 3-(1-methylpyrrolidin-2-yl)pyridine in which the chiral centre has S-configuration. The naturally occurring and most active enantiomer of nicotine, isolated from Nicotiana tabacum. It has a role as a phytogenic insecticide, a teratogenic agent, a neurotoxin, an anxiolytic drug, a nicotinic acetylcholine receptor agonist, a biomarker, an immunomodulator, a mitogen, a peripheral nervous system drug, a psychotropic drug, a plant metabolite and a xenobiotic. It is a conjugate base of a (S)-nicotinium(1+). It is an enantiomer of a (R)-nicotine. Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine is a Cholinergic Nicotinic Agonist. Nicotine is a natural alkyloid that is a major component of cigarettes and is used therapeutically to help with smoking cessation. Nicotine has not been associated with liver test abnormalities or with clinically apparent hepatotoxicity. Nicotine is a natural product found in Cyphanthera tasmanica, Nicotiana cavicola, and other organisms with data available. Nicotine is a plant alkaloid, found in the tobacco plant, and addictive central nervous system (CNS) stimulant that causes either ganglionic stimulation in low doses or ganglionic blockage in high doses. Nicotine acts as an agonist at the nicotinic cholinergic receptors in the autonomic ganglia, at neuromuscular junctions, and in the adrenal medulla and the brain. Nicotines CNS-stimulating activities may be mediated through the release of several neurotransmitters, including acetylcholine, beta-endorphin, dopamine, norepinephrine, serotonin, and ACTH. As a result, peripheral vasoconstriction, tachycardia, and elevated blood pressure may be observed with nicotine intake. This agent may also stimulate the chemoreceptor trigger zone, thereby inducing nausea and vomiting. Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. See also: Tobacco Leaf (part of); Nicotine Polacrilex (related); Menthol; nicotine (component of) ... View More ... Alkaloid from Nicotiana tabacum and other Nicotiana subspecies, Asclepias syriaca, Lycopodium subspecies, and other subspecies (Solanaceae, Asclepiadaceae, Crassulaceae). Rare spread of occurrence between angiosperms and cryptogametes (CCD) A 3-(1-methylpyrrolidin-2-yl)pyridine in which the chiral centre has S-configuration. The naturally occurring and most active enantiomer of nicotine, isolated from Nicotiana tabacum.
Coniferaldehyde
Coniferaldehyde (CAS: 458-36-6), also known as 4-hydroxy-3-methoxycinnamaldehyde or ferulaldehyde, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Coniferaldehyde is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, coniferaldehyde is found, on average, in the highest concentration within sherries. Coniferaldehyde has also been detected, but not quantified in, several different foods, such as highbush blueberries, lima beans, Chinese cabbages, loquats, and greenthread tea. This could make coniferaldehyde a potential biomarker for the consumption of these foods. BioTransformer predicts that coniferaldehyde is a product of caffeic aldehyde metabolism via a catechol-O-methylation-pattern2 reaction catalyzed by the enzyme catechol O-methyltransferase (PMID: 30612223). Coniferyl aldehyde, also known as 4-hydroxy-3-methoxycinnamaldehyde or 4-hm-ca, is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Coniferyl aldehyde is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Coniferyl aldehyde can be found in a number of food items such as pear, common walnut, kelp, and citrus, which makes coniferyl aldehyde a potential biomarker for the consumption of these food products. Coniferyl aldehyde is a low molecular weight phenolic compound susceptible to be extracted from cork stoppers into wine . Coniferyl aldehyde is a member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and a methoxy group at position 3. It has a role as an antifungal agent and a plant metabolite. It is a member of cinnamaldehydes, a phenylpropanoid and a member of guaiacols. It is functionally related to an (E)-cinnamaldehyde. 4-Hydroxy-3-methoxycinnamaldehyde is a natural product found in Pandanus utilis, Microtropis japonica, and other organisms with data available. A member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and a methoxy group at position 3. Acquisition and generation of the data is financially supported in part by CREST/JST. Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1]. Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells Coniferaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=458-36-6 (retrieved 2024-09-04) (CAS RN: 458-36-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Salicylic acid
Salicylic acid is a monohydroxybenzoic acid that is benzoic acid with a hydroxy group at the ortho position. It is obtained from the bark of the white willow and wintergreen leaves. It has a role as an antiinfective agent, an antifungal agent, a keratolytic drug, an EC 1.11.1.11 (L-ascorbate peroxidase) inhibitor, a plant metabolite, an algal metabolite and a plant hormone. It is a conjugate acid of a salicylate. It is a colorless solid, it is a precursor to and a metabolite of aspirin (acetylsalicylic acid). It is a plant hormone. The name is from Latin salix for willow tree. It is an ingredient in some anti-acne products. Salts and esters of salicylic acid are known as salicylates. Salicylic acid modulates COX1 enzymatic activity to decrease the formation of pro-inflammatory prostaglandins. Salicylate may competitively inhibit prostaglandin formation. Salicylates antirheumatic (nonsteroidal anti-inflammatory) actions are a result of its analgesic and anti-inflammatory mechanisms. Salicylic acid works by causing the cells of the epidermis to slough off more readily, preventing pores from clogging up, and allowing room for new cell growth. Salicylic acid inhibits the oxidation of uridine-5-diphosphoglucose (UDPG) competitively with nicotinamide adenosine dinucleotide and noncompetitively with UDPG. It also competitively inhibits the transferring of glucuronyl group of uridine-5-phosphoglucuronic acid to the phenolic acceptor. The wound-healing retardation action of salicylates is probably due mainly to its inhibitory action on mucopolysaccharide synthesis. Salicylic acid is biosynthesized from the amino acid phenylalanine. In Arabidopsis thaliana, it can be synthesized via a phenylalanine-independent pathway. Salicylic acid is an odorless white to light tan solid. Sinks and mixes slowly with water. (USCG, 1999) Salicylic acid is a monohydroxybenzoic acid that is benzoic acid with a hydroxy group at the ortho position. It is obtained from the bark of the white willow and wintergreen leaves. It has a role as an antiinfective agent, an antifungal agent, a keratolytic drug, an EC 1.11.1.11 (L-ascorbate peroxidase) inhibitor, a plant metabolite, an algal metabolite and a plant hormone. It is a conjugate acid of a salicylate. A compound obtained from the bark of the white willow and wintergreen leaves, and also prepared synthetically. It has bacteriostatic, fungicidal, and keratolytic actions. Its salts, the salicylates, are used as analgesics. Salicylic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Salicylic Acid is a beta hydroxy acid that occurs as a natural compound in plants. It has direct activity as an anti-inflammatory agent and acts as a topical antibacterial agent due to its ability to promote exfoliation. A compound obtained from the bark of the white willow and wintergreen leaves, and also prepared synthetically. It has bacteriostatic, fungicidal, and keratolytic actions. Its salts, the salicylates, are used as analgesics. A compound obtained from the bark of the white willow and wintergreen leaves. It has bacteriostatic, fungicidal, and keratolytic actions. See also: Benzoic Acid (has active moiety); Methyl Salicylate (active moiety of); Benzyl salicylate (is active moiety of) ... View More ... A monohydroxybenzoic acid that is benzoic acid with a hydroxy group at the ortho position. It is obtained from the bark of the white willow and wintergreen leaves. Salicylic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=69-72-7 (retrieved 2024-06-29) (CAS RN: 69-72-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Salicylic acid (2-Hydroxybenzoic acid) inhibits cyclo-oxygenase-2 (COX-2) activity independently of transcription factor (NF-κB) activation[1]. Salicylic acid (2-Hydroxybenzoic acid) inhibits cyclo-oxygenase-2 (COX-2) activity independently of transcription factor (NF-κB) activation[1].
Melatonin
Melatonin is a member of the class of acetamides that is acetamide in which one of the hydrogens attached to the nitrogen atom is replaced by a 2-(5-methoxy-1H-indol-3-yl)ethyl group. It is a hormone secreted by the pineal gland in humans. It has a role as a hormone, an anticonvulsant, an immunological adjuvant, a radical scavenger, a central nervous system depressant, a human metabolite, a mouse metabolite and a geroprotector. It is a member of acetamides and a member of tryptamines. It is functionally related to a tryptamine. Melatonin is a biogenic amine that is found in animals, plants and microbes. Aaron B. Lerner of Yale University is credited for naming the hormone and for defining its chemical structure in 1958. In mammals, melatonin is produced by the pineal gland. The pineal gland is small endocrine gland, about the size of a rice grain and shaped like a pine cone (hence the name), that is located in the center of the brain (rostro-dorsal to the superior colliculus) but outside the blood-brain barrier. The secretion of melatonin increases in darkness and decreases during exposure to light, thereby regulating the circadian rhythms of several biological functions, including the sleep-wake cycle. In particular, melatonin regulates the sleep-wake cycle by chemically causing drowsiness and lowering the body temperature. Melatonin is also implicated in the regulation of mood, learning and memory, immune activity, dreaming, fertility and reproduction. Melatonin is also an effective antioxidant. Most of the actions of melatonin are mediated through the binding and activation of melatonin receptors. Individuals with autism spectrum disorders (ASD) may have lower than normal levels of melatonin. A 2008 study found that unaffected parents of individuals with ASD also have lower melatonin levels, and that the deficits were associated with low activity of the ASMT gene, which encodes the last enzyme of melatonin synthesis. Reduced melatonin production has also been proposed as a likely factor in the significantly higher cancer rates in night workers. Melatonin is a hormone produced by the pineal gland that has multiple effects including somnolence, and is believed to play a role in regulation of the sleep-wake cycle. Melatonin is available over-the-counter and is reported to have beneficial effects on wellbeing and sleep. Melatonin has not been implicated in causing serum enzyme elevations or clinically apparent liver injury. Melatonin is a natural product found in Mesocricetus auratus, Ophiopogon japonicus, and other organisms with data available. Therapeutic Melatonin is a therapeutic chemically synthesized form of the pineal indole melatonin with antioxidant properties. The pineal synthesis and secretion of melatonin, a serotonin-derived neurohormone, is dependent on beta-adrenergic receptor function. Melatonin is involved in numerous biological functions including circadian rhythm, sleep, the stress response, aging, and immunity. Melatonin is a hormone involved in sleep regulatory activity, and a tryptophan-derived neurotransmitter, which inhibits the synthesis and secretion of other neurotransmitters such as dopamine and GABA. Melatonin is synthesized from serotonin intermediate in the pineal gland and the retina where the enzyme 5-hydroxyindole-O-methyltransferase, that catalyzes the last step of synthesis, is found. This hormone binds to and activates melatonin receptors and is involved in regulating the sleep and wake cycles. In addition, melatonin possesses antioxidative and immunoregulatory properties via regulating other neurotransmitters. Melatonin is a biogenic amine that is found in animals, plants and microbes. Aaron B. Lerner of Yale University is credited for naming the hormone and for defining its chemical structure in 1958. In mammals, melatonin is produced by the pineal gland. The pineal gland is small endocrine gland, about the size of a rice grain and shaped like a pine cone (hence the name), that is l... Melatonin is a biogenic amine that is found in animals, plants and microbes. Aaron B. Lerner of Yale University is credited for naming the hormone and for defining its chemical structure in 1958. In mammals, melatonin is produced by the pineal gland. The pineal gland is small endocrine gland, about the size of a rice grain and shaped like a pine cone (hence the name), that is located in the center of the brain (rostro-dorsal to the superior colliculus) but outside the blood-brain barrier. The secretion of melatonin increases in darkness and decreases during exposure to light, thereby regulating the circadian rhythms of several biological functions, including the sleep-wake cycle. In particular, melatonin regulates the sleep-wake cycle by chemically causing drowsiness and. lowering the body temperature. Melatonin is also implicated in the regulation of mood,learning and memory, immune activity, dreaming, fertility and reproduction. Melatonin is also an effective antioxidant. Most of the actions of melatonin are mediated through the binding and activation of melatonin receptors. Individuals with autism spectrum disorders(ASD) may have lower than normal levels of melatonin. A 2008 study found that unaffected parents of individuals with ASD also have lower melatonin levels, and that the deficits. were associated with low activity of the ASMT gene, which encodes the last enzyme of melatonin synthesis. Reduced melatonin production has also been proposed as a likely factor in the significantly higher cancer rates in night workers. Melatonin, also known chemically as N-acetyl-5-methoxytryptamine, is a naturally occurring compound found in animals, plants and microbes. In animals, circulating levels of the hormone melatonin vary in a daily cycle, thereby allowing the entrainment of the circadian rhythms of several biological functions. A member of the class of acetamides that is acetamide in which one of the hydrogens attached to the nitrogen atom is replaced by a 2-(5-methoxy-1H-indol-3-yl)ethyl group. It is a hormone secreted by the pineal gland in humans. Melatonin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=73-31-4 (retrieved 2024-07-01) (CAS RN: 73-31-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Melatonin is a hormone made by the pineal gland that can activates melatonin receptor. Melatonin plays a role in sleep and possesses important antioxidative and anti-inflammatory properties[1][2][3]. Melatonin is a novel selective ATF-6 inhibitor and induces human hepatoma cell apoptosis through COX-2 downregulation[4]. Melatonin attenuates palmitic acid-induced (HY-N0830) mouse granulosa cells apoptosis via endoplasmic reticulum stress[5]. Melatonin is a hormone made by the pineal gland that can activates melatonin receptor. Melatonin plays a role in sleep and possesses important antioxidative and anti-inflammatory properties[1][2][3]. Melatonin is a novel selective ATF-6 inhibitor and induces human hepatoma cell apoptosis through COX-2 downregulation[4]. Melatonin attenuates palmitic acid-induced (HY-N0830) mouse granulosa cells apoptosis via endoplasmic reticulum stress[5].
Tacrolimus
Tacrolimus (also FK-506 or Fujimycin) is an immunosuppressive drug whose main use is after organ transplant to reduce the activity of the patients immune system and so the risk of organ rejection. It is also used in a topical preparation in the treatment of severe atopic dermatitis, severe refractory uveitis after bone marrow transplants, and the skin condition vitiligo. It was discovered in 1984 from the fermentation broth of a Japanese soil sample that contained the bacteria Streptomyces tsukubaensis. Tacrolimus is chemically known as a macrolide. It reduces peptidyl-prolyl isomerase activity by binding to the immunophilin FKBP-12 (FK506 binding protein) creating a new complex. This FKBP12-FK506 complex interacts with and inhibits calcineurin thus inhibiting both T-lymphocyte signal transduction and IL-2 transcription. It is used in foods as emulsifier, stabiliser, thickener, gelling agent, formulation aid and firming agent; ice-cream stabiliser, used to improve the yield of curds in soft cheese, to increase the yield of doughs and baked products, as a binder and lubricant in sausages, and as thickener or viscosity control agent in beverages, salad dressings and relishes D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents > D016559 - Tacrolimus D004791 - Enzyme Inhibitors > D065095 - Calcineurin Inhibitors Tacrolimus (anhydrous) is a macrolide lactam containing a 23-membered lactone ring, originally isolated from the fermentation broth of a Japanese soil sample that contained the bacteria Streptomyces tsukubaensis. It has a role as an immunosuppressive agent and a bacterial metabolite. Tacrolimus (also FK-506 or Fujimycin) is an immunosuppressive drug whose main use is after organ transplant to reduce the activity of the patients immune system and so the risk of organ rejection. It is also used in a topical preparation in the treatment of severe atopic dermatitis, severe refractory uveitis after bone marrow transplants, and the skin condition vitiligo. It was discovered in 1984 from the fermentation broth of a Japanese soil sample that contained the bacteria Streptomyces tsukubaensis. Tacrolimus is chemically known as a macrolide. It reduces peptidyl-prolyl isomerase activity by binding to the immunophilin FKBP-12 (FK506 binding protein) creating a new complex. This FKBP12-FK506 complex inhibits calcineurin which inhibits T-lymphocyte signal transduction and IL-2 transcription. Tacrolimus anhydrous is a Calcineurin Inhibitor Immunosuppressant. The mechanism of action of tacrolimus anhydrous is as a Calcineurin Inhibitor. Tacrolimus is a calcineurin inhibitor and potent immunosuppressive agent used largely as a means of prophylaxis against cellular rejection after transplantation. Tacrolimus therapy can be associated with mild serum enzyme elevations, and it has been linked to rare instances of clinically apparent cholestatic liver injury. Tacrolimus is a natural product found in Streptomyces clavuligerus, Streptomyces hygroscopicus, and other organisms with data available. Tacrolimus is a macrolide isolated from Streptomyces tsukubaensis. Tacrolimus binds to the FKBP-12 protein and forms a complex with calcium-dependent proteins, thereby inhibiting calcineurin phosphatase activity and resulting in decreased cytokine production. This agent exhibits potent immunosuppressive activity in vivo and prevents the activation of T-lymphocytes in response to antigenic or mitogenic stimulation. Tacrolimus possesses similar immunosuppressive properties to cyclosporine, but is more potent. Tacrolimus Anhydrous is anhydrous from of tacrolimus, a macrolide isolated from Streptomyces tsukubaensis. Tacrolimus binds to the FKBP-12 protein and forms a complex with calcium-dependent proteins, thereby inhibiting calcineurin phosphatase activity and resulting in decreased cytokine production. This agent exhibits potent immunosuppressive activity in vivo and prevents the activation of T-lymphocytes in response to antigenic or mitogenic stimulation. Tacrolimus possesses similar immunosuppressive properties to cyclosporine, but is more potent. A macrolide isolated from the culture broth of a strain of Streptomyces tsukubaensis that has strong immunosuppressive activity in vivo and prevents the activation of T-lymphocytes in response to antigenic or mitogenic stimulation in vitro. D - Dermatologicals > D11 - Other dermatological preparations > D11A - Other dermatological preparations > D11AH - Agents for dermatitis, excluding corticosteroids L - Antineoplastic and immunomodulating agents > L04 - Immunosuppressants > L04A - Immunosuppressants > L04AD - Calcineurin inhibitors C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C146638 - Calcineurin Inhibitor COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Inosine
Inosine, also known as hypoxanthosine or inotin, belongs to the class of organic compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl moiety. Inosine is formed when hypoxanthine is attached to a ribose ring a beta-N9-glycosidic bond. Inosine is an intermediate in the degradation of purines and purine nucleosides to uric acid. Inosine is also an intermediate in the purine salvage pathway. Inosine occurs in the anticodon of certain transfer RNA molecules and is essential for proper translation of the genetic code in wobble base pairs. Inosine exists in all living species, ranging from bacteria to plants to humans. Inosine participates in a number of enzymatic reactions. In particular, inosine can be biosynthesized from inosinic acid through its interaction with the enzyme known as cytosolic purine 5-nucleotidase. In addition, inosine can be converted into hypoxanthine and ribose 1-phosphate through its interaction with the enzyme known as purine nucleoside phosphorylase. Altered levels of inosine have also been associated with purine nucleoside phosphorylase deficiency and xanthinuria type I, both of which are inborn errors of metabolism. Animal studies have suggested that inosine has neuroprotective properties. It has been proposed as a potential treatment for spinal cord injury (PMID: 16317421) and for administration after stroke, as inosine appears to induce axonal rewiring (PMID: 12084941). After ingestion, inosine is metabolized into uric acid, which has been found to be a natural antioxidant and peroxynitrite scavenger. As such, inosine may have potential benefits to patients with multiple sclerosis and Parkinson’s disease (PMID: 19425822). Inosine can also be produced by gut bacteria and appears to have a number of beneficial effects. Inosine, has been shown to activate peroxisome proliferator-activated receptor (PPAR)-gamma signaling in human colon epithelial cells. Furthermore, exogenous treatment of inosine has been found to protect against DSS-induced colitis in rodents by improving adenosine 2A receptor (A2AR)/PPAR-gamma-dependent mucosal barrier functions (PMID: 33820558). Microbiome-derived inosine has also been shown to modulate the response to checkpoint inhibitor immunotherapy in cancer models. In particular, decreased gut barrier function induced by immunotherapy increases systemic translocation of bacterially derived inosine and activates antitumor T cells. The effect of inosine is dependent on T cell expression of the adenosine A2A receptor and requires co-stimulation. Inosine appears to have other roles in non-mammalian system. For instance, it has been found to be an important feed stimulant by itself or in combination with certain amino acids in some species of farmed fish. For example, inosine and inosine-5-monophosphate have been reported as specific feeding stimulants for turbot fry, (Scophthalmus maximus) and Japanese amberjack. Inosine is a purine nucleoside in which hypoxanthine is attached to ribofuranose via a beta-N(9)-glycosidic bond. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a purines D-ribonucleoside and a member of inosines. It is functionally related to a hypoxanthine and a ribofuranose. A purine nucleoside that has hypoxanthine linked by the N9 nitrogen to the C1 carbon of ribose. It is an intermediate in the degradation of purines and purine nucleosides to uric acid and in pathways of purine salvage. It also occurs in the anticodon of certain transfer RNA molecules. (Dorland, 28th ed) Inosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Inosine is a natural product found in Fritillaria thunbergii, Cichorium endivia, and other organisms with data available. Inosine is a metabolite found in or produced by Saccharomyces cerevisiae. A purine nucleoside that has hypoxanthine linked by the N9 nitrogen to the C1 carbon of ribose. It is an intermediate in the degradation of purines and purine nucleosides to uric acid and in pathways of purine salvage. It also occurs in the anticodon of certain transfer RNA molecules. (Dorland, 28th ed) G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BB - Antivirals A purine nucleoside in which hypoxanthine is attached to ribofuranose via a beta-N(9)-glycosidic bond. COVID info from COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials S - Sensory organs > S01 - Ophthalmologicals Present in meat extracts and sugar beet Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Spectral] Inosine (exact mass = 268.08077) and L-Methionine (exact mass = 149.05105) and Adenosine (exact mass = 267.09675) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Inosine (exact mass = 268.08077) and L-Tyrosine (exact mass = 181.07389) and Guanosine (exact mass = 283.09167) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Inosine (exact mass = 268.08077) and S-Adenosyl-L-homocysteine (exact mass = 384.12159) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Inosine (exact mass = 268.08077) and Guanosine (exact mass = 283.09167) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 110 KEIO_ID I003 Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3].
Lovastatin
Lovastatin is a fatty acid ester that is mevastatin carrying an additional methyl group on the carbobicyclic skeleton. It is used in as an anticholesteremic drug and has been found in fungal species such as Aspergillus terreus and Pleurotus ostreatus (oyster mushroom). It has a role as an Aspergillus metabolite, a prodrug, an anticholesteremic drug and an antineoplastic agent. It is a polyketide, a statin (naturally occurring), a member of hexahydronaphthalenes, a delta-lactone and a fatty acid ester. It is functionally related to a (S)-2-methylbutyric acid and a mevastatin. Lovastatin, also known as the brand name product Mevacor, is a lipid-lowering drug and fungal metabolite derived synthetically from a fermentation product of Aspergillus terreus. Originally named Mevinolin, lovastatin belongs to the statin class of medications, which are used to lower the risk of cardiovascular disease and manage abnormal lipid levels by inhibiting the endogenous production of cholesterol in the liver. More specifically, statin medications competitively inhibit the enzyme hydroxymethylglutaryl-coenzyme A (HMG-CoA) Reductase, which catalyzes the conversion of HMG-CoA to mevalonic acid and is the third step in a sequence of metabolic reactions involved in the production of several compounds involved in lipid metabolism and transport including cholesterol, low-density lipoprotein (LDL) (sometimes referred to as "bad cholesterol"), and very low-density lipoprotein (VLDL). Prescribing of statin medications is considered standard practice following any cardiovascular events and for people with a moderate to high risk of development of CVD, such as those with Type 2 Diabetes. The clear evidence of the benefit of statin use coupled with very minimal side effects or long term effects has resulted in this class becoming one of the most widely prescribed medications in North America. Lovastatin and other drugs from the statin class of medications including [atorvastatin], [pravastatin], [rosuvastatin], [fluvastatin], and [simvastatin] are considered first-line options for the treatment of dyslipidemia. Increasing use of the statin class of drugs is largely due to the fact that cardiovascular disease (CVD), which includes heart attack, atherosclerosis, angina, peripheral artery disease, and stroke, has become a leading cause of death in high-income countries and a major cause of morbidity around the world. Elevated cholesterol levels, and in particular, elevated low-density lipoprotein (LDL) levels, are an important risk factor for the development of CVD. Use of statins to target and reduce LDL levels has been shown in a number of landmark studies to significantly reduce the risk of development of CVD and all-cause mortality. Statins are considered a cost-effective treatment option for CVD due to their evidence of reducing all-cause mortality including fatal and non-fatal CVD as well as the need for surgical revascularization or angioplasty following a heart attack. Evidence has shown that even for low-risk individuals (with <10\\\\% risk of a major vascular event occurring within 5 years) statins cause a 20\\\\%-22\\\\% relative reduction in major cardiovascular events (heart attack, stroke, coronary revascularization, and coronary death) for every 1 mmol/L reduction in LDL without any significant side effects or risks. While all statin medications are considered equally effective from a clinical standpoint, [rosuvastatin] is considered the most potent; doses of 10 to 40mg [rosuvastatin] per day were found in clinical studies to result in a 45.8\\\\% to 54.6\\\\% decrease in LDL cholesterol levels, while lovastatin has been found to have an average decrease in LDL-C of 25-40\\\\%. Potency is thought to correlate to tissue permeability as the more lipophilic statins such as lovastatin are thought to enter endothelial cells by passive diffusion, as opposed to hydrophilic statins such as [pravastatin] and [rosuvastatin] which are taken up into hepatocytes through OATP1B1 (org... Lovastatin is a cholesterol-lowering agent that belongs to the class of medications called statins. It was the second agent of this class discovered. It was discovered by Alfred Alberts and his team at Merck in 1978 after screening only 18 compounds over 2 weeks. The agent, also known as mevinolin, was isolated from the fungi Aspergillus terreus. Research on this compound was suddenly shut down in 1980 and the drug was not approved until 1987. Interesting, Akira Endo at Sankyo Co. (Japan) patented lovastatin isolated from Monascus ruber four months before Merck. Lovastatin was found to be 2 times more potent than its predecessor, mevastatin, the first discovered statin. Like mevastatin, lovastatin is structurally similar to hydroxymethylglutarate (HMG), a substituent of HMG-Coenzyme A (HMG-CoA), a substrate of the cholesterol biosynthesis pathway via the mevalonic acid pathway. Lovastatin is a competitive inhibitor of HMG-CoA reductase with a binding affinity 20,000 times greater than HMG-CoA. Lovastatin differs structurally from mevastatin by a single methyl group at the 6 position. Lovastatin is a prodrug that is activated by in vivo hydrolysis of the lactone ring. It, along with mevastatin, has served as one of the lead compounds for the development of the synthetic compounds used today. A fatty acid ester that is mevastatin carrying an additional methyl group on the carbobicyclic skeleton. It is used in as an anticholesteremic drug and has been found in fungal species such as Aspergillus terreus and Pleurotus ostreatus (oyster mushroom). C - Cardiovascular system > C10 - Lipid modifying agents > C10A - Lipid modifying agents, plain > C10AA - Hmg coa reductase inhibitors D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D004791 - Enzyme Inhibitors > D019161 - Hydroxymethylglutaryl-CoA Reductase Inhibitors C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent C471 - Enzyme Inhibitor > C1655 - HMG-CoA Reductase Inhibitor D009676 - Noxae > D000963 - Antimetabolites CONFIDENCE standard compound; EAWAG_UCHEM_ID 3139 CONFIDENCE standard compound; INTERNAL_ID 2212 Lovastatin is a cell-permeable HMG-CoA reductase inhibitor used to lower cholesterol. Lovastatin is a cell-permeable HMG-CoA reductase inhibitor used to lower cholesterol.
(R)-Higenamine
(RS)-norcoclaurine is a norcoclaurine. It is a conjugate base of a (RS)-norcoclaurinium. Higenamine is under investigation in clinical trial NCT01451229 (Pharmacokinetics and Pharmacodynamics of Higenamine in Chinese Healthy Subjects). Higenamine is a natural product found in Delphinium caeruleum, Aconitum triphyllum, and other organisms with data available. (R)-Higenamine is found in coffee and coffee products. (R)-Higenamine is an alkaloid from the seed embryo of Nelumbo nucifera (East India lotus). D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents D000893 - Anti-Inflammatory Agents D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents D018501 - Antirheumatic Agents
L-Leucine
Leucine (Leu) or L-leucine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (‚ÄìNH2) and carboxyl (‚ÄìCOOH) functional groups, along with a side chain (R group) specific to each amino acid. L-leucine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Leucine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aliphatic amino acid. Leucine is essential in humans, meaning the body cannot synthesize it, and it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, beans and legumes. L-Leucine is a branched chain amino acid (BCAA). The BCAAs consist of leucine, valine and isoleucine (and occasionally threonine). BCAAs are essential amino acids whose carbon structure is marked by a branch point at the beta-carbon position. BCAAs are critical to human life and are particularly involved in stress, energy and muscle metabolism. BCAA supplementation as therapy, both oral and intravenous, in human health and disease holds great promise. BCAAs have different metabolic routes, with valine going solely to carbohydrates (glucogenic), leucine solely to fats (ketogenic) and isoleucine being both a glucogenic and a ketogenic amino acid. The different metabolism accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine respectively. The primary metabolic end products of leucine metabolism are acetyl-CoA and acetoacetate; consequently, it is one of the two exclusively ketogenic amino acids, with lysine being the other. Leucine is the most important ketogenic amino acid in humans. The vast majority of l-leucine metabolism is initially catalyzed by the branched-chain amino acid aminotransferase enzyme, producing alpha-ketoisocaproate (alpha-KIC). alpha-KIC is metabolized by the mitochondrial enzyme branched-chain alpha-ketoacid dehydrogenase, which converts it to isovaleryl-CoA. Isovaleryl-CoA is subsequently metabolized by the enzyme isovaleryl-CoA dehydrogenase and converted to beta-methylcrotonyl-CoA (MC-CoA), which is used in the synthesis of acetyl-CoA and other compounds. During biotin deficiency, HMB can be synthesized from MC-CoA via enoyl-CoA hydratase and an unknown thioesterase enzyme, which convert MC-CoA into HMB-CoA and HMB-CoA into HMB respectively. Leucine has the capacity to directly stimulate myofibrillar muscle protein synthesis (PMID 15051860). This effect of leucine arises results from its role as an activator of the mechanistic target of rapamycin (mTOR) (PMID 23551944) a serine-threonine protein kinase that regulates protein biosynthesis and cell growth. The activation of mTOR by leucine is mediated through Rag GTPases. Leucine, like other BCAAs, is associated with insulin resistance. In particular, higher levels of leucine are observed in the blood of diabetic mice, rats, and humans (PMID 25287287). BCAAs such as leucine have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. Persistently low leucine levels can result in decreased appetite, poor feeding, lethargy, poor growth, weight loss, skin rashes, hair loss, and desquamation. Many types of inborn errors of BCAA metabolism exist and these are marked by various abnormalities. The most common form is maple syrup urine disease, marked by a characteristic urinary odor. Other abnormalities are associated with a wide range of symptoms, such as mental retardation, ataxia, hypoglycemia, spinal muscle atrophy, rash, vomiting and excessive muscle movement. Most forms of BCAA metabolism errors are corrected by dietary res... L-leucine is the L-enantiomer of leucine. It has a role as a plant metabolite, an Escherichia coli metabolite, a Saccharomyces cerevisiae metabolite, a human metabolite, an algal metabolite and a mouse metabolite. It is a pyruvate family amino acid, a proteinogenic amino acid, a leucine and a L-alpha-amino acid. It is a conjugate base of a L-leucinium. It is a conjugate acid of a L-leucinate. It is an enantiomer of a D-leucine. It is a tautomer of a L-leucine zwitterion. An essential branched-chain amino acid important for hemoglobin formation. L-Leucine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Leucine is one of nine essential amino acids in humans (provided by food), Leucine is important for protein synthesis and many metabolic functions. Leucine contributes to regulation of blood-sugar levels; growth and repair of muscle and bone tissue; growth hormone production; and wound healing. Leucine also prevents breakdown of muscle proteins after trauma or severe stress and may be beneficial for individuals with phenylketonuria. Leucine is available in many foods and deficiency is rare. (NCI04) Leucine (abbreviated as Leu or L)[2] is a branched-chain л±-amino acid with the chemical formulaHO2CCH(NH2)CH2CH(CH3)2. Leucine is classified as a hydrophobic amino acid due to its aliphatic isobutyl side chain. It is encoded by six codons (UUA, UUG, CUU, CUC, CUA, and CUG) and is a major component of the subunits in ferritin, astacin, and other buffer proteins. Leucine is an essential amino acid, meaning that the human body cannot synthesize it, and it therefore must be ingested. It is important for hemoglobin formation. An essential branched-chain amino acid important for hemoglobin formation. See also: Isoleucine; Leucine (component of) ... View More ... Dietary supplement, nutrient [DFC]. (±)-Leucine is found in many foods, some of which are green bell pepper, italian sweet red pepper, green zucchini, and red bell pepper. L-Leucine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=61-90-5 (retrieved 2024-07-01) (CAS RN: 61-90-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1].
4-Methylumbelliferone
Beta-methylumbelliferone appears as colorless crystals. Insoluble in water. (NTP, 1992) 4-methylumbelliferone is a hydroxycoumarin that is umbelliferone substituted by a methyl group at position 4. It has a role as an antineoplastic agent and a hyaluronic acid synthesis inhibitor. It is functionally related to an umbelliferone. Hymecromone is a natural product found in Ferula fukanensis, Dalbergia volubilis, and other organisms with data available. 4-methylumbelliferone is a metabolite found in or produced by Saccharomyces cerevisiae. A coumarin derivative possessing properties as a spasmolytic, choleretic and light-protective agent. It is also used in ANALYTICAL CHEMISTRY TECHNIQUES for the determination of NITRIC ACID. 4-methylumbelliferone is a substrate for: Liver carboxylesterase 1, Cocaine esterase, and S-formylglutathione hydrolase. A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05A - Bile therapy A hydroxycoumarin that is umbelliferone substituted by a methyl group at position 4. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C29698 - Antispasmodic Agent D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported in part by CREST/JST. 4-Methylumbelliferone is a hyaluronic acid biosynthesis inhibitor with antitumoral and antimetastatic effects. 4-Methylumbelliferone is a hyaluronic acid biosynthesis inhibitor with antitumoral and antimetastatic effects.
Reserpine
Reserpine appears as white or cream to slightly yellow crystals or crystalline powder. Odorless with a bitter taste. (NTP, 1992) Reserpine is an alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. It has a role as an antihypertensive agent, a first generation antipsychotic, an adrenergic uptake inhibitor, an EC 3.4.21.26 (prolyl oligopeptidase) inhibitor, an environmental contaminant, a xenobiotic and a plant metabolite. It is an alkaloid ester, a methyl ester and a yohimban alkaloid. It is functionally related to a reserpic acid. An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use. The FDA withdrew its approval for the use of all oral dosage form drug products containing more than 1 mg of reserpine. Reserpine is a Catecholamine-depleting Sympatholytic. The physiologic effect of reserpine is by means of Decreased Sympathetic Activity. Reserpine is an oral antihypertensive medication that acts through inhibitor of alpha-adrenergic transmission and was one of the first antihypertensive agents introduced into clinical practice. Despite widescale use for many years, reserpine has not been shown to cause clinically apparent liver injury. Reserpine is a natural product found in Rauvolfia yunnanensis, Alstonia constricta, and other organisms with data available. Reserpine is an alkaloid, derived from the roots of Rauwolfia serpentine and vomitoria, and an adrenergic uptake inhibitor with antihypertensive effects. Reserpine is lipid soluble and can penetrate blood-brain barrier. This agent binds and inhibits catecholamine pump on the storage vesicles in central and peripheral adrenergic neurons, thereby inhibiting the uptake of norepinephrine, dopamine serotonin into presynaptic storage vesicles. This results in catecholamines and serotonin lingering in the cytoplasm where they are destroyed by intraneuronal monoamine oxidase, thereby causing the depletion of catecholamine and serotonin stores in central and peripheral nerve terminals. Depletion results in a lack of active transmitter discharge from nerve endings upon nerve depolarization, and consequently leads to a decreased heart rate and decreased arterial blood pressure as well as sedative effects. An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use. An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use. See also: Hydroflumethiazide; reserpine (component of); Polythiazide; reserpine (component of); Chlorthalidone; reserpine (component of) ... View More ... An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use. [PubChem] C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AA - Rauwolfia alkaloids D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators C1744 - Multidrug Resistance Modulator CONFIDENCE standard compound; EAWAG_UCHEM_ID 2682 [Raw Data] CBA02_Reserpine_pos_30eV.txt [Raw Data] CBA02_Reserpine_pos_10eV.txt [Raw Data] CBA02_Reserpine_pos_20eV.txt [Raw Data] CBA02_Reserpine_pos_40eV.txt [Raw Data] CBA02_Reserpine_pos_50eV.txt Reserpine is an inhibitor of the vesicular monoamine transporter 2 (VMAT2). Reserpine is an inhibitor of the vesicular monoamine transporter 2 (VMAT2).
Hypericin
Hypericin is found in alcoholic beverages. Hypericin is widespread in Hypericum species especially Hypericum perforatum (St Johns Wort) Hypericin is a red-coloured anthraquinone-derivative, which, together with hyperforin, is one of the principal active constituents of Hypericum (Saint Johns wort). Hypericin is believed to act as an antibiotic and non-specific kinase inhibitor. Hypericin may inhibit the action of the enzyme dopamine -hydroxylase, leading to increased dopamine levels, although thus possibly decreasing norepinephrine and epinephrine D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents Widespread in Hypericum subspecies especies Hypericum perforatum (St Johns Wort) D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D011838 - Radiation-Sensitizing Agents D000970 - Antineoplastic Agents C1907 - Drug, Natural Product D004791 - Enzyme Inhibitors Hypericin is a carbopolycyclic compound. It has a role as an antidepressant. It derives from a hydride of a bisanthene. Hypericin is a natural product found in Hypericum adenotrichum, Hypericum bithynicum, and other organisms with data available. Hypericin is an anthraquinone derivative that is naturally found in the yellow flower of Hypericum perforatum (St. Johns wort) with antidepressant, potential antiviral, antineoplastic and immunostimulating activities. Hypericin appears to inhibit the neuronal uptake of serotonin, norepinephrine, dopamine, gamma-amino butyric acid (GABA) and L-glutamate, which may contribute to its antidepressant effect. Hypericin may also prevent the replication of encapsulated viruses probably due to inhibition of the assembly and shedding of virus particles in infected cells. This agent also exerts potent phototoxic effects by triggering apoptotic signaling that results in formation of reactive oxygen species. Hypericin is a naturally occurring substance found in Hyperlcurn perforatum L. Hypericin is an inhibitor of PKC (protein kinase C), MAO (monoaminoxidase), dopamine-beta-hydroxylase, reverse transcriptase, telomerase and CYP (cytochrome P450). Hypericin shows antitumor, antiviral, antidepressive activities, and can induce apoptosis[1][2][3]. Hypericin is a naturally occurring substance found in Hyperlcurn perforatum L. Hypericin is an inhibitor of PKC (protein kinase C), MAO (monoaminoxidase), dopamine-beta-hydroxylase, reverse transcriptase, telomerase and CYP (cytochrome P450). Hypericin shows antitumor, antiviral, antidepressive activities, and can induce apoptosis[1][2][3].
Nomilin
Nomilin is a limonoid. 1-(Acetyloxy)-1,2-dihydroobacunoic acid e-lactone is a natural product found in Citrus latipes, Citrus hystrix, and other organisms with data available. Constituent of grapefruit (Citrus paradisi). Nomilin is found in lemon, sweet orange, and citrus. Nomilin is found in citrus. Nomilin is a constituent of grapefruit (Citrus paradisi) Nomilin is a limonoid compound obtained from the extracts of citrus fruits. Nomilin is an anti-obesity and anti-hyperglycemic agent [1][2]. Nomilin is a limonoid compound obtained from the extracts of citrus fruits. Nomilin is an anti-obesity and anti-hyperglycemic agent [1][2].
L-Proline
Proline (Pro), also known as L-proline is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. Proline is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Proline is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, non-polar amino acid. Proline is sometimes called an imino acid, although the IUPAC definition of an imine requires a carbon-nitrogen double bond. Proline is a non-essential amino acid that is synthesized from glutamic acid. It is an essential component of collagen and is important for proper functioning of joints and tendons. Proline is derived from the amino acid L-glutamate in which glutamate-5-semialdehyde is first formed by glutamate 5-kinase and glutamate-5-semialdehyde dehydrogenase (which requires NADH or NADPH). This semialdehyde can then either spontaneously cyclize to form 1-pyrroline-5-carboxylic acid, which is reduced to proline by pyrroline-5-carboxylate reductase, or turned into ornithine by ornithine aminotransferase, followed by cyclization by ornithine cyclodeaminase to form proline. L-Proline has been found to act as a weak agonist of the glycine receptor and of both NMDA and non-NMDA ionotropic glutamate receptors. It has been proposed to be a potential endogenous excitotoxin/neurotoxin. Studies in rats have shown that when injected into the brain, proline non-selectively destroys pyramidal and granule cells (PMID: 3409032 ). Therefore, under certain conditions proline can act as a neurotoxin and a metabotoxin. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of proline are associated with at least five inborn errors of metabolism, including hyperprolinemia type I, hyperprolinemia type II, iminoglycinuria, prolinemia type II, and pyruvate carboxylase deficiency. People with hyperprolinemia type I often do not show any symptoms even though they have proline levels in their blood between 3 and 10 times the normal level. Some individuals with hyperprolinemia type I exhibit seizures, intellectual disability, or other neurological or psychiatric problems. Hyperprolinemia type II results in proline levels in the blood between 10 and 15 times higher than normal, and high levels of a related compound called pyrroline-5-carboxylate. Hyperprolinemia type II has signs and symptoms that vary in severity and is more likely than type I to involve seizures or intellectual disability. L-proline is pyrrolidine in which the pro-S hydrogen at position 2 is substituted by a carboxylic acid group. L-Proline is the only one of the twenty DNA-encoded amino acids which has a secondary amino group alpha to the carboxyl group. It is an essential component of collagen and is important for proper functioning of joints and tendons. It also helps maintain and strengthen heart muscles. It has a role as a micronutrient, a nutraceutical, an algal metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite and a member of compatible osmolytes. It is a glutamine family amino acid, a proteinogenic amino acid, a proline and a L-alpha-amino acid. It is a conjugate base of a L-prolinium. It is a conjugate acid of a L-prolinate. It is an enantiomer of a D-proline. It is a tautomer of a L-proline zwitterion. Proline is one of the twenty amino acids used in living organisms as the building blocks of proteins. Proline is sometimes called an imino acid, although the IUPAC definition of an imine requires a carbon-nitrogen double bond. Proline is a non-essential amino acid that is synthesized from glutamic acid. It is an essential component of collagen and is important for proper functioning of joints and tendons. L-Proline is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Proline is a cyclic, nonessential amino acid (actually, an imino acid) in humans (synthesized from glutamic acid and other amino acids), Proline is a constituent of many proteins. Found in high concentrations in collagen, proline constitutes almost a third of the residues. Collagen is the main supportive protein of skin, tendons, bones, and connective tissue and promotes their health and healing. (NCI04) L-Proline is one of the twenty amino acids used in living organisms as the building blocks of proteins. Proline is sometimes called an imino acid, although the IUPAC definition of an imine requires a carbon-nitrogen double bond. Proline is a non-essential amino acid that is synthesized from glutamic acid. It is an essential component of collagen and is important for proper functioning of joints and tendons. A non-essential amino acid that is synthesized from GLUTAMIC ACID. It is an essential component of COLLAGEN and is important for proper functioning of joints and tendons. Pyrrolidine in which the pro-S hydrogen at position 2 is substituted by a carboxylic acid group. L-Proline is the only one of the twenty DNA-encoded amino acids which has a secondary amino group alpha to the carboxyl group. It is an essential component of collagen and is important for proper functioning of joints and tendons. It also helps maintain and strengthen heart muscles. Flavouring ingredient; dietary supplement L-Proline is one of the twenty amino acids used in living organisms as the building blocks of proteins. L-Proline is one of the twenty amino acids used in living organisms as the building blocks of proteins.
Artemisinic
(+)-artemisinic acid is a monocarboxylic acid that is prop-2-enoic acid which is substituted at position 2 by a 4,7-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-1-yl group (the 1S,4R,4aS,8aR diastereoisomer). It is a sesquiterpenoid precursor of artemisinin, obtained from sweet wormwood, Artemisia annua. It has a role as a metabolite. It is a monocarboxylic acid, a carbobicyclic compound, a sesquiterpenoid and a member of octahydronaphthalenes. It is functionally related to a (+)-artemisinic alcohol. It is a conjugate acid of a (+)-artemisinate. Artemisinic acid is a natural product found in Artemisia apiacea, Artemisia annua, and other organisms with data available. A monocarboxylic acid that is prop-2-enoic acid which is substituted at position 2 by a 4,7-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-1-yl group (the 1S,4R,4aS,8aR diastereoisomer). It is a sesquiterpenoid precursor of artemisinin, obtained from sweet wormwood, Artemisia annua. D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides Artemisinic acid (Qing Hao acid), an amorphane sesquiterpene isolated from Artemisia annua L., possesses a variety of pharmacological activity, such as antimalarial activity, anti-tumor activity, antipyretic effect, antibacterial activity, allelopathy effect and anti-adipogenesis effect[1]. Artemisinic acid (Qing Hao acid), an amorphane sesquiterpene isolated from Artemisia annua L., possesses a variety of pharmacological activity, such as antimalarial activity, anti-tumor activity, antipyretic effect, antibacterial activity, allelopathy effect and anti-adipogenesis effect[1].
Taurine
Essential nutrient obtained from diet and by in vivo synthysis from methionine and cysteine. Present in meats, fish, legumes, human milk, molluscs and other foods. Dietary supplement, e.g. in Red Bull drink. Taurine is a sulfur amino acid like methionine, cystine, cysteine and homocysteine. It is a lesser-known amino acid because it is not incorporated into the structural building blocks of protein. Yet taurine is an essential amino acid in pre-term and newborn infants of humans and many other species. Adults can synthesize their own taurine, yet are probably dependent in part on dietary taurine. Taurine is abundant in the brain, heart, breast, gallbladder and kidney and has important roles in health and disease in these organs. Taurine has many diverse biological functions serving as a neurotransmitter in the brain, a stabilizer of cell membranes and a facilitator in the transport of ions such as sodium, potassium, calcium and magnesium. Taurine is highly concentrated in animal and fish protein, which are good sources of dietary taurine. It can be synthesized by the body from cysteine when vitamin B6 is present. Deficiency of taurine occurs in premature infants and neonates fed formula milk, and in various disease states. Inborn errors of taurine metabolism have been described. OMIM 168605, an unusual neuropsychiatric disorder inherited in an autosomal dominant fashion through 3 generations of a family. Symptoms began late in the fifth decade in 6 affected persons and death occurred after 4 to 6 years. The earliest and most prominent symptom was mental depression not responsive to antidepressant drugs or electroconvulsive therapy. Sleep disturbances, exhaustion and marked weight loss were features. Parkinsonism developed later, and respiratory failure occurred terminally. OMIM 145350 describes congestive cardiomyopathy and markedly elevated urinary taurine levels (about 5 times normal). Other family members had late or holosystolic mitral valve prolapse and elevated urinary taurine values (about 2.5 times normal). In 2 with mitral valve prolapse, congestive cardiomyopathy eventually developed while the amounts of urinary taurine doubled. Taurine, after GABA, is the second most important inhibitory neurotransmitter in the brain. Its inhibitory effect is one source of taurines anticonvulsant and antianxiety properties. It also lowers glutamic acid in the brain, and preliminary clinical trials suggest taurine may be useful in some forms of epilepsy. Taurine in the brain is usually associated with zinc or manganese. The amino acids alanine and glutamic acid, as well as pantothenic acid, inhibit taurine metabolism while vitamins A and B6, zinc and manganese help build taurine. Cysteine and B6 are the nutrients most directly involved in taurine synthesis. Taurine levels have been found to decrease significantly in many depressed patients. One reason that the findings are not entirely clear is because taurine is often elevated in the blood of epileptics who need it. It is often difficult to distinguish compensatory changes in human biochemistry from true metabolic or deficiency disease. Low levels of taurine are found in retinitis pigmentosa. Taurine deficiency in experimental animals produces degeneration of light-sensitive cells. Therapeutic applications of taurine to eye disease are likely to be forthcoming. Taurine has many important metabolic roles. Supplements can stimulate prolactin and insulin release. The parathyroid gland makes a peptide hormone called glutataurine (glutamic acid-taurine), which further demonstrates taurines role in endocrinology. Taurine increases bilirubin and cholesterol excretion in bile, critical to normal gallbladder function. It seems to inhibit the effect of morphine and potentiates the effects of opiate antagonists. Low plasma taurine levels have been found in a variety of conditions, i.e., depression, hypertension, hypothyroidism, gout, institutionalized patients, infertility, obesity, kidney fa... Taurine is a sulfur amino acid like methionine, cystine, cysteine, and homocysteine. It is a lesser-known amino acid because it is not incorporated into the structural building blocks of protein. Yet taurine is an essential amino acid in pre-term and newborn infants of humans and many other species. Adults can synthesize their own taurine, yet are probably dependent, in part, on dietary taurine. Taurine is abundant in the brain, heart, breast, gallbladder, and kidney and has important roles in health and disease in these organs. Taurine has many diverse biological functions including serving as a neurotransmitter in the brain, a stabilizer of cell membranes, and a facilitator in the transport of ions such as sodium, potassium, calcium, and magnesium. Taurine is highly concentrated in animal and fish protein, which are good sources of dietary taurine. It can be synthesized by the body from cysteine when vitamin B6 is present. Deficiency of taurine occurs in premature infants, neonates fed formula milk, and various disease states. Several inborn errors of taurine metabolism have been described. Perry syndrome is an unusual neuropsychiatric disorder inherited in an autosomal dominant fashion through three generations of a family. Symptoms began late in the fifth decade in 6 affected persons and death occurred after 4 to 6 years. The earliest and most prominent symptom was mental depression that was not responsive to antidepressant drugs or electroconvulsive therapy. Sleep disturbances, exhaustion, and marked weight loss were features. Parkinsonism developed later, and respiratory failure occurred terminally (OMIM: 168605). Hypertaurinuric cardiomyopathy describes congestive cardiomyopathy and markedly elevated urinary taurine levels (about 5 times normal). Other family members had late or holosystolic mitral valve prolapse and elevated urinary taurine values (about 2.5 times normal). In two with mitral valve prolapse, congestive cardiomyopathy eventually developed while the amounts of urinary taurine doubled (OMIM: 145350). Taurine, after GABA, is the second most important inhibitory neurotransmitter in the brain. Its inhibitory effect is one source of taurines anticonvulsant and antianxiety properties. It also lowers glutamic acid in the brain, and preliminary clinical trials suggest taurine may be useful in some forms of epilepsy. Taurine in the brain is usually associated with zinc or manganese. The amino acids alanine and glutamic acid, as well as pantothenic acid, inhibit taurine metabolism while vitamins A and B6, zinc, and manganese help build taurine. Cysteine and B6 are the nutrients most directly involved in taurine synthesis. Taurine levels have been found to decrease significantly in many depressed patients. One reason that the findings are not entirely clear is that taurine is often elevated in the blood of epileptics who need it. It is often difficult to distinguish compensatory changes in human biochemistry from true metabolic or deficiency disease. Low levels of taurine are found in retinitis pigmentosa. Taurine deficiency in experimental animals produces degeneration of light-sensitive cells. Therapeutic applications of taurine to eye disease are likely to be forthcoming. Taurine has many important metabolic roles. Supplements can stimulate prolactin and insulin release. The parathyroid gland makes a peptide hormone called glutataurine (glutamic acid-taurine), which further demonstrates taurines role in endocrinology. Taurine increases bilirubin and cholesterol excretion in bile, critical to normal gallbladder function. It seems to inhibit the effect of morphine and potentiates the effects of opiate antagonists. Low plasma taurine levels have been found in a variety of conditions, i.e. depression, hypertension, hypothyroidism, gout, institutionalized patients, infertility, obesity, kidney failure, and others (http://www.dcnutrition.com/AminoAcids/). Moreover, taurine is found to be associated with maple syrup uri... Large white crystals or white powder. Taurine is an amino sulfonic acid that is the 2-amino derivative of ethanesulfonic acid. It is a naturally occurring amino acid derived from methionine and cysteine metabolism. An abundant component of fish- and meat-based foods, it has been used as an oral supplement in the treatment of disorders such as cystic fibrosis and hypertension. It has a role as a human metabolite, an antioxidant, a mouse metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a glycine receptor agonist, a nutrient and a radical scavenger. It is a conjugate acid of a 2-aminoethanesulfonate. It is a tautomer of a taurine zwitterion. Taurine, whose chemical name is 2-aminoethanesulfonic acid, is one of the most abundant amino acids in several organs. It plays important role in essential biological processes. This conditional amino acid can be either be manufactured by the body or obtained in the diet mainly by the consumption of fish and meat. The supplements containing taurine were FDA approved by 1984 and they are hypertonic injections composed by cristalline amino acids. Taurine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). A conditionally essential nutrient, important during mammalian development. It is present in milk but is isolated mostly from ox bile and strongly conjugates bile acids. See also: ... View More ... An amino sulfonic acid that is the 2-amino derivative of ethanesulfonic acid. It is a naturally occurring amino acid derived from methionine and cysteine metabolism. An abundant component of fish- and meat-based foods, it has been used as an oral supplement in the treatment of disorders such as cystic fibrosis and hypertension. [Spectral] Taurine (exact mass = 125.01466) and L-Threonine (exact mass = 119.05824) and 4-Hydroxy-L-proline (exact mass = 131.05824) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Taurine (exact mass = 125.01466) and L-Glutamate (exact mass = 147.05316) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Taurine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=107-35-7 (retrieved 2024-06-29) (CAS RN: 107-35-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Taurine, a sulphur-containing amino acid and an organic osmolyte involved in cell volume regulation, provides a substrate for the formation of bile salts, and plays a role in the modulation of intracellular free calcium concentration. Taurine has the ability to activate autophagy in adipocytes[1][2][3]. Taurine, a sulphur-containing amino acid and an organic osmolyte involved in cell volume regulation, provides a substrate for the formation of bile salts, and plays a role in the modulation of intracellular free calcium concentration. Taurine has the ability to activate autophagy in adipocytes[1][2][3].
Sudan_I
C.i. solvent yellow 14 appears as dark reddish-yellow leaflets or orange powder. Slight odor. (NTP, 1992) Sudan I is a monoazo compound. It has a role as a dye. It is functionally related to a 2-naphthol. D009676 - Noxae > D002273 - Carcinogens D004396 - Coloring Agents CONFIDENCE standard compound; INTERNAL_ID 5651
(-)-Gossypol
Gossypol has been used in trials studying the treatment of Non-small Cell Lung Cancer. (-)-Gossypol or (R)-Gossypol, is the R-isomer of [Gossypol]. Gossypol is a natural product found in Malva pseudolavatera, Hibiscus syriacus, and other organisms with data available. Gossypol is an orally-active polyphenolic aldehyde with potential antineoplastic activity. Derived primarily from unrefined cottonseed oil, gossypol induces cell cycle arrest at the G0/G1 phase, thereby inhibiting DNA replication and inducing apoptosis. This agent also inhibits cell-signaling enzymes, resulting in inhibition of cell growth, and may act as a male contraceptive. (-)-Gossypol is found in fats and oils. (-)-Gossypol is a constituent of Gossypium hirsutum (cotton).(-)-gossypol has been shown to exhibit anti-tumor, anti-cancer and anti-proliferative functions (A7832, A7833, A7834). A dimeric sesquiterpene found in cottonseed (GOSSYPIUM). The (-) isomer is active as a male contraceptive (CONTRACEPTIVE AGENTS, MALE) whereas toxic symptoms are associated with the (+) isomer. Gossypol, also known as gossypol, (+)-isomer or (-)-gossypol, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Thus, gossypol is considered to be an isoprenoid lipid molecule. Gossypol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Gossypol can be found in cottonseed, okra, soy bean, and sunflower, which makes gossypol a potential biomarker for the consumption of these food products. Gossypol is a non-carcinogenic (not listed by IARC) potentially toxic compound. Among other things, it has been tested as a male oral contraceptive in China. In addition to its putative contraceptive properties, gossypol has also long been known to possess antimalarial properties. Other researchers are investigating the anticancer properties of gossypol . Gossypol may cause apoptosis via the regulation of Bax and Bcl-2 proteins. It is also an inhibitor of calcineurin and protein kinases C, and has been shown to bind calmodulin (L1239) (T3DB). C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C61074 - Serine/Threonine Kinase Inhibitor (-)-Gossypol is found in fats and oils. (-)-Gossypol is a constituent of Gossypium hirsutum (cotton) D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product C1907 - Drug, Natural Product Gossypol binds to Bcl-xL protein and Bcl-2 protein with Kis of 0.5-0.6 μM and 0.2-0.3 mM, respectively. Gossypol binds to Bcl-xL protein and Bcl-2 protein with Kis of 0.5-0.6 μM and 0.2-0.3 mM, respectively.
Tabersonine
Tabersonine is a monoterpenoid indole alkaloid with cytotoxic activity. It has a role as an antineoplastic agent and a metabolite. It is an alkaloid ester, a monoterpenoid indole alkaloid, a methyl ester and an organic heteropentacyclic compound. It is a conjugate base of a tabersoninium(1+). Tabersonine is a natural product found in Voacanga schweinfurthii, Tabernaemontana citrifolia, and other organisms with data available. A monoterpenoid indole alkaloid with cytotoxic activity. Annotation level-1 Tabersonine is an indole alkaloid mainly isolated from Catharanthus roseus. Tabersonine disrupts Aβ(1-42) aggregation and ameliorates Aβ aggregate-induced cytotoxicity. Tabersonine has anti-inflammatory activities and acts as a potential therapeutic candidate for the treatment of ALI/ARDS[1]. Tabersonine is an indole alkaloid mainly isolated from Catharanthus roseus. Tabersonine disrupts Aβ(1-42) aggregation and ameliorates Aβ aggregate-induced cytotoxicity. Tabersonine has anti-inflammatory activities and acts as a potential therapeutic candidate for the treatment of ALI/ARDS[1].
OJV-VI
Ophiopogonin D is a steroid saponin. Ophiopogonin D is a natural product found in Ophiopogon jaburan, Ophiopogon japonicus, and Liriope muscari with data available. Ophiopogonin D, isolated from the tubers of Ophiopogon japonicus, is a rare naturally occurring C29 steroidal glycoside[1]. Ophiopogonin D is a CYP2J3 inducer that significantly inhibits Ang II induced NF-κB nuclear translocation, IκBα down-regulation, intracellular Ca2+ overload and activation of pro-inflammatory cytokines by increasing the expression of CYP2J2/EETs and PPARα in human umbilical vein endothelial cells (HUVECs). Ophiopogonin D has been used to treat inflammatory and cardiovascular diseases for thousands of years[2]. Ophiopogonin D, isolated from the tubers of Ophiopogon japonicus, is a rare naturally occurring C29 steroidal glycoside[1]. Ophiopogonin D is a CYP2J3 inducer that significantly inhibits Ang II induced NF-κB nuclear translocation, IκBα down-regulation, intracellular Ca2+ overload and activation of pro-inflammatory cytokines by increasing the expression of CYP2J2/EETs and PPARα in human umbilical vein endothelial cells (HUVECs). Ophiopogonin D has been used to treat inflammatory and cardiovascular diseases for thousands of years[2]. Ophiopogonin D, isolated from the tubers of Ophiopogon japonicus, is a rare naturally occurring C29 steroidal glycoside[1]. Ophiopogonin D is a CYP2J3 inducer that significantly inhibits Ang II induced NF-κB nuclear translocation, IκBα down-regulation, intracellular Ca2+ overload and activation of pro-inflammatory cytokines by increasing the expression of CYP2J2/EETs and PPARα in human umbilical vein endothelial cells (HUVECs). Ophiopogonin D has been used to treat inflammatory and cardiovascular diseases for thousands of years[2].
Sudan_III
Sudan III is a bis(azo) compound that is 2-naphthol substituted at position 1 by a 4-{[(2-methylphenyl)diazenyl]phenyl}diazenyl group. A fat-soluble dye predominantly used for demonstrating triglycerides in frozen sections, but which may also stain some protein bound lipids in paraffin sections. It has a role as a fluorochrome, a histological dye and a carcinogenic agent. It is a member of azobenzenes, a bis(azo) compound and a member of naphthols. It is functionally related to a 2-naphthol. D004396 - Coloring Agents
1,4-Naphthoquinone
1,4-naphtoquinone, also known as 1,4-naphthalenedione or 1,4-dihydro-1,4-diketonaphthalene, is a member of the class of compounds known as naphthoquinones. Naphthoquinones are compounds containing a naphthohydroquinone moiety, which consists of a benzene ring linearly fused to a bezene-1,4-dione (quinone). 1,4-naphtoquinone is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 1,4-naphtoquinone can be synthesized from naphthalene. 1,4-naphtoquinone is also a parent compound for other transformation products, including but not limited to, 2,3-dimethoxynaphthalene-1,4-dione, alisiaquinone A, and 1,4-naphthoquinone-2-carboxylic acid. 1,4-naphtoquinone can be found in liquor, which makes 1,4-naphtoquinone a potential biomarker for the consumption of this food product. 1,4-naphtoquinone is a non-carcinogenic (not listed by IARC) potentially toxic compound. CONFIDENCE standard compound; INTERNAL_ID 18 1,4-Naphthoquinone is a potential pharmacophore for inhibition of both MAO (monoamine oxidase) and DNA topoisomerase activities, this latter associated with antitumor activity[1].
Citric acid
Citric acid (citrate) is a tricarboxylic acid, an organic acid with three carboxylate groups. Citrate is an intermediate in the TCA cycle (also known as the Tricarboxylic Acid cycle, the Citric Acid cycle or Krebs cycle). The TCA cycle is a central metabolic pathway for all animals, plants, and bacteria. As a result, citrate is found in all living organisms, from bacteria to plants to animals. In the TCA cycle, the enzyme citrate synthase catalyzes the condensation of oxaloacetate with acetyl CoA to form citrate. Citrate then acts as the substrate for the enzyme known as aconitase and is then converted into aconitic acid. The TCA cycle ends with regeneration of oxaloacetate. This series of chemical reactions in the TCA cycle is the source of two-thirds of the food-derived energy in higher organisms. Citrate can be transported out of the mitochondria and into the cytoplasm, then broken down into acetyl-CoA for fatty acid synthesis, and into oxaloacetate. Citrate is a positive modulator of this conversion, and allosterically regulates the enzyme acetyl-CoA carboxylase, which is the regulating enzyme in the conversion of acetyl-CoA into malonyl-CoA (the commitment step in fatty acid synthesis). In short, citrate is transported into the cytoplasm, converted into acetyl CoA, which is then converted into malonyl CoA by acetyl CoA carboxylase, which is allosterically modulated by citrate. In mammals and other vertebrates, Citrate is a vital component of bone, helping to regulate the size of apatite crystals (PMID: 21127269). Citric acid is found in citrus fruits, most concentrated in lemons and limes, where it can comprise as much as 8\\\\\% of the dry weight of the fruit. Citric acid is a natural preservative and is also used to add an acidic (sour) taste to foods and carbonated drinks. Because it is one of the stronger edible acids, the dominant use of citric acid is as a flavoring and preservative in food and beverages, especially soft drinks and candies. Citric acid is an excellent chelating agent, binding metals by making them soluble. It is used to remove and discourage the buildup of limescale from boilers and evaporators. It can be used to treat water, which makes it useful in improving the effectiveness of soaps and laundry detergents. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium chelating ability. Intolerance to citric acid in the diet is known to exist. Little information is available as the condition appears to be rare, but like other types of food intolerance it is often described as a "pseudo-allergic" reaction. Citric acid appears as colorless, odorless crystals with an acid taste. Denser than water. (USCG, 1999) Citric acid is a tricarboxylic acid that is propane-1,2,3-tricarboxylic acid bearing a hydroxy substituent at position 2. It is an important metabolite in the pathway of all aerobic organisms. It has a role as a food acidity regulator, a chelator, an antimicrobial agent and a fundamental metabolite. It is a conjugate acid of a citrate(1-) and a citrate anion. A key intermediate in metabolism. It is an acid compound found in citrus fruits. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium-chelating ability. Citric acid is one of the active ingredients in Phexxi, a non-hormonal contraceptive agent that was approved by the FDA on May 2020. It is also used in combination with magnesium oxide to form magnesium citrate, an osmotic laxative. Citric acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Anhydrous citric acid is a Calculi Dissolution Agent and Anti-coagulant. The mechanism of action of anhydrous citric acid is as an Acidifying Activity and Calcium Chelating Activity. The physiologic effect of anhydrous citric acid is by means of Decreased Coagulation Factor Activity. Anhydrous Citric Acid is a tricarboxylic acid found in citrus fruits. Citric acid is used as an excipient in pharmaceutical preparations due to its antioxidant properties. It maintains stability of active ingredients and is used as a preservative. It is also used as an acidulant to control pH and acts as an anticoagulant by chelating calcium in blood. A key intermediate in metabolism. It is an acid compound found in citrus fruits. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium chelating ability. See also: Citric Acid Monohydrate (related). Citrate, also known as anhydrous citric acid or 2-hydroxy-1,2,3-propanetricarboxylic acid, belongs to tricarboxylic acids and derivatives class of compounds. Those are carboxylic acids containing exactly three carboxyl groups. Citrate is soluble (in water) and a weakly acidic compound (based on its pKa). Citrate can be found in a number of food items such as ucuhuba, loquat, bayberry, and longan, which makes citrate a potential biomarker for the consumption of these food products. Citrate can be found primarily in most biofluids, including saliva, sweat, feces, and blood, as well as throughout all human tissues. Citrate exists in all living species, ranging from bacteria to humans. In humans, citrate is involved in several metabolic pathways, some of which include the oncogenic action of succinate, the oncogenic action of fumarate, the oncogenic action of 2-hydroxyglutarate, and congenital lactic acidosis. Citrate is also involved in several metabolic disorders, some of which include 2-ketoglutarate dehydrogenase complex deficiency, pyruvate dehydrogenase deficiency (E2), fumarase deficiency, and glutaminolysis and cancer. Moreover, citrate is found to be associated with lung Cancer, tyrosinemia I, maple syrup urine disease, and propionic acidemia. A citrate is a derivative of citric acid; that is, the salts, esters, and the polyatomic anion found in solution. An example of the former, a salt is trisodium citrate; an ester is triethyl citrate. When part of a salt, the formula of the citrate ion is written as C6H5O73− or C3H5O(COO)33− . A tricarboxylic acid that is propane-1,2,3-tricarboxylic acid bearing a hydroxy substituent at position 2. It is an important metabolite in the pathway of all aerobic organisms. Citric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=77-92-9 (retrieved 2024-07-01) (CAS RN: 77-92-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3]. Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3].
Scopolin
Scopolin is a member of the class of coumarins that is scopoletin attached to a beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. It has a role as a plant metabolite. It is a monosaccharide derivative, a member of coumarins and a beta-D-glucoside. It is functionally related to a scopoletin. Scopolin is a natural product found in Artemisia ordosica, Astragalus onobrychis, and other organisms with data available. See also: Chamaemelum nobile flower (part of). A member of the class of coumarins that is scopoletin attached to a beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. Scopolin is a coumarin isolated from Arabidopsis thaliana (Arabidopsis) roots[1]. Scopolin attenuated hepatic steatosis through activation of SIRT1-mediated signaling cascades[2]. Scopolin is a coumarin isolated from Arabidopsis thaliana (Arabidopsis) roots[1]. Scopolin attenuated hepatic steatosis through activation of SIRT1-mediated signaling cascades[2]. Scopolin is a coumarin isolated from Arabidopsis thaliana (Arabidopsis) roots[1]. Scopolin attenuated hepatic steatosis through activation of SIRT1-mediated signaling cascades[2].
Bergaptol
Bergaptol is a member of psoralens and a 5-hydroxyfurocoumarin. It is a conjugate acid of a bergaptol(1-). Bergaptol is a natural product found in Citrus canaliculata, Hansenia forbesii, and other organisms with data available. Bergaptol is a secondary metabolite of psoralen which has been hydroxylated by liver enzymes during phase I metabolism. Bergaptol is a biomarker for the consumption of citrus fruits. Present in various citrus subspecies Bergaptol is found in many foods, some of which are common hazelnut, hazelnut, alaska blueberry, and groundcherry. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Bergaptol is an inhibitor of debenzylation of the CYP3A4 enzyme with an IC50 of 24.92 uM. Recent studies have shown that it has anti-proliferative and anti-cancer properties. Bergaptol is an inhibitor of debenzylation of the CYP3A4 enzyme with an IC50 of 24.92 uM. Recent studies have shown that it has anti-proliferative and anti-cancer properties.
L-Phenylalanine
Phenylalanine (Phe), also known as L-phenylalanine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (‚ÄìNH2) and carboxyl (‚ÄìCOOH) functional groups, along with a side chain (R group) specific to each amino acid. L-phenylalanine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Phenylalanine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aromatic, non-polar amino acid. In humans, phenylalanine is an essential amino acid and the precursor of the amino acid tyrosine. Like tyrosine, phenylalanine is also a precursor for catecholamines including tyramine, dopamine, epinephrine, and norepinephrine. Catecholamines are neurotransmitters that act as adrenalin-like substances. Interestingly, several psychotropic drugs (mescaline, morphine, codeine, and papaverine) also have phenylalanine as a constituent. Phenylalanine is highly concentrated in the human brain and plasma. Normal metabolism of phenylalanine requires biopterin, iron, niacin, vitamin B6, copper, and vitamin C. An average adult ingests 5 g of phenylalanine per day and may optimally need up to 8 g daily. Phenylalanine is highly concentrated in a number of high protein foods, such as meat, cottage cheese, and wheat germ. An additional dietary source of phenylalanine is artificial sweeteners containing aspartame (a methyl ester of the aspartic acid/phenylalanine dipeptide). As a general rule, aspartame should be avoided by phenylketonurics and pregnant women. When present in sufficiently high levels, phenylalanine can act as a neurotoxin and a metabotoxin. A neurotoxin is a compound that disrupts or attacks neural cells and neural tissue. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of phenylalanine are associated with at least five inborn errors of metabolism, including Hartnup disorder, hyperphenylalaninemia due to guanosine triphosphate cyclohydrolase deficiency, phenylketonuria (PKU), tyrosinemia type 2 (or Richner-Hanhart syndrome), and tyrosinemia type III (TYRO3). Phenylketonurics have elevated serum plasma levels of phenylalanine up to 400 times normal. High plasma concentrations of phenylalanine influence the blood-brain barrier transport of large neutral amino acids. The high plasma phenylalanine concentrations increase phenylalanine entry into the brain and restrict the entry of other large neutral amino acids (PMID: 19191004). Phenylalanine has been found to interfere with different cerebral enzyme systems. Untreated phenylketonuria (PKU) can lead to intellectual disability, seizures, behavioural problems, and mental disorders. It may also result in a musty smell and lighter skin. Classic PKU dramatically affects myelination and white matter tracts in untreated infants; this may be one major cause of neurological disorders associated with phenylketonuria. Mild phenylketonuria can act as an unsuspected cause of hyperactivity, learning problems, and other developmental problems in children. It has been recently suggested that PKU may resemble amyloid diseases, such as Alzheimers disease and Parkinsons disease, due to the formation of toxic amyloid-like assemblies of phenylalanine (PMID: 22706200). Phenylalanine also has some potential benefits. Phenylalanine can act as an effective pain reliever. Its use in premenstrual syndrome and Parkinsons may enhance the effects of acupuncture and electric transcutaneous nerve stimulation (TENS). Phenylalanine and tyrosine, like L-DOPA, produce a catecholamine-like effect. Phenylalanine is better absorbed than tyrosine and may cause fewer headaches. Low phenylalanine diets have been prescribed for certain cancers with mixed results. For instance, some tumours use more phen... L-phenylalanine is an odorless white crystalline powder. Slightly bitter taste. pH (1\\\\\\% aqueous solution) 5.4 to 6. (NTP, 1992) L-phenylalanine is the L-enantiomer of phenylalanine. It has a role as a nutraceutical, a micronutrient, an Escherichia coli metabolite, a Saccharomyces cerevisiae metabolite, a plant metabolite, an algal metabolite, a mouse metabolite, a human xenobiotic metabolite and an EC 3.1.3.1 (alkaline phosphatase) inhibitor. It is an erythrose 4-phosphate/phosphoenolpyruvate family amino acid, a proteinogenic amino acid, a phenylalanine and a L-alpha-amino acid. It is a conjugate base of a L-phenylalaninium. It is a conjugate acid of a L-phenylalaninate. It is an enantiomer of a D-phenylalanine. It is a tautomer of a L-phenylalanine zwitterion. Phenylalanine is an essential aromatic amino acid that is a precursor of melanin, [dopamine], [noradrenalin] (norepinephrine), and [thyroxine]. L-Phenylalanine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Phenylalanine is an essential aromatic amino acid in humans (provided by food), Phenylalanine plays a key role in the biosynthesis of other amino acids and is important in the structure and function of many proteins and enzymes. Phenylalanine is converted to tyrosine, used in the biosynthesis of dopamine and norepinephrine neurotransmitters. The L-form of Phenylalanine is incorporated into proteins, while the D-form acts as a painkiller. Absorption of ultraviolet radiation by Phenylalanine is used to quantify protein amounts. (NCI04) Phenylalanine is an essential amino acid and the precursor for the amino acid tyrosine. Like tyrosine, it is the precursor of catecholamines in the body (tyramine, dopamine, epinephrine and norepinephrine). The psychotropic drugs (mescaline, morphine, codeine, and papaverine) also have phenylalanine as a constituent. Phenylalanine is a precursor of the neurotransmitters called catecholamines, which are adrenalin-like substances. Phenylalanine is highly concentrated in the human brain and plasma. Normal metabolism of phenylalanine requires biopterin, iron, niacin, vitamin B6, copper and vitamin C. An average adult ingests 5 g of phenylalanine per day and may optimally need up to 8 g daily. Phenylalanine is highly concentrated in high protein foods, such as meat, cottage cheese and wheat germ. A new dietary source of phenylalanine is artificial sweeteners containing aspartame. Aspartame appears to be nutritious except in hot beverages; however, it should be avoided by phenylketonurics and pregnant women. Phenylketonurics, who have a genetic error of phenylalanine metabolism, have elevated serum plasma levels of phenylalanine up to 400 times normal. Mild phenylketonuria can be an unsuspected cause of hyperactivity, learning problems, and other developmental problems in children. Phenylalanine can be an effective pain reliever. Its use in premenstrual syndrome and Parkinsons may enhance the effects of acupuncture and electric transcutaneous nerve stimulation (TENS). Phenylalanine and tyrosine, like L-dopa, produce a catecholamine effect. Phenylalanine is better absorbed than tyrosine and may cause fewer headaches. Low phenylalanine diets have been prescribed for certain cancers with mixed results. Some tumors use more phenylalanine (particularly melatonin-producing tumors called melanoma). One strategy is to exclude this amino acid from the diet, i.e., a Phenylketonuria (PKU) diet (compliance is a difficult issue; it is hard to quantify and is under-researched). The other strategy is just to increase phenylalanines competing amino acids, i.e., tryptophan, valine, isoleucine and leucine, but not tyrosine. An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE. See also: Plovamer (monomer of); Plovamer Acetate (monomer of) ... View More ... L-phenylalanine, also known as phe or f, belongs to phenylalanine and derivatives class of compounds. Those are compounds containing phenylalanine or a derivative thereof resulting from reaction of phenylalanine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. L-phenylalanine is slightly soluble (in water) and a moderately acidic compound (based on its pKa). L-phenylalanine can be found in watermelon, which makes L-phenylalanine a potential biomarker for the consumption of this food product. L-phenylalanine can be found primarily in most biofluids, including sweat, blood, urine, and cerebrospinal fluid (CSF), as well as throughout all human tissues. L-phenylalanine exists in all living species, ranging from bacteria to humans. In humans, L-phenylalanine is involved in a couple of metabolic pathways, which include phenylalanine and tyrosine metabolism and transcription/Translation. L-phenylalanine is also involved in few metabolic disorders, which include phenylketonuria, tyrosinemia type 2 (or richner-hanhart syndrome), and tyrosinemia type 3 (TYRO3). Moreover, L-phenylalanine is found to be associated with viral infection, dengue fever, hypothyroidism, and myocardial infarction. L-phenylalanine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Phenylalanine (Phe or F) is an α-amino acid with the formula C 9H 11NO 2. It can be viewed as a benzyl group substituted for the methyl group of alanine, or a phenyl group in place of a terminal hydrogen of alanine. This essential amino acid is classified as neutral, and nonpolar because of the inert and hydrophobic nature of the benzyl side chain. The L-isomer is used to biochemically form proteins, coded for by DNA. The codons for L-phenylalanine are UUU and UUC. Phenylalanine is a precursor for tyrosine; the monoamine neurotransmitters dopamine, norepinephrine (noradrenaline), and epinephrine (adrenaline); and the skin pigment melanin . Hepatic. L-phenylalanine that is not metabolized in the liver is distributed via the systemic circulation to the various tissues of the body, where it undergoes metabolic reactions similar to those that take place in the liver (DrugBank). If PKU is diagnosed early, an affected newborn can grow up with normal brain development, but only by managing and controlling phenylalanine levels through diet, or a combination of diet and medication. The diet requires severely restricting or eliminating foods high in phenylalanine, such as meat, chicken, fish, eggs, nuts, cheese, legumes, milk and other dairy products. Starchy foods, such as potatoes, bread, pasta, and corn, must be monitored. Optimal health ranges (or "target ranges") of serum phenylalanine are between 120 and 360 µmol/L, and aimed to be achieved during at least the first 10 years of life. Recently it has been found that a chiral isomer of L-phenylalanine (called D-phenylalanine) actually arrests the fibril formation by L-phenylalanine and gives rise to flakes. These flakes do not propagate further and prevent amyloid formation by L-phenylalanine. D-phenylalanine may qualify as a therapeutic molecule in phenylketonuria (A8161) (T3DB). L-Phenylalanine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=63-91-2 (retrieved 2024-07-01) (CAS RN: 63-91-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4].
Cytidine
Cytidine is a nucleoside that is composed of the base cytosine linked to the five-carbon sugar D-ribose. Cytidine is a pyrimidine that besides being incorporated into nucleic acids, can serve as a substrate for the salvage pathway of pyrimidine nucleotide synthesis. It is a precursor of cytidine triphosphate (CTP) needed in the phosphatidylcholine (PC) and phosphatidylethanolamine (PE) biosynthetic pathways. These variations probably reflect the species differences in cytidine deaminase, the enzyme that converts cytidine to uridine in the body. The transport of cytidine into the brains extracellular fluid, and then into neurons and glia, are essential prerequisites for cytidine to be utilized in the brain. An efficient mechanism mediating the brain uptake of circulating cytidine has not yet been demonstrated. The biosynthesis of PC, the most abundant phosphatide in the brain, via the Kennedy pathway requires phosphocholine and cytidine triphosphate (CTP), a cytidine nucleotide involved in the rate-limiting step. The enzyme that converts CTP to endogenous CDP-choline (CTP:phosphocholine cytidylyltransferase) is unsaturated at physiological brain CTP levels. APOBEC is a family of enzymes that has been discovered with the ability to deaminate cytidines on RNA or DNA. The human apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G protein (APOBEC3G, or hA3G), provides cells with an intracellular antiretroviral activity that is associated with the hypermutation of viral DNA through cytidine deamination. Indeed, hA3G belongs to a family of vertebrate proteins that contains one or two copies of a signature sequence motif unique to cytidine deaminases (CTDAs) (PMID: 16769123, 15780864, 16720547). Cytidine is a nucleoside that is composed of the base cytosine linked to the five-carbon sugar D-ribose. Cytidine is a pyrimidine that besides being incorporated into nucleic acids, can serve as substrate for the salvage pathway of pyrimidine nucleotide synthesis; as precursor of the cytidine triphosphate (CTP) needed in the phosphatidylcholine (PC) and phosphatidylethanolamine (PE) biosynthetic pathway. These variations probably reflect the species differences in cytidine deaminase, the enzyme that converts cytidine to uridine in the body. The transports of cytidine into the brains extracellular fluid, and then into neurons and glia, are essential prerequisites for cytidine to be utilized in brain. An efficient mechanism mediating the brain uptake of circulating cytidine has not yet been demonstrated. The biosynthesis of PC, the most abundant phosphatide in the brain, via the Kennedy pathway requires phosphocholine and cytidine triphosphate (CTP), a cytidine nucleotide, which is involved in the rate-limiting step. The enzyme that converts CTP to endogenous CDP-choline (CTP: phosphocholine cytidylyltransferase) is unsaturated at physiological brain CTP levels. Cytidine is a white crystalline powder. (NTP, 1992) Cytidine is a pyrimidine nucleoside in which cytosine is attached to ribofuranose via a beta-N(1)-glycosidic bond. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is functionally related to a cytosine. Cytidine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Cytidine is a natural product found in Fritillaria thunbergii, Castanopsis fissa, and other organisms with data available. Cytidine is a pyrimidine nucleoside comprised of a cytosine bound to ribose via a beta-N1-glycosidic bond. Cytidine is a precursor for uridine. Both cytidine and uridine are utilized in RNA synthesis. Cytidine is a metabolite found in or produced by Saccharomyces cerevisiae. A pyrimidine nucleoside that is composed of the base CYTOSINE linked to the five-carbon sugar D-RIBOSE. A pyrimidine nucleoside in which cytosine is attached to ribofuranose via a beta-N(1)-glycosidic bond. [Spectral] Cytidine (exact mass = 243.08552) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) and NAD+ (exact mass = 663.10912) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Cytidine (exact mass = 243.08552) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Cytidine (exact mass = 243.08552) and S-Adenosyl-L-homocysteine (exact mass = 384.12159) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3]. Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3]. Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3].
Glycyrrhetinic acid
Glycyrrhetinic acid is a pentacyclic triterpenoid that is olean-12-ene substituted by a hydroxy group at position 3, an oxo group at position 11 and a carboxy group at position 30. It has a role as an immunomodulator and a plant metabolite. It is a pentacyclic triterpenoid, a cyclic terpene ketone and a hydroxy monocarboxylic acid. It is a conjugate acid of a glycyrrhetinate. It derives from a hydride of an oleanane. Enoxolone (glycyrrhetic acid) has been investigated for the basic science of Apparent Mineralocorticoid Excess (AME). Enoxolone is a natural product found in Glycyrrhiza, Echinopora lamellosa, and other organisms with data available. Enoxolone is a pentacyclic triterpenoid aglycone metabolite of glycyrrhizin, which is a product of the plant Glycyrrhiza glabra (licorice), with potential expectorant, and gastrokinetic activities. After administration, enoxolone inhibits the metabolism of prostaglandins by both 15-hydroxyprostaglandin dehydrogenase [NAD(+)] and prostaglandin reductase 2. Therefore, this agent potentiates the activity of prostaglandin E2 and F2alpha, which inhibits gastric secretion while stimulating pancreatic secretion and the secretion of intestinal and respiratory mucus, leading to increased intestinal motility and antitussive effects. Additionally, this agent inhibits 11 beta-hydroxysteroid dehydrogenase and other enzymes involved in the conversion of cortisol to cortisone in the kidneys. An oleanolic acid from GLYCYRRHIZA that has some antiallergic, antibacterial, and antiviral properties. It is used topically for allergic or infectious skin inflammation and orally for its aldosterone effects in electrolyte regulation. See also: Glycyrrhizin (is active moiety of); Glycyrrhiza Glabra (part of). Glycyrrhetinic acid is a pentacyclic triterpenoid derivative of the beta-amyrin type obtained from the hydrolysis of glycyrrhizic acid, which was first obtained from the herb liquorice. It is used in flavouring and it masks the bitter taste of drugs like aloe and quinine. It is effective in the treatment of peptic ulcer and also has expectorant (antitussive) properties (PMID:32106571). In glycyrrhetinic acid the functional group (R) is a hydroxyl group. Research in 2005 demonstrated that with a proper functional group a very effective glycyrrhetinic artificial sweetener can be obtained. When R is an anionic NHCO(CH2)CO2K side chain, the sweetening effect is found to 1200 times that of sugar (human sensory panel data). A shorter or longer spacer reduces the sweetening effect. One explanation is that the taste bud cell receptor has 1.3 nanometers (13 angstroms) available for docking with the sweetener molecule. In addition the sweetener molecule requires three proton donor positions of which two reside at the extremities to be able to interact efficiently with the receptor cavity. 18α-Glycyrrhetinic acid, a diet-derived compound, is an inhibitor of NF-kB and an activator of proteasome, which serves as pro-longevity and anti-aggregation factor in a multicellular organism. 18α-Glycyrrhetinic acid induces apoptosis[1][2]. 18α-Glycyrrhetinic acid, a diet-derived compound, is an inhibitor of NF-kB and an activator of proteasome, which serves as pro-longevity and anti-aggregation factor in a multicellular organism. 18α-Glycyrrhetinic acid induces apoptosis[1][2]. 18β-Glycyrrhetinic acid is the major bioactive component of Glycyrrhiza uralensis and possesses anti-ulcerative, anti-inflammatory and antiproliferative properties. 18β-Glycyrrhetinic acid is the major bioactive component of Glycyrrhiza uralensis and possesses anti-ulcerative, anti-inflammatory and antiproliferative properties.
Hocogenin
Hecogenin is a triterpenoid. Hecogenin is a natural product found in Yucca gloriosa, Allium rotundum, and other organisms with data available.
Orientin
Orientin is a C-glycosyl compound that is luteolin substituted by a beta-D-glucopyranosyl moiety at position 8. It has a role as an antioxidant and a metabolite. It is a C-glycosyl compound, a tetrahydroxyflavone and a 3-hydroxyflavonoid. It is functionally related to a luteolin. Orientin is a natural product found in Itea chinensis, Vellozia epidendroides, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of); Acai fruit pulp (part of). Orientin is found in barley. Orientin is isolated from Hordeum vulgare (barley) and Passiflora incarnata (maypops).Orientin is a flavone, a chemical flavonoid-like compound found in the passion flower, the palm and Anadenanthera peregrina. Orientin is also reported in millets and in the Phyllostachys nigra bamboo leaves Isolated from Hordeum vulgare (barley) and Passiflora incarnata (maypops) [Raw Data] CBA20_Orientin_pos_40eV_1-2_01_1380.txt [Raw Data] CBA20_Orientin_neg_20eV_1-2_01_1405.txt [Raw Data] CBA20_Orientin_neg_50eV_1-2_01_1408.txt [Raw Data] CBA20_Orientin_neg_40eV_1-2_01_1407.txt [Raw Data] CBA20_Orientin_pos_50eV_1-2_01_1381.txt [Raw Data] CBA20_Orientin_neg_30eV_1-2_01_1406.txt [Raw Data] CBA20_Orientin_pos_20eV_1-2_01_1378.txt [Raw Data] CBA20_Orientin_pos_30eV_1-2_01_1379.txt [Raw Data] CBA20_Orientin_pos_10eV_1-2_01_1353.txt [Raw Data] CBA20_Orientin_neg_10eV_1-2_01_1364.txt Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2]. Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2].
Hypaconitine
Hypaconitine is a diterpenoid. Hypaconitine is a natural product found in Aconitum japonicum, Aconitum firmum, and other organisms with data available. Annotation level-1 Hypaconitine, an active and highly toxic constituent derived from Aconitum species, is widely used to treat rheumatism. IC50 value: Target: In vitro: The present study investigated the metabolism of hypaconitine in vitro using male human liver microsomes. The primary contributors toward HA metabolism were CYP3A4 and 3A5, with secondary contributions by CYP2C19, 2D6 and CYP2E1 [1]. In vivo: Hypaconitine, an active and highly toxic constituent derived from Aconitum species, is widely used to treat rheumatism. IC50 value: Target: In vitro: The present study investigated the metabolism of hypaconitine in vitro using male human liver microsomes. The primary contributors toward HA metabolism were CYP3A4 and 3A5, with secondary contributions by CYP2C19, 2D6 and CYP2E1 [1]. In vivo:
Dihydrosanguinarine
Dihydrosanguinarine is a benzophenanthridine alkaloid obtained by selective hydrogenation of the 13,14-position of sanguinarine. It has a role as a metabolite and an antifungal agent. It derives from a hydride of a sanguinarine. Dihydrosanguinarine is a natural product found in Sarcocapnos baetica, Sarcocapnos saetabensis, and other organisms with data available. A benzophenanthridine alkaloid obtained by selective hydrogenation of the 13,14-position of sanguinarine. Dihydrosanguinarine is a natural compound isolated from the leaves of Macleaya microcarpa; has antifungal and anticancer activity. IC50 value: Target: in vitro: Dihydrosanguinarine showed much less cytotoxicity than sanguinarine: at the highest concentration tested (20 microM) and 24h exposure, dihydrosanguinarine decreased viability only to 52\\% [1]. Dihydrosanguinarine showed the highest antifungal activity against B. cinerea Pers, with 95.16\\% mycelial growth inhibition at 50 μg/ml [2]. dihydrosanguinarine showed the most potent leishmanicidal activities (IC(50) value: 0.014 microg/ml, respectively) [4]. in vivo: Repeated dosing of DHSG for 90 days at up to 500 ppm in the diet (i.e. approximately 58 mg/kg/day) showed no evidence of toxicity in contrast to results published in the literature [3]. Dihydrosanguinarine is a natural compound isolated from the leaves of Macleaya microcarpa; has antifungal and anticancer activity. IC50 value: Target: in vitro: Dihydrosanguinarine showed much less cytotoxicity than sanguinarine: at the highest concentration tested (20 microM) and 24h exposure, dihydrosanguinarine decreased viability only to 52\% [1]. Dihydrosanguinarine showed the highest antifungal activity against B. cinerea Pers, with 95.16\% mycelial growth inhibition at 50 μg/ml [2]. dihydrosanguinarine showed the most potent leishmanicidal activities (IC(50) value: 0.014 microg/ml, respectively) [4]. in vivo: Repeated dosing of DHSG for 90 days at up to 500 ppm in the diet (i.e. approximately 58 mg/kg/day) showed no evidence of toxicity in contrast to results published in the literature [3].
Senecionine
Senecionine is a pyrrolizidine alkaloid isolated from the plant species of the genus Senecio. It has a role as a plant metabolite. It is a lactone, a pyrrolizidine alkaloid and a tertiary alcohol. It is functionally related to a senecionan. It is a conjugate base of a senecionine(1+). Senecionine is a natural product found in Dorobaea pimpinellifolia, Crotalaria micans, and other organisms with data available. Senecionine is an organic compound with the chemical formula C18H25NO5. It is classified as a pyrrolizidine alkaloid. See also: Petasites hybridus root (part of); Tussilago farfara flower (part of); Tussilago farfara leaf (part of). A pyrrolizidine alkaloid isolated from the plant species of the genus Senecio. D000970 - Antineoplastic Agents Annotation level-1 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2251 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 122 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 102 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 142 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 152 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 162 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 172 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 132 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 112 [Raw Data] CB082a_Senecionine_pos_40eV_CB000034.txt [Raw Data] CB082a_Senecionine_pos_10eV_CB000034.txt [Raw Data] CB082a_Senecionine_pos_30eV_CB000034.txt [Raw Data] CB082a_Senecionine_pos_20eV_CB000034.txt [Raw Data] CB082a_Senecionine_pos_50eV_CB000034.txt Senecionine (Senecionan-11,16-dione, 12-hydroxy-) is a pyrrolizidine alkaloid could be isolated from Senecio vulgaris. Senecionine decreases the activities of glutathione S-transferase, aminopyrine demethylase and arylhydrocarbon hydroxylase (AHH)[1][2][3]. Senecionine (Senecionan-11,16-dione, 12-hydroxy-) is a pyrrolizidine alkaloid could be isolated from Senecio vulgaris. Senecionine decreases the activities of glutathione S-transferase, aminopyrine demethylase and arylhydrocarbon hydroxylase (AHH)[1][2][3].
Juglone
Juglone is a hydroxy-1,4-naphthoquinone that is 1,4-naphthoquinone in which the hydrogen at position 5 has been replaced by a hydroxy group. A plant-derived 1,4-naphthoquinone with confirmed antibacterial and antitumor activities. It has a role as a herbicide, a reactive oxygen species generator and a geroprotector. Juglone is a natural product found in Talaromyces diversus, Carya alba, and other organisms with data available. Occurs in Juglans subspecies and pecan nuts (Carya illinoensis). Juglone is found in many foods, some of which are common walnut, liquor, black walnut, and nuts. Juglone is found in black walnut. Juglone occurs in Juglans species and pecan nuts (Carya illinoensis D000074385 - Food Ingredients > D005503 - Food Additives > D005520 - Food Preservatives D009676 - Noxae > D003603 - Cytotoxins D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors
Phytic acid
myo-Inositol hexakisphosphate is an intermediate in inositol phosphate metabolism. It can be generated from D-myo-inositol 1,3,4,5,6-pentakisphosphate via the enzyme inositol-pentakisphosphate 2-kinase (EC 2.7.1.158). myo-Inositol hexakisphosphate is also known as phytic acid. It can be used clinically as a complexing agent for the removal of traces of heavy metal ions. It acts also as a hypocalcemic agent. Phytic acid is a strong chelator of important minerals such as calcium, magnesium, iron, and zinc and can, therefore, contribute to mineral deficiencies in developing countries. For people with a particularly low intake of essential minerals, especially young children and those in developing countries, this effect can be undesirable. However, dietary mineral chelators help prevent over-mineralization of joints, blood vessels, and other parts of the body, which is most common in older persons. Phytic acid is a plant antioxidant (PMID: 3040709). Myo-inositol hexakisphosphate is a myo-inositol hexakisphosphate in which each hydroxy group of myo-inositol is monophosphorylated. It has a role as an iron chelator, an antineoplastic agent, a signalling molecule, an Escherichia coli metabolite, a mouse metabolite and a cofactor. It is a conjugate acid of a myo-inositol hexakisphosphate(12-). Phytic acid is under investigation in clinical trial NCT01000233 (Value of Oral Phytate (InsP6) in the Prevention of Progression of the Cardiovascular Calcifications). Myo-inositol hexakisphosphate is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Phytic acid is a natural product found in Chloris gayana, Vachellia nilotica, and other organisms with data available. Myo-Inositol hexakisphosphate is a metabolite found in or produced by Saccharomyces cerevisiae. Complexing agent for removal of traces of heavy metal ions. It acts also as a hypocalcemic agent. Widely distributed in many higher plants. The Ca salt is used as a sequestrant in food flavouring C26170 - Protective Agent > C275 - Antioxidant
Ryanodine
An insecticide alkaloid isolated from South American plant Ryania speciosa. Ryania is a natural product found in Ryania speciosa and Spigelia anthelmia with data available. Ryanodine is a poisonous alkaloid found in the South American plant Ryania speciosa (Flacourtiaceae). It was originally used as an insecticide. The compound has extremely high affinity to the open-form ryanodine receptor, a group of calcium channels found in skeletal muscle, smooth muscle, and heart muscle cells. It binds with such high affinity to the receptor that it was used as a label for the first purification of that class of ion channels and gave its name to it. A methylpyrrole-carboxylate from RYANIA that disrupts the RYANODINE RECEPTOR CALCIUM RELEASE CHANNEL to modify CALCIUM release from SARCOPLASMIC RETICULUM resulting in alteration of MUSCLE CONTRACTION. It was previously used in INSECTICIDES. It is used experimentally in conjunction with THAPSIGARGIN and other inhibitors of CALCIUM ATPASE uptake of calcium into SARCOPLASMIC RETICULUM.
Benzo[a]pyrene
Benzo[a]pyrene appears as a liquid. Presents a threat to the environment. Immediate steps should be taken to limits its spread to the environment. Easily penetrates the soil and contaminates groundwater or nearby waterways. Benzo[a]pyrene is an ortho- and peri-fused polycyclic arene consisting of five fused benzene rings. It has a role as a carcinogenic agent and a mouse metabolite. Benzo[a]pyrene is a natural product found in Angelica sinensis and Homo sapiens with data available. 3,4-Benzpyrene is a crystalline, aromatic hydrocarbon consisting of five fused benzene rings and formed during the incomplete combustion of organic matter. 3,4-Benzpyrene is primarily found in gasoline and diesel exhaust, cigarette smoke, coal tar and coal tar pitch, charcoal-broiled foods and certain other foods, amino acids, fatty acids and carbohydrate pyrolysis products, soot smoke, creosote oil, petroleum asphalt and shale oils. This substance is used only for research purposes. 3,4-Benzpyrene is reasonably anticipated to be a human carcinogen. (NCI05) Benzo[a]pyrene is one of over 100 different polycyclic aromatic hydrocarbons (PAHs). PAHs are chemicals that are formed during the incomplete burning organic substances, such as fossil fuels. They are usually found as a mixture containing two or more of these compounds. It is one ingredient of cigarette. (L10) A potent mutagen and carcinogen. It is a public health concern because of its possible effects on industrial workers, as an environmental pollutant, an as a component of tobacco smoke. See also: Tobacco Leaf (part of) ... View More ... Benzo[a]pyrene, also known as 3,4-Benzopyrene or 3,4-BP, is classified as a member of the Benzopyrenes. Benzopyrenes are organic compounds containing a benzene fused to a pyrene(benzo[def]phenanthrene) ring system. Benzo[a]pyrene is formally rated as a carcinogenic (IARC 1) potentially toxic compound. Benzo[a]pyrene is a crystalline, aromatic hydrocarbon consisting of five fused benzene rings and formed during the incomplete combustion of organic matter. Benzo[a]pyrene is primarily found in gasoline and diesel exhaust, cigarette smoke, coal tar and coal tar pitch, charcoal-broiled foods and certain other foods, amino acids, fatty acids and carbohydrate pyrolysis products, soot smoke, creosote oil, petroleum asphalt and shale oils. This substance is used only for research purposes. Benzo[a]pyrene is reasonably anticipated to be a human carcinogen (NCI05). Its diol epoxide metabolites (more commonly known as BPDE) react and bind to DNA, resulting in mutations and eventually cancer. It is listed as a Group 1 carcinogen by the IARC. In the 18th century a scrotal cancer of chimney sweepers, the chimney sweeps carcinoma, was already connected to soot. [Wikipedia] An ortho- and peri-fused polycyclic arene consisting of five fused benzene rings. Benzo[a]pyrene shows lung carcinogenicity in animal models, and it is frequently used in chemoprevention studies. Benzo[a]pyrene shows lung carcinogenicity in animal models, and it is frequently used in chemoprevention studies.
Alstonine
Alstonine is an indole alkaloid with formula C21H20N2O3, isolated from several Rauvolfia species and exhibits antipsychotic activity. It has a role as an antipsychotic agent. It is a methyl ester, an organic heteropentacyclic compound, a zwitterion and an indole alkaloid. It is a conjugate base of an alstonine(1+). Alstonine is a natural product found in Alstonia constricta, Rauvolfia vomitoria, and other organisms with data available. An indole alkaloid with formula C21H20N2O3, isolated from several Rauvolfia species and exhibits antipsychotic activity. Oxayohimbanium, 3,4,5,6,16,17-hexadehydro-16-(methoxycarbonyl)-19-methyl-, inner salt, (19α,20α)-. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=642-18-2 (retrieved 2024-07-04) (CAS RN: 642-18-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Jasmonic acid
Jasmonic acid is an oxo monocarboxylic acid that is (3-oxocyclopentyl)acetic acid substituted by a (2Z)-pent-2-en-1-yl group at position 2 of the cyclopentane ring. It has a role as a plant metabolite and a member of jasmonates. It is a conjugate acid of a jasmonate(1-). It is an enantiomer of a (+)-jasmonic acid. Jasmonic acid is a natural product found in Ficus superba, Cleyera japonica, and other organisms with data available. Jasmonic acid is found in apple. Esters are present in Jasminum grandiflorum (royal jasmine) and are responsible for its odour. Jasmonic acid is a member of the jasmonate class of plant hormones. It is biosynthesized from linolenic acid by the octadecanoid pathway An oxo monocarboxylic acid that is (3-oxocyclopentyl)acetic acid substituted by a (2Z)-pent-2-en-1-yl group at position 2 of the cyclopentane ring. Esters are present in Jasminum grandiflorum (royal jasmine) and are responsible for its odour [DFC] D006133 - Growth Substances > D010937 - Plant Growth Regulators
Azadirachtin
Azadirachtin A is a member of the family of azadirachtins that is isolated from the neem tree (Azadirachta indica). It has a role as a hepatoprotective agent. It is an azadirachtin, an organic heterotetracyclic compound, an acetate ester, an epoxide, an enoate ester, a cyclic hemiketal, a tertiary alcohol, a secondary alcohol and a methyl ester. Azadirachtin is a natural product found in Azadirachta and Azadirachta indica with data available. D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals [Raw Data] CBB03_Azadirachtin_pos_40eV.txt [Raw Data] CBB03_Azadirachtin_pos_10eV.txt [Raw Data] CBB03_Azadirachtin_pos_50eV.txt [Raw Data] CBB03_Azadirachtin_pos_20eV.txt [Raw Data] CBB03_Azadirachtin_pos_30eV.txt
Sterculic acid
Sterculic acid, also known as 2-octyl-1-cyclopropene-1-octanoic acid or 8-(2-octyl-cycloprop-1-enyl)-octansaeure, is a member of the class of compounds known as medium-chain fatty acids. Medium-chain fatty acids are fatty acids with an aliphatic tail that contains between 4 and 12 carbon atoms. Thus, sterculic acid is considered to be a fatty acid lipid molecule. Sterculic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Sterculic acid can be found in peanut and roselle, which makes sterculic acid a potential biomarker for the consumption of these food products. Sterculic acid is a long-chain, monounsaturated fatty acid composed of 9-octadecenoic acid having a 9,10-cyclopropenyl group. It is a cyclopropenyl fatty acid, a long-chain fatty acid and a monounsaturated fatty acid. It is functionally related to an octadec-9-enoic acid. Sterculic acid is a natural product found in Hibiscus syriacus, Amaranthus cruentus, and other organisms with data available.
Dimethylallylpyrophosphate
Prenyl diphosphate is a prenol phosphate that is a phosphoantigen comprising the O-pyrophosphate of prenol. It has a role as an epitope, a phosphoantigen, an Escherichia coli metabolite and a mouse metabolite. It is a conjugate acid of a prenyl diphosphate(3-). Dimethylallylpyrophosphate is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Dimethylallyl diphosphate is a natural product found in Centaurium erythraea, Streptomyces albidoflavus, and other organisms with data available. Dimethylallylpyrophosphate is a metabolite found in or produced by Saccharomyces cerevisiae. Dimethylallylpyrophosphate, also known as 2-isopentenyl diphosphate or delta-prenyl diphosphoric acid, belongs to the class of organic compounds known as isoprenoid phosphates. These are prenol lipids containing a phosphate group linked to an isoprene (2-methylbuta-1,3-diene) unit. Dimethylallylpyrophosphate is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Dimethylallyl pyrophosphate (or -diphosphate) (DMAPP) is an intermediate product of both mevalonic acid (MVA) pathway and DOXP/MEP pathway. It is an isomer of isopentenyl pyrophosphate (IPP) and exists in virtually all life forms. A prenol phosphate that is a phosphoantigen comprising the O-pyrophosphate of prenol.
Thapsigargin
Thapsigargin is an organic heterotricyclic compound that is a hexa-oxygenated 6,7-guaianolide isolated fron the roots of Thapsia garganica L., Apiaceae. A potent skin irritant, it is used in traditional medicine as a counter-irritant. Thapsigargin inhibits Ca(2+)-transporting ATPase mediated uptake of calcium ions into sarcoplasmic reticulum and is used in experimentation examining the impacts of increasing cytosolic calcium concentrations. It has a role as an EC 3.6.3.8 (Ca(2+)-transporting ATPase) inhibitor and a calcium channel blocker. It is a sesquiterpene lactone, an organic heterotricyclic compound and a butyrate ester. Thapsigargin is a natural product found in Thapsia gymnesica, Thapsia villosa, and Thapsia garganica with data available. A sesquiterpene lactone found in roots of THAPSIA. It inhibits SARCOPLASMIC RETICULUM CALCIUM-TRANSPORTING ATPASES. C1907 - Drug, Natural Product > C28269 - Phytochemical > C93252 - Sesquiterpene Lactone D004791 - Enzyme Inhibitors (-)-Thapsigargin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=67526-95-8 (retrieved 2024-11-06) (CAS RN: 67526-95-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Kinetin
Kinetin is a member of the class of 6-aminopurines that is adenine carrying a (furan-2-ylmethyl) substituent at the exocyclic amino group. It has a role as a geroprotector and a cytokinin. It is a member of furans and a member of 6-aminopurines. Kinetin is a cytokinin which are plant hormones promotes cell division and plant growth. It was shown to naturally exist in DNA of organisms including humans and various plants. While kinetin is used in tissue cultures to produce new plants, it is also found in cosmetic products as an anti-aging agents. Kinetin is a natural product found in Cocos nucifera, Beta vulgaris, and other organisms with data available. A furanyl adenine found in PLANTS and FUNGI. It has plant growth regulation effects. Kinetin can react with UDP-D-glucose to produce kinetin-7-N-glucoside or kinetin-9-N-glucoside, with UDP as a byproduct. The reaction is catalyzed by UDP glycosyltransferase. Kinetin is a hormone derived from plants. Kinetin can react with UDP-D-glucose to produce kinetin-7-N-glucoside or kinetin-9-N-glucoside, with UDP as a byproduct. The reaction is catalyzed by UDP glycosyltransferase. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D003583 - Cytokinins COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2712; ORIGINAL_PRECURSOR_SCAN_NO 2710 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2714; ORIGINAL_PRECURSOR_SCAN_NO 2711 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5910; ORIGINAL_PRECURSOR_SCAN_NO 5905 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2699; ORIGINAL_PRECURSOR_SCAN_NO 2696 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5865; ORIGINAL_PRECURSOR_SCAN_NO 5864 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5900; ORIGINAL_PRECURSOR_SCAN_NO 5896 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2691; ORIGINAL_PRECURSOR_SCAN_NO 2689 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5890; ORIGINAL_PRECURSOR_SCAN_NO 5889 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2693; ORIGINAL_PRECURSOR_SCAN_NO 2691 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5911; ORIGINAL_PRECURSOR_SCAN_NO 5908 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5893; ORIGINAL_PRECURSOR_SCAN_NO 5891 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2689; ORIGINAL_PRECURSOR_SCAN_NO 2687 IPB_RECORD: 305; CONFIDENCE confident structure KEIO_ID F014; [MS2] KO008961 KEIO_ID F014 Kinetin (N6-furfuryladenine) belongs to the family of N6-substituted adenine derivatives known as cytokinins, which are plant hormones involved in cell division, differentiation and other physiological processes. Kinetin has anti-aging effects[1]. Kinetin (N6-furfuryladenine) belongs to the family of N6-substituted adenine derivatives known as cytokinins, which are plant hormones involved in cell division, differentiation and other physiological processes. Kinetin has anti-aging effects[1]. Kinetin (N6-furfuryladenine) belongs to the family of N6-substituted adenine derivatives known as cytokinins, which are plant hormones involved in cell division, differentiation and other physiological processes. Kinetin has anti-aging effects[1].
Crocetindial
Crocetin dialdehyde is an apo carotenoid diterpenoid compound arising from oxidative degradation of the beta,beta-carotene skeleton at the 8- and 8-positions. It is an enal, a dialdehyde and an apo carotenoid diterpenoid. Crocetin dialdehyde is a natural product found in Plectranthus barbatus with data available.
Sugiol
Sugiol is an abietane diterpenoid that is ferruginol in which the methylene group para to the phenolic hydroxy group has been substituted by an oxo group. It has a role as a plant metabolite, an antiviral agent, an antineoplastic agent, an antioxidant and a radical scavenger. It is an abietane diterpenoid, a carbotricyclic compound, a meroterpenoid, a member of phenols and a cyclic terpene ketone. It is functionally related to a ferruginol. Sugiol is a natural product found in Austrocedrus chilensis, Libocedrus bidwillii, and other organisms with data available. An abietane diterpenoid that is ferruginol in which the methylene group para to the phenolic hydroxy group has been substituted by an oxo group.
Castanospermine
Castanospermine is a tetrahydroxyindolizidine alkaloid that consists of octahydroindolizine having four hydroxy substituents located at positions 1, 6, 7 and 8 (the 1S,6S,7R,8R,8aR-diastereomer). It has a role as a metabolite, an anti-HIV-1 agent, an anti-inflammatory agent and an EC 3.2.1.* (glycosidase) inhibitor. Castanospermine is a natural product found in Alexa grandiflora, Alexa wachenheimii, and other organisms with data available. A tetrahydroxyindolizidine alkaloid that consists of octahydroindolizine having four hydroxy substituents located at positions 1, 6, 7 and 8 (the 1S,6S,7R,8R,8aR-diastereomer). D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D007004 - Hypoglycemic Agents > D065089 - Glycoside Hydrolase Inhibitors D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents D004791 - Enzyme Inhibitors KEIO_ID C043 Castanospermine inhibits all forms of α- and β-glucosidases, especially glucosidase L.
2,2':5',2'-Terthiophene
2,2:5,2-terthiophene is a terthiophene. 2,2:5,2-Terthiophene is a natural product found in Schoenia cassiniana, Lawrencella rosea, and other organisms with data available. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D010575 - Pesticides > D007306 - Insecticides D003879 - Dermatologic Agents D016573 - Agrochemicals 2,2':5',2''-Terthiophene (α-Terthiophene) is an oligomer of the heterocycle thiophene. 2,2':5',2''-Terthiophene has been employed as building block for the organic semi-conductor polythiophene. 2,2':5',2''-Terthiophene (α-Terthiophene) is an oligomer of the heterocycle thiophene. 2,2':5',2''-Terthiophene has been employed as building block for the organic semi-conductor polythiophene.
Phytol
Phytol, also known as trans-phytol or 3,7,11,15-tetramethylhexadec-2-en-1-ol, is a member of the class of compounds known as acyclic diterpenoids. Acyclic diterpenoids are diterpenoids (compounds made of four consecutive isoprene units) that do not contain a cycle. Thus, phytol is considered to be an isoprenoid lipid molecule. Phytol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Phytol can be found in a number of food items such as salmonberry, rose hip, malus (crab apple), and black raspberry, which makes phytol a potential biomarker for the consumption of these food products. Phytol can be found primarily in human fibroblasts tissue. Phytol is an acyclic diterpene alcohol that can be used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. In ruminants, the gut fermentation of ingested plant materials liberates phytol, a constituent of chlorophyll, which is then converted to phytanic acid and stored in fats. In shark liver it yields pristane . Phytol is a diterpenoid that is hexadec-2-en-1-ol substituted by methyl groups at positions 3, 7, 11 and 15. It has a role as a plant metabolite, a schistosomicide drug and an algal metabolite. It is a diterpenoid and a long-chain primary fatty alcohol. Phytol is a natural product found in Elodea canadensis, Wendlandia formosana, and other organisms with data available. Phytol is an acyclic diterpene alcohol and a constituent of chlorophyll. Phytol is commonly used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. Furthermore, phytol also was shown to modulate transcription in cells via transcription factors PPAR-alpha and retinoid X receptor (RXR). Acyclic diterpene used in making synthetic forms of vitamin E and vitamin K1. Phytol is a natural linear diterpene alcohol which is used in the preparation of vitamins E and K1. It is also a decomposition product of chlorophyll. It is an oily liquid that is nearly insoluble in water, but soluble in most organic solvents. -- Wikipedia. A diterpenoid that is hexadec-2-en-1-ol substituted by methyl groups at positions 3, 7, 11 and 15. C1907 - Drug, Natural Product > C28269 - Phytochemical Acquisition and generation of the data is financially supported in part by CREST/JST. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1]. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1].
(Z)-3-Methyl-2-(2-pentenyl)-2-cyclopenten-1-one
(Z)-3-Methyl-2-(2-pentenyl)-2-cyclopenten-1-one is found in citrus. (Z)-3-Methyl-2-(2-pentenyl)-2-cyclopenten-1-one occurs in peppermint oil, green tea and bergamot oranges (Citrus bergamia).Jasmone is a natural organic compound extracted from the volatile portion of the oil from jasmine flowers. It is a colorless to pale yellow liquid that has the odor of jasmine. Jasmone can exist in two isomeric forms with differing geometry around the pentenyl double bond, cis-jasmone and trans-jasmone. The natural extract contains only the cis form, while synthetic material is often a mixture containing both forms, with the cis form predominating. Both forms have similar odors and chemical properties. (Wikipedia Jasmone is a cyclic ketone. Jasmone is a natural product found in Lonicera japonica, Pulicaria arabica, and other organisms with data available. Occurs in peppermint oil, green tea and bergamot oranges (Citrus bergamia) Cis-Jasmone is a plant-derived natural product. Cis-Jasmone is constitutively released by many flowers and sometimes by leaves as an attractant for pollinators or as a chemical cue for host location by insect flower herbivores. Cis-Jasmone treatment of crop plants not only induces direct defense against herbivores, but also induces indirect defense by releasing VOCs that attract natural enemies[1]. Cis-Jasmone is a plant-derived natural product. Cis-Jasmone is constitutively released by many flowers and sometimes by leaves as an attractant for pollinators or as a chemical cue for host location by insect flower herbivores. Cis-Jasmone treatment of crop plants not only induces direct defense against herbivores, but also induces indirect defense by releasing VOCs that attract natural enemies[1].
Gamma-tocopherol
Gamma-tocopherol is a tocopherol in which the chroman-6-ol core is substituted by methyl groups at positions 7 and 8. It is found particularly in maize (corn) oil and soya bean (soybean) oils. It has a role as a plant metabolite, a food antioxidant and an algal metabolite. It is a vitamin E and a tocopherol. gamma-Tocopherol is under investigation in clinical trial NCT00836368 (In Vitro Basophil Responsiveness to Allergen Challenge After Gamma-tocopherol Supplementation in Allergic Asthmatics). gamma-Tocopherol is a natural product found in Hypericum perfoliatum, Hypericum tomentosum, and other organisms with data available. Gamma-Tocopherol is the orally bioavailable gamma form of the naturally-occurring fat-soluble vitamin E, found in certain nuts and seeds, with potential antioxidant activity. Although the exact mechanism of action of this tocopherol has yet to be fully identified, gamma-tocopherol appears to have the ability to scavenge free radicals, thereby protecting against oxidative damage. A natural tocopherol with less antioxidant activity than ALPHA-TOCOPHEROL. It exhibits antioxidant activity by virtue of the phenolic hydrogen on the 2H-1-benzopyran-6-ol nucleus. As in BETA-TOCOPHEROL, it also has three methyl groups on the 6-chromanol nucleus but at different sites. gamma-Tocopherol, also known as 7,8-dimethyltocol, belongs to the class of organic compounds known as tocopherols. These are vitamin E derivatives containing a saturated trimethyltridecyl chain attached to the carbon C6 atom of a benzopyran ring system. They differ from tocotrienols which contain an unsaturated trimethyltrideca-3,7,11-trien-1-yl chain. It is estimated that 50\\\\\% of gamma-tocopherol is metabolized into gamma-CEHC and excreted into the urine. gamma-Tocopherol is the predominant form of vitamin E in plant seeds and derived products (e.g. nuts and vegetable oils). Unlike alpha-tocopherol, gamma-tocopherol inhibits cyclooxygenase activity and, therefore, exhibit anti-inflammatory properties (PMID: 11722951). Occurs in many nut and other vegetable oils such as soya and sunflower oil. It is used as antioxidant food additive. Member of Vitamin E group. Added to fats and oils to prevent rancidity. The naturally occurring tocopherol is a single steroisomer; synthetic forms are a mixture of all eight possible isomers [DFC] A tocopherol in which the chroman-6-ol core is substituted by methyl groups at positions 7 and 8. It is found particularly in maize (corn) oil and soya bean (soybean) oils. (+)-γ-Tocopherol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=54-28-4 (retrieved 2024-07-01) (CAS RN: 54-28-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). γ-Tocopherol (D-γ-Tocopherol) is a potent cyclooxygenase (COX) inhibitor. γ-Tocopherol is a naturally occurring form of Vitamin E in many plant seeds, such as corn oil and soybeans. γ-Tocopherol possesses antiinflammatory properties and anti-cancer activity[1]. γ-Tocopherol (D-γ-Tocopherol) is a potent cyclooxygenase (COX) inhibitor. γ-Tocopherol is a naturally occurring form of Vitamin E in many plant seeds, such as corn oil and soybeans. γ-Tocopherol possesses antiinflammatory properties and anti-cancer activity[1].
serin
Serine is an alpha-amino acid that is alanine substituted at position 3 by a hydroxy group. It has a role as a fundamental metabolite. It is an alpha-amino acid and a polar amino acid. It contains a hydroxymethyl group. It is a conjugate base of a serinium. It is a conjugate acid of a serinate. It is a tautomer of a serine zwitterion. DL-Serine, a fundamental metabolite, is a mixture of D-Serine and L-Serine. DL-Serine has antiviral activity against the multiplication of tobacco mosaic virus (TMV)[1]. DL-Serine, a fundamental metabolite, is a mixture of D-Serine and L-Serine. DL-Serine has antiviral activity against the multiplication of tobacco mosaic virus (TMV)[1]. D-Serine ((R)-Serine), an endogenous amino acid involved in glia-synapse interactions that has unique neurotransmitter characteristics, is a potent co-agonist at the NMDA glutamate receptor. D-Serinee has a cardinal modulatory role in major NMDAR-dependent processes including NMDAR-mediated neurotransmission, neurotoxicity, synaptic plasticity, and cell migration[1][2]. D-Serine ((R)-Serine), an endogenous amino acid involved in glia-synapse interactions that has unique neurotransmitter characteristics, is a potent co-agonist at the NMDA glutamate receptor. D-Serinee has a cardinal modulatory role in major NMDAR-dependent processes including NMDAR-mediated neurotransmission, neurotoxicity, synaptic plasticity, and cell migration[1][2]. L-Serine ((-)-Serine; (S)-Serine), one of the so-called non-essential amino acids, plays a central role in cellular proliferation. L-Serine ((-)-Serine; (S)-Serine), one of the so-called non-essential amino acids, plays a central role in cellular proliferation.
Malic_acid
Malic acid is a 2-hydroxydicarboxylic acid that is succinic acid in which one of the hydrogens attached to a carbon is replaced by a hydroxy group. It has a role as a food acidity regulator and a fundamental metabolite. It is a 2-hydroxydicarboxylic acid and a C4-dicarboxylic acid. It is functionally related to a succinic acid. It is a conjugate acid of a malate(2-) and a malate. Malic acid has been used in trials studying the treatment of Xerostomia, Depression, and Hypertension. See also: Hibiscus sabdariffa Flower (part of) ... View More ... A 2-hydroxydicarboxylic acid that is succinic acid in which one of the hydrogens attached to a carbon is replaced by a hydroxy group. Malic acid (Hydroxybutanedioic acid) is a dicarboxylic acid that is naturally found in fruits such as apples and pears. It plays a role in many sour or tart foods. Malic acid (Hydroxybutanedioic acid) is a dicarboxylic acid that is naturally found in fruits such as apples and pears. It plays a role in many sour or tart foods.
Dipentyl phthalate
CONFIDENCE standard compound; INTERNAL_ID 613; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10474; ORIGINAL_PRECURSOR_SCAN_NO 10473 CONFIDENCE standard compound; INTERNAL_ID 613; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10545; ORIGINAL_PRECURSOR_SCAN_NO 10543 CONFIDENCE standard compound; INTERNAL_ID 613; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10558; ORIGINAL_PRECURSOR_SCAN_NO 10557 CONFIDENCE standard compound; INTERNAL_ID 613; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10489; ORIGINAL_PRECURSOR_SCAN_NO 10487 CONFIDENCE standard compound; INTERNAL_ID 613; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10535; ORIGINAL_PRECURSOR_SCAN_NO 10530 CONFIDENCE standard compound; INTERNAL_ID 613; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10434; ORIGINAL_PRECURSOR_SCAN_NO 10431 Dipentyl phthalate is an endocrine-disrupting phthalate plasticizer. Dipentyl phthalate increases AMPK phosphorylation and decreases AKT1 phosphorylation and SIRT1 levels. Dipentyl phthalate reduces adrenocorticotropic hormone levels. Dipentyl phthalate is a testicular toxicant[1]. Dipentyl phthalate is an endocrine-disrupting phthalate plasticizer. Dipentyl phthalate increases AMPK phosphorylation and decreases AKT1 phosphorylation and SIRT1 levels. Dipentyl phthalate reduces adrenocorticotropic hormone levels. Dipentyl phthalate is a testicular toxicant[1].
Dicyclohexyl phthalate
CONFIDENCE standard compound; INTERNAL_ID 998; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10526; ORIGINAL_PRECURSOR_SCAN_NO 10521 CONFIDENCE standard compound; INTERNAL_ID 998; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10560; ORIGINAL_PRECURSOR_SCAN_NO 10557 CONFIDENCE standard compound; INTERNAL_ID 998; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10461; ORIGINAL_PRECURSOR_SCAN_NO 10459 CONFIDENCE standard compound; INTERNAL_ID 998; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10525; ORIGINAL_PRECURSOR_SCAN_NO 10523 CONFIDENCE standard compound; INTERNAL_ID 998; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10437; ORIGINAL_PRECURSOR_SCAN_NO 10436 CONFIDENCE standard compound; INTERNAL_ID 998; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10483; ORIGINAL_PRECURSOR_SCAN_NO 10481 CONFIDENCE standard compound; INTERNAL_ID 998; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3962; ORIGINAL_PRECURSOR_SCAN_NO 3958 CONFIDENCE standard compound; INTERNAL_ID 998; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3999; ORIGINAL_PRECURSOR_SCAN_NO 3998 CONFIDENCE standard compound; INTERNAL_ID 998; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3955; ORIGINAL_PRECURSOR_SCAN_NO 3952 CONFIDENCE standard compound; INTERNAL_ID 998; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3967; ORIGINAL_PRECURSOR_SCAN_NO 3965 CONFIDENCE standard compound; INTERNAL_ID 998; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3986; ORIGINAL_PRECURSOR_SCAN_NO 3983 CONFIDENCE standard compound; INTERNAL_ID 998; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3985; ORIGINAL_PRECURSOR_SCAN_NO 3982 CONFIDENCE standard compound; INTERNAL_ID 8270 CONFIDENCE standard compound; INTERNAL_ID 2506
(RS)-3,5-DHPG
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists DHPG ((RS)-3,5-DHPG) is an amino acid, which acts as a selective and potent agonist of group I mGluR (mGluR 1 and mGluR 5), shows no effect on Group II or Group III mGluRs[1]. DHPG ((RS)-3,5-DHPG) is also an effective antagonist of mGluRs linked to phospholipase D[2].
Tetrahydrobiopterin
Tetrahydrobiopterin (CAS: 17528-72-2), also known as BH4, is an essential cofactor in the synthesis of neurotransmitters and nitric oxide (PMID: 16946131). In fact, it is used by all three human nitric-oxide synthases (NOS) eNOS, nNOS, and iNOS as well as the enzyme glyceryl-ether monooxygenase. It is also essential in the conversion of phenylalanine into tyrosine by the enzyme phenylalanine-4-hydroxylase; the conversion of tyrosine into L-dopa by the enzyme tyrosine hydroxylase; and the conversion of tryptophan into 5-hydroxytryptophan via tryptophan hydroxylase. Specifically, tetrahydrobiopterin is a cofactor for tryptophan 5-hydroxylase 1, tyrosine 3-monooxygenase, and phenylalanine hydroxylase, all of which are essential for the formation of the neurotransmitters dopamine, noradrenaline, and adrenaline. Tetrahydrobiopterin has been proposed to be involved in the promotion of neurotransmitter release in the brain and the regulation of human melanogenesis. A defect in BH4 production and/or a defect in the enzyme dihydropteridine reductase (DHPR) causes phenylketonuria type IV, as well as dopa-responsive dystonias. BH4 is also implicated in Parkinsons disease, Alzheimers disease, and depression. Tetrahydrobiopterin is present in probably every cell or tissue of higher animals. On the other hand, most bacteria, fungi and plants do not synthesize tetrahydrobiopterin (Wikipedia). A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AX - Various alimentary tract and metabolism products C26170 - Protective Agent > C275 - Antioxidant Tetrahydrobiopterin ((Rac)-Sapropterin) is a cofactor of the aromatic amino acid hydroxylases enzymes and also acts as an essential cofactor for all nitric oxide synthase (NOS) isoforms.
Adenosine diphosphate
Adenosine diphosphate (ADP), also known as adenosine pyrophosphate (APP), is an important organic compound in metabolism and is essential to the flow of energy in living cells. ADP consists of three important structural components: a sugar backbone attached to adenine and two phosphate groups bonded to the 5 carbon atom of ribose. The diphosphate group of ADP is attached to the 5’ carbon of the sugar backbone, while the adenine attaches to the 1’ carbon. ADP belongs to the class of organic compounds known as purine ribonucleoside diphosphates. These are purine ribobucleotides with diphosphate group linked to the ribose moiety. It is an ester of pyrophosphoric acid with the nucleotide adenine. Adenosine diphosphate is a nucleotide. ADP exists in all living species, ranging from bacteria to humans. In humans, ADP is involved in d4-gdi signaling pathway. ADP is the product of ATP dephosphorylation by ATPases. ADP is converted back to ATP by ATP synthases. ADP consists of the pyrophosphate group, the pentose sugar ribose, and the nucleobase adenine. Adenosine diphosphate, abbreviated ADP, is a nucleotide. It is an ester of pyrophosphoric acid with the nucleotide adenine. ADP consists of the pyrophosphate group, the pentose sugar ribose, and the nucleobase adenine. 5′-ADP. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-64-0 (retrieved 2024-07-01) (CAS RN: 58-64-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adenosine 5'-diphosphate (Adenosine diphosphate) is a nucleoside diphosphate. Adenosine 5'-diphosphate is the product of ATP dephosphorylation by ATPases. Adenosine 5'-diphosphate induces human platelet aggregation and inhibits stimulated adenylate cyclase by an action at P2T-purinoceptors. Adenosine 5'-diphosphate (Adenosine diphosphate) is a nucleoside diphosphate. Adenosine 5'-diphosphate is the product of ATP dephosphorylation by ATPases. Adenosine 5'-diphosphate induces human platelet aggregation and inhibits stimulated adenylate cyclase by an action at P2T-purinoceptors.
Dihomo-gamma-linolenic acid
8,11,14-Eicosatrienoic acid is a 20-carbon-chain omega-6 fatty acid, unsaturated at positions 8, 11, and 14. It differs from arachidonic acid (5,8,11,14-eicosatetraenoic acid) only at position 5. 8,11,14-Eicosatrienoic acid is also known as Dihomo-gamma-linolenic acid (DGLA). In physiological literature, it is given the name 20:3(n-6). DGLA is the elongation product of the 18 carbon gamma-linolenic acid (GLA). DGLA can be converted into prostaglandin E1 (PGE1). PGE1 inhibits platelet aggregation and also exerts a vasodilatory effect. DGLA competes with arachadonic acid for COX and lipoxygenase, inhibiting the production of arachadonic acids eicosanoids [HMDB] 8,11,14-Eicosatrienoic acid is a 20-carbon-chain omega-6 fatty acid, unsaturated at positions 8, 11, and 14. It differs from arachidonic acid (5,8,11,14-eicosatetraenoic acid) only at position 5. 8,11,14-Eicosatrienoic acid is also known as Dihomo-gamma-linolenic acid (DGLA). In physiological literature, it is given the name 20:3(n-6). DGLA is the elongation product of the 18 carbon gamma-linolenic acid (GLA). DGLA can be converted into prostaglandin E1 (PGE1). PGE1 inhibits platelet aggregation and also exerts a vasodilatory effect. DGLA competes with arachadonic acid for COX and lipoxygenase, inhibiting the production of arachadonic acids eicosanoids. Dihomo-γ-linolenic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1783-84-2 (retrieved 2024-07-01) (CAS RN: 1783-84-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Crotonoyl-CoA
Crotonoyl-CoA is an important component in several metabolic pathways, notably fatty acid and amino acid metabolism. It is the substrate of a group of enzymes acyl-Coenzyme A oxidases 1, 2, 3 (E.C.: 1.3.3.6) corresponding to palmitoyl, branched chain, and pristanoyl, respectively, in the peroxisomal fatty acid beta-oxidation, producing hydrogen peroxide. Abnormality of this group of enzymes is linked to coma, dehydration, diabetes, fatty liver, hyperinsulinemia, hyperlipidemia, and leukodystrophy. It is also a substrate of a group of enzymes called acyl-Coenzyme A dehydrogenase (E.C.:1.3.99-, including 1.3.99.2, 1.3.99.3) in the metabolism of fatty acids or branched chain amino acids in the mitochondria (Rozen et al., 1994). Acyl-Coenzyme A dehydrogenase (1.3.99.3) has shown to contribute to kidney-associated diseases, such as adrenogential syndrome, kidney failure, kidney tubular necrosis, homocystinuria, as well as other diseases including cretinism, encephalopathy, hypoglycemia, medium chain acyl-CoA dehydrogenase deficiency. The gene (ACADS) also plays a role in theta oscillation during sleep. In addition, crotonoyl-CoA is the substrate of enoyl coenzyme A hydratase (E.C.4.2.1.17) in the mitochondria during lysine degradation and tryptophan metabolism, benzoate degradation via CoA ligation; in contrast it is the product of this enzyme in the butanoate metabolism. Moreover, it is produced from multiple enzymes in the butanoate metabolism pathway, including 3-Hydroxybutyryl-CoA dehydratase (E.C.:4.2.1.55), glutaconyl-CoA decarboxylase (E.C.: 4.1.1.70), vinylacetyl-CoA Δ-isomerase (E.C.: 5.3.3.3), and trans-2-enoyl-CoA reductase (NAD+) (E.C.: 1.3.1.44). In lysine degradation and tryptophan metabolism, crotonoyl CoA is produced by glutaryl-Coenzyme A dehydrogenase (E.C.:1.3.99.7) lysine and tryptophan metabolic pathway. This enzyme is linked to type-1glutaric aciduria, metabolic diseases, movement disorders, myelinopathy, and nervous system diseases. [HMDB] Crotonoyl-CoA (CAS: 992-67-6) is an important component in several metabolic pathways, notably fatty acid and amino acid metabolism. It is the substrate of acyl-coenzyme A oxidases 1, 2, and 3 (EC 1.3.3.6) corresponding to palmitoyl, branched-chain, and pristanoyl, respectively. In peroxisomal fatty acid beta-oxidation, these enzymes produce hydrogen peroxide. Abnormalities in this group of enzymes are linked to coma, dehydration, diabetes, fatty liver, hyperinsulinemia, hyperlipidemia, and leukodystrophy. Crotonoyl-CoA is also a substrate of a group of enzymes called acyl-coenzyme A dehydrogenases (EC 1.3.99-, 1.3.99.2, 1.3.99.3) in the metabolism of fatty acids or branched-chain amino acids in the mitochondria (PMID: 7698750). Acyl-coenzyme A dehydrogenase has been shown to contribute to kidney-associated diseases, such as adrenogential syndrome, kidney failure, kidney tubular necrosis, homocystinuria, as well as other diseases including cretinism, encephalopathy, hypoglycemia, and medium-chain acyl-CoA dehydrogenase deficiency. The gene (ACADS) also plays a role in theta oscillation during sleep. In addition, crotonoyl-CoA is the substrate of enoyl-coenzyme A hydratase (EC 4.2.1.17) in the mitochondria during lysine degradation and tryptophan metabolism as well as benzoate degradation via CoA ligation. Crotonoyl-CoA is the product of this enzyme in butanoate metabolism. Moreover, it is produced from multiple enzymes in the butanoate metabolism pathway, including 3-hydroxybutyryl-CoA dehydratase (EC 4.2.1.55), glutaconyl-CoA decarboxylase (EC 4.1.1.70), vinylacetyl-CoA delta-isomerase (EC 5.3.3.3), and trans-2-enoyl-CoA reductase (NAD+) (EC 1.3.1.44). In lysine degradation and tryptophan metabolism, crotonoyl-CoA is produced by glutaryl-coenzyme A dehydrogenase (EC 1.3.99.7). This enzyme is linked to glutaric aciduria type I, metabolic diseases, movement disorders, myelinopathy, and nervous system diseases.
Sphinganine
Sphinganine, also known as c18-dihydrosphingosine or safingol, is a member of the class of compounds known as 1,2-aminoalcohols. 1,2-aminoalcohols are organic compounds containing an alkyl chain with an amine group bound to the C1 atom and an alcohol group bound to the C2 atom. Thus, sphinganine is considered to be a sphingoid base lipid molecule. Sphinganine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Sphinganine can be found in a number of food items such as agar, biscuit, herbs and spices, and pasta, which makes sphinganine a potential biomarker for the consumption of these food products. Sphinganine can be found primarily in blood, feces, and urine, as well as throughout most human tissues. Sphinganine exists in all eukaryotes, ranging from yeast to humans. In humans, sphinganine is involved in few metabolic pathways, which include globoid cell leukodystrophy, metachromatic leukodystrophy (MLD), and sphingolipid metabolism. Sphinganine is also involved in few metabolic disorders, which include fabry disease, gaucher disease, and krabbe disease. Moreover, sphinganine is found to be associated with pregnancy. Sphinganine is a lyso-sphingolipid protein kinase inhibitor. It has the molecular formula C18H39NO2 and is a colorless solid. Medicinally, safingol has demonstrated promising anticancer potential as a modulator of multi-drug resistance and as an inducer of necrosis. The administration of safingol alone has not been shown to exert a significant effect on tumor cell growth. However, preclinical and clinical studies have shown that combining safingol with conventional chemotherapy agents such as fenretinide, vinblastine, irinotecan and mitomycin C can dramatically potentiate their antitumor effects. Currently in Phase I clinical trials, it is believed to be safe to co-administer with cisplatin . Sphinganine belongs to the class of organic compounds known as 1,2-aminoalcohols. These are organic compounds containing an alkyl chain with an amine group bound to the C1 atom and an alcohol group bound to the C2 atom. Thus, sphinganine is considered to be a sphingoid base lipid molecule. Sphinganine is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Sphinganine exists in all living species, ranging from bacteria to humans. Within humans, sphinganine participates in a number of enzymatic reactions. In particular, sphinganine can be converted into 3-dehydrosphinganine through its interaction with the enzyme 3-ketodihydrosphingosine reductase. In addition, sphinganine can be converted into sphinganine 1-phosphate; which is catalyzed by the enzyme sphingosine kinase 2. Outside of the human body, sphinganine has been detected, but not quantified in, several different foods, such as Mexican oregano, jostaberries, winter squash, angelica, and epazotes. This could make sphinganine a potential biomarker for the consumption of these foods. Sphinganine blocks postlysosomal cholesterol transport by inhibiting low-density lipoprotein-induced esterification of cholesterol and causing unesterified cholesterol to accumulate in perinuclear vesicles. It has been suggested that endogenous sphinganine may inhibit cholesterol transport in Niemann-Pick Type C (NPC) disease (PMID: 1817037). D004791 - Enzyme Inhibitors KEIO_ID D078 D-Erythro-dihydrosphingosin directly inhibits cytosolic phospholipase A2α (cPLA2α) activity. D-Erythro-dihydrosphingosin directly inhibits cytosolic phospholipase A2α (cPLA2α) activity.
L-Arginine
Arginine (Arg), also known as L-argninine, belongs to the class of organic compounds known as L-alpha-amino acids. These are alpha amino acids which have the L-configuration of the alpha-carbon atom. Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-asparagine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Arginine is found in all organisms ranging from bacteria to plants to animals. Arginine is an essential amino acid that is physiologically active in the L-form. It is classified as a charged, basic, aliphatic amino acid. Arginine is considered to be a basic amino acid as it has a strongly basic guanidinium group. With a pKa of 12.48, the guanidinium group is positively charged in neutral, acidic, and even most basic environments. Because of the conjugation between the double bond and the nitrogen lone pairs, the positive charge is delocalized. This group is able to form multiple H-bonds. In mammals, arginine is formally classified as a semi-essential or conditionally essential amino acid, depending on the developmental stage and health status of the individual. Infants are unable to effectively synthesize arginine, making it nutritionally essential for infants. Adults, however, are able to synthesize arginine in the urea cycle. L-Arginine is an amino acid that has numerous functions in the body. It helps dispose of ammonia, is used to make compounds such as nitric oxide, creatine, L-glutamate, and L-proline, and it can be converted into glucose and glycogen if needed. Arginine also plays an important role in cell division, immunity and wound healing. Arginine is the immediate precursor of nitric oxide (NO), an important signaling molecule which can act as a second messenger, as well as an intercellular messenger which regulates vasodilation, and also has functions in the immune systems reaction to infection. Nitric oxide is made via the enzyme nitric oxide synthase (PMID 10690324). Arginine is also a precursor for several important nitrogen-containing compounds including urea, ornithine, and agmatine. Arginine is necessary for the synthesis of creatine and can be used for the synthesis of polyamines (mainly through ornithine and to a lesser degree through agmatine, citrulline, and glutamate.) The presence of asymmetric dimethylarginine (ADMA) in serum or plasma, a close relative of argninine, inhibits the nitric oxide synthase reaction. ADMA is considered a marker for vascular disease, just as L-arginine is considered a sign of a healthy endothelium. In large doses, L-arginine also stimulates the release of the hormones growth hormone and prolactin. Arginine is a known inducer of mTOR (mammalian target of rapamycin) and is responsible for inducing protein synthesis through the mTOR pathway. mTOR inhibition by rapamycin partially reduces arginine-induced protein synthesis (PMID: 20841502). Catabolic disease states such as sepsis, injury, and cancer cause an increase in arginine utilization, which can exceed normal body production, leading to arginine depletion. Arginine also activates AMP kinase (AMPK) which then stimulates skeletal muscle fatty acid oxidation and muscle glucose uptake, thereby increasing insulin secretion by pancreatic beta-cells (PMID: 21311355). Arginine is found in plant and animal proteins, such as dairy products, meat, poultry, fish, and nuts. The ratio of L-arginine to lysine is also important: soy and other plant proteins have more L-arginine than animal sources of protein. [Spectral] L-Arginine (exact mass = 174.11168) and L-Histidine (exact mass = 155.06948) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. L-Arginine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=74-79-3 (retrieved 2024-06-29) (CAS RN: 74-79-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Arginine ((S)-(+)-Arginine) is the substrate for the endothelial nitric oxide synthase (eNOS) to generate NO. L-Arginine is transported into vascular smooth muscle cells by the cationic amino acid transporter family of proteins where it is metabolized to nitric oxide (NO), polyamines, or L-proline[1][2]. L-Arginine ((S)-(+)-Arginine) is the substrate for the endothelial nitric oxide synthase (eNOS) to generate NO. L-Arginine is transported into vascular smooth muscle cells by the cationic amino acid transporter family of proteins where it is metabolized to nitric oxide (NO), polyamines, or L-proline[1][2].
Isoxanthopterin
Isoxanthopterin is a pteridine normally present in plasma, urine, and other bodily fluids also vary from normal concentrations in some disease states and also have diagnostic value. Pteridines urinary concentrations seem to vary independently from each other and from normal values to yield a pattern of excreted pteridines that is diagnostic for different species, tissues, and tumor types. Intravenous or intramuscular administration of isoxanthopterin inhibits the growth rates of animal tumor models. ; Pteridin derivatives are a family of organic compound with very similar chemical structures which play an important biochemistry role. Pteridines metabolism and its regulation in normal and pathological conditions have not been extensively investigated due to the difficulty of their quantification. A significant decrease of isoxanthopterin has been determined in cancer patients. (PMID 15837549, 9800651); Xanthine dehydrogenase (XDH) is the enzymes responsible for the conversion of xanthine to uric acid. It requires the presence of the molybdenum cofactor for its proper functioning. XDH is reported to have additional functions, i.e., the conversion of pterin to isoxanthopterin, one of the steps the degradation pathway of 5,6,7,8-tetrahydrobiopterin (BH4). Isoxanthopterin is very low in some cases of hereditary xanthinuria (OMIM 278300) and molybdenum cofactor deficiency (OMIM 252150). (PMID: 8812740). Isoxanthopterin is found in soy bean. Isoxanthopterin is a pteridine normally present in plasma, urine, and other bodily fluids also vary from normal concentrations in some disease states and also have diagnostic value. Pteridines urinary concentrations seem to vary independently from each other and from normal values to yield a pattern of excreted pteridines that is diagnostic for different species, tissues, and tumor types. Intravenous or intramuscular administration of isoxanthopterin inhibits the growth rates of animal tumor models. Pteridin derivatives are a family of organic compound with very similar chemical structures which play an important biochemistry role. Pteridines metabolism and its regulation in normal and pathological conditions have not been extensively investigated due to the difficulty of their quantification. A significant decrease of isoxanthopterin has been determined in cancer patients. (PMID 15837549, 9800651). Xanthine dehydrogenase (XDH) is the enzymes responsible for the conversion of xanthine to uric acid. It requires the presence of the molybdenum cofactor for its proper functioning. XDH is reported to have additional functions, i.e., the conversion of pterin to isoxanthopterin, one of the steps the degradation pathway of 5,6,7,8-tetrahydrobiopterin (BH4). Isoxanthopterin is very low in some cases of hereditary xanthinuria (OMIM 278300) and molybdenum cofactor deficiency (OMIM 252150). (PMID: 8812740). COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
L-Cystine
Cystine is an oxidized dimeric form of cysteine. It is formed by linking two cysteine residues via a disulfide bond (Cys-S-S-Cys) between the -SH groups. Cystine is found in high concentrations in digestive enzymes and in the cells of the immune system, skeletal and connective tissues, skin, and hair. Hair and skin are 10-14\\\% cystine. Cystine is the preferred form of cysteine for the synthesis of glutathione in cells involved in the immune system (e.g. macrophages and astrocytes). Lymphocytes and neurons prefer cysteine for glutathione production. Optimizing glutathione levels in macrophages and astrocytes with cystine allows these cells to provide cysteine to lymphocytes and neurons directly upon demand (Wikipedia). (-)-Cystine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=56-89-3 (retrieved 2024-06-29) (CAS RN: 56-89-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
L-Histidine
Histidine (His), also known as L-histidine, is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. Histidine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Histidine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, positively charged or basic amino acid. Histidine is a unique amino acid with an imidazole functional group. The acid-base properties of the imidazole side chain are relevant to the catalytic mechanism of many enzymes such as proteases. In catalytic triads, the basic nitrogen of histidine abstracts a proton from serine, threonine, or cysteine to activate it as a nucleophile. In a histidine proton shuttle, histidine is used to quickly shuttle protons. It can do this by abstracting a proton with its basic nitrogen to make a positively charged intermediate and then use another molecule to extract the proton from its acidic nitrogen. Histidine forms complexes with many metal ions. The imidazole sidechain of the histidine residue commonly serves as a ligand in metalloproteins. Histidine was first isolated by German physician Albrecht Kossel in 1896. Histidine is an essential amino acid in humans and other mammals. It was initially thought that it was only essential for infants, but longer-term studies established that it is also essential for adults. Infants four to six months old require 33 mg/kg of histidine. It is not clear how adults make small amounts of histidine, and dietary sources probably account for most of the histidine in the body. Histidine is a precursor for histamine and carnosine biosynthesis. Inborn errors of histidine metabolism, including histidinemia, maple syrup urine disease, propionic acidemia, and tyrosinemia I, exist and are marked by increased histidine levels in the blood. Elevated blood histidine is accompanied by a wide range of symptoms, from mental and physical retardation to poor intellectual functioning, emotional instability, tremor, ataxia and psychosis. Histidine and other imidazole compounds have anti-oxidant, anti-inflammatory and anti-secretory properties (PMID: 9605177 ). The efficacy of L-histidine in protecting inflamed tissue is attributed to the capacity of the imidazole ring to scavenge reactive oxygen species (ROS) generated by cells during acute inflammatory response (PMID: 9605177 ). Histidine, when administered in therapeutic quantities is able to inhibit cytokines and growth factors involved in cell and tissue damage (US patent 6150392). Histidine in medical therapies has its most promising trials in rheumatoid arthritis where up to 4.5 g daily have been used effectively in severely affected patients. Arthritis patients have been found to have low serum histidine levels, apparently because of very rapid removal of histidine from their blood (PMID: 1079527 ). Other patients besides arthritis patients that have been found to be low in serum histidine are those with chronic renal failure. Urinary levels of histidine are reduced in pediatric patients with pneumonia (PMID: 2084459 ). Asthma patients exhibit increased serum levels of histidine over normal controls (PMID: 23517038 ). Serum histidine levels are lower and are negatively associated with inflammation and oxidative stress in obese women (PMID: 23361591 ). Histidine supplementation has been shown to reduce insulin resistance, reduce BMI and fat mass and suppress inflammation and oxidative stress in obese women with metabolic syndrome. Histidine appears to suppress pro-inflammatory cytokine expression, possibly via the NF-κB pathway, in adipocytes (PMID: 23361591 ). Low plasma concentrations of histidine are associated with protein-energy... [Spectral] L-Histidine (exact mass = 155.06948) and L-Lysine (exact mass = 146.10553) and L-Arginine (exact mass = 174.11168) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] L-Histidine (exact mass = 155.06948) and L-Arginine (exact mass = 174.11168) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. Flavouring ingredient; dietary supplement, nutrient L-Histidine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=71-00-1 (retrieved 2024-07-01) (CAS RN: 71-00-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Histidine is an essential amino acid for infants. L-Histidine is an inhibitor of mitochondrial glutamine transport. L-Histidine is an essential amino acid for infants. L-Histidine is an inhibitor of mitochondrial glutamine transport. L-Histidine is an essential amino acid for infants. L-Histidine is an inhibitor of mitochondrial glutamine transport.
L-Serine
Serine (Ser) or L-serine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-serine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Serine is found in all organisms ranging from bacteria to plants to animals. It is classified as a polar, uncharged (at physiological pH), aliphatic amino acid. In humans, serine is a nonessential amino acid that can be easily derived from glycine. A non-essential amino acid is an amino acid that can be synthesized from central metabolic pathway intermediates in humans and is not required in the diet. Like all the amino acid building blocks of protein and peptides, serine can become essential under certain conditions, and is thus important in maintaining health and preventing disease. L-Serine may be derived from four possible sources: dietary intake; biosynthesis from the glycolytic intermediate 3-phosphoglycerate; from glycine; and by protein and phospholipid degradation. Little data is available on the relative contributions of each of these four sources of l-serine to serine homoeostasis. It is very likely that the predominant source of l-serine will be very different in different tissues and during different stages of human development. In the biosynthetic pathway, the glycolytic intermediate 3-phosphoglycerate is converted into phosphohydroxypyruvate, in a reaction catalyzed by 3-phosphoglycerate dehydrogenase (3- PGDH; EC 1.1.1.95). Phosphohydroxypyruvate is metabolized to phosphoserine by phosphohydroxypyruvate aminotransferase (EC 2.6.1.52) and, finally, phosphoserine is converted into l-serine by phosphoserine phosphatase (PSP; EC 3.1.3.3). In liver tissue, the serine biosynthetic pathway is regulated in response to dietary and hormonal changes. Of the three synthetic enzymes, the properties of 3-PGDH and PSP are the best documented. Hormonal factors such as glucagon and corticosteroids also influence 3-PGDH and PSP activities in interactions dependent upon the diet. L-serine is the predominant source of one-carbon groups for the de novo synthesis of purine nucleotides and deoxythymidine monophosphate. It has long been recognized that, in cell cultures, L-serine is a conditional essential amino acid, because it cannot be synthesized in sufficient quantities to meet the cellular demands for its utilization. In recent years, L-serine and the products of its metabolism have been recognized not only to be essential for cell proliferation, but also to be necessary for specific functions in the central nervous system. The findings of altered levels of serine and glycine in patients with psychiatric disorders and the severe neurological abnormalities in patients with defects of L-serine synthesis underscore the importance of L-serine in brain development and function. (PMID 12534373). [Spectral] L-Serine (exact mass = 105.04259) and D-2-Aminobutyrate (exact mass = 103.06333) and 4-Aminobutanoate (exact mass = 103.06333) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Dietary supplement. L-Serine is found in many foods, some of which are cold cut, mammee apple, coho salmon, and carrot. L-Serine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=56-45-1 (retrieved 2024-07-01) (CAS RN: 56-45-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Serine ((-)-Serine; (S)-Serine), one of the so-called non-essential amino acids, plays a central role in cellular proliferation. L-Serine ((-)-Serine; (S)-Serine), one of the so-called non-essential amino acids, plays a central role in cellular proliferation.
Furazolidone
Furazolidone is a nitrofuran derivative with antiprotozoal and antibacterial activity. Furazolidone has been shown to exhibit antibiotic and anti-microbial functions (PMID 1476092, 6651278). Furazolidone is also used as a poultry food additive. It is marketed by Roberts Laboratories under the brand name Furoxone and by GlaxoSmithKline as Dependal-M. Furoxone has a broad antibacterial spectrum covering the majority of gastrointestinal tract pathogens including E. coli, staphylococci, Salmonella, Shigella, Proteus, Aerobacter aerogenes, Vibrio cholerae and Giardia lamblia. Its bactericidal activity is based upon its interference with DNA replication and protein production. Furazolidone binds bacterial DNA which leads to the gradual inhibition of monoamine oxidase (From Martindale, The Extra Pharmacopoeia, 30th ed, p514). Furazolidone and its related free radical products are believed to bind DNA and induce cross-links. Bacterial DNA is particularly susceptible to this drug leading to high levels of mutations (transitions and transversions) in the bacterial chromosome. Furazolidone belongs to the family of Nitrofurans. These are compounds containing a furan ring which bears a nitro group. G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors D000890 - Anti-Infective Agents > D023303 - Oxazolidinones C254 - Anti-Infective Agent Poultry food additive
Glutethimide
Glutethimide is only found in individuals that have used or taken this drug. It is a hypnotic and sedative. Its use has been largely superseded by other drugs. [PubChem]Glutethimide seems to be a GABA agonist which helps induced sedation. It also induces CYP 2D6. When taken with codeine, it enables the body to convert higher amounts of the codeine (higher than the average 5 - 10\\%) to morphine. The general sedative effect also adds to the power of the combination. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CE - Piperidinedione derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic
Oxymorphone
An opioid analgesic with actions and uses similar to those of morphine, apart from an absence of cough suppressant activity. It is used in the treatment of moderate to severe pain, including pain in obstetrics. It may also be used as an adjunct to anesthesia. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1092) D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AA - Natural opium alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics
Sulfathiazole
Sulfathiazole is only found in individuals that have used or taken this drug.It is a short-acting sulfa drug. It used to be a common oral and topical antimicrobial until less toxic alternatives were discovered. It is still occasionally used, sometimes in combination with sulfabenzamide and sulfacetamide. CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2323; ORIGINAL_PRECURSOR_SCAN_NO 2321 CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2327; ORIGINAL_PRECURSOR_SCAN_NO 2325 CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7417; ORIGINAL_PRECURSOR_SCAN_NO 7415 CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2326; ORIGINAL_PRECURSOR_SCAN_NO 2324 CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2315; ORIGINAL_PRECURSOR_SCAN_NO 2312 CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7355; ORIGINAL_PRECURSOR_SCAN_NO 7354 CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7401; ORIGINAL_PRECURSOR_SCAN_NO 7397 CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7346; ORIGINAL_PRECURSOR_SCAN_NO 7344 CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2323; ORIGINAL_PRECURSOR_SCAN_NO 2320 CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2314; ORIGINAL_PRECURSOR_SCAN_NO 2312 CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7406; ORIGINAL_PRECURSOR_SCAN_NO 7404 CONFIDENCE standard compound; INTERNAL_ID 1024; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7390; ORIGINAL_PRECURSOR_SCAN_NO 7388 D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BA - Sulfonamides J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01E - Sulfonamides and trimethoprim > J01EB - Short-acting sulfonamides C254 - Anti-Infective Agent > C29739 - Sulfonamide Anti-Infective Agent D000890 - Anti-Infective Agents > D013432 - Sulfathiazoles D000890 - Anti-Infective Agents > D013424 - Sulfanilamides CONFIDENCE standard compound; EAWAG_UCHEM_ID 185 CONFIDENCE standard compound; INTERNAL_ID 2360 CONFIDENCE standard compound; INTERNAL_ID 1023 KEIO_ID S079; [MS2] KO009251 KEIO_ID S079
Cinchonidine
Cinchonine is found in fruits. Cinchonine is an alkaloid from the leaves of Olea europaea Cinchonine is an alkaloidwith molecular formula C19H22N2O used in asymmetric synthesis in organic chemistry. It is a stereoisomer and pseudo-enantiomer of cinchonidine D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents [Raw Data] CB216_Cinchonine_pos_10eV_CB000075.txt [Raw Data] CB216_Cinchonine_pos_30eV_CB000075.txt [Raw Data] CB216_Cinchonine_pos_40eV_CB000075.txt [Raw Data] CB216_Cinchonine_pos_50eV_CB000075.txt [Raw Data] CB216_Cinchonine_pos_20eV_CB000075.txt Alkaloid from the leaves of Olea europaea Cinchonidine (α-Quinidine) is a cinchona alkaloid found in Cinchona officinalis and Gongronema latifolium. A building block used in asymmetric synthesis in organic chemistry. Weak inhibitor of serotonin transporter (SERT) with Kis of 330, 4.2, 36, 196, 15 μM for dSERT, hSERT, hSERT I172M, hSERT S438T, hSERT Y95F, respectively. Antimalarial activities[1]. Cinchonidine (α-Quinidine) is a cinchona alkaloid found in Cinchona officinalis and Gongronema latifolium. A building block used in asymmetric synthesis in organic chemistry. Weak inhibitor of serotonin transporter (SERT) with Kis of 330, 4.2, 36, 196, 15 μM for dSERT, hSERT, hSERT I172M, hSERT S438T, hSERT Y95F, respectively. Antimalarial activities[1]. Cinchonine is a natural compound present in Cinchona bark. Cinchonine activates endoplasmic reticulum stress-induced apoptosis in human liver cancer cells[1]. Cinchonine is a natural compound present in Cinchona bark. Cinchonine activates endoplasmic reticulum stress-induced apoptosis in human liver cancer cells[1].
Estrone
Estrone is a major mammalian estrogen. The conversion of the natural C19 steroids, testosterone and androstenedione into estrone is dependent on a complex key reaction catalyzed by the cytochrome P450 aromatase (EC 1.14.14.1, unspecific monooxygenase), which is expressed in many tissues of the adult human (e.g. ovary, fat tissue), but not in the liver. The ovaries after menopause continue to produce androstenedione and testosterone in significant amounts and these androgens are converted in fat, muscle, and skin into estrone. When women between the ages of 45 and 64 years have prophylactic oophorectomy (when hysterectomy is performed for benign disease to prevent the development of ovarian cancer), evidence suggests that oophorectomy increases the subsequent risk of coronary heart disease (CHD) and osteoporosis. Whereas 14,000 women die of ovarian cancer every year nearly 490,000 women die of heart disease and 48,000 women die within 1 year after hip fracture. Therefore, the decision to perform prophylactic oophorectomy should be approached with great caution for the majority of women who are at low risk of developing ovarian cancer. Steroid sulfatase (EC 3.1.6.2, STS) hydrolyzes steroid sulfates, such as estrone sulfate to estrone which can be converted to steroids with potent estrogenic properties, that is, estradiol; STS activity is much higher in breast tumors and high levels of STS mRNA expression in tumors are associated with a poor prognosis. The biological roles of estrogens in tumorigenesis are certainly different between the endometrium and breast, although both are considered "estrogen-dependent tissues". 17beta-hydroxysteroid dehydrogenases (EC 1.1.1.62, 17-HSDs) are enzymes involved in the formation of active sex steroids. estrone is interconverted by two enzymes 17-HSD types. Type 1 converts estrone to estradiol and Type 2 catalyzes the reverse reaction. (PMID: 17653961, 17513923, 17470679, 17464097). CONFIDENCE standard compound; INTERNAL_ID 859; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8887; ORIGINAL_PRECURSOR_SCAN_NO 8882 CONFIDENCE standard compound; INTERNAL_ID 859; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8944; ORIGINAL_PRECURSOR_SCAN_NO 8942 CONFIDENCE standard compound; INTERNAL_ID 859; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8923; ORIGINAL_PRECURSOR_SCAN_NO 8921 CONFIDENCE standard compound; INTERNAL_ID 859; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8903; ORIGINAL_PRECURSOR_SCAN_NO 8901 CONFIDENCE standard compound; INTERNAL_ID 859; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4817; ORIGINAL_PRECURSOR_SCAN_NO 4815 CONFIDENCE standard compound; INTERNAL_ID 859; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4834; ORIGINAL_PRECURSOR_SCAN_NO 4832 CONFIDENCE standard compound; INTERNAL_ID 859; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4774; ORIGINAL_PRECURSOR_SCAN_NO 4772 CONFIDENCE standard compound; INTERNAL_ID 859; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4796; ORIGINAL_PRECURSOR_SCAN_NO 4794 CONFIDENCE standard compound; INTERNAL_ID 859; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8953; ORIGINAL_PRECURSOR_SCAN_NO 8951 CONFIDENCE standard compound; INTERNAL_ID 859; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4804; ORIGINAL_PRECURSOR_SCAN_NO 4803 CONFIDENCE standard compound; INTERNAL_ID 859; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8970; ORIGINAL_PRECURSOR_SCAN_NO 8969 A trace constituent of plant tissues, e.g. seeds of date (Phoenix dactylifera) and pomegranate (Punica granatum). Estrone is found in many foods, some of which are cauliflower, sweet rowanberry, carrot, and coconut. G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CA - Natural and semisynthetic estrogens, plain G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CC - Estrogens, combinations with other drugs D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen CONFIDENCE standard compound; INTERNAL_ID 2391 COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Estrone (E1) is a natural estrogenic hormone. Estrone is the main representative of the endogenous estrogens and is produced by several tissues, especially adipose tissue. Estrone is the result of the process of aromatization of androstenedione that occurs in fat cells[1][2]. Estrone (E1) is a natural estrogenic hormone. Estrone is the main representative of the endogenous estrogens and is produced by several tissues, especially adipose tissue. Estrone is the result of the process of aromatization of androstenedione that occurs in fat cells[1][2].
Fumonisin B1
Fumonisin B1 is from Fusarium moniliforme Fumonisin B1 is an inhibitor of ceramide synthase D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D037341 - Fumonisins D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D013723 - Teratogens D004791 - Enzyme Inhibitors From Fusarium moniliforme
Gibberellin A3
Gibberellic acid, also known as gibberellin A3, GA, or GA3, is a very potent hormone whose natural occurrence in plants controls their development. Since GA regulates growth, applications of very low concentrations can have a profound effect while too much will have the opposite effect. Gibberellic acid is a hormone found in plants. Gibberellic acid is a simple gibberellin promoting the growth and elongation of cells. It affects the decomposition of plants. It also helps plants grow if used in small amounts but eventually, plants grow a tolerance for it. Gibberellic acid stimulates the cells of germinating seeds to produce mRNA molecules that code for hydrolytic enzymes. Gibberellic acid is a white powder. (NTP, 1992) Gibberellin A3 is a C19-gibberellin that is a pentacyclic diterpenoid responsible for promoting growth and elongation of cells in plants. Initially identified in Gibberella fujikuroi,it differs from gibberellin A1 in the presence of a double bond between C-3 and C-4. It has a role as a plant metabolite and a mouse metabolite. It is a lactone, a gibberellin monocarboxylic acid, an organic heteropentacyclic compound and a C19-gibberellin. It is a conjugate acid of a gibberellin A3(1-). Gibberellic acid is a natural product found in Cocos nucifera, Prunus cerasus, and other organisms with data available. Gibberellins (GAs) are plant hormones that regulate growth and influence various developmental processes, including stem elongation, germination, dormancy, flowering, sex expression, enzyme induction, and leaf and fruit senescence. Gibberellins is found in many foods, some of which are common wheat, potato, sunflower, and common pea. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D005875 - Gibberellins CONFIDENCE standard compound; INTERNAL_ID 449; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3262; ORIGINAL_PRECURSOR_SCAN_NO 3260 CONFIDENCE standard compound; INTERNAL_ID 449; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3253; ORIGINAL_PRECURSOR_SCAN_NO 3251 CONFIDENCE standard compound; INTERNAL_ID 449; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3271; ORIGINAL_PRECURSOR_SCAN_NO 3269 CONFIDENCE standard compound; INTERNAL_ID 449; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3249; ORIGINAL_PRECURSOR_SCAN_NO 3246 CONFIDENCE standard compound; INTERNAL_ID 449; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3255; ORIGINAL_PRECURSOR_SCAN_NO 3254 KEIO_ID G074 Gibberellic Acid is named after a fungus Gibberella fujikuroi . Gibberellic Acid regulates processes of plant development and growth, including seed development and germination, stem and root growth, cell division, and flowering time[1]. Gibberellic Acid is named after a fungus Gibberella fujikuroi . Gibberellic Acid regulates processes of plant development and growth, including seed development and germination, stem and root growth, cell division, and flowering time[1].
Isopentenyl pyrophosphate
Isopentenyl pyrophosphate, also known as delta3-isopentenyl diphosphate or ipp, is a member of the class of compounds known as isoprenoid phosphates. Isoprenoid phosphates are prenol lipids containing a phosphate group linked to an isoprene (2-methylbuta-1,3-diene) unit. Thus, isopentenyl pyrophosphate is considered to be an isoprenoid lipid molecule. Isopentenyl pyrophosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Isopentenyl pyrophosphate can be found in a number of food items such as american butterfish, conch, tea leaf willow, and butternut, which makes isopentenyl pyrophosphate a potential biomarker for the consumption of these food products. Isopentenyl pyrophosphate can be found primarily in human spleen tissue. Isopentenyl pyrophosphate exists in all living species, ranging from bacteria to humans. In humans, isopentenyl pyrophosphate is involved in several metabolic pathways, some of which include ibandronate action pathway, lovastatin action pathway, fluvastatin action pathway, and pravastatin action pathway. Isopentenyl pyrophosphate is also involved in several metabolic disorders, some of which include hypercholesterolemia, hyper-igd syndrome, lysosomal acid lipase deficiency (wolman disease), and wolman disease. Isopentenyl pyrophosphate (IPP, isopentenyl diphosphate, or IDP) is an isoprenoid precursor. IPP is an intermediate in the classical, HMG-CoA reductase pathway (commonly called the mevalonate pathway) and in the non-mevalonate MEP pathway of isoprenoid precursor biosynthesis. Isoprenoid precursors such as IPP, and its isomer DMAPP, are used by organisms in the biosynthesis of terpenes and terpenoids . Isopentenyl pyrophosphate, IPP or isopentenyl diphosphate, is an intermediate in the HMG-CoA reductase pathway used by organisms in the biosynthesis of terpenes and terpenoids. IPP is formed from Mevalonate-5-pyrophosphate, in a reaction catalyzed by the enzyme mevalonate-5-pyrophosphate decarboxylase. (wikipedia).
DL-Malic acid
Malic acid (CAS: 6915-15-7) is a tart-tasting organic dicarboxylic acid that plays a role in many sour or tart foods. Apples contain malic acid, which contributes to the sourness of a green apple. Malic acid can make a wine taste tart, although the amount decreases with increasing fruit ripeness (Wikipedia). In its ionized form, malic acid is called malate. Malate is an intermediate of the TCA cycle along with fumarate. It can also be formed from pyruvate as one of the anaplerotic reactions. In humans, malic acid is both derived from food sources and synthesized in the body through the citric acid cycle or Krebs cycle which takes place in the mitochondria. Malates importance to the production of energy in the body during both aerobic and anaerobic conditions is well established. Under aerobic conditions, the oxidation of malate to oxaloacetate provides reducing equivalents to the mitochondria through the malate-aspartate redox shuttle. During anaerobic conditions, where a buildup of excess reducing equivalents inhibits glycolysis, malic acids simultaneous reduction to succinate and oxidation to oxaloacetate is capable of removing the accumulating reducing equivalents. This allows malic acid to reverse hypoxias inhibition of glycolysis and energy production. In studies on rats, it has been found that only tissue malate is depleted following exhaustive physical activity. Other key metabolites from the citric acid cycle needed for energy production were found to be unchanged. Because of this, a deficiency of malic acid has been hypothesized to be a major cause of physical exhaustion. Notably, the administration of malic acid to rats has been shown to elevate mitochondrial malate and increase mitochondrial respiration and energy production. Malic acid has been found to be a metabolite in Aspergillus (Hugo Vanden Bossche, D.W.R. Mackenzie and G. Cauwenbergh. Aspergillus and Aspergillosis, 1987). Acidulant, antioxidant, flavouring agent, flavour enhancer. Not for use in baby foods (GRAS) Malic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=617-48-1 (retrieved 2024-07-01) (CAS RN: 6915-15-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (S)-Malic acid ((S)-2-Hydroxysuccinic acid) is a dicarboxylic acid in naturally occurring form, contributes to the pleasantly sour taste of fruits and is used as a food additive. (S)-Malic acid ((S)-2-Hydroxysuccinic acid) is a dicarboxylic acid in naturally occurring form, contributes to the pleasantly sour taste of fruits and is used as a food additive. Malic acid (Hydroxybutanedioic acid) is a dicarboxylic acid that is naturally found in fruits such as apples and pears. It plays a role in many sour or tart foods. Malic acid (Hydroxybutanedioic acid) is a dicarboxylic acid that is naturally found in fruits such as apples and pears. It plays a role in many sour or tart foods.
L-Cysteine
Cysteine (Cys), also known as L-cysteine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-alanine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Cysteine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, non-polar, sulfur-containing amino acid. Cysteine is an important source of sulfur in human metabolism, and although it is classified as a non-essential amino acid, cysteine may be essential for infants, the elderly, and individuals with certain metabolic disease or who suffer from malabsorption syndromes. Cysteine can occasionally be considered as an essential or conditionally essential amino acid. Cysteine is unique amongst the twenty natural amino acids as it contains a thiol group. Thiol groups can undergo oxidation/reduction (redox) reactions; when cysteine is oxidized it can form cystine, which is two cysteine residues joined by a disulfide bond. This reaction is reversible since the reduction of this disulphide bond regenerates two cysteine molecules. The disulphide bonds of cystine are crucial to defining the structures of many proteins. Cysteine is often involved in electron-transfer reactions, and help the enzyme catalyze its reaction. Cysteine is also part of the antioxidant glutathione. N-Acetyl-L-cysteine (NAC) is a form of cysteine where an acetyl group is attached to cysteines nitrogen atom and is sold as a dietary supplement. Cysteine is named after cystine, which comes from the Greek word kustis meaning bladder (cystine was first isolated from kidney stones). Oxidation of cysteine can produce a disulfide bond with another thiol and further oxidation can produce sulphfinic or sulfonic acids. The cysteine thiol group is also a nucleophile and can undergo addition and substitution reactions. Thiol groups become much more reactive when they are ionized, and cysteine residues in proteins have pKa values close to neutrality, so they are often in their reactive thiolate form in the cell. The thiol group also has a high affinity for heavy metals and proteins containing cysteine will bind metals such as mercury, lead, and cadmium tightly. Due to this ability to undergo redox reactions, cysteine has antioxidant properties. Cysteine is important in energy metabolism. As cystine, it is a structural component of many tissues and hormones. Cysteine has clinical uses ranging from treating baldness to psoriasis to preventing smokers hack. In some cases, oral cysteine therapy has proved excellent for treatment of asthmatics, enabling them to stop theophylline and other medications. Cysteine also enhances the effect of topically applied silver, tin, and zinc salts in preventing dental cavities. In the future, cysteine may play a role in the treatment of cobalt toxicity, diabetes, psychosis, cancer, and seizures (http://www.dcnutrition.com/AminoAcids/). Cysteine has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). [Spectral] L-Cysteine (exact mass = 121.01975) and D-2-Aminobutyrate (exact mass = 103.06333) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] L-Cysteine (exact mass = 121.01975) and Creatine (exact mass = 131.06948) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Detoxicant, dietary supplement, dough strengthener, yeast nutrient for leavened bakery products. Flavouring agent. Enzymic browning inhibitor. L-Cysteine is found in many foods, some of which are bilberry, mugwort, cowpea, and sweet bay. L-(+)-Cysteine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=52-90-4 (retrieved 2024-07-01) (CAS RN: 52-90-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Cysteine is a conditionally essential amino acid, which acts as a precursor for biologically active molecules such as hydrogen sulphide (H2S), glutathione and taurine. L-Cysteine suppresses ghrelin and reduces appetite in rodents and humans[1]. L-Cysteine is a conditionally essential amino acid, which acts as a precursor for biologically active molecules such as hydrogen sulphide (H2S), glutathione and taurine. L-Cysteine suppresses ghrelin and reduces appetite in rodents and humans[1].
Valinomycin
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D049990 - Membrane Transport Modulators D007476 - Ionophores A twelve-membered cyclodepsipeptide composed of three repeating D-alpha-hydroxyisovaleryl-D-valyl-L-lactoyl-L-valyl units joined in sequence. An antibiotic found in several Streptomyces strains. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic Valinomycin is a potassium-specific ionophore, the valinomycin-K+ complex can be incorporated into biological bilayer membranes with the hydrophobic surface of valinomycin, destroys the normal K+ gradient across the membrane, and as a result kills the cells, incorporating into liposomes can significantly reduces the cytotoxicity and enhances the targeting effect. Valinomycin exhibits antibiotic, antifungal, antiviral, antitumor and insecticidal efficacy, thus can be used for relevant research[1][2]. Valinomycin (NSC 122023), a cyclic depsipeptide antibiotic, act as a potassium selective ionophore. Valinomycin (NSC 122023) inhibits lymphocyte proliferation by its effects on the cell membrane, and induces apoptosis in CHO cells[1]. Valinomycin induces activation of PINK1 leading to Parkin Ser65 phosphorylation[2].
20-Hydroxyeicosatetraenoic acid
20-Hydroxyeicosatetraenoic acid (20-HETE) is a metabolite of arachidonic acid. Cytochrome P450 enzymes of the 4A and 4F families catalyze the omega-hydroxylation of arachidonic acid and produce 20-HETE. 20-HETE is a potent constrictor of renal, cerebral, and mesenteric arteries. The vasoconstrictor response to 20-HETE is associated with activation of protein kinase, Rho kinase, and the mitogen-activated protein (MAP) kinase pathway C. 20-HETE also increases intracellular Ca2+ by causing the depolarization of vascular smooth muscle membrane secondary to blocking the large-conductance Ca2+-activated K+-channels and by a direct effect on L-type Ca channels. Elevations in the production of 20-HETE mediate the myogenic response of skeletal, renal, and cerebral arteries to elevations in transmural pressure. There is an important interaction between nitric oxide (NO) and the formation of 20-HETE production. NO inhibits the formation of 20-HETE formation in renal and cerebral arteries. A fall in levels of 20-HETE contributes to the cyclic GMP-independent dilator effect of NO to activate the large-conductance Ca2+-activated K+-channels and to dilate the cerebral arteries (PMID: 16258232). Metabolite produced during NADPH dependent enzymatic oxidation of arachidonic acid. Potent vasoconstrictor [CCD]
Nicotinamide adenine dinucleotide phosphate
NADPH is the reduced form of NADP+, and NADP+ is the oxidized form of NADPH. Nicotinamide adenine dinucleotide phosphate (NADP) is a coenzyme composed of ribosylnicotinamide 5-phosphate (NMN) coupled with a pyrophosphate linkage to 5-phosphate adenosine 2,5-bisphosphate. NADP serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). NADP is formed through the addition of a phosphate group to the 2 position of the adenosyl nucleotide through an ester linkage (Dorland, 27th ed). This extra phosphate is added by the enzyme NAD+ kinase and removed via NADP+ phosphatase. NADP is also known as TPN (triphosphopyridine nucleotide) and it is an important cofactor used in anabolic reactions in all forms of cellular life. Examples include the Calvin cycle, cholesterol synthesis, fatty acid elongation, and nucleic acid synthesis (Wikipedia). Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5-phosphate (NMN) coupled by pyrophosphate linkage to the 5-phosphate adenosine 2,5-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed.) [HMDB]. NADPH is found in many foods, some of which are american pokeweed, rice, ginseng, and ostrich fern. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Glycerol 3-phosphate
Glycerol 3-phosphate, also known as glycerophosphoric acid or alpha-glycerophosphorate, is a member of the class of compounds known as glycerophosphates. Glycerophosphates are compounds containing a glycerol linked to a phosphate group. Glycerol 3-phosphate is soluble (in water) and a moderately acidic compound (based on its pKa). Glycerol 3-phosphate can be found in a number of food items such as sacred lotus, common oregano, mixed nuts, and yautia, which makes glycerol 3-phosphate a potential biomarker for the consumption of these food products. Glycerol 3-phosphate can be found primarily in blood, feces, saliva, and urine, as well as in human prostate tissue. Glycerol 3-phosphate exists in all living species, ranging from bacteria to humans. In humans, glycerol 3-phosphate is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-12:0/i-21:0/a-21:0/i-21:0), cardiolipin biosynthesis cl(i-12:0/a-25:0/i-13:0/i-12:0), cardiolipin biosynthesis cl(i-13:0/i-21:0/i-21:0/a-25:0), and cardiolipin biosynthesis cl(i-13:0/a-25:0/i-18:0/a-13:0). Glycerol 3-phosphate is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis tg(i-24:0/19:0/16:0), de novo triacylglycerol biosynthesis TG(16:0/22:4(7Z,10Z,13Z,16Z)/16:1(9Z)), de novo triacylglycerol biosynthesis TG(18:0/18:3(9Z,12Z,15Z)/14:1(9Z)), and de novo triacylglycerol biosynthesis TG(18:3(6Z,9Z,12Z)/22:5(4Z,7Z,10Z,13Z,16Z)/20:2(11Z,14Z)). Glycerol 3-phosphate is a chemical intermediate in the glycolysis metabolic pathway. It is commonly confused with the similarly named glycerate 3-phosphate or glyceraldehyde 3-phosphate. Glycerol 3-phosphate is produced from glycerol, the triose sugar backbone of triglycerides and glycerophospholipids, by the enzyme glycerol kinase. Glycerol 3-phospate may then be converted by dehydrogenation to dihydroxyacetone phosphate (DHAP) by the enzyme glycerol-3-phosphate dehydrogenase. DHAP can then be rearranged into glyceraldehyde 3-phosphate (GA3P) by triose phosphate isomerase (TIM), and feed into glycolysis. The glycerol 3-phosphate shuttle is used to rapidly regenerate NAD+ in the brain and skeletal muscle cells of mammals (wikipedia). Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID G072
D-Glucuronate
Glucuronic acid (CAS: 6556-12-3) is a carboxylic acid that has the structure of a glucose molecule that has had its sixth carbon atom (of six total) oxidized. The salts of glucuronic acid are known as glucuronates. Glucuronic acid is highly soluble in water. In humans, glucuronic acid is often linked to toxic or poisonous substances to allow for subsequent elimination, and to hormones to allow for easier transport. These linkages involve O-glycosidic bonds. The process is known as glucuronidation, and the resulting substances are known as glucuronides (or glucuronosides). Glucuronidation uses UDP-glucuronic acid (glucuronic acid linked via a glycosidic bond to uridine diphosphate) as an intermediate. UDP-glucuronic acid is formed in the liver of all animals. D-Glucuronic acid is an important intermediate isolated from many gums. D-Glucuronic acid and its derivative glucuronolactone are as a liver antidote in the prophylaxis of human health. D-Glucuronic acid has an anti-inflammatory effect for the skin[1]. D-Glucuronic acid is an important intermediate isolated from many gums. D-Glucuronic acid and its derivative glucuronolactone are as a liver antidote in the prophylaxis of human health. D-Glucuronic acid has an anti-inflammatory effect for the skin[1].
Glucose 6-phosphate
Glucose 6 phosphate (alpha-D-glucose 6 phosphate or G6P) is the alpha-anomer of glucose-6-phosphate. There are two anomers of glucose 6 phosphate, the alpha anomer and the beta anomer. Glucose 6 phosphate is an ester of glucose with phosphoric acid, made in the course of glucose metabolism by mammalian and other cells. It is a normal constituent of resting muscle and probably is in constant equilibrium with fructose-6-phosphate. (Stedman, 26th ed). Glucose-6-phosphate is a phosphorylated glucose molecule on carbon 6. When glucose enters a cell, it is immediately phosphorylated to G6P. This is catalyzed with hexokinase enzymes, thus consuming one ATP. A major reason for immediate phosphorylation of the glucose is so that it cannot diffuse out of the cell. The phosphorylation adds a charged group so the G6P cannot easily cross cell membranes. G6P can travel down two metabolic pathways, glycolysis and the pentose phosphate pathway. In addition to the metabolic pathways, G6P can also be stored as glycogen in the liver if blood glucose levels are high. If the body needs energy or carbon skeletons for syntheses, G6P can be isomerized to Fructose-6-phosphate and then phosphorylated to Fructose-1,6-bisphosphate. Note, the molecule now has 2 phosphoryl groups attached. The addition of the 2nd phosphoryl group is an irreversible step, so once this happens G6P will enter glycolysis and be turned into pyruvate (ATP production occurs). If blood glucose levels are high, the body needs a way to store the excess glucose. After being converted to G6P, phosphoglucose mutase (isomerase) can turn the molecule into glucose-1-phosphate. Glucose-1-phosphate can then be combined with uridine triphosphate (UTP) to form UDP-glucose. This reaction is driven by the hydrolysis of pyrophosphate that is released in the reaction. Now, the activated UDP-glucose can add to a growing glycogen molecule with the help of glycogen synthase. This is a very efficient storage mechanism for glucose since it costs the body only 1 ATP to store the 1 glucose molecule and virtually no energy to remove it from storage. It is important to note that glucose-6-phosphate is an allosteric activator of glycogen synthase, which makes sense because when the level of glucose is high the body should store the excess glucose as glycogen. On the other hand, glycogen synthase is inhibited when it is phosphorylated by protein kinase a during times of high stress or low blood glucose levels. -- Wikipedia [HMDB] Glucose 6-phosphate (G6P, sometimes called the Robison ester) is a glucose sugar phosphorylated at the hydroxy group on carbon 6. Glucose 6-phosphate (G6P) has two anomers: the alpha anomer and the beta anomer. Glucose 6-phosphate is an ester of glucose with phosphoric acid, made in the course of glucose metabolism by mammalian and other cells. It is a normal constituent of resting muscle and probably is in constant equilibrium with fructose 6-phosphate (Stedman, 26th ed). When glucose enters a cell, it is immediately phosphorylated to G6P. This is catalyzed with hexokinase enzymes, thus consuming one ATP. A major reason for immediate phosphorylation of the glucose is so that it cannot diffuse out of the cell. The phosphorylation adds a charged group so the G6P cannot easily cross cell membranes. G6P can travel down two metabolic pathways: glycolysis and the pentose phosphate pathway. In addition to the metabolic pathways, G6P can also be stored as glycogen in the liver if blood glucose levels are high. If the body needs energy or carbon skeletons for syntheses, G6P can be isomerized to fructose 6-phosphate and then phosphorylated to fructose 1,6-bisphosphate. Note, the molecule now has 2 phosphoryl groups attached. The addition of the 2nd phosphoryl group is an irreversible step, so once this happens G6P will enter glycolysis and be turned into pyruvate (ATP production occurs). If blood glucose levels are high, the body needs a way to store the excess glucose. After being converted to G6P, phosphoglucose mutase (an isomerase) can turn the molecule into glucose 1-phosphate. Glucose 1-phosphate can then be combined with uridine triphosphate (UTP) to form UDP-glucose. This reaction is driven by the hydrolysis of pyrophosphate that is released in the reaction. Now, the activated UDP-glucose can add to a growing glycogen molecule with the help of glycogen synthase. This is a very efficient storage mechanism for glucose since it costs the body only 1 ATP to store the 1 glucose molecule and virtually no energy to remove it from storage. It is important to note that glucose 6-phosphate is an allosteric activator of glycogen synthase, which makes sense because when the level of glucose is high the body should store the excess glucose as glycogen. On the other hand, glycogen synthase is inhibited when it is phosphorylated by protein kinase during times of high stress or low blood glucose levels. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 237 KEIO_ID G003; [MS2] KO009109 KEIO_ID G003
Bromoxynil
CONFIDENCE standard compound; INTERNAL_ID 549; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4334; ORIGINAL_PRECURSOR_SCAN_NO 4332 CONFIDENCE standard compound; INTERNAL_ID 549; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4314; ORIGINAL_PRECURSOR_SCAN_NO 4312 CONFIDENCE standard compound; INTERNAL_ID 549; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4343; ORIGINAL_PRECURSOR_SCAN_NO 4340 CONFIDENCE standard compound; INTERNAL_ID 549; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4300; ORIGINAL_PRECURSOR_SCAN_NO 4297 CONFIDENCE standard compound; INTERNAL_ID 549; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4318; ORIGINAL_PRECURSOR_SCAN_NO 4315 CONFIDENCE standard compound; INTERNAL_ID 549; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4333; ORIGINAL_PRECURSOR_SCAN_NO 4328 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8440 CONFIDENCE standard compound; EAWAG_UCHEM_ID 24
Aciclovir
Aciclovir is only found in individuals that have used or taken this drug. It is a guanosine analog that acts as an antimetabolite. Viruses are especially susceptible. Used especially against herpes. [PubChem]Viral (HSV-1, HSV-2 and VZV) thymidine kinase converts aciclovir to the aciclovir monophosphate, which is then converted to the diphosphate by cellular guanylate kinase, and finally to the triphosphate by phosphoglycerate kinase, phosphoenolpyruvate carboxykinase, and pyruvate kinase. Aciclovir triphosphate competitively inhibits viral DNA polymerase and competes with the natural deoxyguanosine triphosphate, for incorporation into viral DNA. Once incorporated, aciclovir triphosphate inhibits DNA synthesis by acting as a chain terminator. J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AB - Nucleosides and nucleotides excl. reverse transcriptase inhibitors D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BB - Antivirals S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AD - Antivirals D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C471 - Enzyme Inhibitor > C29575 - DNA Polymerase Inhibitor C254 - Anti-Infective Agent > C281 - Antiviral Agent KEIO_ID A071; [MS2] KO008862 KEIO_ID A071 Acyclovir (Aciclovir) is a potent, orally active antiviral agent. Acyclovir has antiherpetic activity with IC50 values of 0.85 μM and 0.86 μM for HSV-1 and HSV-2, respectively. Acyclovir induces cell cycle perturbation and apoptosis. Acyclovir prevents bacterial infections during induction therapy for acute leukaemia[1][2][3][4].
Citrinin
Citrinin is a mycotoxin originally isolated from Penicillium citrinum. It has since been found to be produced by a variety of other fungi which are found or used in the production of human foods, such as grain, cheese, sake and red pigments. Citrinin has also been found in commercial red yeast rice supplements, and also in Aspergillus niveus and Aspergillus terreus (Hugo Vanden Bossche, D.W.R. Mackenzie and G. Cauwenbergh. Aspergillus and Aspergillosis, 1987). D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins Citrinin is a mycotoxin which causes contamination in the food and is associated with different toxic effects. Citrinin is usually found together with another nephrotoxic mycotoxin, Ochratoxin A. Citrinin is also reported to possess a broad spectrum of bioactivities, including antibacterial, antifungal, and potential anticancer and neuro-protective effects in vitro[1][2].
Bolandione
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Astemizole
Astemizole is a long-acting, non-sedating second generation antihistamine used in the treatment of allergy symptoms. It was withdrawn from market by the manufacturer in 1999 due to the potential to cause arrhythmias at high doses, especially when when taken with CYP inhibitors or grapefruit juice. R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents Astemizole (R 43512), a second-generation antihistamine agent to diminish allergic symptoms with a long duration of action, is a histamine H1-receptor antagonist, with an IC50 of 4 nM. Astemizole also shows potent hERG K+ channel blocking activity with an IC50 of 0.9 nM. Astemizole has antipruritic effects[1][2].
Cannabinol
C308 - Immunotherapeutic Agent > C574 - Immunosuppressant
Protriptyline
Protriptyline hydrochloride is a dibenzocycloheptene-derivative tricyclic antidepressant (TCA). TCAs are structurally similar to phenothiazines. They contain a tricyclic ring system with an alkyl amine substituent on the central ring. In non-depressed individuals, protriptyline does not affect mood or arousal, but may cause sedation. In depressed individuals, protriptyline exerts a positive effect on mood. TCAs are potent inhibitors of serotonin and norepinephrine reuptake. In addition, TCAs down-regulate cerebral cortical β-adrenergic receptors and sensitize post-synaptic serotonergic receptors with chronic use. The antidepressant effects of TCAs are thought to be due to an overall increase in serotonergic neurotransmission. TCAs also block histamine H1 receptors, α1-adrenergic receptors and muscarinic receptors, which accounts for their sedative, hypotensive and anticholinergic effects (e.g. blurred vision, dry mouth, constipation, urinary retention), respectively. See toxicity section below for a complete listing of side effects. Protriptyline may be used for the treatment of depression. N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AA - Non-selective monoamine reuptake inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent > C94727 - Tricyclic Antidepressant D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators
Phalloidine
D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
Oleic acid
Oleic acid (or 9Z)-Octadecenoic acid) is an unsaturated C-18 or an omega-9 fatty acid that is the most widely distributed and abundant fatty acid in nature. It occurs naturally in various animal and vegetable fats and oils. It is an odorless, colorless oil, although commercial samples may be yellowish. The name derives from the Latin word oleum, which means oil. Oleic acid is the most abundant fatty acid in human adipose tissue, and the second most abundant in human tissues overall, following palmitic acid. Oleic acid is a component of the normal human diet, being a part of animal fats and vegetable oils. Triglycerides of oleic acid represent the majority of olive oil (about 70\\\\%). Oleic acid triglycerides also make up 59–75\\\\% of pecan oil, 61\\\\% of canola oil, 36–67\\\\% of peanut oil, 60\\\\% of macadamia oil, 20–80\\\\% of sunflower oil, 15–20\\\\% of grape seed oil, sea buckthorn oil, 40\\\\% of sesame oil, and 14\\\\% of poppyseed oil. High oleic variants of plant sources such as sunflower (~80\\\\%) and canola oil (70\\\\%) also have been developed. consumption has been associated with decreased low-density lipoprotein (LDL) cholesterol, and possibly with increased high-density lipoprotein (HDL) cholesterol, however, the ability of oleic acid to raise HDL is still debated. Oleic acid may be responsible for the hypotensive (blood pressure reducing) effects of olive oil that is considered a health benefit. Oleic acid is used in manufacturing of surfactants, soaps, plasticizers. It is also used as an emulsifying agent in foods and pharmaceuticals. Oleic acid is used commercially in the preparation of oleates and lotions, and as a pharmaceutical solvent. Major constituent of plant oils e.g. olive oil (ca. 80\\\\%), almond oil (ca. 80\\\\%) and many others, mainly as glyceride. Constituent of tall oiland is also present in apple, melon, raspberry oil, tomato, banana, roasted peanuts, black tea, rice bran, cardamon, plum brandy, peated malt, dairy products and various animal fats. Component of citrus fruit coatings. Emulsifying agent in foods CONFIDENCE standard compound; INTERNAL_ID 290 COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].
Probenecid
The prototypical uricosuric agent. It inhibits the renal excretion of organic anions and reduces tubular reabsorption of urate. Probenecid has also been used to treat patients with renal impairment, and, because it reduces the renal tubular excretion of other drugs, has been used as an adjunct to antibacterial therapy. [PubChem] CONFIDENCE standard compound; INTERNAL_ID 208; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4243; ORIGINAL_PRECURSOR_SCAN_NO 4241 CONFIDENCE standard compound; INTERNAL_ID 208; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4209; ORIGINAL_PRECURSOR_SCAN_NO 4206 CONFIDENCE standard compound; INTERNAL_ID 208; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4239; ORIGINAL_PRECURSOR_SCAN_NO 4234 ORIGINAL_PRECURSOR_SCAN_NO 4241; CONFIDENCE standard compound; INTERNAL_ID 208; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4243 CONFIDENCE standard compound; INTERNAL_ID 208; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4238; ORIGINAL_PRECURSOR_SCAN_NO 4234 CONFIDENCE standard compound; INTERNAL_ID 208; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4245; ORIGINAL_PRECURSOR_SCAN_NO 4243 CONFIDENCE standard compound; INTERNAL_ID 208; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4200; ORIGINAL_PRECURSOR_SCAN_NO 4198 M - Musculo-skeletal system > M04 - Antigout preparations > M04A - Antigout preparations > M04AB - Preparations increasing uric acid excretion D018501 - Antirheumatic Agents > D006074 - Gout Suppressants > D014528 - Uricosuric Agents C26170 - Protective Agent > C921 - Uricosuric Agent D010592 - Pharmaceutic Aids
Aflatoxin B1
Aflatoxins are naturally occurring mycotoxins that are produced by many species of Aspergillus, a fungus. At least 13 different types of aflatoxin are produced in nature. Aflatoxin B1 is considered the most toxic and is produced by both Aspergillus flavus and Aspergillus parasiticus. The native habitat of Aspergillus is in soil, decaying vegetation, hay, and grains undergoing microbiological deterioration and it invades all types of organic substrates whenever conditions are favourable for its growth. Favourable conditions include high moisture content (at least 7\\\%) and high temperature. Aflatoxins B1 (AFB1) are contaminants of improperly stored foods; they are potent genotoxic and carcinogenic compounds, exerting their effects through damage to DNA. They can also induce mutations that increase oxidative damage (PMID: 17214555). Crops which are frequently affected by Aspergillus contamination include cereals (maize, sorghum, pearl millet, rice, wheat), oilseeds (peanut, soybean, sunflower, cotton), spices (chile peppers, black pepper, coriander, turmeric, ginger), and tree nuts (almond, pistachio, walnut, coconut, brazil nut). Production by Aspergillus flavus and Aspergillus parasiticus. Toxin causing Turkey X disease. One of the most potent carcinogens known in animals. Potential food contaminant especies in grains and nuts D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D000348 - Aflatoxins Aflatoxin B1 (AFB1) is a Class 1A carcinogen, which is a secondary metabolite of Aspergillus flavus and A. parasiticus. Aflatoxin B1 (AFB1) mainly induces the transversion of G-->T in the third position of codon 249 of the p53 tumor suppressor gene, resulting in mutation[1][2].
Eugenol
Eugenol appears as clear colorless pale yellow or amber-colored liquid. Odor of cloves. Spicy pungent taste. (NTP, 1992) Eugenol is a phenylpropanoid formally derived from guaiacol with an allyl chain substituted para to the hydroxy group. It is a major component of clove essential oil, and exhibits antibacterial, analgesic and antioxidant properties. It has been widely used in dentistry to treat toothache and pulpitis. It has a role as an allergen, a human blood serum metabolite, a sensitiser, a volatile oil component, a flavouring agent, an EC 1.4.3.4 (monoamine oxidase) inhibitor, a radical scavenger, an antibacterial agent, an antineoplastic agent, an apoptosis inducer, an anaesthetic, an analgesic, a voltage-gated sodium channel blocker, a NF-kappaB inhibitor and an anti-inflammatory agent. It is a phenylpropanoid, a monomethoxybenzene, a member of phenols and an alkenylbenzene. It is functionally related to a guaiacol. Eugenol is a naturally occurring phenolic molecule found in several plants such as cinnamon, clove, and bay leaves. It has been used as a topical antiseptic as a counter-irritant and in dental preparations with zinc oxide for root canal sealing and pain control. Although not currently available in any FDA-approved products (including OTC), eugenol has been found to have anti-inflammatory, neuroprotective, antipyretic, antioxidant, antifungal and analgesic properties. Its exact mechanism of action is unknown, however, it has been shown to interfere with action potential conduction. There are a number of unapproved OTC products available containing eugenol that advertise its use for the treatment of toothache. Eugenol is a Standardized Chemical Allergen. The physiologic effect of eugenol is by means of Increased Histamine Release, and Cell-mediated Immunity. Eugenol, also called clove oil, is an aromatic oil extracted from cloves that is used widely as a flavoring for foods and teas and as an herbal oil used topically to treat toothache and more rarely to be taken orally to treat gastrointestinal and respiratory complaints. Eugenol in therapeutic doses has not been implicated in causing serum enzyme elevations or clinically apparent liver injury, but ingestions of high doses, as with an overdose, can cause severe liver injury. Eugenol is a natural product found in Dahlia sherffii, Elettaria cardamomum, and other organisms with data available. Eugenol is an allyl chain-substituted guaiacol, i.e. 2-methoxy-4-(2-propenyl)phenol. Eugenol is a member of the allylbenzene class of chemical compounds. It is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil, nutmeg, cinnamon, and bay leaf. It is slightly soluble in water and soluble in organic solvents. It has a pleasant, spicy, clove-like odor. Eugenol is used in perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anaesthetic. It was used in the production of isoeugenol for the manufacture of vanillin, though most vanillin is now produced from petrochemicals or from by-products of paper manufacture (Wikipedia). 4-Allyl-2-methoxyphenol is a metabolite found in or produced by Saccharomyces cerevisiae. A cinnamate derivative of the shikimate pathway found in CLOVE OIL and other PLANTS. See also: Cinnamon (part of); Clove Oil (part of); Cinnamon Leaf Oil (part of) ... View More ... Eugenol is an allyl chain-substituted guaiacol. Eugenol is a member of the phenylpropanoids class of chemical compounds. It is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil, nutmeg, cinnamon, and bay leaf. It is slightly soluble in water and soluble in organic solvents. It has a pleasant, spicy, clove-like aroma. Eugenol is an allyl chain-substituted guaiacol, i.e. 2-methoxy-4-(2-propenyl)phenol. It is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil, nutmeg, cinnamon, and bay leaf. Eugenol is used in perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anaesthetic. It was used in the production of isoeugenol for the manufacture of vanillin, though most vanillin is now produced from petrochemicals or from by-products of paper manufacture (Wikipedia). Eugenol is used in perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anesthetic. It is a key ingredient in Indonesian kretek (clove) cigarettes. It was used in the production of isoeugenol for the manufacture of vanillin, though most vanillin is now produced from phenol or from lignin. It is one of many compounds that is attractive to males of various species of orchid bees, who apparently gather the chemical to synthesize pheromones; it is commonly used as bait to attract and collect these bees for study. Eugenol has a very widespread occurrence in essential oils. Major component of clove oil. Also found in citrus and thyme oils. It is found in foods such as apple, apricot, banana and cherry fruits. Eugenol or 4-allyl-2-methoxyphenol is classified as a phenylpropanoid, formally derived from guaiacol, with an allyl chain positioned para to the hydroxy group. It is soluble in water, alcohol, chloroform, ether and oils. Eugenol is a neutral compound. It is biosynthesized from tyrosine. Eugenol is widely distributed in plants. It is a clear to pale yellow oily liquid extracted from clove oil, nutmeg, cinnamon, basil and bay leaf. It has a pleasant, spicy, clove-like odor with a spicy pungent taste. Eugenol is found in highest concentrations in cloves, allspices, and carrots and in lower concentrations in walnuts, ceylon cinnamons, and wild carrots. Eugenol has also been detected in shea tree, passion fruits, winged beans, fireweeds, and gingers, making it a potential biomarker for the consumption of these foods. Eugenol is used in perfumeries, flavorings and essential oils. It was first used for the manufacture of vanillin (https://doi.org/10.1021/ed054p776), though most vanillin is now produced from petrochemicals or from by-products of paper manufacture. Eugenol is hepatotoxic, meaning it may cause damage to the liver, if consumed in high doses. Eugenol has local antiseptic and anaesthetic properties (PMID:15089054 ; PMID:935250 ) and acts as positive allosteric modulators of the GABA-A receptor. It has high antioxidant, anti-proliferative, and anti-inflammatory activities with potential roles in alleviating and preventing cancer and inflammatory reactions (PMID:27771920 ). A phenylpropanoid formally derived from guaiacol with an allyl chain substituted para to the hydroxy group. It is a major component of clove essential oil, and exhibits antibacterial, analgesic and antioxidant properties. It has been widely used in dentistry to treat toothache and pulpitis. C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D000890 - Anti-Infective Agents D012997 - Solvents [Raw Data] CB226_Eugenol_pos_10eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_20eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_40eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_50eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_30eV_CB000079.txt Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation. Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation.
Deoxycorticosterone
11-Deoxycorticosterone (also called desoxycortone, 21-hydroxyprogesterone, DOC, or simply deoxycorticosterone) is a steroid hormone produced by the adrenal gland that possesses mineralocorticoid activity and acts as a precursor to aldosterone. It is classified as a member of the 21-hydroxysteroids. 21-hydroxysteroids are steroids carrying a hydroxyl group at the 21-position of the steroid backbone. Deoxycorticosterone is very hydrophobic, practically insoluble (in water), and relatively neutral. Deoxycorticosterone can be synthesized from progesterone by 21-beta-hydroxylase and is then converted to corticosterone by 11-beta-hydroxylase. Corticosterone is then converted to aldosterone by aldosterone synthase. Deoxycorticosterone stimulates the collecting tubules in the kidney to continue to excrete potassium in much the same way that aldosterone does. Deoxycorticosterone has about 1/20 of the sodium retaining power of aldosterone and about 1/5 the potassium excreting power of aldosterone (Wikipedia). Deoxycorticosterone can be found throughout all human tissues and has been detected in amniotic fluid and blood. When present in sufficiently high levels, deoxycorticosterone can act as a hypertensive agent and a metabotoxin. A hypertensive agent increases blood pressure and causes the production of more urine. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of deoxycorticosterone are associated with congenital adrenal hyperplasia (CAH) and with adrenal tumors producing deoxycorticosterone (PMID: 20671982). High levels of this mineralocorticoid are associated with resistant hypertension, which can result in polyuria, polydipsia, increased blood volume, edema, and cardiac enlargement. Deoxycorticosterone can be used to treat adrenal insufficiency. In particular, desoxycorticosterone acetate (DOCA) is used as replacement therapy in Addisons disease. Desoxycorticosterol, also known as 21-hydroxy-4-pregnene-3,20-dione or 21-hydroxyprogesterone, is a member of the class of compounds known as 21-hydroxysteroids. 21-hydroxysteroids are steroids carrying a hydroxyl group at the 21-position of the steroid backbone. Thus, desoxycorticosterol is considered to be a steroid lipid molecule. Desoxycorticosterol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Desoxycorticosterol can be synthesized from progesterone. Desoxycorticosterol can also be synthesized into 11-deoxycorticosterone-21-hemisuccinate and 5beta-dihydrodeoxycorticosterone. Desoxycorticosterol can be found in rice, which makes desoxycorticosterol a potential biomarker for the consumption of this food product. Desoxycorticosterol can be found primarily in amniotic fluid and blood, as well as throughout all human tissues. In humans, desoxycorticosterol is involved in the steroidogenesis. Desoxycorticosterol is also involved in several metabolic disorders, some of which include corticosterone methyl oxidase I deficiency (CMO I), 21-hydroxylase deficiency (CYP21), corticosterone methyl oxidase II deficiency - CMO II, and 11-beta-hydroxylase deficiency (CYP11B1). Desoxycorticosterol is a non-carcinogenic (not listed by IARC) potentially toxic compound. CONFIDENCE standard compound; INTERNAL_ID 793; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9334; ORIGINAL_PRECURSOR_SCAN_NO 9329 CONFIDENCE standard compound; INTERNAL_ID 793; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9427; ORIGINAL_PRECURSOR_SCAN_NO 9423 CONFIDENCE standard compound; INTERNAL_ID 793; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9386; ORIGINAL_PRECURSOR_SCAN_NO 9384 CONFIDENCE standard compound; INTERNAL_ID 793; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9356; ORIGINAL_PRECURSOR_SCAN_NO 9353 CONFIDENCE standard compound; INTERNAL_ID 793; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9399; ORIGINAL_PRECURSOR_SCAN_NO 9396 CONFIDENCE standard compound; INTERNAL_ID 793; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9378; ORIGINAL_PRECURSOR_SCAN_NO 9376 H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AA - Mineralocorticoids D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D008901 - Mineralocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Deoxycorticosterone is a steroid hormone produced by the adrenal gland that possesses mineralocorticoid activity and acts as an aldosterone precursor. Deoxycorticosterone is a steroid hormone produced by the adrenal gland that possesses mineralocorticoid activity and acts as an aldosterone precursor.
Testosterone Propionate
Testosterone Propionate is only found in individuals that have used or taken this drug. It is an ester of testosterone with a propionate substitution at the 17-beta position. [PubChem]The effects of testosterone in humans and other vertebrates occur by way of two main mechanisms: by activation of the androgen receptor (directly or as DHT), and by conversion to estradiol and activation of certain estrogen receptors. Free testosterone (T) is transported into the cytoplasm of target tissue cells, where it can bind to the androgen receptor, or can be reduced to 5α-dihydrotestosterone (DHT) by the cytoplasmic enzyme 5α-reductase. DHT binds to the same androgen receptor even more strongly than T, so that its androgenic potency is about 2.5 times that of T. The T-receptor or DHT-receptor complex undergoes a structural change that allows it to move into the cell nucleus and bind directly to specific nucleotide sequences of the chromosomal DNA. The areas of binding are called hormone response elements (HREs), and influence transcriptional activity of certain genes, producing the androgen effects. C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Diazoxide
Diazoxide is only found in individuals that have used or taken this drug. It is a benzothiadiazine derivative that is a peripheral vasodilator used for hypertensive emergencies. It lacks diuretic effect, apparently because it lacks a sulfonamide group. [PubChem]As a diuretic, diazoxide inhibits active chloride reabsorption at the early distal tubule via the Na-Cl cotransporter, resulting in an increase in the excretion of sodium, chloride, and water. Thiazides like diazoxide also inhibit sodium ion transport across the renal tubular epithelium through binding to the thiazide sensitive sodium-chloride transporter. This results in an increase in potassium excretion via the sodium-potassium exchange mechanism. The antihypertensive mechanism of diazoxide is less well understood although it may be mediated through its action on carbonic anhydrases in the smooth muscle or through its action on the large-conductance calcium-activated potassium (KCa) channel, also found in the smooth muscle. As a antihypoglycemic, diazoxide inhibits insulin release from the pancreas, probably by opening potassium channels in the beta cell membrane. V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AH - Drugs for treatment of hypoglycemia C - Cardiovascular system > C02 - Antihypertensives > C02D - Arteriolar smooth muscle, agents acting on > C02DA - Thiazide derivatives C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents KEIO_ID D051; [MS2] KO008936 KEIO_ID D051
Ouabain
Ouabain is only found in individuals that have used or taken this drug. It is a cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like digitalis. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-exchanging ATPase. [PubChem]Ouabain inhibits the Na-K-ATPase membrane pump, resulting in an increase in intracellular sodium and calcium concentrations. Increased intracellular concentrations of calcium may promote activation of contractile proteins (e.g., actin, myosin). Ouabain also acts on the electrical activity of the heart, increasing the slope of phase 4 depolarization, shortening the action potential duration, and decreasing the maximal diastolic potential. CONFIDENCE standard compound; INTERNAL_ID 472; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6235; ORIGINAL_PRECURSOR_SCAN_NO 6233 CONFIDENCE standard compound; INTERNAL_ID 472; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6272; ORIGINAL_PRECURSOR_SCAN_NO 6270 CONFIDENCE standard compound; INTERNAL_ID 472; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6219; ORIGINAL_PRECURSOR_SCAN_NO 6216 CONFIDENCE standard compound; INTERNAL_ID 472; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6224; ORIGINAL_PRECURSOR_SCAN_NO 6220 CONFIDENCE standard compound; INTERNAL_ID 472; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6194; ORIGINAL_PRECURSOR_SCAN_NO 6191 C - Cardiovascular system > C01 - Cardiac therapy > C01A - Cardiac glycosides > C01AC - Strophanthus glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D013328 - Strophanthins [Raw Data] CB084_Ouabain_pos_50eV_CB000036.txt [Raw Data] CB084_Ouabain_pos_10eV_CB000036.txt [Raw Data] CB084_Ouabain_pos_30eV_CB000036.txt [Raw Data] CB084_Ouabain_pos_20eV_CB000036.txt [Raw Data] CB084_Ouabain_pos_40eV_CB000036.txt D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors
Spironolactone
Latex as found in nature is a milky fluid found in 10\\\% of all flowering plants (angiosperms). It is a complex emulsion consisting of proteins, alkaloids, starches, sugars, oils, tannins, resins, and gums that coagulates on exposure to air. It is usually exuded after tissue injury. In most plants, latex is white, but some have yellow, orange, or scarlet latex. Since the 17th century, latex has been used as a term for the fluid substance in plants. It serves mainly as defense against herbivorous insects. Many people are allergic to latex. [Wikipedia]. A potassium sparing diuretic that acts by antagonism of aldosterone in the distal renal tubules. It is used mainly in the treatment of refractory edema in patients with congestive heart failure, nephrotic syndrome, or hepatic cirrhosis. Its effects on the endocrine system are utilized in the treatments of hirsutism and acne but they can lead to adverse effects. (From Martindale, The Extra Pharmacopoeia, 30th ed, p827) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D000451 - Mineralocorticoid Receptor Antagonists C - Cardiovascular system > C03 - Diuretics > C03D - Aldosterone antagonists and other potassium-sparing agents > C03DA - Aldosterone antagonists C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49186 - Potassium-Sparing Diuretic COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D004232 - Diuretics CONFIDENCE standard compound; EAWAG_UCHEM_ID 2902 Spironolactone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=52-01-7 (retrieved 2024-10-11) (CAS RN: 52-01-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Dodecanoic acid
Dodecanoic acid, also known as dodecanoate or lauric acid, belongs to the class of organic compounds known as medium-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 4 and 12 carbon atoms. Dodecanoic acid is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Dodecanoic acid is the main fatty acid in coconut oil and in palm kernel oil, and is believed to have antimicrobial properties. It is a white, powdery solid with a faint odour of bay oil. Dodecanoic acid, although slightly irritating to mucous membranes, has a very low toxicity and so is used in many soaps and shampoos. Defoamer, lubricant. It is used in fruit coatings. Occurs as glyceride in coconut oil and palm kernel oil. Simple esters are flavour ingredients Lauric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=143-07-7 (retrieved 2024-07-01) (CAS RN: 143-07-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively. Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively.
Benzenebutanoic acid
Benzenebutanoic acid (also known as 4-phenylbutyrate, or 4-PBA) is the oral form of butyrate, which is known to be a transcriptional regulator. Sodium-4-PBA has been shown to induce fetal hemoglobin, and it has been used in clinical trials for sickle cell anemia and β-thalassemia. Because gene expression profiles became more differentiated, it is in phase I trials in several different malignant disorders. The potential for therapeutic benefit in cystic fibrosis (CF) resides in an additional mechanism, involving protein folding and the ER (endoplasmic reticulum) environment (PMID 12458151). 4-PBA is a drug that was developed to treat elevated blood ammonia in urea cycle disorders, a histone deacetylase inhibitor that promotes mutation ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) trafficking (PMID 16798551). 4-phenylbutyrate (4-PBA) is known to be a transcriptional regulator, and sodium-4-PBA has been shown to induce fetal hemoglobin, and it has been used in clinical trials for sickle cell anemia and β-thalassemia Because gene expression profiles became more differentiated, it is in phase I trials in several different malignant disorders. The potential for therapeutic benefit in cystic fibrosis (CF) resides in an additional mechanism, involving protein folding and the ER environment. 4-PBA is a drug that was developed to treat elevated blood ammonia in urea cycle disorders, a histone deacetylase inhibitor that promotes mutation ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) trafficking. (PMID 12458151) [HMDB] C471 - Enzyme Inhibitor > C1946 - Histone Deacetylase Inhibitor C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent D000970 - Antineoplastic Agents
Phenobarbital
Phenobarbital is only found in individuals that have used or taken this drug. It is a barbituric acid derivative that acts as a nonselective central nervous system depressant.Phenobarbital acts on GABAA receptors, increasing synaptic inhibition. This has the effect of elevating seizure threshold and reducing the spread of seizure activity from a seizure focus. Phenobarbital may also inhibit calcium channels, resulting in a decrease in excitatory transmitter release. The sedative-hypnotic effects of phenobarbital are likely the result of its effect on the polysynaptic midbrain reticular formation, which controls CNS arousal. Phenobarbital appears as odorless white crystalline powder or colorless crystals. A saturated aqueous solution is acid to litmus (approximately pH 5). Slightly bitter taste. (NTP, 1992) Phenobarbital is a member of the class of barbiturates, the structure of which is that of barbituric acid substituted at C-5 by ethyl and phenyl groups. It has a role as an anticonvulsant, a sedative, an excitatory amino acid antagonist and a drug allergen. Phenobarbital is a DEA Schedule IV controlled substance. Substances in the DEA Schedule IV have a low potential for abuse relative to substances in Schedule III. It is a Depressants substance. A barbituric acid derivative that acts as a nonselective central nervous system depressant. It promotes binding to inhibitory gamma-aminobutyric acid subtype receptors, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. Phenobarbital is a barbiturate that is widely used as a sedative and an antiseizure medication. Phenobarbital has been linked to rare instances of idiosyncratic liver injury that can be severe and even fatal. Phenobarbital is a long-acting barbituric acid derivative with antipsychotic property. Phenobarbital binds to and activates the gamma-aminobutyric acid (GABA)-A receptor, thereby mimicking the inhibitory actions of GABA in the brain. The activation effects of the phenobarbital-receptor-ionophore complex include increased frequency of chloride channel openings, membrane hyperpolarization and ultimately synaptic inhibition and decreased neuronal excitability. In addition, this agent inhibits glutamate induced depolarization. Phenobarbital is only found in individuals that have used or taken this drug. It is a barbituric acid derivative that acts as a nonselective central nervous system depressant. It promotes binding to inhibitory gamma-aminobutyric acid subtype receptors, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. [PubChem] Phenobarbital acts on GABAA receptors, increasing synaptic inhibition. This has the effect of elevating seizure threshold and reducing the spread of seizure activity from a seizure focus. Phenobarbital may also inhibit calcium channels, resulting in a decrease in excitatory transmitter release. The sedative-hypnotic effects of phenobarbital are likely the result of its effect on the polysynaptic midbrain reticular formation, which controls CNS arousal. A barbituric acid derivative that acts as a nonselective central nervous system depressant. It potentiates GAMMA-AMINOBUTYRIC ACID action on GABA-A RECEPTORS, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations.
Propyzamide
CONFIDENCE standard compound; INTERNAL_ID 1234; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4824; ORIGINAL_PRECURSOR_SCAN_NO 4823 CONFIDENCE standard compound; INTERNAL_ID 1234; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4820; ORIGINAL_PRECURSOR_SCAN_NO 4819 CONFIDENCE standard compound; INTERNAL_ID 1234; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9401; ORIGINAL_PRECURSOR_SCAN_NO 9399 CONFIDENCE standard compound; INTERNAL_ID 1234; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4852; ORIGINAL_PRECURSOR_SCAN_NO 4849 CONFIDENCE standard compound; INTERNAL_ID 1234; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9371; ORIGINAL_PRECURSOR_SCAN_NO 9366 CONFIDENCE standard compound; INTERNAL_ID 1234; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4851; ORIGINAL_PRECURSOR_SCAN_NO 4850 CONFIDENCE standard compound; INTERNAL_ID 1234; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4792; ORIGINAL_PRECURSOR_SCAN_NO 4790 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3175 CONFIDENCE standard compound; INTERNAL_ID 2321 CONFIDENCE standard compound; INTERNAL_ID 8467
Hexobarbital
Hexobarbital is only found in individuals that have used or taken this drug. It is a barbiturate that is effective as a hypnotic and sedative. [PubChem]Hexobarbital binds at a distinct binding site associated with a Cl- ionopore at the GABA-A receptor, increasing the duration of time for which the Cl- ionopore is open. The post-synaptic inhibitory effect of GABA in the thalamus is, therefore, prolonged. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CA - Barbiturates, plain N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AF - Barbiturates, plain C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators
Diflubenzuron
Insecticide, interfering with chitin deposition by oral absorption. Diflubenzuron is used on soya beans, citrus, tea, vegetables and mushrooms. Also used as an insecticide in feed for poultry and pigs and as a controlled release bolus in cattl D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Same as: D07829
Legumelin
Legumelin, also known as (-)-cis-deguelin, is a member of the class of compounds known as rotenones. Rotenones are rotenoids with a structure based on a 6a,12a-dihydrochromeno[3,4-b]chromen-12(6H)-one skeleton. Thus, legumelin is considered to be a flavonoid lipid molecule. Legumelin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Legumelin can be found in soy bean, which makes legumelin a potential biomarker for the consumption of this food product. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB.
Estradiol Benzoate
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents Same as: D01953
Gambogic acid
Isolated from Gamboge resin (exudate of Garcinia morella). Gambogic acid is found in herbs and spices and fruits. Gambogic acid is found in fruits. Gambogic acid is isolated from Gamboge resin (exudate of Garcinia morella). Gambogic Acid (Beta-Guttiferrin) is derived from the gamboges resin of the tree Garcinia hanburyi. Gambogic Acid (Beta-Guttiferrin) inhibits Bcl-XL, Bcl-2, Bcl-W, Bcl-B, Bfl-1 and Mcl-1 with IC50s of 1.47 μM, 1.21 μM, 2.02 μM, 0.66 μM, 1.06 μM and 0.79 μM. Gambogic Acid (Beta-Guttiferrin) is derived from the gamboges resin of the tree Garcinia hanburyi. Gambogic Acid (Beta-Guttiferrin) inhibits Bcl-XL, Bcl-2, Bcl-W, Bcl-B, Bfl-1 and Mcl-1 with IC50s of 1.47 μM, 1.21 μM, 2.02 μM, 0.66 μM, 1.06 μM and 0.79 μM.
Ergocristine
Ergotaman bearing benzyl, hydroxy, and isopropyl groups at the 5, 12 and 2 positions, respectively, and oxo groups at positions 3, 6, and 18. It is a natural ergot alkaloid. D018373 - Peripheral Nervous System Agents CONFIDENCE Claviceps purpurea sclerotia relative retention time with respect to 9-anthracene Carboxylic Acid is 0.992 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.987 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.984
Glutathione
Glutathione is a compound synthesized from cysteine, perhaps the most important member of the bodys toxic waste disposal team. Like cysteine, glutathione contains the crucial thiol (-SH) group that makes it an effective antioxidant. There are virtually no living organisms on this planet-animal or plant whose cells dont contain some glutathione. Scientists have speculated that glutathione was essential to the very development of life on earth. glutathione has many roles; in none does it act alone. It is a coenzyme in various enzymatic reactions. The most important of these are redox reactions, in which the thiol grouping on the cysteine portion of cell membranes protects against peroxidation; and conjugation reactions, in which glutathione (especially in the liver) binds with toxic chemicals in order to detoxify them. glutathione is also important in red and white blood cell formation and throughout the immune system. glutathiones clinical uses include the prevention of oxygen toxicity in hyperbaric oxygen therapy, treatment of lead and other heavy metal poisoning, lowering of the toxicity of chemotherapy and radiation in cancer treatments, and reversal of cataracts. (http://www.dcnutrition.com/AminoAcids/) glutathione participates in leukotriene synthesis and is a cofactor for the enzyme glutathione peroxidase. It is also important as a hydrophilic molecule that is added to lipophilic toxins and waste in the liver during biotransformation before they can become part of the bile. glutathione is also needed for the detoxification of methylglyoxal, a toxin produced as a by-product of metabolism. This detoxification reaction is carried out by the glyoxalase system. Glyoxalase I (EC 4.4.1.5) catalyzes the conversion of methylglyoxal and reduced glutathione to S-D-Lactoyl-glutathione. Glyoxalase II (EC 3.1.2.6) catalyzes the hydrolysis of S-D-Lactoyl-glutathione to glutathione and D-lactate. GSH is known as a substrate in both conjugation reactions and reduction reactions, catalyzed by glutathione S-transferase enzymes in cytosol, microsomes, and mitochondria. However, it is also capable of participating in non-enzymatic conjugation with some chemicals, as in the case of n-acetyl-p-benzoquinone imine (NAPQI), the reactive cytochrome P450-reactive metabolite formed by acetaminophen, that becomes toxic when GSH is depleted by an overdose (of acetaminophen). glutathione in this capacity binds to NAPQI as a suicide substrate and in the process detoxifies it, taking the place of cellular protein thiol groups which would otherwise be covalently modified; when all GSH has been spent, NAPQI begins to react with the cellular proteins, killing the cells in the process. The preferred treatment for an overdose of this painkiller is the administration (usually in atomized form) of N-acetylcysteine, which is used by cells to replace spent GSSG and renew the usable GSH pool. (http://en.wikipedia.org/wiki/glutathione). Glutathione (GSH) - reduced glutathione - is a tripeptide with a gamma peptide linkage between the amine group of cysteine (which is attached by normal peptide linkage to a glycine) and the carboxyl group of the glutamate side-chain. It is an antioxidant, preventing damage to important cellular components caused by reactive oxygen species such as free radicals and peroxides. [Wikipedia]. Glutathione is found in many foods, some of which are cashew nut, epazote, ucuhuba, and canada blueberry. Glutathione. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=70-18-8 (retrieved 2024-07-15) (CAS RN: 70-18-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Glutathione reduced (GSH; γ-L-Glutamyl-L-cysteinyl-glycine) is an endogenous antioxidant and is capable of scavenging oxygen-derived free radicals.
Dihomo-alpha-linolenic acid
Dihomolinolenic acid, also known as 11,14,17-eicosatrienoic acid or (11z,14z,17z)-eicosa-11,14,17-trienoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, dihomolinolenic acid is considered to be a fatty acid lipid molecule. Dihomolinolenic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Dihomolinolenic acid can be found in evening primrose, which makes dihomolinolenic acid a potential biomarker for the consumption of this food product. Dihomolinolenic acid can be found primarily in blood and feces. Dihomo-alpha-linolenic acid, also known as 11,14,17-eicosatrienoic acid, is a rare polyunsaturated fatty acid of the omega-3 series. In normal humans, it represents less than 0.25\\% of serum phospholipid fatty acids. However, it is one of the most active essential fatty acids when assayed for the inhibition of fatty acid elongation/desaturation reactions which convert dietary C-18 fatty acids to C-20 eicosanoid precursors. (http://www.caymanchem.com)
Terbinafine
Terbinafine hydrochloride (Lamisil) is a synthetic allylamine antifungal. It is highly lipophilic in nature and tends to accumulate in skin, nails, and fatty tissues. Like other allylamines, terbinafine inhibits ergosterol synthesis by inhibiting the fungal squalene monooxygenase (squalene 2,3-epoxidase), an enzyme that is part of the fungal cell wall synthesis pathway. D - Dermatologicals > D01 - Antifungals for dermatological use > D01B - Antifungals for systemic use > D01BA - Antifungals for systemic use D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent CONFIDENCE standard compound; INTERNAL_ID 2712 CONFIDENCE standard compound; INTERNAL_ID 8609 D004791 - Enzyme Inhibitors Terbinafine (TDT 067) is an orally active and potent antifungal agent. Terbinafine is a potent non-competitive inhibitor of squalene epoxidase from Candida, with a Ki of 30 nM. Terbinafine also shows antibacterial activity against certain Gram-positive and Gram-negative bacteria[1][2][3]. Terbinafine is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
3b-Allotetrahydrocortisol
3b-Allotetrahydrocortisol is one of the tetrahydrometabolites of cortisol. The 11-beta-hydroxysteroid dehydrogenase (11beta-HSD) is responsible for the interconversion of both the hormonally inactive cortisone and the active cortisol, which has implications in the pathogenesis of numerous diseases, as reflected in the ratio of tetrahydrometabolites of cortisol. (PMID: 16310418). The daily excretion of allotetrahydrocortisol is above normal in hyperthyroid patients; In contrast, in hyperthyroidism the excretion is diminished below normal levels to approximately half that of normal subjects. (PMID 13906284). A decreased activity of the enzyme 11beta-HSD produces a pattern of urinary steroid metabolites with an abnormal elevation of tetrahydrocortisol and allo-tetrahydrocortisol compared to tetrahydrocortisone; this pattern of steroid excretion is essential for the diagnosis of the syndrome of apparent mineralocorticoid excess type 1. (PMID: 8834992). 3b-Allotetrahydrocortisol is one of the tetrahydrometabolites of cortisol. The 11-beta-hydroxysteroid dehydrogenase (11beta-HSD) is responsible for the interconversion of both the hormonally inactive cortisone and the active cortisol, which has implications in the pathogenesis of numerous diseases, as reflected in the ratio of tetrahydrometabolites of cortisol. (PMID: 16310418) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Tetrahydrocortisol is cortisol metabolite. The urinary Tetrahydrocortisol/Tetrahydrocortisone ratio decreases with increasing 11β-hydroxysteroid dehydrogenase (11β-HSD) activity[1][2].
Dimethylarsinic acid
Dimethylarsinic acid, also known as cacodylic acid, is formally rated as possibly a carcinogenic (IARC 2B), potentially toxic compound. Derivatives of cacodylic acid, cacodylates, were frequently used as herbicides. For example, Agent Blue, one of the chemicals used during the Vietnam War, is a mixture of cacodylic acid and sodium cacodylate. Sodium cacodylate is frequently used as a buffering agent in the preparation and fixation of biological samples for transmission electron microscopy. Dimethylarsinic acid is highly toxic by ingestion, inhalation, or skin contact. Once thought to be a byproduct of inorganic arsenic detoxification, it is now believed to have serious health consequences of its own. It has been shown to be teratogenic in rodents, most often causing cleft palate but also fetal fatality at high doses. It has been shown to be genotoxic in human cells, causing apoptosis and also decreased DNA production and shorter DNA strands. While not itself a strong carcinogen, dimethylarsinic acid does promote tumours in the presence of carcinogens in organs such as the kidneys and liver (Wikipedia). Cacodylic acid is the chemical compound with the formula (CH3)2AsO2H. Derivatives of cacodylic acid, cacodylates, were frequently used as herbicides. For example, "Agent Blue," one of the chemicals used during the Vietnam War, is a mixture of cacodylic acid and sodium cacodylate. Sodium cacodylate is frequently used as a buffering agent in the preparation and fixation of biological samples for transmission electron microscopy. D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
Imidacloprid
Imidacloprid is an insecticide Imidacloprid is a neonicotinoid, which is a class of neuro-active insecticides modeled after nicotine. Imidacloprid is a patented chemical, Imidacloprid is manufactured by Bayer Cropscience (part of Bayer AG) and sold under trade names Kohinor, Admire, Advantage, Gaucho, Merit, Confidor, Hachikusan, Premise, Prothor, and Winner. It is marketed as pest control, seed treatment, an insecticide spray, termite control, flea control, and a systemic insecticide. CONFIDENCE standard compound; INTERNAL_ID 60; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6493; ORIGINAL_PRECURSOR_SCAN_NO 6491 CONFIDENCE standard compound; INTERNAL_ID 60; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6445; ORIGINAL_PRECURSOR_SCAN_NO 6444 CONFIDENCE standard compound; INTERNAL_ID 60; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3049; ORIGINAL_PRECURSOR_SCAN_NO 3048 CONFIDENCE standard compound; INTERNAL_ID 60; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3058; ORIGINAL_PRECURSOR_SCAN_NO 3055 CONFIDENCE standard compound; INTERNAL_ID 60; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6460; ORIGINAL_PRECURSOR_SCAN_NO 6459 CONFIDENCE standard compound; INTERNAL_ID 60; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6485; ORIGINAL_PRECURSOR_SCAN_NO 6481 CONFIDENCE standard compound; INTERNAL_ID 60; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3058; ORIGINAL_PRECURSOR_SCAN_NO 3056 CONFIDENCE standard compound; INTERNAL_ID 60; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6489; ORIGINAL_PRECURSOR_SCAN_NO 6486 CONFIDENCE standard compound; INTERNAL_ID 60; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3125; ORIGINAL_PRECURSOR_SCAN_NO 3122 CONFIDENCE standard compound; INTERNAL_ID 60; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3059; ORIGINAL_PRECURSOR_SCAN_NO 3056 D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2709 CONFIDENCE standard compound; INTERNAL_ID 3036 CONFIDENCE standard compound; INTERNAL_ID 2322 CONFIDENCE standard compound; INTERNAL_ID 8394 D016573 - Agrochemicals Insecticide
1,3-Benzenediol
1,3-Benzenediol, also known as resorcin or m-hydroquinone, belongs to the class of organic compounds known as resorcinols. Resorcinols are compounds containing a resorcinol moiety, which is a benzene ring bearing two hydroxyl groups at positions 1 and 3. 1,3-Benzenediol exists in all living organisms, ranging from bacteria to humans. 1,3-Benzenediol is a creamy, hawthorn, and musty tasting compound. 1,3-Benzenediol has been detected, but not quantified, in several different foods, such as alcoholic beverages, cereals and cereal products, coffee and coffee products, eggplants, and java plums. This could make 1,3-benzenediol a potential biomarker for the consumption of these foods. 1,3-Benzenediol is a potentially toxic compound. In addition, exogenous ochronosis is associated with prolonged exposure to resorcinol . Data regarding the specific mechanisms of action of resorcinol does not appear to be readily accessible in the literature. Nevertheless, the role played by iodide ions in the irreversible inactivation of the enzymes is not yet fully elucidated . Resorcinol works by helping to remove hard, scaly, or roughened skin. In particular, it appears that resorcinol indicated for treating acne, dermatitis, or eczema in various skin care topical applications and peels revolves around the compounds ability to precipitate cutaneous proteins from the treated skin . In LPO and TPO, the resulting π-cation radical of the porphyrin can isomerize to a radical cation with the radical in an aromatic side chain of the enzyme . In vitro and in vivo studies have demonstrated that resorcinol can inhibit peroxidases in the thyroid and subsequently block the synthesis of thyroid hormones and cause goiter . Present in roasted barley, cane molasses, coffee, beer and wine. Flavouring ingredient. 1,3-Benzenediol is found in many foods, some of which are cereals and cereal products, coffee and coffee products, alcoholic beverages, and java plum. D - Dermatologicals > D10 - Anti-acne preparations > D10A - Anti-acne preparations for topical use S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent
N-Nitrosodimethylamine
N-Nitrosodimethylamine is found in pepper (Capsicum annuum). N-Nitrosodimethylamine is a food contaminant especially in cured meat products. N-Nitrosodimethylamine (NDMA), also known as dimethylnitrosamine (DMN), is a semi-volatile organic chemical that is highly toxic and is a suspected human carcinogen. The US Environmental Protection Agency has determined that the maximum admissible concentration of NDMA in drinking water is 7 ng L 1. The EPA has not yet set a regulatory maximum contaminant level (MCL) for drinking water. At high doses, it is a "potent hepatotoxin that can cause fibrosis of the liver" in rats. The induction of liver tumors in rats after chronic exposure to low doses is well-documented. Its toxic effects on humans are inferred from animal experiments but not well-established experimentally. NDMA is an industrial by-product or waste product of several industrial processes. It first came to attention as a groundwater contaminant in California in 1998 and 1999 at several sites that produced rocket fuel. Manufacturing of unsymmetrical dimethylhydrazine (UDMH), which is a component of rocket fuel that requires NDMA for its synthesis, proved to be the culprit in these cases. Of more general concern, water treatment via chlorination or chloramination of organic nitrogen-containing wastewater can lead to the production of NDMA at potentially harmful levels. Further, NDMA can form or be leached during treatment of water by anion exchange resins. Finally, NDMA is found at low levels in numerous items of human consumption including cured meat, fish, beer, and tobacco smoke, it is, however, unlikely to bioaccumulate CONFIDENCE standard compound; EAWAG_UCHEM_ID 3447 Food contaminant especies in cured meat products
Thiamine
Thiamine, also known as aneurin or vitamin B1, belongs to the class of organic compounds known as thiamines. Thiamines are compounds containing a thiamine moiety, which is structurally characterized by a 3-[(4-Amino-2-methyl-pyrimidin-5-yl)methyl]-4-methyl-thiazol-5-yl backbone. Thiamine exists in all living species, ranging from bacteria to plants to humans. Thiamine biosynthesis occurs in bacteria, some protozoans, plants, and fungi. Thiamine is a vitamin and an essential nutrient meaning the body cannot synthesize it, and it must be obtained from the diet. It is soluble in water and insoluble in alcohol. Thiamine decomposes if heated. Thiamine was first discovered in 1897 by Umetaro Suzuki in Japan when researching how rice bran cured patients of Beriberi. Thiamine was the first B vitamin to be isolated in 1926 and was first made in 1936. Thiamine plays a key role in intracellular glucose metabolism and it is thought that thiamine inhibits the effect of glucose and insulin on arterial smooth muscle cell proliferation. Thiamine plays an important role in helping the body convert carbohydrates and fat into energy. It is essential for normal growth and development and helps to maintain proper functioning of the heart and the nervous and digestive systems. Thiamine cannot be stored in the body; however, once absorbed, the vitamin is concentrated in muscle tissue. Thiamine has antioxidant, erythropoietic, cognition-and mood-modulatory, antiatherosclerotic, putative ergogenic, and detoxification activities. Natural derivatives of thiamine, such as thiamine monophosphate (ThMP), thiamine diphosphate (ThDP), also sometimes called thiamine pyrophosphate (TPP), thiamine triphosphate (ThTP), and adenosine thiamine triphosphate (AThTP), act as coenzymes in addition to performing unique biological functions. Thiamine deficiency can lead to beriberi, Wernicke–Korsakoff syndrome, optic neuropathy, Leighs disease, African seasonal ataxia (or Nigerian seasonal ataxia), and central pontine myelinolysis. In Western countries, thiamine deficiency is seen mainly in chronic alcoholism. Thiamine supplements or thiamine therapy can be used for the treatment of a number of disorders including thiamine and niacin deficiency states, Korsakovs alcoholic psychosis, Wernicke-Korsakov syndrome, delirium, and peripheral neuritis. In humans, thiamine is involved in the metabolic disorder called 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency. Outside of the human body, Thiamine is found in high quantities in whole grains, legumes, pork, fruits, and yeast and fish. Grain processing removes much of the thiamine content in grains, so in many countries cereals and flours are enriched with thiamine. Thiamine is an essential vitamin. It is found in many foods, some of which are atlantic croaker, wonton wrapper, cereals and cereal products, and turmeric. A - Alimentary tract and metabolism > A11 - Vitamins > A11D - Vitamin b1, plain and in combination with vitamin b6 and b12 > A11DA - Vitamin b1, plain Acquisition and generation of the data is financially supported in part by CREST/JST. D018977 - Micronutrients > D014815 - Vitamins KEIO_ID T056; [MS2] KO009294 KEIO_ID T056
Choline
Choline is a basic constituent of lecithin that is found in many plants and animal organs. It is important as a precursor of acetylcholine, as a methyl donor in various metabolic processes, and in lipid metabolism. Choline is now considered to be an essential vitamin. While humans can synthesize small amounts (by converting phosphatidylethanolamine to phosphatidylcholine), it must be consumed in the diet to maintain health. Required levels are between 425 mg/day (female) and 550 mg/day (male). Milk, eggs, liver, and peanuts are especially rich in choline. Most choline is found in phospholipids, namely phosphatidylcholine or lecithin. Choline can be oxidized to form betaine, which is a methyl source for many reactions (i.e. conversion of homocysteine into methionine). Lack of sufficient amounts of choline in the diet can lead to a fatty liver condition and general liver damage. This arises from the lack of VLDL, which is necessary to transport fats away from the liver. Choline deficiency also leads to elevated serum levels of alanine amino transferase and is associated with increased incidence of liver cancer. Nutritional supplement. Occurs free and combined in many animal and vegetable foods with highest concentrations found in egg yolk, meat, fish, milk, cereaks and legumes Choline. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=62-49-7 (retrieved 2024-06-29) (CAS RN: 62-49-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Chlorpropham
D006133 - Growth Substances > D010937 - Plant Growth Regulators CONFIDENCE standard compound; INTERNAL_ID 2623 CONFIDENCE standard compound; INTERNAL_ID 8450 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
3,4-Dihydroxymandelic acid
3,4-Dihydroxymandelic acid, also known as DOMA or 3,4-dihydroxyphenylglycolate, belongs to the class of organic compounds known as catechols. Catechols are compounds containing a 1,2-benzenediol moiety. 3,4-Dihydroxymandelic acid exists in all living organisms, ranging from bacteria to humans. Within humans, 3,4-dihydroxymandelic acid participates in a number of enzymatic reactions. In particular, 3,4-dihydroxymandelic acid can be biosynthesized from 3,4-dihydroxymandelaldehyde through its interaction with the enzyme aldehyde dehydrogenase, dimeric nadp-preferring. In addition, 3,4-dihydroxymandelic acid and guaiacol can be converted into vanillylmandelic acid and pyrocatechol through the action of the enzyme catechol O-methyltransferase. In humans, 3,4-dihydroxymandelic acid is involved in the metabolic disorder called tyrosinemia type I. Outside of the human body, 3,4-Dihydroxymandelic acid has been detected, but not quantified in several different foods, such as yellow wax beans, soy beans, pomegranates, cucurbita (gourd), and daikon radish. 3,4-dihydroxymandelic acid, also known as 3,4-dihydroxyphenylglycolate or (3,4-dihydroxyphenyl)(hydroxy)acetic acid, is a member of the class of compounds known as catechols. Catechols are compounds containing a 1,2-benzenediol moiety. 3,4-dihydroxymandelic acid is soluble (in water) and a moderately acidic compound (based on its pKa). 3,4-dihydroxymandelic acid can be found in a number of food items such as lime, pitanga, sapodilla, and persimmon, which makes 3,4-dihydroxymandelic acid a potential biomarker for the consumption of these food products. 3,4-dihydroxymandelic acid can be found primarily in blood and urine, as well as in human nerve cells tissue. In humans, 3,4-dihydroxymandelic acid is involved in a couple of metabolic pathways, which include disulfiram action pathway and tyrosine metabolism. 3,4-dihydroxymandelic acid is also involved in several metabolic disorders, some of which include hawkinsinuria, alkaptonuria, dopamine beta-hydroxylase deficiency, and tyrosinemia, transient, of the newborn. D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID D066 3,4-Dihydroxymandelic acid is a metabolite of norepinephrine.
Methoxamine
Methoxamine is only found in individuals that have used or taken this drug. It is an alpha-adrenergic agonist that causes prolonged peripheral vasoconstriction. It has little if any direct effect on the central nervous system. [PubChem]Methoxamine acts through peripheral vasoconstriction by acting as a pure alpha-1 adrenergic receptor agonist, consequently increasing systemic blood pressure (both systolic and diastolic). C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents KEIO_ID M169; [MS2] KO009056 KEIO_ID M169
Compactin
A carboxylic ester that is pravastatin that is lacking the allylic hydroxy group. A hydroxymethylglutaryl-CoA reductase inhibitor (statin) isolated from Penicillium citrinum and from Penicillium brevicompactum, its clinical use as a lipid-regulating drug ceased following reports of toxicity in animals. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D004791 - Enzyme Inhibitors > D019161 - Hydroxymethylglutaryl-CoA Reductase Inhibitors C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C471 - Enzyme Inhibitor > C1655 - HMG-CoA Reductase Inhibitor D009676 - Noxae > D000963 - Antimetabolites Mevastatin (Compactin) is a first HMG-CoA reductase inhibitor that belongs to the statins class. Mevastatin is a lipid-lowering agent, and induces apoptosis, arrests cancer cells in G0/G1 phase. Mevastatin also increases endothelial nitric oxide synthase (eNOS) mRNA and protein levels. Mevastatin has antitumor activity and has the potential for cardiovascular diseases treatment[1][2][3]. Mevastatin (Compactin) is a first HMG-CoA reductase inhibitor that belongs to the statins class. Mevastatin is a lipid-lowering agent, and induces apoptosis, arrests cancer cells in G0/G1 phase. Mevastatin also increases endothelial nitric oxide synthase (eNOS) mRNA and protein levels. Mevastatin has antitumor activity and has the potential for cardiovascular diseases treatment[1][2][3].
Terazosin
Terazosin is a selective alpha1-antagonist used for treatment of symptoms of benign prostatic hyperplasia (BPH). It also acts to lower blood pressure, so it is a drug of choice for men with hypertension and prostate enlargement. It works by blocking the action of adrenaline on smooth muscle of the bladder and the blood vessel walls. G - Genito urinary system and sex hormones > G04 - Urologicals > G04C - Drugs used in benign prostatic hypertrophy > G04CA - Alpha-adrenoreceptor antagonists C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D000089162 - Genitourinary Agents > D064804 - Urological Agents
Trichloroacetic acid
Trichloroacetic acid (TCA; also known as trichloroethanoic acid) is an analogue of acetic acid in which the three hydrogen atoms of the methyl group have all been replaced by chlorine atoms. D009676 - Noxae > D002424 - Caustics Same as: D08633
Beta-Aminopropionitrile
beta-Aminopropionitrile is a toxic amino-acid derivative. On an unusual case of the Cantrell-sequence in a premature infant with associated dysmelia, aplasia of the right kidney, cerebellar hypoplasia and circumscribed aplasia of the cutis, maternal history suggested an occupational exposure to aminopropionitriles prior to pregnancy. The characteristic features of the Cantrell-sequence--anterior thoraco-abdominal wall defect with ectopia cordis and diaphragm, sternum, pericardium, and heart defects--have been observed in animals following maternal administration of beta-aminopropionitrile. Some species of lathyrus (chickling pea, Lathyrus sativus- related), notably Lathyrus odoratus, are unable to induce human lathyrism but contain beta-aminopropionitrile, that induces pathological changes in bone ("osteolathyrism") and blood vessels ("angiolathyrism") of experimental animals without damaging the nervous system. The administration of beta-aminopropionitrile has been proposed for pharmacological control of unwanted scar tissue in human beings. beta-Aminopropionitrile is a reagent used as an intermediate in the manufacture of beta-alanine and pantothenic acid. (PMID:367235, 6422318, 9394169, Am J Perinatol. 1997 Oct;14(9):567-71.). Constituent of chickling pea (Lathyrus sativus) C471 - Enzyme Inhibitor KEIO_ID A044 β-Aminopropionitrile (BAPN) is a specific, irreversible and orally active lysyl oxidase (LOX) inhibitor. β-Aminopropionitrile targets the active site of LOX or LOXL isoenzymes[1][2].
Neomycin
A component of neomycin that is produced by Streptomyces fradiae. On hydrolysis it yields neamine and neobiosamine B. (From Merck Index, 11th ed). Neomycin is a bactericidal aminoglycoside antibiotic that binds to the 30S ribosome of susceptible organisms. Binding interferes with mRNA binding and acceptor tRNA sites and results in the production of non-functional or toxic peptides. A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions > B05CA - Antiinfectives D - Dermatologicals > D09 - Medicated dressings > D09A - Medicated dressings > D09AA - Medicated dressings with antiinfectives D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06A - Antibiotics for topical use S - Sensory organs > S03 - Ophthalmological and otological preparations > S03A - Antiinfectives > S03AA - Antiinfectives R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01G - Aminoglycoside antibacterials R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AB - Antibiotics S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic KEIO_ID N022
NADP+
[Spectral] NADP+ (exact mass = 743.07545) and NAD+ (exact mass = 663.10912) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Gibberellin A19
Gibberellin A19 (GA19) belongs to the class of organic compounds known as C20-gibberellin 6-carboxylic acids. These are C20-gibberellins with a carboxyl group at the 6-position. Thus, gibberellin A19 is considered to be an isoprenoid lipid molecule. Gibberellin A19 is found in apple. Gibberellin A19 is a constituent of moso bamboo shoots (Phyllostachys edulis). Constituent of moso bamboo shoots (Phyllostachys edulis). Gibberellin A19 is found in many foods, some of which are swede, devilfish, vanilla, and canola. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D005875 - Gibberellins
GDP-L-fucose
GDP-L-fucose is a sugar nucleotide and a readily available source of fucose. Fucose is a deoxyhexose that is found in nearly all plant and animal species. The monosaccharide plays several important metabolic roles in complex carbohydrates and in glycoproteins. Fucosylated oligosaccharides are involved in cell-cell recognition, selectin-mediated leukocyte-endothelial adhesion, and mouse embryogenesis. They form the basis of the Lewis-type blood group antigens, are involved in the formation of atherosclerosis, and mediate host-bacterial interactions. A decrease in the availability of fucose is associated with leukocyte adhesion deficiency type-II disorder, and fucosylated glycoproteins have been implicated in memory processes. Fucose is made available during the synthesis of fucosylated glycolipids, oligosaccharides, and glycoproteins via a sugar nucleotide intermediate, specifically GDP-L-fucose. GTP-L-fucose pyrophosphorylase (GFPP, E. C. 2.7.7.30) catalyzes the reversible condensation of guanosine triphosphate and beta-L-fucose-1-phosphate to form the nucleotide-sugar GDP-L-fucose. The enzyme functions primarily in the mammalian liver and kidney to salvage free L-fucose during the breakdown of glycolipids and glycoproteins. (PMID: 16086588). Gdp-l-fucose, also known as gdp fucose or guanosine diphosphate fucose, is a member of the class of compounds known as purine nucleotide sugars. Purine nucleotide sugars are purine nucleotides bound to a saccharide derivative through the terminal phosphate group. Gdp-l-fucose is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Gdp-l-fucose can be found in a number of food items such as breadnut tree seed, okra, pineapple, and pitanga, which makes gdp-l-fucose a potential biomarker for the consumption of these food products. Gdp-l-fucose can be found primarily throughout most human tissues. Gdp-l-fucose exists in all living organisms, ranging from bacteria to humans. In humans, gdp-l-fucose is involved in a couple of metabolic pathways, which include fructose and mannose degradation and fructose intolerance, hereditary. Gdp-l-fucose is also involved in fructosuria, which is a metabolic disorder. Acquisition and generation of the data is financially supported in part by CREST/JST.
beta-Glycerophosphoric acid
beta-Glycerophosphoric acid, also known as BGA or glycerol 2-phosphate, is a component of glycerolipid metabolism. It is formed in minor quanitites because the alpha glycerophosphorate is preferentially formed in this manner. beta-Glycerophosphoric acid is used as a biological buffer (Sigma-Aldrich). Glycerol-2-phosphate is a component of glycerolipid metabolism. It is formed in minor quanitites, as the alpha glycerophosphorate is preferentially formed in this manner. Also used as a biological buffer (Sigma-Aldrich) [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST.
3'-Hydroxydaidzein
3-Hydroxydaidzein is a polyphenol metabolite detected in biological fluids (PMID: 20428313). A polyphenol metabolite detected in biological fluids [PhenolExplorer] 7,3',4'-Trihydroxyisoflavone, a major metabolite of Daidzein, is an ATP-competitive inhibitor of Cot (Tpl2/MAP3K8) and MKK4. 7,3',4'-Trihydroxyisoflavone has anticancer, anti-angiogenic, chemoprotective, and free radical scavenging activities[1][2].
Vinblastine
Vinblastine is only found in individuals that have used or taken this drug. It is an antitumor alkaloid isolated from Vinca rosea. (Merck, 11th ed.)The antitumor activity of vinblastine is thought to be due primarily to inhibition of mitosis at metaphase through its interaction with tubulin. Vinblastine binds to the microtubular proteins of the mitotic spindle, leading to crystallization of the microtubule and mitotic arrest or cell death. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01C - Plant alkaloids and other natural products > L01CA - Vinca alkaloids and analogues D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents D000970 - Antineoplastic Agents > D014748 - Vinca Alkaloids
(S)-scoulerine
(s)-scoulerine, also known as discretamine or aequaline, belongs to protoberberine alkaloids and derivatives class of compounds. Those are alkaloids with a structure based on a protoberberine moiety, which consists of a 5,6-dihydrodibenzene moiety fused to a quinolizinium and forming 5,6-Dihydrodibenzo(a,g)quinolizinium skeleton (s)-scoulerine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (s)-scoulerine can be found in a number of food items such as rice, lemon grass, chinese bayberry, and sea-buckthornberry, which makes (s)-scoulerine a potential biomarker for the consumption of these food products.
Hydroquinone
Hydroquinone, also benzene-1,4-diol, is an aromatic organic compound which is a type of phenol, having the chemical formula C6H4(OH)2. Its chemical structure has two hydroxyl groups bonded to a benzene ring in a para position. Hydroquinone is commonly used as a biomarker for benzene exposure. The presence of hydroquinone in normal individuals stems mainly from direct dietary ingestion, catabolism of tyrosine and other substrates by gut bacteria, ingestion of arbutin containing foods, cigarette smoking, and the use of some over-the-counter medicines. Hydroquinone is a white granular solid at room temperature and pressure. The hydroxyl groups of hydroquinone are quite weakly acidic. Hydroquinone can lose an H+ from one of the hydroxyls to form a monophenolate ion or lose an H+ from both to form a diphenolate ion. Hydroquinone has a variety of uses principally associated with its action as a reducing agent which is soluble in water. It is a major component in most photographic developers where, with the compound Metol, it reduces silver halides to elemental silver. [HMDB]. Hydroquinone is found in many foods, some of which are kai-lan, agar, red bell pepper, and jostaberry. Hydroquinone, also known as benzene-1,4-diol, is an aromatic organic compound which is a type of phenol, having the chemical formula C6H4(OH)2. Its chemical structure has two hydroxyl groups bonded to a benzene ring in a para position. Hydroquinone is commonly used as a biomarker for benzene exposure. The presence of hydroquinone in normal individuals stems mainly from direct dietary ingestion, catabolism of tyrosine and other substrates by gut bacteria, ingestion of arbutin-containing foods, cigarette smoking, and the use of some over-the-counter medicines. Hydroquinone is a white granular solid at room temperature and pressure. The hydroxyl groups of hydroquinone are quite weakly acidic. Hydroquinone can lose an H+ from one of the hydroxyls to form a monophenolate ion or lose an H+ from both to form a diphenolate ion. Hydroquinone has a variety of uses principally associated with its action as a reducing agent which is soluble in water. It is a major component of most photographic developers where, with the compound Metol, it reduces silver halides to elemental silver. D020011 - Protective Agents > D011837 - Radiation-Protective Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D009153 - Mutagens D - Dermatologicals
7-ACA
7beta-aminocephalosporanic acid is the alpha,beta-unsaturated monocarboxylic acid that is the active nucleus for the synthesis of cephalosporins and intermediates. It is functionally related to a cephalosporanic acid. It is a tautomer of a 7beta-aminocephalosporanic acid zwitterion. 7-Aminocephalosporanic acid has been reported in Apis cerana D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams
Coenzyme Q10
Coenzyme Q10 (ubiquinone) is a naturally occurring compound widely distributed in animal organisms and in humans. The primary compounds involved in the biosynthesis of ubiquinone are 4-hydroxybenzoate and the polyprenyl chain. An essential role of coenzyme Q10 is as an electron carrier in the mitochondrial respiratory chain. Moreover, coenzyme Q10 is one of the most important lipophilic antioxidants, preventing the generation of free radicals as well as oxidative modifications of proteins, lipids, and DNA, it and can also regenerate the other powerful lipophilic antioxidant, alpha-tocopherol. Antioxidant action is a property of the reduced form of coenzyme Q10, ubiquinol (CoQ10H2), and the ubisemiquinone radical (CoQ10H*). Paradoxically, independently of the known antioxidant properties of coenzyme Q10, the ubisemiquinone radical anion (CoQ10-) possesses prooxidative properties. Decreased levels of coenzyme Q10 in humans are observed in many pathologies (e.g. cardiac disorders, neurodegenerative diseases, AIDS, cancer) associated with intensive generation of free radicals and their action on cells and tissues. In these cases, treatment involves pharmaceutical supplementation or increased consumption of coenzyme Q10 with meals as well as treatment with suitable chemical compounds (i.e. folic acid or B-group vitamins) which significantly increase ubiquinone biosynthesis in the organism. Estimation of coenzyme Q10 deficiency and efficiency of its supplementation requires a determination of ubiquinone levels in the organism. Therefore, highly selective and sensitive methods must be applied, such as HPLC with UV or coulometric detection. For a number of years, coenzyme Q (CoQ10 in humans) was known for its key role in mitochondrial bioenergetics; later studies demonstrated its presence in other subcellular fractions and in plasma, and extensively investigated its antioxidant role. These two functions constitute the basis on which research supporting the clinical use of CoQ10 is founded. Also at the inner mitochondrial membrane level, coenzyme Q is recognized as an obligatory co-factor for the function of uncoupling proteins and a modulator of the transition pore. Furthermore, recent data reveal that CoQ10 affects expression of genes involved in human cell signalling, metabolism, and transport and some of the effects of exogenously administered CoQ10 may be due to this property. Coenzyme Q is the only lipid soluble antioxidant synthesized endogenously. In its reduced form, CoQH2, ubiquinol, inhibits protein and DNA oxidation but it is the effect on lipid peroxidation that has been most deeply studied. Ubiquinol inhibits the peroxidation of cell membrane lipids and also that of lipoprotein lipids present in the circulation. Dietary supplementation with CoQ10 results in increased levels of ubiquinol-10 within circulating lipoproteins and increased resistance of human low-density lipoproteins to the initiation of lipid peroxidation. Moreover, CoQ10 has a direct anti-atherogenic effect, which has been demonstrated in apolipoprotein E-deficient mice fed with a high-fat diet. (PMID: 15928598, 17914161). COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C - Cardiovascular system > C01 - Cardiac therapy C26170 - Protective Agent > C275 - Antioxidant D018977 - Micronutrients > D014815 - Vitamins Same as: D01065 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Diethylcarbamazine
Diethylcarbamazine is only found in individuals that have used or taken this drug. It is an anthelmintic used primarily as the citrate in the treatment of filariasis, particularly infestations with Wucheria bancrofti or Loa loa. [PubChem]The mechanism of action of diethylcarbamazine is thought to involve sensitizing the microfilariae to phagocytosis. One study showed that diethylcarbamazines activity against Brugia malayi microfilariae is dependent on inducible nitric-oxide synthase and the cyclooxygenase pathway. It confirmed the important role of the arachidonic acid metabolic pathway in diethylcarbamazines mechanism of action in vivo and showes that in addition to its effects on the 5-lipoxygenase pathway, it targets the cyclooxygenase pathway and COX-1. P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02C - Antinematodal agents > P02CB - Piperazine and derivatives D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors
Convolamine
Origin: Plant; SubCategory_DNP: Alkaloids derived from ornithine, Tropane alkaloids
Strictosidine
D000970 - Antineoplastic Agents > D014748 - Vinca Alkaloids Annotation level-3 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.677 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.675 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.666
Vitamin K
D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics D050299 - Fibrin Modulating Agents > D000933 - Antifibrinolytic Agents D018977 - Micronutrients > D014815 - Vitamins Widely distributed in green leaves and vegetables, especies cabbage and spinach. Infant formula fortifier. Phytomenadione is found in many foods, some of which are swiss chard, fruit salad, milk (cow), and common buckwheat. Vitamin K1 a naturally occurring vitamin required for blood coagulation and bone and vascular metabolism. Vitamin K1 a naturally occurring vitamin required for blood coagulation and bone and vascular metabolism.
1-Nonanol
1-Nonanol is found in citrus. 1-Nonanol is widespread in nature. 1-Nonanol occurs in oils of orange, citronella and lemon. Also found in cheese, prickly pears and bread. 1-Nonanol is a straight chain fatty alcohol with nine carbon atoms and the molecular formula CH3(CH2)8OH. It is a colorless to slightly yellow liquid with a citrus odor similar to citronella oil Widespread in nature. Occurs in oils of orange, citronella and lemonand is also found in cheese, prickly pears and bread. Flavouring agent
Pantetheine
Pantetheine is the mercaptoethyl conjugated amide analogue of pantothenic acid (Vitamin B5). The dimer of this compound, pantethine is more commonly known, and is considered to be a more potent form of vitamin B5 than pantothenic acid. Pantetheine is an intermediate in the production of Coenzyme A by the body. An intermediate in the pathway of coenzyme A formation in mammalian liver and some microorganisms. Pantetheine is the mercaptoethyl conjugated amide analogue of pantothenic acid (Vitamin B5). The dimer of this compound, pantethine is more commonly known, and is considered to be a more potent form of vitamin B5 than pantothenic acid. Pantetheine is an intermediate in the production of Coenzyme A by the body. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Uridine triphosphate
Uridine 5-triphosphate, also known as utp or uridine triphosphoric acid, is a member of the class of compounds known as pyrimidine ribonucleoside triphosphates. Pyrimidine ribonucleoside triphosphates are pyrimidine ribobucleotides with triphosphate group linked to the ribose moiety. Uridine 5-triphosphate is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Uridine 5-triphosphate can be found in a number of food items such as persian lime, nectarine, chinese water chestnut, and soft-necked garlic, which makes uridine 5-triphosphate a potential biomarker for the consumption of these food products. Uridine 5-triphosphate can be found primarily in saliva. Uridine 5-triphosphate exists in all living species, ranging from bacteria to humans. In humans, uridine 5-triphosphate is involved in several metabolic pathways, some of which include josamycin action pathway, clomocycline action pathway, chloramphenicol action pathway, and amikacin action pathway. Uridine 5-triphosphate is also involved in several metabolic disorders, some of which include GLUT-1 deficiency syndrome, glycogenosis, type VI. hers disease, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and galactosemia II (GALK). Uridine-5-triphosphate (UTP) is a pyrimidine nucleoside triphosphate, consisting of the organic base uracil linked to the 1 carbon of the ribose sugar, and esterified with tri-phosphoric acid at the 5 position. Its main role is as substrate for the synthesis of RNA during transcription . Uridine triphosphate, also known as 5-UTP or UTP, belongs to the class of organic compounds known as pyrimidine ribonucleoside triphosphates. These are pyrimidine ribobucleotides with triphosphate group linked to the ribose moiety. More specifically, UTP is a pyrimidine nucleoside triphosphate, consisting of the organic base uracil linked to the 1′ carbon of the ribose sugar, and esterified with tri-phosphoric acid at the 5′ position. Uridine triphosphate exists in all living species, ranging from bacteria to plants to humans. The main role of UTP is as substrate for the synthesis of RNA during transcription. UTP is the precursor for the production of CTP via the enzyme known as CTP Synthetase. UTP can be biosynthesized from UDP by the enzyme known as nucleoside diphosphate kinase by using phosphate group from ATP. UTP also has the role of a source of energy or an activator of substrates in a variety of metabolic reactions. For instance UTP can be used to activate Glucose-1-phosphate, leading to the formation of UDP-glucose and inorganic phosphate. The resulting UDP-glucose can be used in the synthesis of glycogen. UTP is also used in the metabolism of galactose, where the activated form of galactose, called UDP-galactose can be converted to UDP-glucose. UDP-glucuronate, another product of UTP reacting with glucuronic acid, is a sugar used in the creation of polysaccharides and is an intermediate in the biosynthesis of ascorbic acid (except in primates and guinea pigs). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Cytidine 5'-monophosphate-N-acetylneuraminic acid
Cytidine 5-monophosphate-N-acetylneuraminic acid (CMP-Neu5Ac), also known as CMP-N-acetyl-β-neuraminic acid, belongs to the class of organic compounds known as pyrimidine nucleotide sugars. These are pyrimidine nucleotides bound to a saccharide derivative through the terminal phosphate group. CMP-Neu5Ac is an extremely weak basic (essentially neutral) compound (based on its pKa). CMP-Neu5Ac donates N-acetylneuraminic acid to the terminal sugar of a ganglioside or glycoprotein. A nucleoside monophosphate sugar which donates N-acetylneuraminic acid to the terminal sugar of a ganglioside or glycoprotein. [HMDB] COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Glycogen
Glycogen is a highly-branched polymer of about 30,000 glucose residues. The simplest structure of glycogen is made up of four units of glucose with an approximate molecular weight of 666 daltons. However, large molecules of glycogen can reach molecular weights in the order of 5 million Da. Most of the glucose units are linked together by alpha-1,4 glycosidic bonds, and approximately 1 in 12 glucose residues also form a 1,6 glycosidic bond with a second glucose, resulting in the creation of a branch. Glycogen only has one reducing end and a large number of non-reducing ends with a free hydroxyl group at carbon 4. The glycogen granules contain both glycogen and the enzymes of glycogen synthesis (glycogenesis) and degradation (glycogenolysis). The enzymes are nested between the outer branches of the glycogen molecules and act on the non-reducing ends. Therefore, the many non-reducing end-branches of glycogen facilitate its rapid synthesis and breakdown. In hypoglycemia caused by excessive insulin, liver glycogen levels are high, but the high insulin level prevents the necessary glycogenolysis to take place to maintain normal blood sugar levels. Glucagon is a common treatment for this type of hypoglycemia. Glycogen is a polysaccharide that is the principal storage form of glucose (Glc) in animal cells. Glycogen is found in the form of granules in the cytosol in many cell types. Hepatocytes (liver cells) have the highest concentration of it - up to 8\\% of the fresh weight in well fed state, or 100 to 120 g in an adult - giving liver a distinctive, starchy taste. In the muscles, glycogen is found in a much lower concentration (1\\% of the muscle mass), but the total amount exceeds that in liver. Small amounts of glycogen are found in the kidneys, and even smaller amounts in certain glial cells in the brain and white blood cells. Glycogen is a highly-branched polymer of about 30,000 glucose residues and has a molecular weight between 106 and 107 daltons (4.8 million approx.). Most of Glc units are linked by alpha-1,4 glycosidic bonds, approximately 1 in 12 Glc residues also makes -1,6 glycosidic bond with a second Glc which results in the creation of a branch. Glycogen only has one reducing end and a large number of non-reducing ends with a free hydroxyl group at carbon 4. The glycogen granules contain both glycogen and the enzymes of glycogen synthesis (glycogenesis) and degradation (glycogenolysis). The enzymes are nested between the outer branches of the glycogen molecules and act on the non-reducing ends. Therefore, the many non-reducing end-branches of glycogen facilitate its rapid synthesis and breakdown.
Methylamine
Methylamine occurs endogenously from amine catabolism and its tissue levels increase in some pathological conditions, including diabetes. Interestingly, methylamine and ammonia levels are reciprocally controlled by a semicarbazide-sensitive amine oxidase activity that deaminates methylamine to formaldehyde with the production of ammonia and hydrogen peroxide. Methylamine also targets the voltage-operated neuronal potassium channels, probably inducing release of neurotransmitter(s). Semicarbazide-sensitive amine oxidase (SSAO) catalyzes the deamination of primary amines. Such deamination has been shown capable of regulating glucose transport in adipose cells. It has been independently discovered that the primary structure of vascular adhesion protein-1 (VAP-1) is identical to SSAO. Increased serum SSAO activities have been found in patients with diabetic mellitus, vascular disorders, and Alzheimers disease. The SSAO-catalyzed deamination of endogenous substrates like methylamine led to production of toxic formaldehyde. Chronic elevated methylamine increases the excretion of malondialdehyde and microalbuminuria. Amine oxidase substrates such as methylamine have been shown to stimulate glucose uptake by increasing the recruitment of the glucose transporter GLUT4 from vesicles within the cell to the cell surface. Inhibition of this effect by the presence of semicarbazide and catalase led to the suggestion that the process is mediated by the hydrogen peroxide produced in the oxidation of these amines (PMID: 16049393 , 12686132 , 17406961). Methylamine has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Methylamine is a colourless gas derivative of ammonia, but with one H atom replaced by a methyl group. It is the simplest primary amine. It has a strong odor similar to fish. Methylamine is used as a building block for the synthesis of many other commercially available compounds. Hundreds of millions of kilograms are produced annually. Methylamine is found in many foods, some of which are french plantain, tea, barley, and wild celery.
Bradykinin
Bradykinin is a vasoactive kinin that is liberated from its substrate kininogen by the action of kallikrein, and is known to be involved in a wide range of biologic processes. It may play an important role in blood pressure regulation and the maintenance of normal blood flow. Moreover, in various pathologic states of the cardiovascular system, it appears to provide protective actions against ischemic injury, ventricular hypertrophy, congestive heart failure, and thrombosis. Bradykinin is a potent vasodilator that acts through endothelial B2 kinin receptors to stimulate the release of nitric oxide and endothelium-derived hyperpolarizing factor. Bradykinin deficiency states may play a role in some forms of hypertension, and a relative deficiency in bradykinin may be a contributing factor to worsening heart failure. Experimental studies revealed that mice lacking the B2 receptor gene were more likely to develop hypertension, cardiac hypertrophy, and myocardial damage. Kinins exert several biologic actions. They are involved in nociception, inflammation, capillary permeability, reactive hyperemia, and stimulation of cellular glucose uptake. Bradykinin is a polypeptide that circulates in the plasma in very low concentrations in comparison with the amount of bradykinin found in various body tissues. Kininogens ([alpha] 2 globulins) are synthesized in the liver and circulate at high concentrations in the plasma. There are two kininogenases that convert kininogens into bradykinin: plasma kallikrein, also known as Fletcher factor, and glandular kallikrein, also known as tissue kallikrein. (PMID: 11975815) [HMDB] Bradykinin is a vasoactive kinin that is liberated from its substrate kininogen by the action of kallikrein, and is known to be involved in a wide range of biologic processes. It may play an important role in blood pressure regulation and the maintenance of normal blood flow. Moreover, in various pathologic states of the cardiovascular system, it appears to provide protective actions against ischemic injury, ventricular hypertrophy, congestive heart failure, and thrombosis. Bradykinin is a potent vasodilator that acts through endothelial B2 kinin receptors to stimulate the release of nitric oxide and endothelium-derived hyperpolarizing factor. Bradykinin deficiency states may play a role in some forms of hypertension, and a relative deficiency in bradykinin may be a contributing factor to worsening heart failure. Experimental studies revealed that mice lacking the B2 receptor gene were more likely to develop hypertension, cardiac hypertrophy, and myocardial damage. Kinins exert several biologic actions. They are involved in nociception, inflammation, capillary permeability, reactive hyperemia, and stimulation of cellular glucose uptake. Bradykinin is a polypeptide that circulates in the plasma in very low concentrations in comparison with the amount of bradykinin found in various body tissues. Kininogens ([alpha] 2 globulins) are synthesized in the liver and circulate at high concentrations in the plasma. There are two kininogenases that convert kininogens into bradykinin: plasma kallikrein, also known as Fletcher factor, and glandular kallikrein, also known as tissue kallikrein. (PMID: 11975815). D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Bradykinin is an effective endothelium-dependent vasodilator that can lower blood pressure. Bradykinin can induce contraction of bronchial and intestinal non-vascular smooth muscle, increase vascular permeability, and participate in the mechanism of pain[1][2][3][4][5].
3-Hydroxy-3-methylglutaryl-CoA
3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) (CAS: 1553-55-5) is formed when acetyl-CoA condenses with acetoacetyl-CoA in a reaction that is catalyzed by the enzyme HMG-CoA synthase in the mevalonate pathway or mevalonate-dependent (MAD) route, an important cellular metabolic pathway present in virtually all organisms. HMG-CoA reductase (EC 1.1.1.34) inhibitors, more commonly known as statins, are cholesterol-lowering drugs that have been widely used for many years to reduce the incidence of adverse cardiovascular events. HMG-CoA reductase catalyzes the rate-limiting step in the mevalonate pathway and these agents lower cholesterol by inhibiting its synthesis in the liver and in peripheral tissues. Androgen also stimulates lipogenesis in human prostate cancer cells directly by increasing transcription of the fatty acid synthase and HMG-CoA-reductase genes (PMID: 14689582). (s)-3-hydroxy-3-methylglutaryl-coa, also known as hmg-coa or hydroxymethylglutaroyl coenzyme a, is a member of the class of compounds known as (s)-3-hydroxy-3-alkylglutaryl coas (s)-3-hydroxy-3-alkylglutaryl coas are 3-hydroxy-3-alkylglutaryl-CoAs where the 3-hydroxy-3-alkylglutaryl component has (S)-configuration. Thus, (s)-3-hydroxy-3-methylglutaryl-coa is considered to be a fatty ester lipid molecule (s)-3-hydroxy-3-methylglutaryl-coa is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). (s)-3-hydroxy-3-methylglutaryl-coa can be found in a number of food items such as watercress, burdock, spirulina, and chicory, which makes (s)-3-hydroxy-3-methylglutaryl-coa a potential biomarker for the consumption of these food products (s)-3-hydroxy-3-methylglutaryl-coa may be a unique S.cerevisiae (yeast) metabolite.
Cinnamoyl-CoA
Cinnamoyl-coa is a member of the class of compounds known as 2-enoyl coas. 2-enoyl coas are organic compounds containing a coenzyme A substructure linked to a 2-enoyl chain. Cinnamoyl-coa is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Cinnamoyl-coa can be found in sorghum, which makes cinnamoyl-coa a potential biomarker for the consumption of this food product. Cinnamoyl-Coenzyme A is an intermediate in the phenylpropanoids metabolic pathway .
N1-Acetylspermidine
N1-Acetylspermidine is a polyamine. In many organisms, polyamines originate from L-ornithine and methionine. Ornithine decarboxylase (EC 4.1.1.17), a key enzyme in polyamine metabolism, decarboxylates L-ornithine to yield putrescine which is then converted to higher polyamines spermidine and spermine by successive addition of aminopropyl groups derived from decarboxylated S-adenosylmethionine. Aliphatic polyamines occur ubiquitously in organisms and have important functions in the stabilization of cell membranes, biosynthesis of informing molecules, cell growth and differentiation, as well as adaptation to osmotic, ionic, pH and thermal stress. These cationic substances are implicated in multiple functions, therefore it is not surprising that intracellular levels of polyamines are regulated by different mechanisms. The inhibition of polyamine metabolism has important pharmacological and therapeutic implications for the control of physiological processes, reproduction, cancer and parasitic diseases. Recent reports have suggested the idea that parasites with an high turnover of Ornithine Decarboxilase (ODC) are resistant to Difluoromethyl ornithine (DFMO, the irreversible inhibitor of ornithine decarboxylase) because they always contain a fraction of newly synthesized and active enzyme, therefore not DFMO inhibited, sufficient to produce small amounts of putrescine rapidly converted into spermidine, which can support protozoan proliferation. DFMO has proved to be curative in trypanosomiasis, coccidiosis, and certain other protozoan infections. (PMID: 15490259). N1-Acetylspermidine is a polyamine. In many organisms, polyamines originate from L-ornithine and methionine. Ornithine decarboxylase (EC 4.1.1.17), a key enzyme in polyamine metabolism, decarboxylates L-ornithine to yield putrescine which is then converted to higher polyamines spermidine and spermine by successive addition of aminopropyl groups derived from decarboxylated S-adenosylmethionine.
Fluoride
Fluorine (Latin: fluere, meaning "to flow"), is the chemical element with the symbol F and atomic number 9. It is a nonmetallic, diatomic gas that is a trace element and member of the halogen family. Pure fluorine (F2) is a corrosive, poisonous, pale yellowish brown gas that is a powerful oxidizing agent. It is the most reactive and electronegative of all the elements (4.0), and readily forms compounds with most other elements. Fluorine even combines with the noble gases, krypton, xenon, and radon. Even in dark, cool conditions, fluorine reacts explosively with hydrogen. It is so reactive that glass, metals, and even water, as well as other substances, burn with a bright flame in a jet of fluorine gas. It is far too reactive to be found in elemental form and has such an affinity for most elements, including silicon, that it can neither be prepared nor be kept in ordinary glass vessels. Instead, it must be kept in specialized quartz tubes lined with a very thin layer of fluorocarbons. In moist air it reacts with water to form also-dangerous hydrofluoric acid. Elemental fluorine is a powerful oxidizer which can cause organic material, combustibles, or other flammable materials to ignite. Both elemental fluorine and fluoride ions are highly toxic and must be handled with great care and any contact with skin and eyes should be strictly avoided. Physiologically, fluorine. exists as an ion in the body. When it is a free element, fluorine has a characteristic pungent odor that is detectable in concentrations as low as 20 nL/L. Fluorine is used in dentistry as flouride (Fluorides) to prevent dental caries. Sodium and stannous salts of fluorine are commonly used in dentifrices. Contact of exposed skin with HF (hydrofluoric acid) solutions posses one of the most extreme and insidious industrial threats-- one which is exacerbated by the fact that HF damages nerves in such a way as to make such burns initially painless. The HF molecule is capable of rapidly migrating through lipid layers of cells which would ordinarily stop an ionized acid, and the burns are typically deep. HF may react with calcium, permanently damaging the bone. More seriously, reaction with the bodys calcium can cause cardiac arrhythmias, followed by cardiac arrest brought on by sudden chemical changes within the body. These cannot always be prevented with local or intravenous injection of calcium salts. HF spills over just 2.5\\% of the bodys surface area, despite copious immediate washing, have been fatal If the patient survives, HF burns typically produce open wounds of an especially slow-healing nature. Fluorine in the form of fluorspar (also called fluorite) (calcium fluoride) was described in 1530 by Georgius Agricola for its use as a flux , which is a substance that is used to promote the fusion of metals or minerals. In 1670 Schwanhard found that glass was etched when it was exposed to fluorspar that was treated with acid. Karl Scheele and many later researchers, including Humphry Davy, Gay-Lussac, Antoine Lavoisier, and Louis Thenard all would experiment with hydrofluoric acid, easily obtained by treating calcium fluoride (fluorspar) with concentrated sulfuric acid. Fluoride is the anion F-, the reduced form of fluorine F. Compounds containing fluoride anions and those containing covalent bonds to fluorine are called fluorides. Fluoride is found in many foods, some of which are rum, black-eyed pea, pear, and corn chip. D020011 - Protective Agents > D002327 - Cariostatic Agents > D005459 - Fluorides D001697 - Biomedical and Dental Materials
dTDP-D-glucose
Deoxythymidine diphosphate-glucose is an intermediate in the nucleotide sugar metabolism pathway (KEGG). It is a substrate for the enzyme dTDP-D-glucose 4,6-dehydratase which catalyzes the reaction: dTDP-glucose = dTDP-4-dehydro-6-deoxy-D-glucose + H2O. Deoxythymidine diphosphate-glucose is an intermediate in the Nucleotide sugars metabolism pathway (KEGG) [HMDB]
(S)-2,3-Epoxysqualene
(S)-2,3-Epoxysqualene, also known as 2,3-oxidosqualene or (S)-squalene-2,3-epoxide, belongs to the class of organic compounds known as triterpenoids. These are terpene molecules containing six isoprene units. Thus, (S)-2,3-epoxysqualene is considered to be an isoprenoid lipid molecule. (S)-2,3-Epoxysqualene is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. (S)-2,3-Epoxysqualene is an intermediate in the biosynthesis of terpenoid. It is a substrate for squalene monooxygenase and lanosterol synthase. (S)-2,3-Epoxysqualene is an intermediate in the biosynthesis of Terpenoid. It is a substrate for Squalene monooxygenase and Lanosterol synthase. [HMDB]. (S)-2,3-Epoxysqualene is found in many foods, some of which are new zealand spinach, lime, cassava, and cloves.
Arsenate
Arsenate is an ion consisting of arsenic. An arsenate is any compound containing the arsenate ion AsO43−. Arsenates are also referred to as pentavalent arsenic [As(V)] as the arsenic atom in arsenate has a valence of five. Arsenates can be both salts and esters of arsenic acid. Arsenate can be used as an indicator of mineral deposits, as a result of transition metals reacting with it to form bright colours. These mineral blooms can be used to find nickel (annabergite), copper (chalcophyllite), and cobalt (erythrite) arsenide ores. Arsenate is a chemical analogue of phosphate due to arsenic and phosphorous being part of the same group (pnictogens). Because of the similarities, arsenate can be taken by phosphate transporters due to imperfect selectivity (PMID: 328484, 8598055). Arsenate is much less toxic than the trivalent form arsenite, which is more mobile in groundwater and soils, and forms strong metal-like interactions with thiol groups in protein cysteine residues and small molecule thiols (PMID: 30852446). The arsenate ion is AsO43−. An arsenate (compound) is any compound that contains this ion.The arsenic atom in arsenate has a valency of 5 and is also known as pentavalent arsenic or As[V].Arsenate resembles phosphate in many respects, since arsenic and phosphorus occur in the same group (column) of the periodic table. D010575 - Pesticides > D006540 - Herbicides D009676 - Noxae > D013723 - Teratogens D016573 - Agrochemicals
Phytanate
Phytanic acid (or 3,7,11,15-tetramethylhexadecanoic acid) is a 20-carbon branched-chain fatty acid that humans can obtain through the consumption of dairy products, ruminant animal fats, and certain fish. It is primarily formed by bacterial degradation of chlorophyll in the intestinal tract of ruminants. Unlike most fatty acids, phytanic acid cannot be metabolized by beta-oxidation (because of a methyl group in the beta position). Instead, it undergoes alpha-oxidation in the peroxisome, where it is converted into pristanic acid by the removal of one carbon. Pristanic acid can undergo several rounds of beta-oxidation in the peroxisome to form medium-chain fatty acids that can be converted into carbon dioxide and water in mitochondria. Refsum disease, an autosomal recessive neurological disorder caused by mutations in the PHYH gene, is characterized by having impaired alpha-oxidation activity. Individuals with Refsum disease accumulate large stores of phytanic acid in their blood and tissues. This frequently leads to peripheral polyneuropathy, cerebellar ataxia, retinitis pigmentosa, anosmia, and hearing loss. Therefore, chronically high levels of phytanic acid can be neurotoxic. Phytanic acids neurotoxicity appears to lie in its ability to initiate astrocyte/neural cell death by activating the mitochondrial route of apoptosis. In particular, phytanic acid can induce the substantial generation of reactive oxygen species in isolated mitochondria as well as in intact cells. It also induces the release of cytochrome c from mitochondria. A 20-carbon branched chain fatty acid, Phytanic acid is present in animal (primarily herbivores or omnivores) tissues where it may be derived from the chlorophyll in consumed plant material. Phytanic acid derives from the corresponding alcohol, phytol, and is ultimately oxidized into pristanic acid. In phytanic acid storage disease (Refsum disease) this lipid may comprise as much as 30\\% of the total fatty acids in plasma. These high levels in Refsum disease (a neurological disorder) are due to a phytanic acid alpha-hydroxylase deficiency.; A 20-carbon branched chain fatty acid. In phytanic acid storage disease (Refsum disease) this lipid may comprise as much as 30\\% of the total fatty acids of the plasma. This is due to a phytanic acid alpha-hydroxylase deficiency. [HMDB]
Tos-phe-CH2CL
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors D009676 - Noxae > D000477 - Alkylating Agents > D000590 - Amino Acid Chloromethyl Ketones D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors
Dimethyl selenide
Constituent of Allium subspecies Dimethyl selenide is found in many foods, some of which are breadnut tree seed, buffalo currant, guava, and muskmelon. Dimethyl selenide is found in onion-family vegetables. Dimethyl selenide is a constituent of Allium species.
Trypanothione disulfide
This compound belongs to the family of Cyclic Peptides. These are compounds containing a cyclic moiety bearing a peptide backbone
8Z,11Z,14Z-eicosatrienoyl-CoA
8Z,11Z,14Z-eicosatrienoyl-CoA participates in the biosynthesis of unsaturated fatty acids. 8Z,11Z,14Z-eicosatrienoyl-CoA is converted from (8Z,11Z,14Z)-Icosatrienoic acid via palmitoyl-CoA hydrolase [EC:3.1.2.2].
Unsaturated fatty acids are of similar form, except that one or more alkenyl functional groups exist along the chain, with each alkene substituting a single-bonded "-CH2-CH2-" part of the chain with a double-bonded "-CH=CH-" portion (that is, a carbon double-bonded to another carbon). The differences in geometry between the various types of unsaturated fatty acids, as well as between saturated and unsaturated fatty acids, play an important role in biological processes, and in the construction of biological structures (such as cell membranes). (Wikipedia)
.8Z,11Z,14Z-eicosatrienoyl-CoA participates in the biosynthesis of unsaturated fatty acids. 8Z,11Z,14Z-eicosatrienoyl-CoA is converted from (8Z,11Z,14Z)-Icosatrienoic acid via palmitoyl-CoA hydrolase [EC:3.1.2.2].
Clofenotane
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides > P03AB - Chlorine containing products Insecticide. Clofenotane is a major component of commercial DDT (other names *Gespan*, *Gesarol*, *Geverol*, *Chlorophenotane*). Use banned or discouraged in many countrie Insecticide. Major component of commercial DDT (other names *Gespan*, *Gesarol*, *Geverol*, *Chlorophenotane*). Use banned or discouraged in many countries
SAICAR
SAICAR, also known as succinylaminoimidazolecarboxamide ribotide or phosphoribosylaminoimidazolesuccinocarboxamide, is a substrate for the multifunctional protein ADE2. SAICAR is an intermediate in purine metabolism. SAICAR is converted from 5-aminoimidazole-4-carboxyribonucleotide (CAIR) via phosphoribosylaminoimidazolesuccinocarboxamide synthetase (EC: 6.3.2.6) or SAICAR synthase. This enzyme catalyzes the eighth step in the biosynthesis of purine nucleotides. SAICAR (a ribotide) can lose its phosphate group leading to the appearance of a riboside known as succinylaminoimidazolecarboxamide riboside (SAICAriboside) in cerebrospinal fluid, in urine, and, to a lesser extent, in plasma. This particular riboside (called SAICAr) is characteristic of a heritable deficiency known as adenylosuccinate lyase deficiency (ADSL). On the other hand, the ribotide (SAICAR) is generally harmless and is an essential intermediate in purine metabolism. When present in sufficiently high levels, SAICAR can act as an oncometabolite. An oncometabolite is a compound that promotes tumour growth and survival. As an oncometabolite, high levels of SAICAR stimulate pyruvate kinase isoform M2 and promote cancer cell survival in glucose-limited conditions such as aerobic glycolysis (PMID: 23086999). SAICAR (or (S)-2-[5-Amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamido]succinate) is a substrate for the multifunctional protein ADE2. SAICAR is an intermediate in purine metabolism. (S)-2-[5-Amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamido]succinate is converted from 5-Amino-1-(5-phospho-D-ribosyl) imidazole-4-carboxylate via phosphoribosylaminoimidazole-succinocarboxamide synthase [EC: 6.3.2.6] or SAICAR synthase. This enzyme catalyses the seventh step out of ten in the biosynthesis of purine nucleotides. The appearance of succinylaminoimidazolecarboxamide riboside (SAICAriboside) and succinyladenosine (S-Ado) in cerebrospinal fluid, urine, and to a lesser extent in plasma is characteristic of a heritable deficiency Adenylosuccinate lyase deficiency. [HMDB]. SAICAR is found in many foods, some of which are sweet potato, black chokeberry, common wheat, and globe artichoke. SAICAR. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=3031-95-6 (retrieved 2024-08-20) (CAS RN: 3031-95-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
(5Z,9E,14Z)-(8xi,11R,12S)-11,12-epoxy-8-hydroxyicosa-5,9,14-trienoic Acid
(5Z,9E,14Z)-(8xi,11R,12S)-11,12-epoxy-8-hydroxyicosa-5,9,14-trienoic Acid, also known as Hepoxilin a3 or 8-EH-2, is classified as a member of the Hepoxilins. Hepoxilins are eicosanoids containing an oxirane group attached to the fatty acyl chain. (5Z,9E,14Z)-(8xi,11R,12S)-11,12-epoxy-8-hydroxyicosa-5,9,14-trienoic Acid is considered to be practically insoluble (in water) and acidic
(N-acetylneuraminosyl(a2-6)lactosamine)
(N-acetylneuraminosyl(alpha2-6)lactosamine) is widely distributed among tissues and is involved in biological processes such as the regulation of the immune response and the progression of colon cancer. Sialylation represents one of the most frequently occurring terminations of the oligosaccharide chains of glycoproteins and glycolipids. Sialic acid is commonly found alpha,6-linked to N-acetylgalactosamine (GalNAc). The biosynthesis of the linkage is mediated by a member of the sialyltransferase family, the beta-galactoside alpha,6-sialyltransferase (EC 2.4.99.1, ST6Gal.I). Although expressed by a single gene, this enzyme shows a complex pattern of regulation which allows its tissue- and stage-specific modulation. (PMID 11425186)
.6-Sialyllactosamine is an oligosaccharide found in human milk. Oligosaccharides in human milk inhibit enteric pathogens in vitro and in vivo. (PMID:10683228)
.(N-acetylneuraminosyl(alpha2-6)lactosamine) is widely distributed among tissues and is involved in biological processes such as the regulation of the immune response and the progression of colon cancer. Sialylation represents one of the most frequently occurring terminations of the oligosaccharide chains of glycoproteins and glycolipids. Sialic acid is commonly found alpha,6-linked to N-acetylgalactosamine (GalNAc). The biosynthesis of the linkage is mediated by a member of the sialyltransferase family, the beta-galactoside alpha,6-sialyltransferase (EC 2.4.99.1, ST6Gal.I). Although expressed by a single gene, this enzyme shows a complex pattern of regulation which allows its tissue- and stage-specific modulation. (PMID 11425186)
1-Benzyl-1,2,3,4-tetrahydroisoquinoline
1-benzyl-1,2,3,4-tetrahydroisoquinoline (1BnTIQ) as a possible PD-eliciting neurotoxin and evaluated its characteristics relevant to Parkinson disease (PD). 1BnTIQ exist in mammals and is proposed as possible PD-eliciting neurotoxin. PD is believed to be induced by the interaction of genetic predisposition and environmental factors, and a type of neurotoxin is proposed to be one of the environmental factors. 1BnTIQ inhibits [3H] dopamine uptake in HEK293 cells which stably express dopamine transporter. 1BnTIQ also inhibits NADH-ubiquinone oxidoreductase (complex I) in the mitochondrial respiratory chain. 1BnTIQ decreases the dopamine content in the mesencephalon in both dose- and time-dependent manners and it irreversibly reduced the dopamine content. Furthermore, it causes morphological changes in tyrosine hydroxylase-positive cells in the mesencephalon and reduced the number of cells. (PMID 12440154) [HMDB] 1-benzyl-1,2,3,4-tetrahydroisoquinoline (1BnTIQ) as a possible PD-eliciting neurotoxin and evaluated its characteristics relevant to Parkinson disease (PD). 1BnTIQ exist in mammals and is proposed as possible PD-eliciting neurotoxin. PD is believed to be induced by the interaction of genetic predisposition and environmental factors, and a type of neurotoxin is proposed to be one of the environmental factors. 1BnTIQ inhibits [3H] dopamine uptake in HEK293 cells which stably express dopamine transporter. 1BnTIQ also inhibits NADH-ubiquinone oxidoreductase (complex I) in the mitochondrial respiratory chain. 1BnTIQ decreases the dopamine content in the mesencephalon in both dose- and time-dependent manners and it irreversibly reduced the dopamine content. Furthermore, it causes morphological changes in tyrosine hydroxylase-positive cells in the mesencephalon and reduced the number of cells. (PMID 12440154). D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists
Leucodopachrome
Leucodopachrome is an indolic intermediate in the melanogenesis pathway, the non-enzymatically product of dopaquinone through cyclization in a reaction whose operation is determined by a pH greater than 4 (melanin synthesis in human pigment cell lysates is maximal at pH 6.8). Leucodopachrome participates in redox exchange with dopaquinone to give the eumelanin precursor dopachrome plus dopa. Dopaquinone (the quinone intermediate resulting from tyrosinase-mediated oxidation of tyrosine, monophenol dihydroxyphenylalanine:oxygen oxidoreductase, EC 1.14.18.1) could be a toxic metabolite in melanin biosynthesis. (PMID: 6807981, 1445949, 413870, 11461115, 11171088, 12755639) [HMDB]. Leucodopachrome is found in many foods, some of which are chives, saffron, leek, and red beetroot. Leucodopachrome is an indolic intermediate in the melanogenesis pathway, the non-enzymatic product of dopaquinone through cyclization in a reaction whose operation is determined by a pH greater than 4 (melanin synthesis in human pigment cell lysates is maximal at pH 6.8). Leucodopachrome participates in redox exchange with dopaquinone to give the eumelanin precursor dopachrome plus DOPA. Dopaquinone (the quinone intermediate resulting from tyrosinase-mediated oxidation of tyrosine, monophenol dihydroxyphenylalanine:oxygen oxidoreductase, EC 1.14.18.1) could be a toxic metabolite in melanin biosynthesis (PMID: 6807981, 1445949, 413870, 11461115, 11171088, 12755639).
Glutathionylspermidine
The spermidine amide of glutathione.
Ethylene
Polyethylene (m w 2,000-21,000) is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]") Occurs naturally in ripening fruit and is used artificially to accelerate fruit ripening, e.g in banana transportation D006133 - Growth Substances > D010937 - Plant Growth Regulators C1907 - Drug, Natural Product > C28269 - Phytochemical
Silver
Among metals, pure silver has the highest thermal conductivity (the non-metal diamond and superfluid helium II are higher) and one of the highest optical reflectivity. (Aluminium slightly outdoes silver in parts of the visible spectrum, and silver is a poor reflector of ultraviolet light). Silver also has the lowest contact resistance of any metal. Silver halides are photosensitive and are remarkable for their ability to record a latent image that can later be developed chemically. Silver is stable in pure air and water, but tarnishes when it is exposed to air or water containing ozone or hydrogen sulfide to form a black layer of silver sulfide which can be cleaned off with dilute hydrochloric acid. The most common oxidation state of silver is +1 (for example, silver nitrate: AgNO3); in addition, +2 compounds (for example, silver(II) fluoride: AgF2) and +3 compounds (for example, potassium tetrafluoroargentate: K[AgF4]) are known.; Hippocrates, the "father of medicine", wrote that silver had beneficial healing and anti-disease properties, and the Phoenicians used to store water, wine, and vinegar in silver bottles to prevent spoiling. In the early 1900s people would put silver dollars in milk bottles to prolong the milks freshness. Its germicidal effects increased its value in utensils and as jewellery. The exact process of silvers germicidal effect is still not well understood, although theories exist. One of these is the oligodynamic effect, which explains the effect on microorganisms but would not explain antiviral effects.; Jewellery and silverware are traditionally made from sterling silver (standard silver), an alloy of 92.5\\% silver with 7.5\\% copper. In the United States, only an alloy consisting of at least 92.5\\% fine silver can be marketed as "silver". Sterling silver is harder than pure silver, and has a lower melting point (893 °C) than either pure silver or pure copper. Britannia silver is an alternative hallmark-quality standard containing 95.8\\% silver, often used to make silver tableware and wrought plate. With the addition of germanium, the patented modified alloy Argentium Sterling Silver is formed, with improved properties including resistance to firescale.; Silver bromide is a yellow, low hardness salt.; Silver is a chemical element with the chemical symbol Ag (Latin: argentum) and atomic number 47. A soft, white, lustrous transition metal, it has the highest electrical conductivity of any element and the highest thermal conductivity of any metal. The metal occurs naturally in its pure, free form (native silver), as an alloy with gold (electrum) and other metals, and in minerals such as argentite and chlorargyrite. Most silver is produced as a by-product of copper, gold, lead, and zinc refining.; Silver is a constituent of almost all colored carat gold alloys and carat gold solders, giving the alloys paler colour and greater hardness. White 9 carat gold contains 62.5\\% silver and 37.5\\% gold, while 22 carat gold contains up to 8.4\\% silver or 8.4\\% copper.; Silver is a very ductile and malleable (slightly harder than gold) monovalent coinage metal with a brilliant white metallic luster that can take a high degree of polish. It has the highest electrical conductivity of all metals, even higher than copper, but its greater cost and tarnishability have prevented it from being widely used in place of copper for electrical purposes, though 13,540 tons were used in the electromagnets used for enriching uranium during World War II (mainly because of the wartime shortage of copper). Another notable exception is in high-end audio cables.; Silver is commonly used in catheters. Silver alloy catheters are more effective than standard catheters for reducing bacteriuria in adults in hospital having short term catheterisation.This meta-analysis clarifies discrepant results among trials of silver-coated urinary catheters by revealing that silver alloy catheters are significantly more effective in preventing urinary tract infectio... Silver is widely distributed in the earths crust and is found in soil, fresh and sea water, and the air. It is readily absorbed into the human body with food and drink and through inhalation, but the low levels of silver commonly present in the bloodstream (< 2.3 b.mu g/L) and in key tissues like liver and kidney have not been associated with any disease or disability. Silver is not an acknowledged trace element in the human body and fulfills no physiological or biochemical role in any tissue even though it interacts with several essential elements including zinc and calcium. Physiologically, it exists as an ion in the body. Silver has a long history in the treatment of human diseases, including epilepsy, neonatal eye disease, venereal diseases, and wound infections. It has been employed in water purification and is currently used to safeguard hospital hot water systems against Legionella infections. Principle routes of human exposure to silver nowadays are through its widespread use as an antimicrobial agent in wound care products and medical devices, including in-dwelling catheters, bone cements, cardiac valves and prostheses, orthopedic pins, and dental devices. In each case, the antimicrobial properties of silver are dependent upon release of biologically active silver ion (Ag*) from metallic silver (including nanocrystalline forms), silver nitrate, silver sulfadiazine, and other silver compounds incorporated in the various devices, and its lethal effect on pathogenic organisms. Experience has shown that a large proportion of the silver ion released from medical devices not required for antimicrobial action is disseminated into tissue fluids and exudates, where it combines with albumins and macroglobulins. These silver-protein complexes are absorbed into the systemic circulation to be deposited in key soft tissues, including the skin, liver, kidney, spleen, lungs, and brain. As a xenobiotic material, silver must be presumed to present a health risk to exposed persons under some circumstances. Unlike the well-documented neurotoxic metals including lead and mercury, silver does not appear to be a cumulative poison and is eliminated from the body through the urine and feces. Excretion of silver by these routes may be a measure of mean daily intake, but since this view is based largely on the clinical use of silver nitrate and silver sulfadiazine used in burn wound therapy, its true relevance in the metabolism of silver used in the wider context of medical devices is questionable. Argyria is the most widely publicized clinical condition associated with silver accumulation in blood and soft tissues. It commonly occurs in individuals exposed to high levels of silver occupationally (metallurgy, photography, and mining industries), or consuming or inhaling silver hygiene products (including colloidal silver products) for long periods. Silver is absorbed into the body and deposited in the perivascular regions of the skin and other soft tissues as black granules of silver sulfide or silver selenide. The resulting slate grey discoloration of the skin occasionally associated with melanogenic changes, is semipermanent and cosmetically undesirable but is not known to be life-threatening. (PMID: 17453933). D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AL - Silver compounds COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Acetohexamide
Acetohexamide is only found in individuals that have used or taken this drug. It is a sulfonylurea hypoglycemic agent that is metabolized in the liver to 1-hydrohexamide. [PubChem]Sulfonylureas such as acetohexamide bind to an ATP-dependent K+ channel on the cell membrane of pancreatic beta cells. This inhibits a tonic, hyperpolarizing outflux of potassium, which causes the electric potential over the membrane to become more positive. This depolarization opens voltage-gated Ca2+ channels. The rise in intracellular calcium leads to increased fusion of insulin granulae with the cell membrane, and therefore increased secretion of (pro)insulin. A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BB - Sulfonylureas C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C97936 - Sulfonylurea Antidiabetic Agent D007004 - Hypoglycemic Agents
Desmopressin
Desmopressin is a chemical that is similar to Antidiuretic Hormone (ADH) which is found naturally in the body. It increases urine concentration and decreases urine production. Desmopressin is used to prevent and control excessive thirst, urination, and dehydration caused by injury, surgery, and certain medical conditions, allowing you to sleep through the night without awakening to urinate. It is also used to treat specific types of diabetes insipidus and conditions after head injury or pituitary surgery. H - Systemic hormonal preparations, excl. sex hormones and insulins > H01 - Pituitary and hypothalamic hormones and analogues > H01B - Posterior pituitary lobe hormones > H01BA - Vasopressin and analogues C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C80212 - Antidiuretic Hormone Analogue D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D014667 - Vasopressins D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D050034 - Antidiuretic Agents
(R)-Mandelamide
D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids
Oxandrolone
Oxandrolone is only found in individuals that have used or taken this drug. It is a synthetic hormone with anabolic and androgenic properties. [PubChem]Oxandrolones interact with androgen receptors in target tissues. A - Alimentary tract and metabolism > A14 - Anabolic agents for systemic use > A14A - Anabolic steroids > A14AA - Androstan derivatives D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D000728 - Androgens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid
Levomethadyl Acetate
Levomethadyl Acetate is only found in individuals that have used or taken this drug. It is a narcotic analgesic with a long onset and duration of action. It is used mainly in the treatment of narcotic dependence. [PubChem]Opiate receptors (Mu, Kappa, Delta) are coupled with G-protein receptors and function as both positive and negative regulators of synaptic transmission via G-proteins that activate effector proteins. Binding of the opiate stimulates the exchange of GTP for GDP on the G-protein complex. As the effector system is adenylate cyclase and cAMP located at the inner surface of the plasma membrane, opioids decrease intracellular cAMP by inhibiting adenylate cyclase. Subsequently, the release of nociceptive neurotransmitters such as substance P, GABA, dopamine, acetylcholine and noradrenaline is inhibited. Opioids also inhibit the release of vasopressin, somatostatin, insulin and glucagon. Levomethadyl acetate effectively opens calcium-dependent inwardly rectifying potassium channels (OP1 receptor agonist), resulting in hyperpolarization and reduced neuronal excitability. N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BC - Drugs used in opioid dependence D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics
Sodium fluoride (NaF)
A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AA - Caries prophylactic agents A - Alimentary tract and metabolism > A12 - Mineral supplements > A12C - Other mineral supplements > A12CD - Fluoride D020011 - Protective Agents > D002327 - Cariostatic Agents > D005459 - Fluorides Indirect food contaminant arising from its use in adhesives for aluminium foil D001697 - Biomedical and Dental Materials
Amanitin
D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D000546 - Amanitins
Tenuazonic acid
Tenuazonic acid is produced by Aspergillus species Causes rice leaf rot Tenuazonic acid is a mycotoxin. It is a toxic secondary metabolite, produced by Alternaria (e. g. Alternaria alternata or Alternaria tenuis) and Phoma species. It inhibits the protein synthesis machinery D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins Production by Aspergillus subspecies Causes rice leaf rot D000970 - Antineoplastic Agents
Albanol A
Mulberrofuran G protects ischemic injury-induced cell death via inhibition of NOX4-mediated ROS generation and ER stress[1]. Mulberrofuran G shows moderate inhibiting activity of hepatitis B virus (HBV) DNA replication with IC50 of 3.99 μM[2]. Mulberrofuran G protects ischemic injury-induced cell death via inhibition of NOX4-mediated ROS generation and ER stress[1]. Mulberrofuran G shows moderate inhibiting activity of hepatitis B virus (HBV) DNA replication with IC50 of 3.99 μM[2]. Mulberrofuran G protects ischemic injury-induced cell death via inhibition of NOX4-mediated ROS generation and ER stress[1]. Mulberrofuran G shows moderate inhibiting activity of hepatitis B virus (HBV) DNA replication with IC50 of 3.99 μM[2].
ibogaine
An organic heteropentacyclic compound that is ibogamine in which the indole hydrogen para to the indole nitrogen has been replaced by a methoxy group. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens
Sulfur dioxide
Sulfur dioxide is a food preservative. Sanitising agent for food containers and fermentation equipment. Also used in foods as stabiliser, moisture control agent, flavour modifier and texturise Food preservative. Sanitising agent for food containers and fermentation equipmentand is) also used in foods as stabiliser, moisture control agent, flavour modifier and texturiser D004785 - Environmental Pollutants > D000393 - Air Pollutants
Juvenile hormone III
Juvenile hormone III is a member of the juvenile hormone family of compounds that is the methyl ester of (2E,6E)-9-[(2R)-3,3-dimethyloxiran-2-yl]-3,7-dimethylnona-2,6-dienoic acid. Juvenile hormone III is found in most insect species. It is an epoxide, an enoate ester, a fatty acid methyl ester and a juvenile hormone.
1-Phenylethanol
1-Phenylethanol is a flavouring agent. It is found in many foods, some of which are onion-family vegetables, herbs and spices, nuts, and fruits. (±)-1-Phenylethanol is a flavouring agent
Gentisein
Gentisein is a member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3 and 7. It has a role as a plant metabolite. It is a member of xanthones and a polyphenol. Gentisein is a natural product found in Hypericum scabrum, Cratoxylum formosum, and other organisms with data available. A member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3 and 7. Gentisein is found in alcoholic beverages. Gentisein is isolated from Gentiana lutea (yellow gentian Gentisein (NSC 329491), the major metabolite of Mangiferin, shows the most potent serotonin uptake inhibition with an IC50 value of 4.7 μM[1][2]. Gentisein (NSC 329491), the major metabolite of Mangiferin, shows the most potent serotonin uptake inhibition with an IC50 value of 4.7 μM[1][2]. Gentisein (NSC 329491), the major metabolite of Mangiferin, shows the most potent serotonin uptake inhibition with an IC50 value of 4.7 μM[1][2].
Usnic acid
A member of the class of dibenzofurans that is dibenzo[b,d]furan-1(9bH)-one substituted by acetyl groups at positions 2 and 6, hydroxy groups at positions 3 and 7 and methyl groups at positions 8 and 9b. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 1.457 D000890 - Anti-Infective Agents > D000935 - Antifungal Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 1.456 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.458 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.459 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.455 (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. Usnic acid, a lichen-derived secondary metabolite, has a unique dibenzofuran skeleton. Usnic acid has excellent anticancer and antimicrobial properties. Usnic acid significantly inhibits RANKL-mediated osteoclast formation and function by reducing the transcriptional and translational expression of NFATc1[1]. Usnic acid, a lichen-derived secondary metabolite, has a unique dibenzofuran skeleton. Usnic acid has excellent anticancer and antimicrobial properties. Usnic acid significantly inhibits RANKL-mediated osteoclast formation and function by reducing the transcriptional and translational expression of NFATc1[1].
Phaseollin
Isolated from Phaseolus vulgaris (kidney bean) and Vigna unguiculata. Phaseollin is found in many foods, some of which are yellow wax bean, soy bean, pulses, and cowpea. Phaseollin is found in common bean. Phaseollin is isolated from Phaseolus vulgaris (kidney bean) and Vigna unguiculata.
Cinmethylin
Deltamethrin
Deltamethrin is a pyrethroid ester insecticide. Deltamethrin plays key role in controlling malaria vectors, and is used in the manufacture of long-lasting insecticidal mosquito nets. It is used as one of a battery of pyrethroid insecticides in control of malarial vectors, particularly Anopheles gambiae, and whilst being the most employed pyrethroid insecticide, can be used in conjunction with, or as an alternative to, permethrin, cypermethrin and other organophosphate-based insecticides, such as malathion and fenthion. Resistance to deltamethrin (and its counterparts) is now extremely widespread and threatens the success of worldwide vector control programmes. Deltamethrin products are among the most popular and widely used insecticides in the world[citation needed] and have become very popular with pest control operators and individuals in the United States. This material is a member of one of the safest classes of pesticides: synthetic pyrethroids. This pesticide is highly toxic to aquatic life, particularly fish, and therefore must be used with extreme caution around water. It is neurotoxic to humans and has been found in human breast milk. Since deltamethrin is a neurotoxin, it attacks the nervous system. Skin contact can lead to tingling or reddening of the skin local to the application. If taken in through the eyes or mouth, a common symptom is facial paraesthesia, which can feel like many different abnormal sensations, including burning, partial numbness, pins and needles, skin crawling, etc. There are no reports indicating that chronic intoxication from pyrethroid insecticides causes motor neuron damage or motor neuron disease. However, in 2011, a case report was published demonstrating pathologically proven motor neuron death in a Japanese woman after acute massive ingestion of pesticides containing pyrethroids and organochlorine. There are many uses for deltamethrin, ranging from agricultural uses to home pest control. Deltamethrin has been instrumental in preventing the spread of diseases carried by tick-infested prairie dogs, rodents and other burrowing animals[citation needed]. It is helpful in eliminating and preventing a wide variety of household pests, especially spiders, fleas, ticks, carpenter ants, carpenter bees, cockroaches and bedbugs. Deltamethrin is also one of the primary ingredients in ant chalk. P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents > P03BA - Pyrethrines D010575 - Pesticides > D007306 - Insecticides > D011722 - Pyrethrins D016573 - Agrochemicals Same as: D07785
Thiocarbohydrazide
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents
Herbimycin
A 19-membered macrocyle incorporating a benzoquinone ring and a lactam functionality. It is an ansamycin antibiotic that induces apoptosis and displays antitumour effects. C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D012294 - Rifamycins D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors
Calcimycin
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D007476 - Ionophores > D061207 - Calcium Ionophores D049990 - Membrane Transport Modulators C254 - Anti-Infective Agent > C258 - Antibiotic Calcimycin (A-23187) is an antibiotic and a unique divalent cation ionophore (like calcium and magnesium). Calcimycin induces Ca2+-dependent cell death by increasing intracellular calcium concentration. Calcimycin inhibits the growth of Gram-positive bacteria and some fungi. Calcimycin also inhibits the activity of ATPase and uncouples oxidative phosphorylation (OXPHOS) of mammalian cells. Calcimycin induces apoptosis[1][2][3][4].
cathenamine
A yohimban alkaloid with formula C21H22N2O3, produced by Catharanthus roseus and Rauvolfia serpentina plant species.
Ascomycin
Ascomycin is a macrolide that is produced by the fermentation of Streptomyces hygroscopicus and exhibits strong immunosuppressant properties. It has a role as an immunosuppressive agent, an antifungal agent and a bacterial metabolite. It is a macrolide, an ether, a lactol and a secondary alcohol. Ascomycin is a natural product found in Streptomyces clavuligerus, Streptomyces hygroscopicus, and Streptomyces ascomycinicus with data available. A macrolide that is produced by the fermentation of Streptomyces hygroscopicus and exhibits strong immunosuppressant properties. D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Ascomycin (Immunomycin; FR-900520; FK520) is an ethyl analog of Tacrolimus (FK506) with strong immunosuppressant properties. Ascomycin is also a macrocyclic polyketide antibiotic with multiple biological activities such as anti-malarial, anti-fungal and anti-spasmodic. Ascomycin prevents graft rejection and has potential for varying skin ailments research[1][2].
Ammonium Chloride
B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05X - I.v. solution additives > B05XA - Electrolyte solutions G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BA - Acidifiers C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent Same as: D01139
24-Hydroxycholesterol
24-Hydroxycholesterol (24OHC) is almost exclusively formed in the brain. The enzymatic conversion of CNS cholesterol to 24OHC, which readily crosses the blood-brain barrier, is the major pathway for brain cholesterol elimination and brain cholesterol homeostasis maintenance. The enzyme mediating this conversion has been characterized at the molecular level as cholesterol 24-hydroxylase (EC 1.14.13.98, CYP46) and is mainly located in neurons. Like other oxysterols, 24OHC is efficiently converted into normal bile acids or excreted in bile in its sulfated and glucuronidated form. Levels of 24OHC in the circulation decrease with age in infants and children. In adults, however, the levels appear to be stable. There is accumulating evidence pointing toward a potentially important link between cholesterol, beta-amyloid, and Alzheimers disease. Patients with active demyelinating diseases had increased levels of 24OHC in cerebrospinal fluid (CSF). Patients with Alzheimers disease have slightly increased levels of 24OHC in CSF. Patients with multiple sclerosis have a tendency to have higher levels of 24OHC during active periods. (PMID: 15061359, 14574622). 24-Hydroxycholesterol has been found to accumulate in hereditary hypercholesterolemia, an inborn error of metabolism. 24-Hydroxycholesterol (24OHC) is almost exclusively formed in the brain. The enzymatic conversion of CNS cholesterol to 24OHC, which readily crosses the blood-brain barrier, is the major pathway for brain cholesterol elimination and brain cholesterol homeostasis maintenance. The enzyme mediating this conversion has been characterized at the molecular level as cholesterol 24-hydroxylase (EC 1.14.13.98, CYP46) and is mainly located in neurons. Like other oxysterols, 24OHC is efficiently converted into normal bile acids or excreted in bile in its sulfated and glucuronidated form. Levels of 24OHC in the circulation decrease with age in infants and children. In adults, however, the levels appear to be stable. There is accumulating evidence pointing toward a potentially important link between cholesterol, beta-amyloid, and Alzheimers disease. Patients with active demyelinating diseases had increased levels of 24OHC in cerebrospinal fluid (CSF). Patients with Alzheimers disease have slightly increased levels of 24OHC in CSF. Patients with multiple sclerosis have a tendency to have higher levels of 24OHC during active periods. (PMID: 15061359, 14574622) [HMDB] 24(S)-Hydroxycholesterol (24S-OHC), the major brain cholesterol metabolite, plays an important role to maintain homeostasis of cholesterol in the brain. 24(S)-Hydroxycholesterol (24S-OHC) is one of the most efficient endogenous LXR agonist known and is present in the brain and in the circulation at relatively high levels. 24(S)-Hydroxycholesterol (24S-OHC) is a very potent, direct, and selective positive allosteric modulator of NMDARs with a mechanism that does not overlapthat of other allosteric modulators[1][2][3]. 24(S)-Hydroxycholesterol (24S-OHC), the major brain cholesterol metabolite, plays an important role to maintain homeostasis of cholesterol in the brain. 24(S)-Hydroxycholesterol (24S-OHC) is one of the most efficient endogenous LXR agonist known and is present in the brain and in the circulation at relatively high levels. 24(S)-Hydroxycholesterol (24S-OHC) is a very potent, direct, and selective positive allosteric modulator of NMDARs with a mechanism that does not overlapthat of other allosteric modulators[1][2][3].
Gaboxadol
D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000927 - Anticonvulsants C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics Same as: D04282 THIP (Gaboxadol) is a selective extrasynaptic GABAA receptors (eGABARs) agonist (with blood-brain barrier permeability), shows an EC50 value of 13 μM for δ-GABAAR. THIP induces strong tense GABAA-mediated currents in layer 2/3 neurons, but shows on effect on miniature IPSCs. THIP can be used in studies of sleep disorders[1][2][3].
Methyl 2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-1,4-dihydropyridine-3-carboxylate
D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D002120 - Calcium Channel Agonists D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators
Methyl 4-(2-benzylbenzoyl)-2,5-dimethyl-1H-pyrrole-3-carboxylate
D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D002120 - Calcium Channel Agonists D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators
AZIMILIDE
C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker
4-Biphenylol
CONFIDENCE standard compound; INTERNAL_ID 1154; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4839; ORIGINAL_PRECURSOR_SCAN_NO 4835 CONFIDENCE standard compound; INTERNAL_ID 1154; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4862; ORIGINAL_PRECURSOR_SCAN_NO 4859 CONFIDENCE standard compound; INTERNAL_ID 1154; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4882; ORIGINAL_PRECURSOR_SCAN_NO 4877 CONFIDENCE standard compound; INTERNAL_ID 1154; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4893; ORIGINAL_PRECURSOR_SCAN_NO 4890 CONFIDENCE standard compound; INTERNAL_ID 1154; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4872; ORIGINAL_PRECURSOR_SCAN_NO 4871 CONFIDENCE standard compound; INTERNAL_ID 1154; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4890; ORIGINAL_PRECURSOR_SCAN_NO 4887
Ethisterone
Ethisterone is a metabolite of danazol. Ethisterone is a progestogen hormone. The first orally active progestin, ethisterone (pregneninolone, 17α-ethynyltestosterone or 19–norandrostane), the 17α-ethynyl analog of testosterone, was synthesized in 1938 by Hans Herloff Inhoffen, Willy Logemann, Walter Hohlweg, and Arthur Serini at Schering AG in Berlin and marketed in Germany in 1939 as Proluton C and by Schering in the U.S. in 1945 as Pranone. Ethisterone was also marketed in the U.S. (Wikipedia) G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03D - Progestogens > G03DC - Estren derivatives C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone ATC code: G03DC04
Protandren
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid Same as: D08196
Benzo[a]pyrene-4,5-oxide
This compound belongs to the family of Chrysenes. These are compounds containing the polyaromatic chrysene moiety, which consists of a benzene ring fused to a phenanthrene ring system to form Benzo[a]phenanthrene. D009676 - Noxae > D002273 - Carcinogens
concanamycin a
A concanamycin in which the lactone ring contains 4 double bonds and is substituted by 4 methyl groups, 2 hydroxy groups, 2 methoxy groups and an ethyl group. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D004791 - Enzyme Inhibitors
Cis-stilbene oxide
Cis-stilbene oxide is part of the Bile secretion pathway. It is a substrate for: Epoxide hydrolase 1.
amorpha-4,11-diene
Benzeneacetonitrile
Isolated from oil of garden cress (Lepidium sativum) and other plant oils. Benzeneacetonitrile is found in many foods, some of which are peppermint, garden tomato (variety), papaya, and kohlrabi. Benzeneacetonitrile is found in garden cress. Benzeneacetonitrile is isolated from oil of garden cress (Lepidium sativum) and other plant oils.
3-hydroxyoctadecanoyl-CoA
3-hydroxyoctadecanoyl-CoA is a human metabolite involved in the fatty acid elongation in mitochondria pathway. The enzyme long-chain-3-hydroxyacyl-CoA dehydrogenase catalyzes the conversion of 3-Oxododecanoyl-CoA to (S)-3-Hydroxydodecanoyl-CoA.3-hydroxyoctadecanoyl-CoA is an intermediate in fatty acid metabolism, being the substrate of the enzymes beta-hydroxyacyl-CoA dehydrogenase and 3-hydroxyacyl-CoA dehydrogenase [EC 1.1.1.211-1.1.1.35]; 3-hydroxyoctadecanoyl-CoA is an intermediate in fatty acid elongation in mitochondria, the substrate of the enzymes enoyl-CoA hydratase and long-chain-enoyl-CoA hydratase [EC 4.2.1.17-4.2.1.74]. (KEGG).
Isopren
Isoprene, also known as 2-methyl-1,3-butadiene or 2-methyldivinyl, is a member of the class of compounds known as branched unsaturated hydrocarbons. Branched unsaturated hydrocarbons are hydrocarbons that contains one or more unsaturated carbon atoms, and an aliphatic branch. Isoprene can be found in carrot, sweet orange, and wild carrot, which makes isoprene a potential biomarker for the consumption of these food products. Isoprene, or 2-methyl-1,3-butadiene, is a common organic compound with the formula CH2=C(CH3)−CH=CH2. In its pure form it is a colorless volatile liquid. Isoprene is produced by many plants, and its polymers are the main component of natural rubber. C. G. Williams named the compound in 1860 after obtaining it from thermal decomposition (pyrolysis) of natural rubber; he correctly deduced the empirical formula C5H8 .
RUBRATOXIN B
D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
Latrunculin A
A bicyclic macrolide natural product consisting of a 16-membered bicyclic lactone attached to the rare 2-thiazolidinone moiety. It is obtained from the Red Sea sponge Latrunculia magnifica and from the Fiji Islands sponge Cacospongia mycofijiensis. Latrunculin A inhibits actin polymerisation, microfilament organsation and microfilament-mediated processes.
Dibenz[a,c]anthracene
(+)-Nicotine
Chemical Structure of (+)-Nicotine: (+)-Nicotine, also known as d-nicotine, has a complex chemical structure that consists of a pyridine ring with a methyl group at position 3 and a pyrrolidine ring at position 2. The molecular formula of nicotine is C10H14N2. The presence of a nitrogen-containing pyridine ring and a pyrrolidine ring makes nicotine a type of alkaloid. The (+) sign indicates that this is the dextrorotatory isomer, meaning it rotates plane-polarized light to the right. The chemical structure can be described as follows: A six-membered pyridine ring, which is a nitrogen-containing aromatic heterocycle. A methyl group (-CH3) attached to the pyridine ring at the 3-position. A five-membered pyrrolidine ring, which is a saturated nitrogen-containing heterocycle, fused to the pyridine ring at the 2-position. The pyrrolidine ring contains a secondary amine group (-NH-), which is part of the ring structure. Biological Functions of (+)-Nicotine: Neurotransmitter Mimic: (+)-Nicotine acts as an agonist at nicotinic acetylcholine receptors (nAChRs), which are ligand-gated ion channels found in both the central and peripheral nervous systems. By binding to these receptors, nicotine mimics the action of the neurotransmitter acetylcholine, leading to the release of various neurotransmitters and hormones. Central Nervous System Stimulation: When (+)-nicotine binds to nAChRs in the brain, it can increase the release of dopamine, a neurotransmitter associated with reward and pleasure. This effect contributes to the addictive properties of nicotine. Cardiovascular Effects: (+)-Nicotine can have various effects on the cardiovascular system, including increasing heart rate and blood pressure due to the stimulation of nAChRs on adrenergic neurons, which leads to the release of catecholamines (e.g., adrenaline). Metabolic Effects: Nicotine can increase metabolic rate and decrease appetite, which can lead to weight loss in some individuals. Insecticide: (+)-Nicotine has insecticidal properties and has been used historically as a pesticide. It acts by binding to nAChRs in insects, causing paralysis and death. Therapeutic Uses: (+)-Nicotine is used in nicotine replacement therapies (NRT), such as patches, gum, lozenges, and inhalers, to help smokers reduce withdrawal symptoms and quit smoking. It is also being investigated for its potential therapeutic effects in neurological disorders like Alzheimer’s disease and Parkinson’s disease. Toxicity: At high doses, (+)-nicotine can be toxic, leading to nausea, vomiting, dizziness, and in severe cases, respiratory failure and death due to its paralytic effects on the respiratory center. (+)-Nicotine, also known as nikotin or L-nicotine, belongs to the class of organic compounds known as pyrrolidinylpyridines. Pyrrolidinylpyridines are compounds containing a pyrrolidinylpyridine ring system, which consists of a pyrrolidine ring linked to a pyridine ring (+)-Nicotine is a primary metabolite. Primary metabolites are metabolically or physiologically essential metabolites. They are directly involved in an organism’s growth, development or reproduction. Based on a literature review a significant number of articles have been published on (+)-Nicotine. This compound has been identified in human blood as reported by (PMID: 31557052 ). (+)-nicotine is not a naturally occurring metabolite and is only found in those individuals exposed to this compound or its derivatives. Technically (+)-Nicotine is part of the human exposome. The exposome can be defined as the collection of all the exposures of an individual in a lifetime and how those exposures relate to health. An individual's exposure begins before birth and includes insults from environmental and occupational sources.
D-Phenylalanine
Flavouring ingredient. (±)-Phenylalanine is found in many foods, some of which are cucumber, green bell pepper, yellow bell pepper, and saskatoon berry.
DL-Arginine
DL-Arginine is used in physicochemical analysis of amino acid complexation dynamics and crystal structure formations. DL-Arginine is used in physicochemical analysis of amino acid complexation dynamics and crystal structure formations.
Glycerophosphoric acid
Glycerol 3-phosphate is a chemical intermediate in the glycolysis metabolic pathway. It is commonly confused with the similarly named glycerate 3-phosphate or glyceraldehyde 3-phosphate. Glycerol 3-phosphate is produced from glycerol, the triose sugar backbone of triglycerides and glycerophospholipids, by the enzyme glycerol kinase. Glycerol 3-phospate may then be converted by dehydrogenation to dihydroxyacetone phosphate (DHAP) by the enzyme glycerol-3-phosphate dehydrogenase. DHAP can then be rearranged into glyceraldehyde 3-phosphate (GA3P) by triose phosphate isomerase (TIM), and feed into glycolysis. The glycerol 3-phosphate shuttle is used to rapidly regenerate NAD+ in brain and skeletal muscle cells of mammals (wikipedia). [HMDB]
vinblastin
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01C - Plant alkaloids and other natural products > L01CA - Vinca alkaloids and analogues D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents D000970 - Antineoplastic Agents > D014748 - Vinca Alkaloids
Leucine
A branched-chain amino acid that consists of glycine in which one of the hydrogens attached to the alpha-carbon is substituted by an isobutyl group. Leucine (symbol Leu or L)[3] is an essential amino acid that is used in the biosynthesis of proteins. Leucine is an α-amino acid, meaning it contains an α-amino group (which is in the protonated −NH3+ form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −COO− form under biological conditions), and a side chain isobutyl group, making it a non-polar aliphatic amino acid. It is essential in humans, meaning the body cannot synthesize it: it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, and beans and other legumes. It is encoded by the codons UUA, UUG, CUU, CUC, CUA, and CUG. Leucine is named after the Greek word for "white": λευκός (leukós, "white"), after its common appearance as a white powder, a property it shares with many other amino acids.[4] Like valine and isoleucine, leucine is a branched-chain amino acid. The primary metabolic end products of leucine metabolism are acetyl-CoA and acetoacetate; consequently, it is one of the two exclusively ketogenic amino acids, with lysine being the other.[5] It is the most important ketogenic amino acid in humans.[6] Leucine and β-hydroxy β-methylbutyric acid, a minor leucine metabolite, exhibit pharmacological activity in humans and have been demonstrated to promote protein biosynthesis via the phosphorylation of the mechanistic target of rapamycin (mTOR).[7][8] L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1].
furazolidone
G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors D000890 - Anti-Infective Agents > D023303 - Oxazolidinones C254 - Anti-Infective Agent
Ellipticine
Ellipticine is a organic heterotetracyclic compound that is pyrido[4,3-b]carbazole carrying two methyl substituents at positions 5 and 11. It has a role as an antineoplastic agent and a plant metabolite. It is an organic heterotetracyclic compound, an organonitrogen heterocyclic compound, a polycyclic heteroarene and an indole alkaloid. Ellipticine is a potent antineoplastic agent. Ellipticine is a natural product found in Asparagus cochinchinensis, Aspergillus sclerotiorum, and other organisms with data available. A organic heterotetracyclic compound that is pyrido[4,3-b]carbazole carrying two methyl substituents at positions 5 and 11. Ellipticine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=519-23-3 (retrieved 2024-06-29) (CAS RN: 519-23-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Ellipticine (NSC 71795) is a potent antineoplastic agent; inhibits DNA topoisomerase II activities. Ellipticine (NSC 71795) is a potent antineoplastic agent; inhibits DNA topoisomerase II activities.
1,4-Naphthoquinone
1,4-naphthoquinone appears as yellow needles or brownish green powder with an odor of benzoquinone. (NTP, 1992) 1,4-naphthoquinone is the parent structure of the family of 1,4-naphthoquinones, in which the oxo groups of the quinone moiety are at positions 1 and 4 of the naphthalene ring. Derivatives have pharmacological properties. It derives from a hydride of a naphthalene. 1,4-Naphthoquinone is a natural product found in Juglans nigra and Juglans regia with data available. 1,4-Naphthoquinone or para-naphthoquinone is an organic compound derived from naphthalene. Several isomeric naphthoquinones are known, notably 1,2-naphthoquinone. 1,4-Naphthoquinone forms volatile yellow triclinic crystals and has a sharp odor similar to benzoquinone. It is almost insoluble in cold water, slightly soluble in petroleum ether, and more soluble in polar organic solvents. In alkaline solutions it produces a reddish-brown color. Vitamin K is a derivative of 1,4-naphthoquinone. It is a planar molecule with one aromatic ring fused to a quinone subunit. Naphthalene is a constituent of jet fuel, diesel fuel and cigarette smoke. It is also a byproduct of incomplete combustion and hence is an ubiquitous environmental pollutant. The typical air concentration of naphthalene in cities is about 0.18 ppb. 1,4-Naphthoquinone is a potential pharmacophore for inhibition of both MAO (monoamine oxidase) and DNA topoisomerase activities, this latter associated with antitumor activity[1].
3alpha,7alpha,12beta-Trihydroxy-5beta-cholanoic acid
3alpha,7alpha,12beta-Trihydroxy-5beta-cholanoic acid, also known as lagocholic acid, is a bile acid. Bile acids with beta-hydroxyl and carbonyl groups at the C-3,7, and/or 12 positions are bile acids usually found in the urine of healthy humans (PMID: 8743575). Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05A - Bile therapy > A05AA - Bile acids and derivatives C78276 - Agent Affecting Digestive System or Metabolism > C66913 - Cholagogues or Choleretic Agents D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids Same as: D10699 Cholic acid is a major primary bile acid produced in the liver and usually conjugated with glycine or taurine. It facilitates fat absorption and cholesterol excretion. Cholic acid is orally active[1][2]. Cholic acid is a major primary bile acid produced in the liver and usually conjugated with glycine or taurine. It facilitates fat absorption and cholesterol excretion. Cholic acid is orally active[1][2].
3b,12a-Dihydroxy-5a-cholanoic acid
3b,12a-Dihydroxy-5a-cholanoic acid is a bile acid. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. A bile acid. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. C78276 - Agent Affecting Digestive System or Metabolism > C66913 - Cholagogues or Choleretic Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D - Dermatologicals Deoxycholic acid (cholanoic acid), a bile acid, is a by-product of intestinal metabolism, that activates the G protein-coupled bile acid receptorTGR5[1][2]. Deoxycholic acid (cholanoic acid), a bile acid, is a by-product of intestinal metabolism, that activates the G protein-coupled bile acid receptorTGR5[1][2].
3D,7D,11D-Phytanic acid
3D,7D,11D-Phytanic acid is an isomer of Phytanic acid, an unusual 20-carbon branched-chain fatty acid; Phytanic acid accumulates in blood and tissues of patients with Refsum disease (RD, an inborn error of lipid metabolism inherited as an autosomal recessive trait (OMIM 266500)), and is a reliable identifier of RD from a large number of other neurological disorders. Phytanic acid also accumulates in a number of other disorders with a very different clinical course: disorders of peroxisome biogenesis (Zellweger syndrome (OMIM 214100), neonatal adrenoleukodystrophy (OMIM 202370), infantile Refsum disease (OMIM 266510)) and rhizomelic chondrodysplasia punctata, type 1 (OMIM 215100). Phytanic acid is a 3-methyl fatty acid that cannot be beta-oxidized directly, and first undergoes an alpha-oxidation a reaction catalyzed by the enzyme phytanoyl-CoA hydroxylase, which is deficient in RD, the only true disorder of phytanic acid alpha-oxidation. (The Metabolic and Molecular Bases of Inherited Disease).
trans-Jasmone
trans-Jasmone is found in spearmint. Jasmone is a natural organic compound extracted from the volatile portion of the oil from jasmine flowers. It is a colorless to pale yellow liquid that has the odor of jasmine. Jasmone can exist in two isomeric forms with differing geometry around the pentenyl double bond, cis-jasmone and trans-jasmone. The natural extract contains only the cis form, while synthetic material is often a mixture containing both forms, with the cis form predominating. Both forms have similar odors and chemical properties. (Wikipedia Jasmone is a natural organic compound extracted from the volatile portion of the oil from jasmine flowers. It is a colorless to pale yellow liquid that has the odor of jasmine. Jasmone can exist in two isomeric forms with differing geometry around the pentenyl double bond, cis-jasmone and trans-jasmone. The natural extract contains only the cis form, while synthetic material is often a mixture containing both forms, with the cis form predominating. Both forms have similar odors and chemical properties. trans-Jasmone is found in spearmint. Cis-Jasmone is a plant-derived natural product. Cis-Jasmone is constitutively released by many flowers and sometimes by leaves as an attractant for pollinators or as a chemical cue for host location by insect flower herbivores. Cis-Jasmone treatment of crop plants not only induces direct defense against herbivores, but also induces indirect defense by releasing VOCs that attract natural enemies[1]. Cis-Jasmone is a plant-derived natural product. Cis-Jasmone is constitutively released by many flowers and sometimes by leaves as an attractant for pollinators or as a chemical cue for host location by insect flower herbivores. Cis-Jasmone treatment of crop plants not only induces direct defense against herbivores, but also induces indirect defense by releasing VOCs that attract natural enemies[1].
Methadyl Acetate
Methadyl Acetate is only found in individuals that have used or taken this drug. It is a narcotic analgesic with a long onset and duration of action. It is used mainly in the treatment of narcotic dependence. [PubChem]Methadyl Acetate is primarily a mu-type opioid receptor agonist. It functions similarily to methadone. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics
Glycosides
Ouabain, a cardiac glycoside similar to digitoxin, is used to treat congestive heart failure and supraventricular arrhythmias due to reentry mechanisms, and to control ventricular rate in the treatment of chronic atrial fibrillation. Glycosides is found in allspice, fig, and apricot. Glycosides is found in allspice. Ouabain, a cardiac glycoside similar to digitoxin, is used to treat congestive heart failure and supraventricular arrhythmias due to reentry mechanisms, and to control ventricular rate in the treatment of chronic atrial fibrillation C - Cardiovascular system > C01 - Cardiac therapy > C01A - Cardiac glycosides > C01AC - Strophanthus glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D013328 - Strophanthins D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors
3,5-Dihydroxyphenylglycine
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists DHPG ((RS)-3,5-DHPG) is an amino acid, which acts as a selective and potent agonist of group I mGluR (mGluR 1 and mGluR 5), shows no effect on Group II or Group III mGluRs[1]. DHPG ((RS)-3,5-DHPG) is also an effective antagonist of mGluRs linked to phospholipase D[2].
N-(3-Chloro-2-oxo-1-(phenylmethyl)propyl)-4-methylbenzenesulfonamide
2-Oxazolidinone, 3-[[(5-nitro-2-furanyl)methylene]amino]-
G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors D000890 - Anti-Infective Agents > D023303 - Oxazolidinones C254 - Anti-Infective Agent
alpha-amanitin
D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D000546 - Amanitins
ascomycin
Azadirachtin
Azimilide
C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker
8-Hydroxy-3,4,5-trimethyl-6-oxo-4,6-dihydro-3H-isochromene-7-carboxylic acid
concanamycin a
Evodiamine
(±)-Evodiamine, a quinazolinocarboline alkaloid, is a Top1 inhibitor. Evodiamine exhibits anti-inflammatory, antiobesity, and antitumor effects. (±)-Evodiamine inhibits the proliferation of a wide variety of tumor cells by inducing their apoptosis[1].
Gibberellins
Gibberellic acid is a very potent hormone whose natural occurrence in plants controls their development. Since GA regulates growth, applications of very low concentrations can have a profound effect while too much will have the opposite effect. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D005875 - Gibberellins
herbimycin a
Scarlet red
D004396 - Coloring Agents
NADP+
Nadp+, also known as nicotinamide adenine dinucleotide phosphate or nadp, is a member of the class of compounds known as (5->5)-dinucleotides (5->5)-dinucleotides are dinucleotides where the two bases are connected via a (5->5)-phosphodiester linkage. Nadp+ is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Nadp+ can be found in a number of food items such as small-leaf linden, redcurrant, root vegetables, and fenugreek, which makes nadp+ a potential biomarker for the consumption of these food products. Nadp+ can be found primarily in blood, as well as throughout all human tissues. Nadp+ exists in all eukaryotes, ranging from yeast to humans. In humans, nadp+ is involved in several metabolic pathways, some of which include folate malabsorption, hereditary, carprofen action pathway, valdecoxib action pathway, and glutathione metabolism. Nadp+ is also involved in several metabolic disorders, some of which include monoamine oxidase-a deficiency (MAO-A), apparent mineralocorticoid excess syndrome, hyperprolinemia type I, and hyperphenylalaninemia due to dhpr-deficiency. Moreover, nadp+ is found to be associated with pellagra. Nicotinamide adenine dinucleotide phosphate, abbreviated NADP+ or, in older notation, TPN (triphosphopyridine nucleotide), is a cofactor used in anabolic reactions, such as lipid and nucleic acid synthesis, which require NADPH as a reducing agent . COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Inosine
G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BB - Antivirals COVID info from COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials S - Sensory organs > S01 - Ophthalmologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3].
Deoxycholic Acid
C78276 - Agent Affecting Digestive System or Metabolism > C66913 - Cholagogues or Choleretic Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D - Dermatologicals Deoxycholic acid (cholanoic acid), a bile acid, is a by-product of intestinal metabolism, that activates the G protein-coupled bile acid receptorTGR5[1][2]. Deoxycholic acid (cholanoic acid), a bile acid, is a by-product of intestinal metabolism, that activates the G protein-coupled bile acid receptorTGR5[1][2].
Leucine
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1].
Threonine
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS DL-Threonine, an essential amino acid, has the potential to treat hypostatic leg ulceration[1]. L-Threonine is a natural amino acid, can be produced by microbial fermentation, and is used in food, medicine, or feed[1]. L-Threonine is a natural amino acid, can be produced by microbial fermentation, and is used in food, medicine, or feed[1].
Caffeine
N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BC - Xanthine derivatives D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058914 - Purinergic Antagonists D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant CONFIDENCE standard compound; EAWAG_UCHEM_ID 303 EAWAG_UCHEM_ID 303; CONFIDENCE standard compound D - Dermatologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Proline
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Proline is one of the twenty amino acids used in living organisms as the building blocks of proteins. L-Proline is one of the twenty amino acids used in living organisms as the building blocks of proteins.
Choline
D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D008082 - Lipotropic Agents D002491 - Central Nervous System Agents > D018697 - Nootropic Agents D009676 - Noxae > D000963 - Antimetabolites D005765 - Gastrointestinal Agents
Oleate
COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].
Cholylglycine
D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1]. Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1].
HISTIDINE
L-Histidine is an essential amino acid for infants. L-Histidine is an inhibitor of mitochondrial glutamine transport. L-Histidine is an essential amino acid for infants. L-Histidine is an inhibitor of mitochondrial glutamine transport. L-Histidine is an essential amino acid for infants. L-Histidine is an inhibitor of mitochondrial glutamine transport.
Phenylalanine
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4].
Ursodiol
A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05A - Bile therapy > A05AA - Bile acids and derivatives C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C61074 - Serine/Threonine Kinase Inhibitor C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Deguelin
Deguelin is a rotenone that is 13,13a-dihydro-3H-chromeno[3,4-b]pyrano[2,3-h]chromen-7(7aH)-one substituted by methoxy groups at positions 9 and 10, and by two methyl groups at position 3 (the 7aS,13aS-stereoisomer). It exists in abundant quantities in the bark, roots, and leaves of the Leguminosae family of plants and reported to exert anti-tumour effects in various cancers. It has a role as an apoptosis inducer, an antineoplastic agent, a plant metabolite, an angiogenesis inhibitor, an antiviral agent, a mitochondrial NADH:ubiquinone reductase inhibitor, an anti-inflammatory agent and an EC 2.7.11.1 (non-specific serine/threonine protein kinase) inhibitor. It is a member of rotenones, an aromatic ether, an organic heteropentacyclic compound and a diether. Deguelin is a natural product found in Tephrosia vogelii, Derris montana, and other organisms with data available. A rotenone that is 13,13a-dihydro-3H-chromeno[3,4-b]pyrano[2,3-h]chromen-7(7aH)-one substituted by methoxy groups at positions 9 and 10, and by two methyl groups at position 3 (the 7aS,13aS-stereoisomer). It exists in abundant quantities in the bark, roots, and leaves of the Leguminosae family of plants and reported to exert anti-tumour effects in various cancers. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB.
Protopanaxadiol
(20R)-protopanaxadiol is a diastereomer of protopanaxadiol in which the 20-hydroxy substituent has been introduced at the pro-R position. 20(R)-Protopanaxadiol is a natural product found in Panax ginseng with data available. A diastereomer of protopanaxadiol in which the 20-hydroxy substituent has been introduced at the pro-R position. (20S)-protopanaxadiol is a diastereomer of protopanaxadiol in which the 20-hydroxy substituent has been introduced at the pro-S position. (20S)-Protopanaxadiol is a natural product found in Gynostemma pentaphyllum, Panax ginseng, and Aralia elata with data available. A diastereomer of protopanaxadiol in which the 20-hydroxy substituent has been introduced at the pro-S position. (20R)-Protopanaxadiol is a triterpenoid saponin metabolite of 20(R)-ginsenoside Rg3 in black ginseng. (20R)-Protopanaxadiol exhibits anti-tumor activity and cytotoxicity, and potently inhibits the growth of Helicobacter pylori[1][2][3]. (20R)-Protopanaxadiol is a triterpenoid saponin metabolite of 20(R)-ginsenoside Rg3 in black ginseng. (20R)-Protopanaxadiol exhibits anti-tumor activity and cytotoxicity, and potently inhibits the growth of Helicobacter pylori[1][2][3]. 20S-protopanaxadiol (aPPD) is a metabolite of ginseng saponins, inhibits Akt activity and induces apoptosis in various tumor cells[1]. 20S-protopanaxadiol (aPPD) is a metabolite of ginseng saponins, inhibits Akt activity and induces apoptosis in various tumor cells[1].
UsnicAcid
(-)-usnic acid is the (-)-enantiomer of usnic acid. It has a role as an EC 1.13.11.27 (4-hydroxyphenylpyruvate dioxygenase) inhibitor. It is a conjugate acid of a (-)-usnic acid(2-). It is an enantiomer of a (+)-usnic acid. Usnic acid is a furandione found uniquely in lichen that is used widely in cosmetics, deodorants, toothpaste and medicinal creams as well as some herbal products. Taken orally, usnic acid can be toxic and has been linked to instances of clinically apparent, acute liver injury. (-)-Usnic acid is a natural product found in Dactylina arctica, Evernia divaricata, and other organisms with data available. The (-)-enantiomer of usnic acid. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2].
Benzyl cyanide
A nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a phenyl group.
METHYLAMINE
The simplest of the methylamines, consisting of ammonia bearing a single methyl substituent.
3-Aminopropanenitrile
C471 - Enzyme Inhibitor β-Aminopropionitrile (BAPN) is a specific, irreversible and orally active lysyl oxidase (LOX) inhibitor. β-Aminopropionitrile targets the active site of LOX or LOXL isoenzymes[1][2].
Lutexin
Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2]. Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2].
3-Hydroxydaidzein
A 7-hydroxyisoflavone that is daidzein substituted by a hydroxy group at position 3. 7,3',4'-Trihydroxyisoflavone, a major metabolite of Daidzein, is an ATP-competitive inhibitor of Cot (Tpl2/MAP3K8) and MKK4. 7,3',4'-Trihydroxyisoflavone has anticancer, anti-angiogenic, chemoprotective, and free radical scavenging activities[1][2].
Rotenone
Origin: Plant, Pyrans relative retention time with respect to 9-anthracene Carboxylic Acid is 1.283 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.281 Acquisition and generation of the data is financially supported by the Max-Planck-Society D004791 - Enzyme Inhibitors > D014475 - Uncoupling Agents D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals IPB_RECORD: 2241; CONFIDENCE confident structure Rotenone is a mitochondrial electron transport chain complex I inhibitor. Rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. Rotenone is a mitochondrial electron transport chain complex I inhibitor. Rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. Rotenone is a mitochondrial electron transport chain complex I inhibitor. Rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production.
Gedunin
A natural product found in Azadirachta indica. Gedunin is a pentacyclic triterpenoid natural product found particularly in Azadirachta indica and Cedrela odorata. It has a role as an antimalarial, an antineoplastic agent, a Hsp90 inhibitor and a plant metabolite. It is a limonoid, an acetate ester, an epoxide, an enone, a member of furans, a pentacyclic triterpenoid, an organic heteropentacyclic compound and a lactone. Gedunin is a natural product found in Azadirachta indica, Cedrela odorata, and other organisms with data available. A pentacyclic triterpenoid natural product found particularly in Azadirachta indica and Cedrela odorata.
Gibberellin A19
D006133 - Growth Substances > D010937 - Plant Growth Regulators > D005875 - Gibberellins A C20-gibberellin.
Hypericin
Hypericin is a carbopolycyclic compound. It has a role as an antidepressant. It derives from a hydride of a bisanthene. Hypericin is a natural product found in Hypericum adenotrichum, Hypericum bithynicum, and other organisms with data available. Hypericin is an anthraquinone derivative that is naturally found in the yellow flower of Hypericum perforatum (St. Johns wort) with antidepressant, potential antiviral, antineoplastic and immunostimulating activities. Hypericin appears to inhibit the neuronal uptake of serotonin, norepinephrine, dopamine, gamma-amino butyric acid (GABA) and L-glutamate, which may contribute to its antidepressant effect. Hypericin may also prevent the replication of encapsulated viruses probably due to inhibition of the assembly and shedding of virus particles in infected cells. This agent also exerts potent phototoxic effects by triggering apoptotic signaling that results in formation of reactive oxygen species. D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D011838 - Radiation-Sensitizing Agents D000970 - Antineoplastic Agents C1907 - Drug, Natural Product D004791 - Enzyme Inhibitors Hypericin is a naturally occurring substance found in Hyperlcurn perforatum L. Hypericin is an inhibitor of PKC (protein kinase C), MAO (monoaminoxidase), dopamine-beta-hydroxylase, reverse transcriptase, telomerase and CYP (cytochrome P450). Hypericin shows antitumor, antiviral, antidepressive activities, and can induce apoptosis[1][2][3]. Hypericin is a naturally occurring substance found in Hyperlcurn perforatum L. Hypericin is an inhibitor of PKC (protein kinase C), MAO (monoaminoxidase), dopamine-beta-hydroxylase, reverse transcriptase, telomerase and CYP (cytochrome P450). Hypericin shows antitumor, antiviral, antidepressive activities, and can induce apoptosis[1][2][3].
Phaseolin_(pterocarpan)
Phaseolin is a natural product found in Erythrina abyssinica, Erythrina suberosa, and other organisms with data available.
DIFLUBENZURON
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Same as: D07829 CONFIDENCE standard compound; INTERNAL_ID 492; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5071; ORIGINAL_PRECURSOR_SCAN_NO 5069 INTERNAL_ID 492; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5071; ORIGINAL_PRECURSOR_SCAN_NO 5069 CONFIDENCE standard compound; INTERNAL_ID 492; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5087; ORIGINAL_PRECURSOR_SCAN_NO 5086 CONFIDENCE standard compound; INTERNAL_ID 492; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5048; ORIGINAL_PRECURSOR_SCAN_NO 5047 CONFIDENCE standard compound; INTERNAL_ID 492; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5086; ORIGINAL_PRECURSOR_SCAN_NO 5085 CONFIDENCE standard compound; INTERNAL_ID 492; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5077; ORIGINAL_PRECURSOR_SCAN_NO 5076 CONFIDENCE standard compound; INTERNAL_ID 492; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5076; ORIGINAL_PRECURSOR_SCAN_NO 5075 CONFIDENCE standard compound; INTERNAL_ID 3388 CONFIDENCE standard compound; INTERNAL_ID 2332 INTERNAL_ID 2332; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 8458
Fk-506
D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents > D016559 - Tacrolimus D004791 - Enzyme Inhibitors > D065095 - Calcineurin Inhibitors CONFIDENCE standard compound; EAWAG_UCHEM_ID 2807
Terbinafine
D - Dermatologicals > D01 - Antifungals for dermatological use > D01B - Antifungals for systemic use > D01BA - Antifungals for systemic use D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent D004791 - Enzyme Inhibitors CONFIDENCE standard compound; EAWAG_UCHEM_ID 3586 Terbinafine (TDT 067) is an orally active and potent antifungal agent. Terbinafine is a potent non-competitive inhibitor of squalene epoxidase from Candida, with a Ki of 30 nM. Terbinafine also shows antibacterial activity against certain Gram-positive and Gram-negative bacteria[1][2][3]. Terbinafine is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
Choline
MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; OEYIOHPDSNJKLS_STSL_0152_Choline_0125fmol_180430_S2_LC02_MS02_80; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D008082 - Lipotropic Agents D002491 - Central Nervous System Agents > D018697 - Nootropic Agents IPB_RECORD: 922; CONFIDENCE confident structure D009676 - Noxae > D000963 - Antimetabolites D005765 - Gastrointestinal Agents
Caffeine
CONFIDENCE standard compound; INTERNAL_ID 1199; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5866; ORIGINAL_PRECURSOR_SCAN_NO 5861 N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BC - Xanthine derivatives D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058914 - Purinergic Antagonists D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D - Dermatologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 1199; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5880; ORIGINAL_PRECURSOR_SCAN_NO 5879 CONFIDENCE standard compound; INTERNAL_ID 1199; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5893; ORIGINAL_PRECURSOR_SCAN_NO 5892 CONFIDENCE standard compound; INTERNAL_ID 1199; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5916; ORIGINAL_PRECURSOR_SCAN_NO 5911 CONFIDENCE standard compound; INTERNAL_ID 1199; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5923; ORIGINAL_PRECURSOR_SCAN_NO 5921 CONFIDENCE standard compound; INTERNAL_ID 1199; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5924; ORIGINAL_PRECURSOR_SCAN_NO 5922 CONFIDENCE standard compound; INTERNAL_ID 2766 MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; RYYVLZVUVIJVGH-UHFFFAOYSA-N_STSL_0030_Caffeine_0500fmol_180410_S2_LC02_MS02_97; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1079 CONFIDENCE standard compound; INTERNAL_ID 50 CONFIDENCE standard compound; INTERNAL_ID 8666 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.568 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.560 CONFIDENCE standard compound; INTERNAL_ID 4089 IPB_RECORD: 3001; CONFIDENCE confident structure
Coumarin
Coumarin, also known as 1,2-benzopyrone or benzo-alpha-pyrone, belongs to coumarins and derivatives class of compounds. Those are polycyclic aromatic compounds containing a 1-benzopyran moiety with a ketone group at the C2 carbon atom (1-benzopyran-2-one). Coumarin is slightly soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Coumarin is a sweet, green, and new mown hay tasting compound and can be found in a number of food items such as malus (crab apple), sunburst squash (pattypan squash), european cranberry, and star anise, which makes coumarin a potential biomarker for the consumption of these food products. Coumarin can be found primarily in saliva. Coumarin is formally rated as an unfounded non-carcinogenic (IARC 3) potentially toxic compound. Coumarin was first synthesized in 1868. It is used in the pharmaceutical industry as a precursor reagent in the synthesis of a number of synthetic anticoagulant pharmaceuticals similar to dicoumarol, the notable ones being warfarin (brand name Coumadin) and some even more potent rodenticides that work by the same anticoagulant mechanism. 4-hydroxycoumarins are a type of vitamin K antagonist. Pharmaceutical (modified) coumarins were all developed from the study of sweet clover disease; see warfarin for this history. However, unmodified coumarin itself, as it occurs in plants, has no effect on the vitamin K coagulation system, or on the action of warfarin-type drugs . C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2337 COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.657 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.654 IPB_RECORD: 3881; CONFIDENCE confident structure Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities. Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities.
Kinetin
D006133 - Growth Substances > D010937 - Plant Growth Regulators > D003583 - Cytokinins relative retention time with respect to 9-anthracene Carboxylic Acid is 0.604 COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.594 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.598 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2421; CONFIDENCE confident structure Kinetin (N6-furfuryladenine) belongs to the family of N6-substituted adenine derivatives known as cytokinins, which are plant hormones involved in cell division, differentiation and other physiological processes. Kinetin has anti-aging effects[1]. Kinetin (N6-furfuryladenine) belongs to the family of N6-substituted adenine derivatives known as cytokinins, which are plant hormones involved in cell division, differentiation and other physiological processes. Kinetin has anti-aging effects[1]. Kinetin (N6-furfuryladenine) belongs to the family of N6-substituted adenine derivatives known as cytokinins, which are plant hormones involved in cell division, differentiation and other physiological processes. Kinetin has anti-aging effects[1].
Phenylalanine
An aromatic amino acid that is alanine in which one of the methyl hydrogens is substituted by a phenyl group. Annotation level-2 Acquisition and generation of the data is financially supported by the Max-Planck-Society COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS IPB_RECORD: 2701; CONFIDENCE confident structure L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4].
Phlorizin
Origin: Plant; Formula(Parent): C21H24O10; Bottle Name:Phloridzin; PRIME Parent Name:Phloretin-2-O-glucoside; PRIME in-house No.:S0307, Glycosides relative retention time with respect to 9-anthracene Carboxylic Acid is 0.718 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.713 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.714 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2021; CONFIDENCE confident structure Phlorizin (Floridzin) is a non-selective SGLT inhibitor with Kis of 300 and 39 nM for hSGLT1 and hSGLT2, respectively. Phlorizin is also a Na+/K+-ATPase inhibitor. Phlorizin (Floridzin) is a non-selective SGLT inhibitor with Kis of 300 and 39 nM for hSGLT1 and hSGLT2, respectively. Phlorizin is also a Na+/K+-ATPase inhibitor.
Cystine
A sulfur-containing amino acid obtained by the oxidation of two cysteine molecules which are then linked via a disulfide bond. Acquisition and generation of the data is financially supported by the Max-Planck-Society
Estrone
G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CA - Natural and semisynthetic estrogens, plain G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CC - Estrogens, combinations with other drugs A 17-oxo steroid that is estra-1,3,5(10)-triene substituted by an hydroxy group at position 3 and an oxo group at position 17. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 1.174 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.175 Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Estrone (E1) is a natural estrogenic hormone. Estrone is the main representative of the endogenous estrogens and is produced by several tissues, especially adipose tissue. Estrone is the result of the process of aromatization of androstenedione that occurs in fat cells[1][2]. Estrone (E1) is a natural estrogenic hormone. Estrone is the main representative of the endogenous estrogens and is produced by several tissues, especially adipose tissue. Estrone is the result of the process of aromatization of androstenedione that occurs in fat cells[1][2].
Hymecromone
CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3335; ORIGINAL_PRECURSOR_SCAN_NO 3333 A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05A - Bile therapy COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C29698 - Antispasmodic Agent D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3322; ORIGINAL_PRECURSOR_SCAN_NO 3320 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3312; ORIGINAL_PRECURSOR_SCAN_NO 3309 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3317; ORIGINAL_PRECURSOR_SCAN_NO 3316 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3331; ORIGINAL_PRECURSOR_SCAN_NO 3329 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3329; ORIGINAL_PRECURSOR_SCAN_NO 3326 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7326; ORIGINAL_PRECURSOR_SCAN_NO 7323 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7324; ORIGINAL_PRECURSOR_SCAN_NO 7320 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7332; ORIGINAL_PRECURSOR_SCAN_NO 7328 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7358; ORIGINAL_PRECURSOR_SCAN_NO 7356 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7358; ORIGINAL_PRECURSOR_SCAN_NO 7355 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7342; ORIGINAL_PRECURSOR_SCAN_NO 7340 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3396; ORIGINAL_PRECURSOR_SCAN_NO 3391 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3389; ORIGINAL_PRECURSOR_SCAN_NO 3387 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3360; ORIGINAL_PRECURSOR_SCAN_NO 3358 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3383; ORIGINAL_PRECURSOR_SCAN_NO 3380 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3365; ORIGINAL_PRECURSOR_SCAN_NO 3363 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3363; ORIGINAL_PRECURSOR_SCAN_NO 3361 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7291; ORIGINAL_PRECURSOR_SCAN_NO 7286 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7335; ORIGINAL_PRECURSOR_SCAN_NO 7331 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7307; ORIGINAL_PRECURSOR_SCAN_NO 7303 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7337; ORIGINAL_PRECURSOR_SCAN_NO 7335 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7336; ORIGINAL_PRECURSOR_SCAN_NO 7332 CONFIDENCE standard compound; INTERNAL_ID 4193 4-Methylumbelliferone is a hyaluronic acid biosynthesis inhibitor with antitumoral and antimetastatic effects. 4-Methylumbelliferone is a hyaluronic acid biosynthesis inhibitor with antitumoral and antimetastatic effects.
Colchicine
An alkaloid that is a carbotricyclic compound comprising 5,6,7,9-tetrahydrobenzo[a]heptalene having four methoxy substituents at the 1-, 2-, 3- and 10-positions as well as an oxo group at the 9-position and an acetamido group at the 7-position. It has been isolated from the plants belonging to genus Colchicum. Colchicine appears as odorless or nearly odorless pale yellow needles or powder that darkens on exposure to light. Used to treat gouty arthritis, pseudogout, sarcoidal arthritis and calcific tendinitis. (EPA, 1998) (S)-colchicine is a colchicine that has (S)-configuration. It is a secondary metabolite, has anti-inflammatory properties and is used to treat gout, crystal-induced joint inflammation, familial Mediterranean fever, and many other conditions. It has a role as a mutagen, an anti-inflammatory agent and a gout suppressant. It is a colchicine and an alkaloid. It is an enantiomer of a (R)-colchicine. Colchicine is an Alkaloid. Colchicine is a plant alkaloid that is widely used for treatment of gout. Colchicine has not been associated with acute liver injury or liver test abnormalities except with serious overdoses. Colchicine is a natural product found in Colchicum arenarium, Colchicum bivonae, and other organisms with data available. Colchicine is an alkaloid isolated from Colchicum autumnale with anti-gout and anti-inflammatory activities. The exact mechanism of action by which colchicines exerts its effect has not been completely established. Colchicine binds to tubulin, thereby interfering with the polymerization of tubulin, interrupting microtubule dynamics, and disrupting mitosis. This leads to an inhibition of migration of leukocytes and other inflammatory cells, thereby reducing the inflammatory response to deposited urate crystals. Colchicine may also interrupt the cycle of monosodium urate crystal deposition in joint tissues, thereby also preventing the resultant inflammatory response. Overall, colchicine decreases leukocyte chemotaxis/migration and phagocytosis to inflamed areas, and inhibits the formation and release of a chemotactic glycoprotein that is produced during phagocytosis of urate crystals. A major alkaloid from Colchicum autumnale L. and found also in other Colchicum species. Its primary therapeutic use is in the treatment of gout, but it has been used also in the therapy of familial Mediterranean fever (PERIODIC DISEASE). See also: Colchicine; probenecid (component of). A colchicine that has (S)-configuration. It is a secondary metabolite, has anti-inflammatory properties and is used to treat gout, crystal-induced joint inflammation, familial Mediterranean fever, and many other conditions. M - Musculo-skeletal system > M04 - Antigout preparations > M04A - Antigout preparations > M04AC - Preparations with no effect on uric acid metabolism COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, Guide to PHARMACOLOGY C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents D018501 - Antirheumatic Agents > D006074 - Gout Suppressants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2258 CONFIDENCE standard compound; INTERNAL_ID 1172 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.982 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.979 Colchicine is a tubulin inhibitor and a microtubule disrupting agent. Colchicine inhibits microtubule polymerization with an IC50 of 3 nM[1][2][3]. Colchicine is also a competitive antagonist of the α3 glycine receptors (GlyRs)[4]. Colchicine is a tubulin inhibitor and a microtubule disrupting agent. Colchicine inhibits microtubule polymerization with an IC50 of 3 nM[1][2][3]. Colchicine is also a competitive antagonist of the α3 glycine receptors (GlyRs)[4].
Cytidine
MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; UHDGCWIWMRVCDJ_STSL_0155_Cytidine_8000fmol_180506_S2_LC02_MS02_107; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.051 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3]. Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3]. Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3].
Histidine
An alpha-amino acid that is propanoic acid bearing an amino substituent at position 2 and a 1H-imidazol-4-yl group at position 3. The L-enantiomer of the amino acid histidine. Histidine (symbol His or H)[2] is an essential amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated –NH3+ form under biological conditions), a carboxylic acid group (which is in the deprotonated –COO− form under biological conditions), and an imidazole side chain (which is partially protonated), classifying it as a positively charged amino acid at physiological pH. Initially thought essential only for infants, it has now been shown in longer-term studies to be essential for adults also.[3] It is encoded by the codons CAU and CAC. Histidine was first isolated by Albrecht Kossel and Sven Gustaf Hedin in 1896.[4] The name stems from its discovery in tissue, from ἱστός histós "tissue".[2] It is also a precursor to histamine, a vital inflammatory agent in immune responses. The acyl radical is histidyl. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.046 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.045 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.043 L-Histidine is an essential amino acid for infants. L-Histidine is an inhibitor of mitochondrial glutamine transport. L-Histidine is an essential amino acid for infants. L-Histidine is an inhibitor of mitochondrial glutamine transport. L-Histidine is an essential amino acid for infants. L-Histidine is an inhibitor of mitochondrial glutamine transport.
Ouabain
D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D013328 - Strophanthins A steroid hormone that is a multi-hydroxylated alpha-L-rhamnosyl cardenoloide. It binds to and inhibits the plasma membrane Na(+)/K(+)-ATPase (sodium pump). It has been isolated naturally from Strophanthus gratus. C - Cardiovascular system > C01 - Cardiac therapy > C01A - Cardiac glycosides > C01AC - Strophanthus glycosides D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors relative retention time with respect to 9-anthracene Carboxylic Acid is 0.613 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.614
DL-Leucine
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.062 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.057 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.055
Inosine
G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BB - Antivirals Formula(Parent): C10H12N4O5; Bottle Name:Inosine; PRIME Parent Name:Inosine; PRIME in-house No.:0256, Purines COVID info from COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials S - Sensory organs > S01 - Ophthalmologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; UGQMRVRMYYASKQ_STSL_0164_Inosine_2000fmol_180430_S2_LC02_MS02_125; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3].
Lovastatin
C - Cardiovascular system > C10 - Lipid modifying agents > C10A - Lipid modifying agents, plain > C10AA - Hmg coa reductase inhibitors D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D004791 - Enzyme Inhibitors > D019161 - Hydroxymethylglutaryl-CoA Reductase Inhibitors C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent C471 - Enzyme Inhibitor > C1655 - HMG-CoA Reductase Inhibitor CONFIDENCE standard compound; INTERNAL_ID 2212 D009676 - Noxae > D000963 - Antimetabolites relative retention time with respect to 9-anthracene Carboxylic Acid is 1.415 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.416 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.421 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.419 Lovastatin is a cell-permeable HMG-CoA reductase inhibitor used to lower cholesterol. Lovastatin is a cell-permeable HMG-CoA reductase inhibitor used to lower cholesterol.
Ethisterone
A 17beta-hydroxy steroid that is testosterone in which the 17beta hydrogen is replaced by an ethynyl group. Ethisterone was the first orally active progestin and is a metabolite of danazol. G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03D - Progestogens > G03DC - Estren derivatives C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone ATC code: G03DC04
sulfathiazole
D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BA - Sulfonamides J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01E - Sulfonamides and trimethoprim > J01EB - Short-acting sulfonamides C254 - Anti-Infective Agent > C29739 - Sulfonamide Anti-Infective Agent D000890 - Anti-Infective Agents > D013432 - Sulfathiazoles D000890 - Anti-Infective Agents > D013424 - Sulfanilamides
probenecid
M - Musculo-skeletal system > M04 - Antigout preparations > M04A - Antigout preparations > M04AB - Preparations increasing uric acid excretion D018501 - Antirheumatic Agents > D006074 - Gout Suppressants > D014528 - Uricosuric Agents C26170 - Protective Agent > C921 - Uricosuric Agent D010592 - Pharmaceutic Aids
Tacrolimus
Tacrolimus (anhydrous) is a macrolide lactam containing a 23-membered lactone ring, originally isolated from the fermentation broth of a Japanese soil sample that contained the bacteria Streptomyces tsukubaensis. It has a role as an immunosuppressive agent and a bacterial metabolite. Tacrolimus (also FK-506 or Fujimycin) is an immunosuppressive drug whose main use is after organ transplant to reduce the activity of the patients immune system and so the risk of organ rejection. It is also used in a topical preparation in the treatment of severe atopic dermatitis, severe refractory uveitis after bone marrow transplants, and the skin condition vitiligo. It was discovered in 1984 from the fermentation broth of a Japanese soil sample that contained the bacteria Streptomyces tsukubaensis. Tacrolimus is chemically known as a macrolide. It reduces peptidyl-prolyl isomerase activity by binding to the immunophilin FKBP-12 (FK506 binding protein) creating a new complex. This FKBP12-FK506 complex inhibits calcineurin which inhibits T-lymphocyte signal transduction and IL-2 transcription. Tacrolimus anhydrous is a Calcineurin Inhibitor Immunosuppressant. The mechanism of action of tacrolimus anhydrous is as a Calcineurin Inhibitor. Tacrolimus is a calcineurin inhibitor and potent immunosuppressive agent used largely as a means of prophylaxis against cellular rejection after transplantation. Tacrolimus therapy can be associated with mild serum enzyme elevations, and it has been linked to rare instances of clinically apparent cholestatic liver injury. Tacrolimus is a natural product found in Streptomyces clavuligerus, Streptomyces hygroscopicus, and other organisms with data available. Tacrolimus is a macrolide isolated from Streptomyces tsukubaensis. Tacrolimus binds to the FKBP-12 protein and forms a complex with calcium-dependent proteins, thereby inhibiting calcineurin phosphatase activity and resulting in decreased cytokine production. This agent exhibits potent immunosuppressive activity in vivo and prevents the activation of T-lymphocytes in response to antigenic or mitogenic stimulation. Tacrolimus possesses similar immunosuppressive properties to cyclosporine, but is more potent. Tacrolimus Anhydrous is anhydrous from of tacrolimus, a macrolide isolated from Streptomyces tsukubaensis. Tacrolimus binds to the FKBP-12 protein and forms a complex with calcium-dependent proteins, thereby inhibiting calcineurin phosphatase activity and resulting in decreased cytokine production. This agent exhibits potent immunosuppressive activity in vivo and prevents the activation of T-lymphocytes in response to antigenic or mitogenic stimulation. Tacrolimus possesses similar immunosuppressive properties to cyclosporine, but is more potent. A macrolide isolated from the culture broth of a strain of Streptomyces tsukubaensis that has strong immunosuppressive activity in vivo and prevents the activation of T-lymphocytes in response to antigenic or mitogenic stimulation in vitro. A macrolide lactam containing a 23-membered lactone ring, originally isolated from the fermentation broth of a Japanese soil sample that contained the bacteria Streptomyces tsukubaensis. D - Dermatologicals > D11 - Other dermatological preparations > D11A - Other dermatological preparations > D11AH - Agents for dermatitis, excluding corticosteroids L - Antineoplastic and immunomodulating agents > L04 - Immunosuppressants > L04A - Immunosuppressants > L04AD - Calcineurin inhibitors C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C146638 - Calcineurin Inhibitor D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents > D016559 - Tacrolimus COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D004791 - Enzyme Inhibitors > D065095 - Calcineurin Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Orientin
Orientin is a C-glycosyl compound that is luteolin substituted by a beta-D-glucopyranosyl moiety at position 8. It has a role as an antioxidant and a metabolite. It is a C-glycosyl compound, a tetrahydroxyflavone and a 3-hydroxyflavonoid. It is functionally related to a luteolin. Orientin is a natural product found in Itea chinensis, Vellozia epidendroides, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of); Acai fruit pulp (part of). A C-glycosyl compound that is luteolin substituted by a beta-D-glucopyranosyl moiety at position 8. Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2]. Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2].
Aflatoxin B1
An aflatoxin having a tetrahydrocyclopenta[c]furo[3,2:4,5]furo[2,3-h]chromene skeleton with oxygen functionality at positions 1, 4 and 11. D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D000348 - Aflatoxins CONFIDENCE standard compound; INTERNAL_ID 5962 CONFIDENCE Reference Standard (Level 1) Aflatoxin B1 (AFB1) is a Class 1A carcinogen, which is a secondary metabolite of Aspergillus flavus and A. parasiticus. Aflatoxin B1 (AFB1) mainly induces the transversion of G-->T in the third position of codon 249 of the p53 tumor suppressor gene, resulting in mutation[1][2].
Mevastatin
Mevastatin is a carboxylic ester that is pravastatin that is lacking the allylic hydroxy group. A hydroxymethylglutaryl-CoA reductase inhibitor (statin) isolated from Penicillium citrinum and from Penicillium brevicompactum, its clinical use as a lipid-regulating drug ceased following reports of toxicity in animals. It has a role as a fungal metabolite, an EC 3.4.24.83 (anthrax lethal factor endopeptidase) inhibitor, an antifungal agent, a Penicillium metabolite and an apoptosis inducer. It is a carboxylic ester, a statin (naturally occurring), a member of hexahydronaphthalenes, a member of 2-pyranones and a polyketide. Mevastatin (Compactin) is a first HMG-CoA reductase inhibitor that belongs to the statins class. Mevastatin is a lipid-lowering agent, and induces apoptosis, arrests cancer cells in G0/G1 phase. Mevastatin also increases endothelial nitric oxide synthase (eNOS) mRNA and protein levels. Mevastatin has antitumor activity and has the potential for cardiovascular diseases treatment. Mevastatin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=73573-88-3 (retrieved 2024-10-09) (CAS RN: 73573-88-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Hydroquinone sulfate
A benzenediol comprising benzene core carrying two hydroxy substituents para to each other. Hydroquinone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=123-31-9 (retrieved 2024-07-16) (CAS RN: 123-31-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Taurine
Taurine, a sulphur-containing amino acid and an organic osmolyte involved in cell volume regulation, provides a substrate for the formation of bile salts, and plays a role in the modulation of intracellular free calcium concentration. Taurine has the ability to activate autophagy in adipocytes[1][2][3]. Taurine, a sulphur-containing amino acid and an organic osmolyte involved in cell volume regulation, provides a substrate for the formation of bile salts, and plays a role in the modulation of intracellular free calcium concentration. Taurine has the ability to activate autophagy in adipocytes[1][2][3].
Allantoin
C78284 - Agent Affecting Integumentary System > C29708 - Anti-psoriatic Agent C78284 - Agent Affecting Integumentary System > C29700 - Astringent D003879 - Dermatologic Agents MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; POJWUDADGALRAB-UHFFFAOYSA-N_STSL_0150_Allantoin_8000fmol_180425_S2_LC02_MS02_50; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Allantoin is a skin conditioning agent that promotes healthy skin, stimulates new and healthy tissue growth. Allantoin is a skin conditioning agent that promotes healthy skin, stimulates new and healthy tissue growth.
D-Glucuronic acid
A D-glucuronic acid in cyclic pyranose form. D-glucuronic acid, also known as glucuronate or glucuronic acid, monopotassium salt, belongs to glucuronic acid derivatives class of compounds. Those are compounds containing a glucuronic acid moiety (or a derivative), which consists of a glucose moiety with the C6 carbon oxidized to a carboxylic acid. D-glucuronic acid is soluble (in water) and a weakly acidic compound (based on its pKa). D-glucuronic acid can be found in a number of food items such as peach, dandelion, corn, and horseradish tree, which makes D-glucuronic acid a potential biomarker for the consumption of these food products. Glucuronic acid (from Ancient Greek γλυκύς "sweet" + οὖρον "urine") is a uronic acid that was first isolated from urine (hence the name). It is found in many gums such as gum arabic (c. 18\\\\%) and xanthan, and is important for the metabolism of microorganisms, plants and animals . D-Glucuronic acid is an important intermediate isolated from many gums. D-Glucuronic acid and its derivative glucuronolactone are as a liver antidote in the prophylaxis of human health. D-Glucuronic acid has an anti-inflammatory effect for the skin[1]. D-Glucuronic acid is an important intermediate isolated from many gums. D-Glucuronic acid and its derivative glucuronolactone are as a liver antidote in the prophylaxis of human health. D-Glucuronic acid has an anti-inflammatory effect for the skin[1].
Reduced glutathione
A tripeptide compound consisting of glutamic acid attached via its side chain to the N-terminus of cysteinylglycine. L-Glutathione reduced (GSH; γ-L-Glutamyl-L-cysteinyl-glycine) is an endogenous antioxidant and is capable of scavenging oxygen-derived free radicals.
Azelaic Acid
D - Dermatologicals > D10 - Anti-acne preparations > D10A - Anti-acne preparations for topical use C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000970 - Antineoplastic Agents D003879 - Dermatologic Agents Annotation level-2 Azelaic acid is a nine-carbon dicarboxylic acid. Azelaic acid has antimicrobial activity against Propionibacterium acnes and Staphylococcus epidermidis through inhibition of microbial cellular prorein synthesis. Azelaic acid has hypopigmentation action resulting from its ability to scavenge free radicals[1][2]. Azelaic acid is a nine-carbon dicarboxylic acid. Azelaic acid has antimicrobial activity against Propionibacterium acnes and Staphylococcus epidermidis through inhibition of microbial cellular prorein synthesis. Azelaic acid has hypopigmentation action resulting from its ability to scavenge free radicals[1][2].
Phytol
Phytol is a key acyclic diterpene alcohol that is a precursor for vitamins E and K1. Phytol is an extremely common terpenoid, found in all plants esterified to Chlorophyll to confer lipid solubility[citation needed].; Phytol is a natural linear diterpene alcohol which is used in the preparation of vitamins E and K1. It is also a decomposition product of chlorophyll. It is an oily liquid that is nearly insoluble in water, but soluble in most organic solvents. -- Wikipedia C1907 - Drug, Natural Product > C28269 - Phytochemical Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1]. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1].
3,4-Dihydroxymandelic acid
D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids A catechol that is the 3,4-dihydroxy derivative of mandelic acid; a metabolite of L-dopa. 3,4-Dihydroxymandelic acid is a metabolite of norepinephrine.
Adenosine diphosphate
COVID info from COVID-19 Disease Map, PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Adenosine 5'-diphosphate (Adenosine diphosphate) is a nucleoside diphosphate. Adenosine 5'-diphosphate is the product of ATP dephosphorylation by ATPases. Adenosine 5'-diphosphate induces human platelet aggregation and inhibits stimulated adenylate cyclase by an action at P2T-purinoceptors. Adenosine 5'-diphosphate (Adenosine diphosphate) is a nucleoside diphosphate. Adenosine 5'-diphosphate is the product of ATP dephosphorylation by ATPases. Adenosine 5'-diphosphate induces human platelet aggregation and inhibits stimulated adenylate cyclase by an action at P2T-purinoceptors.
Oleic acid
An octadec-9-enoic acid in which the double bond at C-9 has Z (cis) stereochemistry. Oleic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=112-80-1 (retrieved 2024-07-16) (CAS RN: 112-80-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Elaidic acid is the major trans fat found in hydrogenated vegetable oils and can be used as a pharmaceutical solvent. Elaidic acid is the major trans fat found in hydrogenated vegetable oils and can be used as a pharmaceutical solvent. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].
Coumarin
Coumarin (/ˈkuːmərɪn/) or 2H-chromen-2-one is an aromatic organic chemical compound with formula C9H6O2. Its molecule can be described as a benzene molecule with two adjacent hydrogen atoms replaced by an unsaturated lactone ring −(CH)=(CH)−(C=O)−O−, forming a second six-membered heterocycle that shares two carbons with the benzene ring. It belongs to the benzopyrone chemical class and considered as a lactone.[1] Coumarin is a colorless crystalline solid with a sweet odor resembling the scent of vanilla and a bitter taste.[1] It is found in many plants, where it may serve as a chemical defense against predators. Coumarin inhibits synthesis of vitamin K, a key component in blood clotting. A related compound, the prescription drug anticoagulant warfarin, is used to inhibit formation of blood clots, deep vein thrombosis, and pulmonary embolism.[1][2] Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities. Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities.
Ginsenoside Rf
Constituent of Panax ginseng (ginseng). The first pure ginseng constituent to show nearly all the activities of the plant extract. Ginsenoside Rf is found in tea. Annotation level-1 Ginsenoside Rf is a trace component of ginseng root. Ginsenoside Rf inhibits N-type Ca2+ channel. Ginsenoside Rf is a trace component of ginseng root. Ginsenoside Rf inhibits N-type Ca2+ channel.
NADPH
The reduced form of NADP+; used in anabolic reactions, such as lipid and nucleic acid synthesis, which require NADPH as a reducing agent. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Sphinganine
A 2-aminooctadecane-1,3-diol having (2S,3R)-configuration. D004791 - Enzyme Inhibitors D-Erythro-dihydrosphingosin directly inhibits cytosolic phospholipase A2α (cPLA2α) activity. D-Erythro-dihydrosphingosin directly inhibits cytosolic phospholipase A2α (cPLA2α) activity. DL-erythro-Dihydrosphingosine is a potent inhibitor of PKC and phospholipase A2 (PLA2)[1][2].
Lauric acid
Lauric acid, systematically dodecanoic acid, is a saturated fatty acid with a 12-carbon atom chain, thus having many properties of medium-chain fatty acids.[6] It is a bright white, powdery solid with a faint odor of bay oil or soap. The salts and esters of lauric acid are known as laurates. Lauric acid, as a component of triglycerides, comprises about half of the fatty-acid content in coconut milk, coconut oil, laurel oil, and palm kernel oil (not to be confused with palm oil),[10][11] Otherwise, it is relatively uncommon. It is also found in human breast milk (6.2\\\\% of total fat), cow's milk (2.9\\\\%), and goat's milk (3.1\\\\%). Lauric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=143-07-7 (retrieved 2024-07-01) (CAS RN: 143-07-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively. Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively.
PHYTANIC ACID
A branched-chain saturated fatty acid consisting of hexadecanoic acid carrying methyl substituents at positions 3, 7, 11 and 15.
dihomo-gamma-linolenic acid
COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Cysteine
A sulfur-containing amino acid that is propanoic acid with an amino group at position 2 and a sulfanyl group at position 3. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 18 L-Cysteine is a conditionally essential amino acid, which acts as a precursor for biologically active molecules such as hydrogen sulphide (H2S), glutathione and taurine. L-Cysteine suppresses ghrelin and reduces appetite in rodents and humans[1]. L-Cysteine is a conditionally essential amino acid, which acts as a precursor for biologically active molecules such as hydrogen sulphide (H2S), glutathione and taurine. L-Cysteine suppresses ghrelin and reduces appetite in rodents and humans[1].
Isoxanthopterin
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
methoxamine
C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents
oxymorphone
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AA - Natural opium alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics
terazosin
G - Genito urinary system and sex hormones > G04 - Urologicals > G04C - Drugs used in benign prostatic hypertrophy > G04CA - Alpha-adrenoreceptor antagonists C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D000089162 - Genitourinary Agents > D064804 - Urological Agents
7-Aminocephalosporanic acid
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams
Eugenol
C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D000890 - Anti-Infective Agents D012997 - Solvents Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation. Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation.
cannabinol
C308 - Immunotherapeutic Agent > C574 - Immunosuppressant
FA 18:3
CONFIDENCE standard compound; INTERNAL_ID 143 COVID info from WikiPathways D - Dermatologicals Same as: D07213 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].
Imidacloprid
D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents D016573 - Agrochemicals
protriptyline
N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AA - Non-selective monoamine reuptake inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent > C94727 - Tricyclic Antidepressant D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators
Spironolactone
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D000451 - Mineralocorticoid Receptor Antagonists C - Cardiovascular system > C03 - Diuretics > C03D - Aldosterone antagonists and other potassium-sparing agents > C03DA - Aldosterone antagonists C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49186 - Potassium-Sparing Diuretic COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D004232 - Diuretics Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
acyclovir
J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AB - Nucleosides and nucleotides excl. reverse transcriptase inhibitors D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BB - Antivirals S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AD - Antivirals D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C471 - Enzyme Inhibitor > C29575 - DNA Polymerase Inhibitor C254 - Anti-Infective Agent > C281 - Antiviral Agent CONFIDENCE standard compound; INTERNAL_ID 2780 Acyclovir (Aciclovir) is a potent, orally active antiviral agent. Acyclovir has antiherpetic activity with IC50 values of 0.85 μM and 0.86 μM for HSV-1 and HSV-2, respectively. Acyclovir induces cell cycle perturbation and apoptosis. Acyclovir prevents bacterial infections during induction therapy for acute leukaemia[1][2][3][4].
phenobarbital
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AA - Barbiturates and derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D065693 - Cytochrome P-450 Enzyme Inducers > D065695 - Cytochrome P-450 CYP2B6 Inducers D065693 - Cytochrome P-450 Enzyme Inducers > D065701 - Cytochrome P-450 CYP3A Inducers D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants
Isoreserpin
D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators Annotation level-1
ST 22:3;O3
CONFIDENCE standard compound; INTERNAL_ID 1391; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10301; ORIGINAL_PRECURSOR_SCAN_NO 10299 C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones CONFIDENCE standard compound; INTERNAL_ID 1391; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10334; ORIGINAL_PRECURSOR_SCAN_NO 10329 CONFIDENCE standard compound; INTERNAL_ID 1391; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10348; ORIGINAL_PRECURSOR_SCAN_NO 10343 CONFIDENCE standard compound; INTERNAL_ID 1391; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10391; ORIGINAL_PRECURSOR_SCAN_NO 10386 CONFIDENCE standard compound; INTERNAL_ID 1391; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10401; ORIGINAL_PRECURSOR_SCAN_NO 10399 CONFIDENCE standard compound; INTERNAL_ID 1391; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10415; ORIGINAL_PRECURSOR_SCAN_NO 10413 G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03A - Hormonal contraceptives for systemic use > G03AC - Progestogens G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03D - Progestogens > G03DA - Pregnen (4) derivatives L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02A - Hormones and related agents > L02AB - Progestogens D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents CONFIDENCE standard compound; INTERNAL_ID 2395 INTERNAL_ID 2395; CONFIDENCE standard compound
Desoxycortone
H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AA - Mineralocorticoids D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D008901 - Mineralocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Origin: Animal, Pregnanes Deoxycorticosterone is a steroid hormone produced by the adrenal gland that possesses mineralocorticoid activity and acts as an aldosterone precursor. Deoxycorticosterone is a steroid hormone produced by the adrenal gland that possesses mineralocorticoid activity and acts as an aldosterone precursor.
Macrofusine
D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D037341 - Fumonisins D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D013723 - Teratogens D004791 - Enzyme Inhibitors CONFIDENCE standard compound; INTERNAL_ID 5968
Sudan I
CONFIDENCE standard compound; INTERNAL_ID 297; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10862; ORIGINAL_PRECURSOR_SCAN_NO 10860 D009676 - Noxae > D002273 - Carcinogens D004396 - Coloring Agents CONFIDENCE standard compound; INTERNAL_ID 297; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10878; ORIGINAL_PRECURSOR_SCAN_NO 10876 CONFIDENCE standard compound; INTERNAL_ID 297; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10910; ORIGINAL_PRECURSOR_SCAN_NO 10908 CONFIDENCE standard compound; INTERNAL_ID 297; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10917; ORIGINAL_PRECURSOR_SCAN_NO 10916 CONFIDENCE standard compound; INTERNAL_ID 297; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10908; ORIGINAL_PRECURSOR_SCAN_NO 10905 CONFIDENCE standard compound; INTERNAL_ID 297; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10943; ORIGINAL_PRECURSOR_SCAN_NO 10942
acetohexamide
A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BB - Sulfonylureas C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C97936 - Sulfonylurea Antidiabetic Agent D007004 - Hypoglycemic Agents CONFIDENCE standard compound; INTERNAL_ID 894; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4168; ORIGINAL_PRECURSOR_SCAN_NO 4165 CONFIDENCE standard compound; INTERNAL_ID 894; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4170; ORIGINAL_PRECURSOR_SCAN_NO 4165 CONFIDENCE standard compound; INTERNAL_ID 894; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4125; ORIGINAL_PRECURSOR_SCAN_NO 4121 CONFIDENCE standard compound; INTERNAL_ID 894; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4143; ORIGINAL_PRECURSOR_SCAN_NO 4140 CONFIDENCE standard compound; INTERNAL_ID 894; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4151; ORIGINAL_PRECURSOR_SCAN_NO 4150 ORIGINAL_PRECURSOR_SCAN_NO 4163; CONFIDENCE standard compound; INTERNAL_ID 894; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4165 CONFIDENCE standard compound; INTERNAL_ID 894; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4165; ORIGINAL_PRECURSOR_SCAN_NO 4163 CONFIDENCE standard compound; INTERNAL_ID 894; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8394; ORIGINAL_PRECURSOR_SCAN_NO 8389 CONFIDENCE standard compound; INTERNAL_ID 894; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8413; ORIGINAL_PRECURSOR_SCAN_NO 8409 CONFIDENCE standard compound; INTERNAL_ID 894; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8458; ORIGINAL_PRECURSOR_SCAN_NO 8454 CONFIDENCE standard compound; INTERNAL_ID 894; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8489; ORIGINAL_PRECURSOR_SCAN_NO 8485 CONFIDENCE standard compound; INTERNAL_ID 894; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8471; ORIGINAL_PRECURSOR_SCAN_NO 8468
Thiamine
A - Alimentary tract and metabolism > A11 - Vitamins > A11D - Vitamin b1, plain and in combination with vitamin b6 and b12 > A11DA - Vitamin b1, plain D018977 - Micronutrients > D014815 - Vitamins
Phytic acid
1d-myo-inositol 1,2,3,4,5,6-hexakisphosphate, also known as phytate or phytic acid, is a member of the class of compounds known as inositol phosphates. Inositol phosphates are compounds containing a phosphate group attached to an inositol (or cyclohexanehexol) moiety. 1d-myo-inositol 1,2,3,4,5,6-hexakisphosphate is soluble (in water) and an extremely strong acidic compound (based on its pKa). 1d-myo-inositol 1,2,3,4,5,6-hexakisphosphate can be found in a number of food items such as scarlet bean, arrowroot, salmonberry, and roman camomile, which makes 1d-myo-inositol 1,2,3,4,5,6-hexakisphosphate a potential biomarker for the consumption of these food products. 1d-myo-inositol 1,2,3,4,5,6-hexakisphosphate can be found primarily in blood and urine, as well as throughout most human tissues. In humans, 1d-myo-inositol 1,2,3,4,5,6-hexakisphosphate is involved in a couple of metabolic pathways, which include inositol metabolism and inositol phosphate metabolism. C26170 - Protective Agent > C275 - Antioxidant
Uridine triphosphate
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Choline
A choline that is the parent compound of the cholines class, consisting of ethanolamine having three methyl substituents attached to the amino function. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D008082 - Lipotropic Agents D002491 - Central Nervous System Agents > D018697 - Nootropic Agents D009676 - Noxae > D000963 - Antimetabolites D005765 - Gastrointestinal Agents
cholate
Cholic acid, also known as 3a,7a,12a-trihydroxy-5b-cholanate or cholate, belongs to trihydroxy bile acids, alcohols and derivatives class of compounds. Those are prenol lipids structurally characterized by a bile acid or alcohol which bears three hydroxyl groups. Thus, cholic acid is considered to be a bile acid lipid molecule. Cholic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Cholic acid can be found in a number of food items such as cocoa bean, walnut, garden rhubarb, and carob, which makes cholic acid a potential biomarker for the consumption of these food products. Cholic acid can be found primarily in bile, blood, feces, and urine, as well as throughout all human tissues. Cholic acid exists in all living organisms, ranging from bacteria to humans. In humans, cholic acid is involved in few metabolic pathways, which include bile acid biosynthesis, cerebrotendinous xanthomatosis (CTX), congenital bile acid synthesis defect type II, and congenital bile acid synthesis defect type III. Cholic acid is also involved in few metabolic disorders, which include 27-hydroxylase deficiency, familial hypercholanemia (FHCA), and zellweger syndrome. Moreover, cholic acid is found to be associated with biliary atresia, cirrhosis, cystic fibrosis, and primary biliary cirrhosis. Cholic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05A - Bile therapy > A05AA - Bile acids and derivatives C78276 - Agent Affecting Digestive System or Metabolism > C66913 - Cholagogues or Choleretic Agents D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids Same as: D10699 Cholic acid is a major primary bile acid produced in the liver and usually conjugated with glycine or taurine. It facilitates fat absorption and cholesterol excretion. Cholic acid is orally active[1][2]. Cholic acid is a major primary bile acid produced in the liver and usually conjugated with glycine or taurine. It facilitates fat absorption and cholesterol excretion. Cholic acid is orally active[1][2].
Methadyl acetate
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics
Higenamine
D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents D000893 - Anti-Inflammatory Agents D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents D018501 - Antirheumatic Agents
Sulfur oxide
D004785 - Environmental Pollutants > D000393 - Air Pollutants
C12:0
Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively. Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively.
CoA 20:3
CoA 18:0;O
A 3-hydroxy fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of 3-hydroxyoctadecanoic acid.
CoA 9:5
CoA 4:1
Urocortisol
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Tetrahydrocortisol is cortisol metabolite. The urinary Tetrahydrocortisol/Tetrahydrocortisone ratio decreases with increasing 11β-hydroxysteroid dehydrogenase (11β-HSD) activity[1][2].
silver
D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AL - Silver compounds COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Ammonium Chloride
Dough conditioner, dough strengthener, flavour enhancer, leavening agent, processing aid and yeast food B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05X - I.v. solution additives > B05XA - Electrolyte solutions G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BA - Acidifiers C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent
coenzyme Q10
A ubiquinone having a side chain of 10 isoprenoid units. In the naturally occurring isomer, all isoprenyl double bonds are in the E- configuration. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C - Cardiovascular system > C01 - Cardiac therapy C26170 - Protective Agent > C275 - Antioxidant D018977 - Micronutrients > D014815 - Vitamins Same as: D01065 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Isolated from beef heart. Ubiquinone 10 is found in animal foods.
chlorpropham
D006133 - Growth Substances > D010937 - Plant Growth Regulators D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
Hexobarbital
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CA - Barbiturates, plain N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AF - Barbiturates, plain C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators
Methandriol
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid
gaboxadol
D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000927 - Anticonvulsants C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics Same as: D04282 THIP (Gaboxadol) is a selective extrasynaptic GABAA receptors (eGABARs) agonist (with blood-brain barrier permeability), shows an EC50 value of 13 μM for δ-GABAAR. THIP induces strong tense GABAA-mediated currents in layer 2/3 neurons, but shows on effect on miniature IPSCs. THIP can be used in studies of sleep disorders[1][2][3].
Engenol
C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D000890 - Anti-Infective Agents D012997 - Solvents Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation. Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation.
C-1297
Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively. Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively.
Rattex
C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities. Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities.
Red oil
COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].
sugar
D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
LM-94
A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05A - Bile therapy COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C29698 - Antispasmodic Agent D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 4-Methylumbelliferone is a hyaluronic acid biosynthesis inhibitor with antitumoral and antimetastatic effects. 4-Methylumbelliferone is a hyaluronic acid biosynthesis inhibitor with antitumoral and antimetastatic effects.
Phenol-2-carboxylic acid
Salicylic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=69-72-7 (retrieved 2024-07-09) (CAS RN: 69-72-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Salicylic acid (2-Hydroxybenzoic acid) inhibits cyclo-oxygenase-2 (COX-2) activity independently of transcription factor (NF-κB) activation[1]. Salicylic acid (2-Hydroxybenzoic acid) inhibits cyclo-oxygenase-2 (COX-2) activity independently of transcription factor (NF-κB) activation[1].
Marmesin
Nodakenetin is a marmesin with R-configuration. It has a role as a plant metabolite, a rat metabolite and a xenobiotic metabolite. It is an enantiomer of a (+)-marmesin. Nodakenetin is a natural product found in Zanthoxylum beecheyanum, Melicope barbigera, and other organisms with data available. A marmesin with R-configuration. (+)-marmesin is a marmesin. It is an enantiomer of a nodakenetin. Marmesin is a natural product found in Coronilla scorpioides, Clausena dunniana, and other organisms with data available. Nodakenetin, isolated from Angelica decursiva, possesses antioxidant anti-inflammatory activities. Nodakenetin has the potential to be an antiarthritic and nerve tonic[1][2]. Nodakenetin, isolated from Angelica decursiva, possesses antioxidant anti-inflammatory activities. Nodakenetin has the potential to be an antiarthritic and nerve tonic[1][2]. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity.
Ferulaldehyde
Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1]. Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1].
8-methoxy-6-nitronaphtho[2,1-g][1,3]benzodioxole-5-carboxylic acid
D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1]. Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1].
terthiophene
D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D010575 - Pesticides > D007306 - Insecticides D003879 - Dermatologic Agents D016573 - Agrochemicals 2,2':5',2''-Terthiophene (α-Terthiophene) is an oligomer of the heterocycle thiophene. 2,2':5',2''-Terthiophene has been employed as building block for the organic semi-conductor polythiophene. 2,2':5',2''-Terthiophene (α-Terthiophene) is an oligomer of the heterocycle thiophene. 2,2':5',2''-Terthiophene has been employed as building block for the organic semi-conductor polythiophene.
Gentisein
Gentisein (NSC 329491), the major metabolite of Mangiferin, shows the most potent serotonin uptake inhibition with an IC50 value of 4.7 μM[1][2]. Gentisein (NSC 329491), the major metabolite of Mangiferin, shows the most potent serotonin uptake inhibition with an IC50 value of 4.7 μM[1][2]. Gentisein (NSC 329491), the major metabolite of Mangiferin, shows the most potent serotonin uptake inhibition with an IC50 value of 4.7 μM[1][2].
teina
N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BC - Xanthine derivatives D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058914 - Purinergic Antagonists D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D - Dermatologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Bergaptol
D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Bergaptol is an inhibitor of debenzylation of the CYP3A4 enzyme with an IC50 of 24.92 uM. Recent studies have shown that it has anti-proliferative and anti-cancer properties. Bergaptol is an inhibitor of debenzylation of the CYP3A4 enzyme with an IC50 of 24.92 uM. Recent studies have shown that it has anti-proliferative and anti-cancer properties.
Elliptisine
D000970 - Antineoplastic Agents > D000972 - Antineoplastic Agents, Phytogenic > D004611 - Ellipticines D004791 - Enzyme Inhibitors > D014475 - Uncoupling Agents Ellipticine (NSC 71795) is a potent antineoplastic agent; inhibits DNA topoisomerase II activities. Ellipticine (NSC 71795) is a potent antineoplastic agent; inhibits DNA topoisomerase II activities.
Jasmone
Cis-Jasmone is a plant-derived natural product. Cis-Jasmone is constitutively released by many flowers and sometimes by leaves as an attractant for pollinators or as a chemical cue for host location by insect flower herbivores. Cis-Jasmone treatment of crop plants not only induces direct defense against herbivores, but also induces indirect defense by releasing VOCs that attract natural enemies[1]. Cis-Jasmone is a plant-derived natural product. Cis-Jasmone is constitutively released by many flowers and sometimes by leaves as an attractant for pollinators or as a chemical cue for host location by insect flower herbivores. Cis-Jasmone treatment of crop plants not only induces direct defense against herbivores, but also induces indirect defense by releasing VOCs that attract natural enemies[1].
Acnomel
D - Dermatologicals > D10 - Anti-acne preparations > D10A - Anti-acne preparations for topical use S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent
Sapropterin
A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AX - Various alimentary tract and metabolism products A tetrahydropterin that is 2-amino-5,6,7,8-tetrahydropteridin-4(3H)-one in which a hydrogen at position 6 is substituted by a 1,2-dihydroxypropyl group (6R,1R,2S-enantiomer). C26170 - Protective Agent > C275 - Antioxidant Sapropterin is converted from 7,8-dihydroneopterin triphosphate by 6-pyruvoyl tetrahydropterin synthase and sepiapterin reductase. It is essential in the formation of neurotransmitters and for nitric oxide synthase (PMID 16946131). [HMDB] Tetrahydrobiopterin ((Rac)-Sapropterin) is a cofactor of the aromatic amino acid hydroxylases enzymes and also acts as an essential cofactor for all nitric oxide synthase (NOS) isoforms.
Tetrahydrocortisol
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Tetrahydrocortisol is the most powerful natural angiostatic steroid. It is involved in C21-Steroid hormone metabolism pathway (KEGG). [HMDB] Tetrahydrocortisol is cortisol metabolite. The urinary Tetrahydrocortisol/Tetrahydrocortisone ratio decreases with increasing 11β-hydroxysteroid dehydrogenase (11β-HSD) activity[1][2].
Aristolochic_acid
Aristolochic acid A is an aristolochic acid that is phenanthrene-1-carboxylic acid that is substituted by a methylenedioxy group at the 3,4 positions, by a methoxy group at position 8, and by a nitro group at position 10. It is the most abundant of the aristolochic acids and is found in almost all Aristolochia (birthworts or pipevines) species. It has been tried in a number of treatments for inflammatory disorders, mainly in Chinese and folk medicine. However, there is concern over their use as aristolochic acid is both carcinogenic and nephrotoxic. It has a role as a nephrotoxin, a carcinogenic agent, a mutagen, a toxin and a metabolite. It is a monocarboxylic acid, a C-nitro compound, a cyclic acetal, an organic heterotetracyclic compound, an aromatic ether and a member of aristolochic acids. Aristolochic acid is a natural product found in Thottea duchartrei, Aristolochia, and other organisms with data available. Aristolochic acids are a family of carcinogenic, mutagenic, and nephrotoxic compounds commonly found in the Aristolochiaceae family of plants, including Aristolochia and Asarum (wild ginger), which are commonly used in Chinese herbal medicine. Aristolochic acid I is the most abundant of the aristolochic acids and is found in almost all Aristolochia species. Aristolochic acids are often accompanied by aristolactams. See also: Aristolochia fangchi root (part of). An aristolochic acid that is phenanthrene-1-carboxylic acid that is substituted by a methylenedioxy group at the 3,4 positions, by a methoxy group at position 8, and by a nitro group at position 10. It is the most abundant of the aristolochic acids and is found in almost all Aristolochia (birthworts or pipevines) species. It has been tried in a number of treatments for inflammatory disorders, mainly in Chinese and folk medicine. However, there is concern over their use as aristolochic acid is both carcinogenic and nephrotoxic. D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1]. Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1].
Ginsenoside
Ginsenoside F1 is a ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy group at position 20 has been converted to the corresponding beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite and an apoptosis inhibitor. It is a 12beta-hydroxy steroid, a 3beta-hydroxy steroid, a beta-D-glucoside, a ginsenoside, a tetracyclic triterpenoid, a 6alpha-hydroxy steroid and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Ginsenoside F1 is a natural product found in Panax ginseng, Panax notoginseng, and Gynostemma yixingense with data available. A ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy group at position 20 has been converted to the corresponding beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. Ginsenoside F1, an enzymatically modified derivative of Ginsenoside Rg1, demonstrates competitive inhibition of CYP3A4 activity and weaker inhibition of CYP2D6 activity. Ginsenoside F1, an enzymatically modified derivative of Ginsenoside Rg1, demonstrates competitive inhibition of CYP3A4 activity and weaker inhibition of CYP2D6 activity.
Nomilin
Nomilin is a limonoid. 1-(Acetyloxy)-1,2-dihydroobacunoic acid e-lactone is a natural product found in Citrus latipes, Citrus hystrix, and other organisms with data available. Nomilin is a limonoid compound obtained from the extracts of citrus fruits. Nomilin is an anti-obesity and anti-hyperglycemic agent [1][2]. Nomilin is a limonoid compound obtained from the extracts of citrus fruits. Nomilin is an anti-obesity and anti-hyperglycemic agent [1][2].
Phytic_acid
Myo-inositol hexakisphosphate is a myo-inositol hexakisphosphate in which each hydroxy group of myo-inositol is monophosphorylated. It has a role as an iron chelator, an antineoplastic agent, a signalling molecule, an Escherichia coli metabolite, a mouse metabolite and a cofactor. It is a conjugate acid of a myo-inositol hexakisphosphate(12-). Phytic acid is under investigation in clinical trial NCT01000233 (Value of Oral Phytate (InsP6) in the Prevention of Progression of the Cardiovascular Calcifications). Myo-inositol hexakisphosphate is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Phytic acid is a natural product found in Chloris gayana, Vachellia nilotica, and other organisms with data available. Myo-Inositol hexakisphosphate is a metabolite found in or produced by Saccharomyces cerevisiae. Complexing agent for removal of traces of heavy metal ions. It acts also as a hypocalcemic agent. C26170 - Protective Agent > C275 - Antioxidant
Sterculic_acid
Sterculic acid is a long-chain, monounsaturated fatty acid composed of 9-octadecenoic acid having a 9,10-cyclopropenyl group. It is a cyclopropenyl fatty acid, a long-chain fatty acid and a monounsaturated fatty acid. It is functionally related to an octadec-9-enoic acid. Sterculic acid is a natural product found in Hibiscus syriacus, Amaranthus cruentus, and other organisms with data available. A long-chain, monounsaturated fatty acid composed of 9-octadecenoic acid having a 9,10-cyclopropenyl group.
Clofenotane
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides > P03AB - Chlorine containing products
astemizole
R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents Astemizole (R 43512), a second-generation antihistamine agent to diminish allergic symptoms with a long duration of action, is a histamine H1-receptor antagonist, with an IC50 of 4 nM. Astemizole also shows potent hERG K+ channel blocking activity with an IC50 of 0.9 nM. Astemizole has antipruritic effects[1][2].
Sodium fluoride
A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AA - Caries prophylactic agents A - Alimentary tract and metabolism > A12 - Mineral supplements > A12C - Other mineral supplements > A12CD - Fluoride D020011 - Protective Agents > D002327 - Cariostatic Agents > D005459 - Fluorides D001697 - Biomedical and Dental Materials
Methylbenzylalcohol
An aromatic alcohol that is ethanol substituted by a phenyl group at position 1.
Arsenic acid
An arsenic oxoacid comprising one oxo group and three hydroxy groups attached to a central arsenic atom. D010575 - Pesticides > D006540 - Herbicides D009676 - Noxae > D013723 - Teratogens D016573 - Agrochemicals
Phenylbutyric acid
C471 - Enzyme Inhibitor > C1946 - Histone Deacetylase Inhibitor C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent D000970 - Antineoplastic Agents
Testosterone propionate
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Oxandrolone
A - Alimentary tract and metabolism > A14 - Anabolic agents for systemic use > A14A - Anabolic steroids > A14AA - Androstan derivatives D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D000728 - Androgens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid
glutethimide
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CE - Piperidinedione derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic
diethylcarbamazine
P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02C - Antinematodal agents > P02CB - Piperazine and derivatives D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors
Nicotinamide adenine dinucleotide phosphate
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
1-Benzyl-1,2,3,4-tetrahydroisoquinoline
D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists
SAICAR
A 1-(phosphoribosyl)imidazolecarboxamide resulting from the formal condesation of the darboxy group of 5-amino-1-(5-O-phosphono-beta-D-ribofuranosyl)-1H-imidazole-4-carboxylic acid with the amino group of L-aspartic acid. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Bradykinin
A linear nonapeptide messenger belonging to the kinin group of proteins, with amino acid sequence RPPGFSPFR. Enzymatically produced from kallidin in the blood, it is a powerful vasodilator that causes smooth muscle contraction, and may mediate inflammation. D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Bradykinin is an effective endothelium-dependent vasodilator that can lower blood pressure. Bradykinin can induce contraction of bronchial and intestinal non-vascular smooth muscle, increase vascular permeability, and participate in the mechanism of pain[1][2][3][4][5].
Dimethylselenide
An organoselenium compound of two methyl groups covalently bound to a selenium.
Pantetheine
An amide obtained by formal condensation of the carboxy group of pantothenic acid and the amino group of cysteamine. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
DL-Arginine
DL-Arginine is used in physicochemical analysis of amino acid complexation dynamics and crystal structure formations. DL-Arginine is used in physicochemical analysis of amino acid complexation dynamics and crystal structure formations.
Cytidine monophosphate N-acetylneuraminic acid
COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
(S)-2,3-epoxysqualene
A 2,3-epoxysqualene in which the chiral centre has S configuration. It is converted into lanosterol by lanosterol synthase (EC 5.4.99.7) in a key rate-limiting step in the biosynthesis of chloesterol, steroid hormones, and vitamin D.
8Z,11Z,14Z-eicosatrienoyl-CoA
An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of all-cis-icosa-8,11,14-trienoic acid.
Leucodopachrome
Indoline substituted with hydroxy groups at C-5 and -6 and a carboxy group at C-2, and with S stereochemistry at C-2.
Cinnamoyl-CoA
An acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of cinnamic acid.
Mulberrofuran G
Mulberrofuran G protects ischemic injury-induced cell death via inhibition of NOX4-mediated ROS generation and ER stress[1]. Mulberrofuran G shows moderate inhibiting activity of hepatitis B virus (HBV) DNA replication with IC50 of 3.99 μM[2]. Mulberrofuran G protects ischemic injury-induced cell death via inhibition of NOX4-mediated ROS generation and ER stress[1]. Mulberrofuran G shows moderate inhibiting activity of hepatitis B virus (HBV) DNA replication with IC50 of 3.99 μM[2]. Mulberrofuran G protects ischemic injury-induced cell death via inhibition of NOX4-mediated ROS generation and ER stress[1]. Mulberrofuran G shows moderate inhibiting activity of hepatitis B virus (HBV) DNA replication with IC50 of 3.99 μM[2].
Decamethrin
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents > P03BA - Pyrethrines D010575 - Pesticides > D007306 - Insecticides > D011722 - Pyrethrins D016573 - Agrochemicals Same as: D07785
DESMOPRESSIN
H - Systemic hormonal preparations, excl. sex hormones and insulins > H01 - Pituitary and hypothalamic hormones and analogues > H01B - Posterior pituitary lobe hormones > H01BA - Vasopressin and analogues C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C80212 - Antidiuretic Hormone Analogue D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D014667 - Vasopressins D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D050034 - Antidiuretic Agents
Trichloroacetate
A monocarboxylic acid that is acetic acid in which all three methyl hydrogens are substituted by chlorine. D009676 - Noxae > D002424 - Caustics Same as: D08633
2-Methyl-1,3-butadiene
A hemiterpene with the formula CH2=C(CH3)CH=CH2; the monomer of natural rubber and a common structure motif to the isoprenoids, a large class of other naturally occurring compounds.
Cerebrosterol
A 24-hydroxycholesterol that has S configuration at position 24. It is the major metabolic breakdown product of cholesterol in the brain. 24(S)-Hydroxycholesterol (24S-OHC), the major brain cholesterol metabolite, plays an important role to maintain homeostasis of cholesterol in the brain. 24(S)-Hydroxycholesterol (24S-OHC) is one of the most efficient endogenous LXR agonist known and is present in the brain and in the circulation at relatively high levels. 24(S)-Hydroxycholesterol (24S-OHC) is a very potent, direct, and selective positive allosteric modulator of NMDARs with a mechanism that does not overlapthat of other allosteric modulators[1][2][3]. 24(S)-Hydroxycholesterol (24S-OHC), the major brain cholesterol metabolite, plays an important role to maintain homeostasis of cholesterol in the brain. 24(S)-Hydroxycholesterol (24S-OHC) is one of the most efficient endogenous LXR agonist known and is present in the brain and in the circulation at relatively high levels. 24(S)-Hydroxycholesterol (24S-OHC) is a very potent, direct, and selective positive allosteric modulator of NMDARs with a mechanism that does not overlapthat of other allosteric modulators[1][2][3].
Diamyl phthalate
Dipentyl phthalate is an endocrine-disrupting phthalate plasticizer. Dipentyl phthalate increases AMPK phosphorylation and decreases AKT1 phosphorylation and SIRT1 levels. Dipentyl phthalate reduces adrenocorticotropic hormone levels. Dipentyl phthalate is a testicular toxicant[1]. Dipentyl phthalate is an endocrine-disrupting phthalate plasticizer. Dipentyl phthalate increases AMPK phosphorylation and decreases AKT1 phosphorylation and SIRT1 levels. Dipentyl phthalate reduces adrenocorticotropic hormone levels. Dipentyl phthalate is a testicular toxicant[1].
(±)-nicotine
An N-alkylpyrrolidine that consists of N-methylpyrrolidine bearing a pyridin-3-yl substituent at position 2.
Bay K-8644
D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D002120 - Calcium Channel Agonists D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators
(+/-)-Mandelamide
D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids