(S)-2,3-Epoxysqualene (BioDeep_00000004555)

 

Secondary id: BioDeep_00000598282, BioDeep_00001869013

human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


(3S)-2,2-Dimethyl-3-[(3E,7E,11E,15E)-3,7,12,16,20-pentamethyl-3,7,11,15,19-heneicosapentaen-1-yl]oxirane

化学式: C30H50O (426.3861)
中文名称:
谱图信息: 最多检出来源 Viridiplantae(plant) 8.73%

分子结构信息

SMILES: CC(=CCC/C(=C/CC/C(=C/CC/C=C(\C)/CC/C=C(\C)/CC[C@H]1C(C)(C)O1)/C)/C)C
InChI: InChI=1S/C30H50O/c1-24(2)14-11-17-27(5)20-12-18-25(3)15-9-10-16-26(4)19-13-21-28(6)22-23-29-30(7,8)31-29/h14-16,20-21,29H,9-13,17-19,22-23H2,1-8H3/b25-15+,26-16+,27-20+,28-21+/t29-/m0/s1

描述信息

(S)-2,3-Epoxysqualene, also known as 2,3-oxidosqualene or (S)-squalene-2,3-epoxide, belongs to the class of organic compounds known as triterpenoids. These are terpene molecules containing six isoprene units. Thus, (S)-2,3-epoxysqualene is considered to be an isoprenoid lipid molecule. (S)-2,3-Epoxysqualene is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. (S)-2,3-Epoxysqualene is an intermediate in the biosynthesis of terpenoid. It is a substrate for squalene monooxygenase and lanosterol synthase.
(S)-2,3-Epoxysqualene is an intermediate in the biosynthesis of Terpenoid. It is a substrate for Squalene monooxygenase and Lanosterol synthase. [HMDB]. (S)-2,3-Epoxysqualene is found in many foods, some of which are new zealand spinach, lime, cassava, and cloves.

同义名列表

43 个代谢物同义名

(3S)-2,2-Dimethyl-3-[(3E,7E,11E,15E)-3,7,12,16,20-pentamethyl-3,7,11,15,19-heneicosapentaen-1-yl]oxirane; (3S)-2,2-dimethyl-3-[(3E,7E,11E,15E)-3,7,12,16,20-pentamethylhenicosa-3,7,11,15,19-pentaen-1-yl]oxirane; (S)-2,3-Epoxysqualene;(S)-2,3-epoxysqualene;(S)-Squalene-2,3-epoxide;(S)-squalene-2,3-epoxide; 2,3-Oxidosqualene, (all-e)-(+-)-isomer; 2,3-Oxidosqualene, (R-(all-e))-isomer; 2,3-Oxidosqualene, (S-(all-e))-isomer; (RS)-2,3-Epoxy-2,3-dihydrosqualene; (3S)-2,3-Epoxy-2,3-dihydrosqualene; (3S)-2,3-Dihydro-2,3-epoxysqualene; (S)-2,3-Dihydro-2,3-epoxysqualene; (S)-2,3-Epoxy-2,3-dihydrosqualene; 2,3-Epoxy-2,3-dihydrosqualene; 2,3-Oxidosqualene, (R)-isomer; 2,3-Oxidosqualene, (S)-isomer; (R,S)-Squalene 2,3-epoxide; Squalene monohydroperoxide; (3S)-Squalene-2,3-epoxide; (S)-Squalene 2,3-epoxide; (S)-Squalene-2,3-epoxide; (3S)-2,3-Oxidosqualene; (3S)-2,3-Epoxysqualene; (S)-2,3-Oxidosqualene; (S)-2,3-epoxysqualene; (±)-2,3-epoxysqualene; Squalene 2,3(S)-oxide; 2,3(S)-Oxidosqualene; (3R,S)-Oxidosqualene; Squalene 2,3-epoxide; Squalene-2,3-epoxide; 3(S)-Oxidosqualene; (3S)-Oxidosqualene; (±)-squalene oxide; Squalene-2,3-oxide; Squalene 2,3-oxide; 2,3-Epoxisqualene; 2,3-Epoxysqualene; Squalene peroxide; 2,3-Oxidosqualene; Squalene epoxide; Squalene oxide; Squslene oxide; Oxidosqualene; 2,3-EDSQ



数据库引用编号

23 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(4)

BioCyc(13)

PlantCyc(4)

代谢反应

951 个相关的代谢反应过程信息。

Reactome(60)

BioCyc(37)

WikiPathways(7)

Plant Reactome(91)

INOH(2)

PlantCyc(753)

COVID-19 Disease Map(1)

PathBank(0)

PharmGKB(0)

3 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 APOB, APOE, CAT, CYP2B6, CYP3A4, DHCR24, HDAC3, IPP, NR1H3
Peripheral membrane protein 4 CYP1B1, CYP2B6, LSS, SQLE
Endosome membrane 2 APOB, LDLR
Endoplasmic reticulum membrane 11 ABCG1, APOB, CYP1B1, CYP2B6, CYP3A4, DHCR24, FDFT1, HMGCR, HSP90B1, LSS, SQLE
Nucleus 7 APOE, DHCR24, HDAC3, HSP90B1, NR1H3, NR1I2, PPARA
cytosol 5 APOB, CAT, HDAC3, HSP90B1, NR1H3
dendrite 1 APOE
nuclear body 1 NR1I2
nucleoplasm 4 HDAC3, NR1H3, NR1I2, PPARA
RNA polymerase II transcription regulator complex 1 NR1H3
Cell membrane 2 ABCG1, LDLR
Multi-pass membrane protein 3 ABCG1, FDFT1, HMGCR
Golgi apparatus membrane 2 ABCG1, DHCR24
cell surface 1 LDLR
glutamatergic synapse 1 APOE
Golgi apparatus 4 ABCG1, APOE, HDAC3, LDLR
Golgi membrane 2 ABCG1, DHCR24
neuronal cell body 2 APOB, APOE
smooth endoplasmic reticulum 2 APOB, HSP90B1
Cytoplasm, cytosol 1 HDAC3
Lysosome 1 LDLR
endosome 1 ABCG1
plasma membrane 5 ABCG1, APOB, APOE, HDAC3, LDLR
Membrane 12 ABCG1, APOE, CAT, CYP1B1, CYP3A4, DHCR24, FDFT1, HMGCR, HSP90B1, LDLR, LSS, SQLE
basolateral plasma membrane 1 LDLR
extracellular exosome 5 APOB, APOE, CAT, CETP, HSP90B1
endoplasmic reticulum 6 APOE, DHCR24, FDFT1, HMGCR, HSP90B1, SQLE
extracellular space 3 APOB, APOE, CETP
lysosomal lumen 1 APOB
perinuclear region of cytoplasm 1 HSP90B1
mitochondrion 3 ABCG1, CAT, CYP1B1
protein-containing complex 2 CAT, HSP90B1
intracellular membrane-bounded organelle 6 APOB, CAT, CYP1B1, CYP2B6, CYP3A4, SQLE
Microsome membrane 4 CYP1B1, CYP2B6, CYP3A4, SQLE
Single-pass type I membrane protein 1 LDLR
Secreted 3 APOB, APOE, CETP
extracellular region 5 APOB, APOE, CAT, CETP, HSP90B1
Single-pass membrane protein 2 DHCR24, LDLR
mitochondrial matrix 1 CAT
transcription regulator complex 1 NR1I2
external side of plasma membrane 2 ABCG1, LDLR
Endosome, multivesicular body 1 APOE
Extracellular vesicle 1 APOE
Secreted, extracellular space, extracellular matrix 1 APOE
chylomicron 2 APOB, APOE
high-density lipoprotein particle 2 APOE, CETP
low-density lipoprotein particle 3 APOB, APOE, LDLR
multivesicular body 1 APOE
very-low-density lipoprotein particle 2 APOB, APOE
actin cytoskeleton 1 IPP
midbody 1 HSP90B1
Early endosome 3 APOB, APOE, LDLR
Membrane, clathrin-coated pit 1 LDLR
apical part of cell 1 LDLR
clathrin-coated pit 1 LDLR
recycling endosome 1 ABCG1
vesicle 1 CETP
focal adhesion 2 CAT, HSP90B1
extracellular matrix 1 APOE
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 2 CAT, HMGCR
collagen-containing extracellular matrix 2 APOE, HSP90B1
Late endosome 1 LDLR
receptor complex 2 LDLR, NR1H3
chromatin 4 HDAC3, NR1H3, NR1I2, PPARA
mitotic spindle 1 HDAC3
Chromosome 1 HDAC3
Secreted, extracellular space 1 APOE
blood microparticle 1 APOE
Endomembrane system 1 LDLR
endosome lumen 1 APOB
sorting endosome 1 LDLR
Lipid droplet 2 APOB, LSS
Melanosome 2 APOE, HSP90B1
sperm plasma membrane 1 HSP90B1
intermediate filament cytoskeleton 1 NR1I2
Peroxisome membrane 1 HMGCR
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 1 CAT
endoplasmic reticulum lumen 3 APOB, APOE, HSP90B1
transcription repressor complex 1 HDAC3
histone deacetylase complex 1 HDAC3
endoplasmic reticulum exit site 1 APOB
clathrin-coated endocytic vesicle membrane 3 APOB, APOE, LDLR
Sarcoplasmic reticulum lumen 1 HSP90B1
synaptic cleft 1 APOE
endolysosome membrane 1 LDLR
somatodendritic compartment 1 LDLR
discoidal high-density lipoprotein particle 1 APOE
endocytic vesicle lumen 3 APOB, APOE, HSP90B1
PCSK9-LDLR complex 1 LDLR
chylomicron remnant 2 APOB, APOE
intermediate-density lipoprotein particle 2 APOB, APOE
lipoprotein particle 1 APOE
multivesicular body, internal vesicle 1 APOE
catalase complex 1 CAT
mature chylomicron 1 APOB
endoplasmic reticulum chaperone complex 1 HSP90B1


文献列表

  • Xiao-Bo Li, Chun-Li Huang, Ying Zhang, Jing-Yang Ding, Gui-Sheng Xiang, Guang-Hui Zhang, Sheng-Chao Yang, Bing Hao. Promiscuous Oxidosqualene Cyclases from Neoalsomitra integrifoliola Catalyzing the Formation of Tetracyclic, Pentacyclic, and Heterocyclic Triterpenes. Organic letters. 2024 Apr; 26(15):3119-3123. doi: 10.1021/acs.orglett.4c00730. [PMID: 38588021]
  • Bhawana Mishra, Shilpi Bansal, Sandhya Tripathi, Smrati Mishra, Ritesh K Yadav, Neelam S Sangwan. Differential regulation of key triterpene synthase gene under abiotic stress in Withania somnifera L. Dunal and its co-relation to sterols and withanolides. Plant physiology and biochemistry : PPB. 2024 Mar; 208(?):108419. doi: 10.1016/j.plaphy.2024.108419. [PMID: 38377888]
  • Shuang-Yan Zhang, Yu-Qing Peng, Gui-Sheng Xiang, Wan-Ling Song, Lei Feng, Xin-Yue Jiang, Xue-Jiao Li, Si-Mei He, Sheng-Chao Yang, Yan Zhao, Guang-Hui Zhang. Functional characterization of genes related to triterpene and flavonoid biosynthesis in Cyclocarya paliurus. Planta. 2024 Jan; 259(2):50. doi: 10.1007/s00425-023-04282-1. [PMID: 38285114]
  • Yanan Huang, Helu Liu, Yang Zhou, Zaiqing Lu, Yujin Pu, Haibin Zhang. Cloning and functional characterization of the oxidative squalene cyclase gene in the deep-sea holothurian Chiridota sp. Gene. 2023 Nov; ?(?):147971. doi: 10.1016/j.gene.2023.147971. [PMID: 37949417]
  • Jinling Li, Shuai Wang, Yinan Miao, Ya Wan, Chun Li, Ying Wang. Mining and modification of Oryza sativa-derived squalene epoxidase for improved β-amyrin production in Saccharomyces cerevisiae. Journal of biotechnology. 2023 Aug; 375(?):1-11. doi: 10.1016/j.jbiotec.2023.08.004. [PMID: 37597655]
  • Hidayat Hussain, Jianbo Xiao, Akbar Ali, Ivan R Green, Bernhard Westermann. Unusually cyclized triterpenoids: occurrence, biosynthesis and chemical synthesis. Natural product reports. 2023 Feb; 40(2):412-451. doi: 10.1039/d2np00033d. [PMID: 36458822]
  • Yibo Wang, Baojie Wang, Furong Xu, Xiaohui Ma. Molecular Cloning and Functional Characterization of Oxidosqualene Cyclases from Panax vietnamensis. Chemistry & biodiversity. 2023 Feb; 20(2):e202200874. doi: 10.1002/cbdv.202200874. [PMID: 36635849]
  • Kuan Chen, Meng Zhang, Lulu Xu, Yang Yi, Linlin Wang, Haotian Wang, Zilong Wang, Jiangtao Xing, Pi Li, Xiaohui Zhang, Xiaomeng Shi, Min Ye, Anne Osbourn, Xue Qiao. Identification of oxidosqualene cyclases associated with saponin biosynthesis from Astragalus membranaceus reveals a conserved motif important for catalytic function. Journal of advanced research. 2023 01; 43(?):247-257. doi: 10.1016/j.jare.2022.03.014. [PMID: 36585112]
  • Pornpatsorn Lertphadungkit, Xue Qiao, Min Ye, Somnuk Bunsupa. Characterization of oxidosqualene cyclases from Trichosanthes cucumerina L. reveals key amino acids responsible for substrate specificity of isomultiflorenol synthase. Planta. 2022 Aug; 256(3):58. doi: 10.1007/s00425-022-03972-6. [PMID: 35980476]
  • Liufang Huang, Yonger Hu, Ruoshi Huang, Jiabo Chen, Xiande Zhang, Jingyang Yue, Laibao Feng, Yaru She, Aijia Ji, Ying Zheng, Zhongqiu Liu, Rongrong Zhang, Lixin Duan. Oxidosqualene Cyclases Involved in the Biosynthesis of Diverse Triterpenes in Camellia sasanqua. Journal of agricultural and food chemistry. 2022 Jul; 70(26):8075-8084. doi: 10.1021/acs.jafc.2c03011. [PMID: 35729682]
  • Yusuke Otani, Takashi Maoka, Shigeko Kawai-Noma, Kyoichi Saito, Daisuke Umeno. A novel carotenoid biosynthetic route via oxidosqualene. Biochemical and biophysical research communications. 2022 04; 599(?):75-80. doi: 10.1016/j.bbrc.2022.01.105. [PMID: 35176628]
  • Cuiyu Chen, Yaru Pang, Quanbing Chen, Chun Li, Bo Lü. [Oxidosqualene cyclases in triterpenoids biosynthesis: a review]. Sheng wu gong cheng xue bao = Chinese journal of biotechnology. 2022 Feb; 38(2):443-459. doi: 10.13345/j.cjb.210169. [PMID: 35234375]
  • Han Suk Choi, Jung Yeon Han, Yong Eui Choi. Identification of triterpenes and functional characterization of oxidosqualene cyclases involved in triterpene biosynthesis in lettuce (Lactuca sativa). Plant science : an international journal of experimental plant biology. 2020 Dec; 301(?):110656. doi: 10.1016/j.plantsci.2020.110656. [PMID: 33218626]
  • Jian Wang, Hui-Xin Lin, Huan Zhao, Juan Guo, Ping Su, Jian Yang, Xiao-Yi Wu, Lu-Qi Huang, Wei Gao. Molecular cloning and functional characterization of multiple ApOSCs from Andrographis paniculata. Chinese journal of natural medicines. 2020 Sep; 18(9):659-665. doi: 10.1016/s1875-5364(20)60004-8. [PMID: 32928509]
  • Rong Tian, Wei Gu, Yuchen Gu, Chao Geng, Fei Xu, Qinan Wu, Jianguo Chao, Wenda Xue, Chen Zhou, Fan Wang. Methyl jasmonate promote protostane triterpenes accumulation by up-regulating the expression of squalene epoxidases in Alisma orientale. Scientific reports. 2019 12; 9(1):18139. doi: 10.1038/s41598-019-54629-6. [PMID: 31792343]
  • Hye-Jeong Jo, Jung Yeon Han, Hwan-Su Hwang, Yong Eui Choi. β-Amyrin synthase (EsBAS) and β-amyrin 28-oxidase (CYP716A244) in oleanane-type triterpene saponin biosynthesis in Eleutherococcus senticosus. Phytochemistry. 2017 Mar; 135(?):53-63. doi: 10.1016/j.phytochem.2016.12.011. [PMID: 28012567]
  • Christelle M Andre, Sylvain Legay, Amélie Deleruelle, Niels Nieuwenhuizen, Matthew Punter, Cyril Brendolise, Janine M Cooney, Marc Lateur, Jean-François Hausman, Yvan Larondelle, William A Laing. Multifunctional oxidosqualene cyclases and cytochrome P450 involved in the biosynthesis of apple fruit triterpenic acids. The New phytologist. 2016 09; 211(4):1279-94. doi: 10.1111/nph.13996. [PMID: 27214242]
  • Elisabet Gas-Pascual, Biljana Simonovik, Hubert Schaller, Thomas J Bach. Inhibition of Cycloartenol Synthase (CAS) Function in Tobacco BY-2 Cells. Lipids. 2015 Aug; 50(8):761-72. doi: 10.1007/s11745-015-4036-6. [PMID: 26033687]
  • Elisabet Gas-Pascual, Anne Berna, Thomas J Bach, Hubert Schaller. Plant oxidosqualene metabolism: cycloartenol synthase-dependent sterol biosynthesis in Nicotiana benthamiana. PloS one. 2014; 9(10):e109156. doi: 10.1371/journal.pone.0109156. [PMID: 25343375]
  • Ryousuke Ito, Ippei Hashimoto, Yukari Masukawa, Tsutomu Hoshino. Effect of cation-π interactions and steric bulk on the catalytic action of oxidosqualene cyclase: a case study of Phe728 of β-amyrin synthase from Euphorbia tirucalli L. Chemistry (Weinheim an der Bergstrasse, Germany). 2013 Dec; 19(50):17150-8. doi: 10.1002/chem.201301917. [PMID: 24203491]
  • Lili Huang, Jia Li, Hechun Ye, Changfu Li, Hong Wang, Benye Liu, Yansheng Zhang. Molecular characterization of the pentacyclic triterpenoid biosynthetic pathway in Catharanthus roseus. Planta. 2012 Nov; 236(5):1571-81. doi: 10.1007/s00425-012-1712-0. [PMID: 22837051]
  • Zheyong Xue, Lixin Duan, Dan Liu, Jie Guo, Song Ge, Jo Dicks, Paul ÓMáille, Anne Osbourn, Xiaoquan Qi. Divergent evolution of oxidosqualene cyclases in plants. The New phytologist. 2012 Mar; 193(4):1022-1038. doi: 10.1111/j.1469-8137.2011.03997.x. [PMID: 22150097]
  • Chunhua Zhou, Daqiu Zhao, Yanle Sheng, Guohua Liang, Jun Tao. Molecular cloning and expression of squalene synthase and 2,3-oxidosqualene cyclase genes in persimmon (Diospyros kaki L.) fruits. Molecular biology reports. 2012 Feb; 39(2):1125-32. doi: 10.1007/s11033-011-0841-z. [PMID: 21573791]
  • Hongmei Luo, Chao Sun, Yongzhen Sun, Qiong Wu, Ying Li, Jingyuan Song, Yunyun Niu, Xianglin Cheng, Hongxi Xu, Chuyuan Li, Juyan Liu, André Steinmetz, Shilin Chen. Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers. BMC genomics. 2011 Dec; 12 Suppl 5(?):S5. doi: 10.1186/1471-2164-12-s5-s5. [PMID: 22369100]
  • Hikaru Seki, Satoru Sawai, Kiyoshi Ohyama, Masaharu Mizutani, Toshiyuki Ohnishi, Hiroshi Sudo, Ery Odette Fukushima, Tomoyoshi Akashi, Toshio Aoki, Kazuki Saito, Toshiya Muranaka. Triterpene functional genomics in licorice for identification of CYP72A154 involved in the biosynthesis of glycyrrhizin. The Plant cell. 2011 Nov; 23(11):4112-23. doi: 10.1105/tpc.110.082685. [PMID: 22128119]
  • Yoshi-Shige Inagaki, Graham Etherington, Katrin Geisler, Ben Field, Melissa Dokarry, Kousuke Ikeda, Yukako Mutsukado, Jo Dicks, Anne Osbourn. Investigation of the potential for triterpene synthesis in rice through genome mining and metabolic engineering. The New phytologist. 2011 Jul; 191(2):432-448. doi: 10.1111/j.1469-8137.2011.03712.x. [PMID: 21501172]
  • Marko Lens, Marie-Helen Podesta Marty. Assessment of the kinetics of the antioxidative capacity of topical antioxidants. Journal of drugs in dermatology : JDD. 2011 Mar; 10(3):262-7. doi: ". [PMID: 21369642]
  • Satoru Sawai, Kazuki Saito. Triterpenoid biosynthesis and engineering in plants. Frontiers in plant science. 2011; 2(?):25. doi: 10.3389/fpls.2011.00025. [PMID: 22639586]
  • Costas Delis, Afrodite Krokida, Sofia Georgiou, Luis M Peña-Rodríguez, Nektarios Kavroulakis, Efstathia Ioannou, Vassilios Roussis, Anne E Osbourn, Kalliope K Papadopoulou. Role of lupeol synthase in Lotus japonicus nodule formation. The New phytologist. 2011 Jan; 189(1):335-46. doi: 10.1111/j.1469-8137.2010.03463.x. [PMID: 20868395]
  • Zhonghua Wang, Ortwin Guhling, Ruonan Yao, Fengling Li, Trevor H Yeats, Jocelyn K C Rose, Reinhard Jetter. Two oxidosqualene cyclases responsible for biosynthesis of tomato fruit cuticular triterpenoids. Plant physiology. 2011 Jan; 155(1):540-52. doi: 10.1104/pp.110.162883. [PMID: 21059824]
  • Bo Qin, John Eagles, Fred A Mellon, Panagiota Mylona, Luis Peña-Rodriguez, Anne E Osbourn. High throughput screening of mutants of oat that are defective in triterpene synthesis. Phytochemistry. 2010 Aug; 71(11-12):1245-52. doi: 10.1016/j.phytochem.2010.05.016. [PMID: 20557911]
  • Xudong Wu, Xiaoquan Qi. Genes encoding hub and bottleneck enzymes of the Arabidopsis metabolic network preferentially retain homeologs through whole genome duplication. BMC evolutionary biology. 2010 May; 10(?):145. doi: 10.1186/1471-2148-10-145. [PMID: 20478072]
  • Chao Sun, Ying Li, Qiong Wu, Hongmei Luo, Yongzhen Sun, Jingyuan Song, Edmund M K Lui, Shilin Chen. De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis. BMC genomics. 2010 Apr; 11(?):262. doi: 10.1186/1471-2164-11-262. [PMID: 20416102]
  • Hongmei Luo, Chao Sun, Jingyuan Song, Jin Lan, Ying Li, Xiwen Li, Shilin Chen. Generation and analysis of expressed sequence tags from a cDNA library of the fruiting body of Ganoderma lucidum. Chinese medicine. 2010 Mar; 5(?):9. doi: 10.1186/1749-8546-5-9. [PMID: 20230644]
  • Akemi Ryu, Kumi Arakane, Chiharu Koide, Hiroyuki Arai, Tetsuo Nagano. Squalene as a target molecule in skin hyperpigmentation caused by singlet oxygen. Biological & pharmaceutical bulletin. 2009 Sep; 32(9):1504-9. doi: 10.1248/bpb.32.1504. [PMID: 19721223]
  • David Posé, Miguel A Botella. Analysis of the arabidopsis dry2/sqe1-5 mutant suggests a role for sterols in signaling. Plant signaling & behavior. 2009 Sep; 4(9):873-4. doi: 10.4161/psb.4.9.9425. [PMID: 19847116]
  • David Posé, Itziar Castanedo, Omar Borsani, Benjamín Nieto, Abel Rosado, Ludivine Taconnat, Albert Ferrer, Liam Dolan, Victoriano Valpuesta, Miguel A Botella. Identification of the Arabidopsis dry2/sqe1-5 mutant reveals a central role for sterols in drought tolerance and regulation of reactive oxygen species. The Plant journal : for cell and molecular biology. 2009 Jul; 59(1):63-76. doi: 10.1111/j.1365-313x.2009.03849.x. [PMID: 19309460]
  • Huaixin Dang, Yan Liu, Wei Pang, Chenghong Li, Nanping Wang, John Y-J Shyy, Yi Zhu. Suppression of 2,3-oxidosqualene cyclase by high fat diet contributes to liver X receptor-alpha-mediated improvement of hepatic lipid profile. The Journal of biological chemistry. 2009 Mar; 284(10):6218-26. doi: 10.1074/jbc.m803702200. [PMID: 19119143]
  • Wanderley de Souza, Juliany Cola Fernandes Rodrigues. Sterol Biosynthesis Pathway as Target for Anti-trypanosomatid Drugs. Interdisciplinary perspectives on infectious diseases. 2009; 2009(?):642502. doi: 10.1155/2009/642502. [PMID: 19680554]
  • Elena Babiychuk, Pierrette Bouvier-Navé, Vincent Compagnon, Masashi Suzuki, Toshiya Muranaka, Marc Van Montagu, Sergei Kushnir, Hubert Schaller. Albinism and cell viability in cycloartenol synthase deficient Arabidopsis. Plant signaling & behavior. 2008 Nov; 3(11):978-80. doi: 10.4161/psb.6173. [PMID: 19704425]
  • Ikuro Abe. [Engineering of squalene cyclizing enzymes]. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan. 2008 Aug; 128(8):1109-18. doi: 10.1248/yakushi.128.1109. [PMID: 18670176]
  • Kiyotaka Nakagawa, Daigo Ibusuki, Yoshihiro Suzuki, Shinji Yamashita, Ohki Higuchi, Shinichi Oikawa, Teruo Miyazawa. Ion-trap tandem mass spectrometric analysis of squalene monohydroperoxide isomers in sunlight-exposed human skin. Journal of lipid research. 2007 Dec; 48(12):2779-87. doi: 10.1194/jlr.d700016-jlr200. [PMID: 17848584]
  • Jung Yeon Han, Yong Soo Kwon, Deok Chun Yang, Young Rim Jung, Yong Eui Choi. Expression and RNA interference-induced silencing of the dammarenediol synthase gene in Panax ginseng. Plant & cell physiology. 2006 Dec; 47(12):1653-62. doi: 10.1093/pcp/pcl032. [PMID: 17088293]
  • Monica Ottaviani, Theodosis Alestas, Enrica Flori, Arianna Mastrofrancesco, Christos C Zouboulis, Mauro Picardo. Peroxidated squalene induces the production of inflammatory mediators in HaCaT keratinocytes: a possible role in acne vulgaris. The Journal of investigative dermatology. 2006 Nov; 126(11):2430-7. doi: 10.1038/sj.jid.5700434. [PMID: 16778793]
  • Susana Mangas, Mercè Bonfill, Lidia Osuna, Elisabeth Moyano, Jaime Tortoriello, Rosa M Cusido, M Teresa Piñol, Javier Palazón. The effect of methyl jasmonate on triterpene and sterol metabolisms of Centella asiatica, Ruscus aculeatus and Galphimia glauca cultured plants. Phytochemistry. 2006 Sep; 67(18):2041-9. doi: 10.1016/j.phytochem.2006.06.025. [PMID: 16876832]
  • Masashi Suzuki, Ting Xiang, Kiyoshi Ohyama, Hikaru Seki, Kazuki Saito, Toshiya Muranaka, Hiroaki Hayashi, Yuji Katsube, Tetsuo Kushiro, Masaaki Shibuya, Yutaka Ebizuka. Lanosterol synthase in dicotyledonous plants. Plant & cell physiology. 2006 May; 47(5):565-71. doi: 10.1093/pcp/pcj031. [PMID: 16531458]
  • Hui Shan, Michael J R Segura, William K Wilson, Silvia Lodeiro, Seiichi P T Matsuda. Enzymatic cyclization of dioxidosqualene to heterocyclic triterpenes. Journal of the American Chemical Society. 2005 Dec; 127(51):18008-9. doi: 10.1021/ja055822g. [PMID: 16366544]
  • T Uchino, N Kawahara, S Sekita, M Satake, Y Saito, H Tokunaga, M Ando. Potent protecting effects of Catuaba (Anemopaegma mirandum) extracts against hydroperoxide-induced cytotoxicity. Toxicology in vitro : an international journal published in association with BIBRA. 2004 Jun; 18(3):255-63. doi: 10.1016/j.tiv.2003.08.013. [PMID: 15046771]
  • J D Jung, H-W Park, Y Hahn, C-G Hur, D S In, H-J Chung, J R Liu, D-W Choi. Discovery of genes for ginsenoside biosynthesis by analysis of ginseng expressed sequence tags. Plant cell reports. 2003 Oct; 22(3):224-30. doi: 10.1007/s00299-003-0678-6. [PMID: 12920566]
  • Henrietta Dehmlow, Johannes D Aebi, Synèse Jolidon, Yu-Hua Ji, Elisabeth M von der Mark, Jacques Himber, Olivier H Morand. Synthesis and structure-activity studies of novel orally active non-terpenoic 2,3-oxidosqualene cyclase inhibitors. Journal of medicinal chemistry. 2003 Jul; 46(15):3354-70. doi: 10.1021/jm021120f. [PMID: 12852766]
  • Swarna Ekanayake Mudiyanselage, Matthias Hamburger, Peter Elsner, Jens J Thiele. Ultraviolet a induces generation of squalene monohydroperoxide isomers in human sebum and skin surface lipids in vitro and in vivo. The Journal of investigative dermatology. 2003 Jun; 120(6):915-22. doi: 10.1046/j.1523-1747.2003.12233.x. [PMID: 12787115]
  • Anita Chugh, Abhijit Ray, Jung B Gupta. Squalene epoxidase as hypocholesterolemic drug target revisited. Progress in lipid research. 2003 Jan; 42(1):37-50. doi: 10.1016/s0163-7827(02)00029-2. [PMID: 12467639]
  • Nobumasa Hayashi, Kenji Togawa, Makoto Yanagisawa, June Hosogi, Daigo Mimura, Yorihiro Yamamoto. Effect of sunlight exposure and aging on skin surface lipids and urate. Experimental dermatology. 2003; 12 Suppl 2(?):13-7. doi: 10.1034/j.1600-0625.12.s2.2.x. [PMID: 14756518]
  • Hideyuki Suzuki, Lahoucine Achnine, Ran Xu, Seiichi P T Matsuda, Richard A Dixon. A genomics approach to the early stages of triterpene saponin biosynthesis in Medicago truncatula. The Plant journal : for cell and molecular biology. 2002 Dec; 32(6):1033-48. doi: 10.1046/j.1365-313x.2002.01497.x. [PMID: 12492844]
  • Steven D Clouse. Brassinosteroids. Plant counterparts to animal steroid hormones?. Vitamins and hormones. 2002; 65(?):195-223. doi: 10.1016/s0083-6729(02)65065-4. [PMID: 12481548]
  • Kosmas Haralampidis, Miranda Trojanowska, Anne E Osbourn. Biosynthesis of triterpenoid saponins in plants. Advances in biochemical engineering/biotechnology. 2002; 75(?):31-49. doi: 10.1007/3-540-44604-4_2. [PMID: 11783842]
  • O H Morand, J D Aebi, H Dehmlow, Y H Ji, N Gains, H Lengsfeld, J Himber. Ro 48-8.071, a new 2,3-oxidosqualene:lanosterol cyclase inhibitor lowering plasma cholesterol in hamsters, squirrel monkeys, and minipigs: comparison to simvastatin. Journal of lipid research. 1997 Feb; 38(2):373-90. doi: 10.1016/s0022-2275(20)37449-6. [PMID: 9162756]
  • S D Atkin, B Morgan, K H Baggaley, J Green. The isolation of 2,3-oxidosqualene from the liver of rats treated with 1-dodecylimidazole, a novel hypocholesterolaemic agent. The Biochemical journal. 1972 Nov; 130(1):153-7. doi: 10.1042/bj1300153. [PMID: 4655417]
  • . . . . doi: . [PMID: 22039103]