Azadirachtin (BioDeep_00000000692)

   

natural product PANOMIX_OTCML-2023


代谢物信息卡片


1H,7H-Naphtho[1,8-bc:4,4a-c]difuran-5,10a(8H)-dicarboxylic acid, 10-(acetyloxy)octahydro-3,5-dihydroxy-4-methyl-8-[[(2E)-2-methyl-1-oxo-2-buten-1-yl]oxy]-4-[(1aR,2S,3aS,6aS,7S,7aS)-3a,6a,7,7a-tetrahydro-6a-hydroxy-7a-methyl-2,7-methanofuro[2,3-b]oxireno[e]oxepin-1a(2H)-yl]-, 5,10a-dimethyl ester, (2aR,3S,4S,4aR,5S,7aS,8S,10R,10aS,10bR)-

化学式: C35H44O16 (720.2629)
中文名称: 印楝素
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 61.25%

分子结构信息

SMILES: C/C=C(\C)C(=O)O[C@H]1C[C@@H](OC(C)=O)[C@@]2(C(=O)OC)CO[C@H]3[C@@H](O)[C@@](C)([C@]45O[C@@]4(C)[C@H]4C[C@@H]5O[C@@H]5OC=C[C@@]54O)[C@@H]4[C@@](O)(C(=O)OC)OC[C@@]14[C@@H]32
InChI: InChI=1S/C35H44O16/c1-8-15(2)24(38)49-18-12-19(48-16(3)36)32(26(39)43-6)13-46-21-22(32)31(18)14-47-34(42,27(40)44-7)25(31)29(4,23(21)37)35-20-11-17(30(35,5)51-35)33(41)9-10-45-28(33)50-20/h8-10,17-23,25,28,37,41-42H,11-14H2,1-7H3/b15-8+

描述信息

Azadirachtin A is a member of the family of azadirachtins that is isolated from the neem tree (Azadirachta indica). It has a role as a hepatoprotective agent. It is an azadirachtin, an organic heterotetracyclic compound, an acetate ester, an epoxide, an enoate ester, a cyclic hemiketal, a tertiary alcohol, a secondary alcohol and a methyl ester.
Azadirachtin is a natural product found in Azadirachta and Azadirachta indica with data available.
D010575 - Pesticides > D007306 - Insecticides
D016573 - Agrochemicals
[Raw Data] CBB03_Azadirachtin_pos_40eV.txt
[Raw Data] CBB03_Azadirachtin_pos_10eV.txt
[Raw Data] CBB03_Azadirachtin_pos_50eV.txt
[Raw Data] CBB03_Azadirachtin_pos_20eV.txt
[Raw Data] CBB03_Azadirachtin_pos_30eV.txt

同义名列表

36 个代谢物同义名

3-Acetyl-1-tigloylazadirachtinin; Azadirachtinin; Azadirachtin; 1H,7H-Naphtho[1,8-bc:4,4a-c]difuran-5,10a(8H)-dicarboxylic acid, 10-(acetyloxy)octahydro-3,5-dihydroxy-4-methyl-8-[[(2E)-2-methyl-1-oxo-2-buten-1-yl]oxy]-4-[(1aR,2S,3aS,6aS,7S,7aS)-3a,6a,7,7a-tetrahydro-6a-hydroxy-7a-methyl-2,7-methanofuro[2,3-b]oxireno[e]oxepin-1a(2H)-yl]-, 5,10a-dimethyl ester, (2aR,3S,4S,4aR,5S,7aS,8S,10R,10aS,10bR)-; 1H,7H-Naphtho(1,8-bc:4,4a-c)difuran-5,10a(8H)-dicarboxylic acid, 10-(acetyloxy)octahydro-3,5-dihydroxy-4-methyl-8-(((2E)-2-methyl-1-oxo-2-butenyl)oxy)-4-((1aR,2S,3aS,6aS,7S,7aS)-3a,6a,7,7a-tetrahydro-6a-hydroxy-7a-methyl-2,7-methanofuro(2,3-b)oxireno(e)oxepin-1a(2H)-yl)-, dimethyl ester, (2aR,3S,4S,4aR,5S,7aS,8S,10R,10aS,10bR)-; dimethyl (2aR,3S,4S,4aR,5S,7aS,8S,10R,10aS,10bR)-10-acetoxy-3,5-dihydroxy-4-[(1aR,2S,3aS,6aS,7S,7aS)-6a-hydroxy-7a-methyl-3a,6a,7,7a-tetrahydro-2,7-methanofuro[2,3-b]oxireno[e]oxepin-1a(2H)-yl]-4-methyl-8-{[(2E)-2-methylbut-2-enoyl]oxy}octahydro-1H-naphtho[1,8a-c:4,5-bc]difuran-5,10a(8H)-dicarboxylate; dimethyl (1S,4S,5R,6S,7S,8R,11S,12R,14S,15R)-12-acetyloxy-4,7-dihydroxy-6-[(1S,2S,6S,8S,9R,11S)-2-hydroxy-11-methyl-5,7,10-trioxatetracyclo[6.3.1.02,6.09,11]dodec-3-en-9-yl]-6-methyl-14-[(E)-2-methylbut-2-enoyl]oxy-3,9-dioxatetracyclo[6.6.1.01,5.011,15]pentadecane-4,11-dicarboxylate; Dimethyl (1S,4S,5R,6S,7S,8R,11S,12R,14S,15R)-12-acetyloxy-4,7-dihydroxy-6-[(1S,2S,6S,9R,11S)-2-hydroxy-11-methyl-5,7,10-trioxatetracyclo[6.3.1.02,6.09,11]dodec-3-en-9-yl]-6-methyl-14-[(E)-2-methylbut-2-enoyl]oxy-3,9-dioxatetracyclo[6.6.1.01,5.011,15]pentadecane-4,11-dicarboxylate; dimethyl acetoxy-dihydroxy-[hydroxy(methyl)[?]yl]-methyl-[(E)-2-methylbut-2-enoyl]oxy-[?]dicarboxylate; FTNJWQUOZFUQQJ-NDAWSKJSSA-N; AZADIRACHTIN [MI]; UNII-O4U1SAF85H; Azadirachtin-A; azadirachtin A; Safer BioNEEM; azadyrachtin; Nimbicidine; AZADIRACTIN; O4U1SAF85H; Superneem; NeemAzal; bioneem; Nimurin; Ornazin; neemix; Azatin; Gronim; BIOSAL; Ecozin; Suneem; Oikos; Align; dimethyl 12-acetyloxy-4,7-dihydroxy-6-(2-hydroxy-11-methyl-5,7,10-trioxatetracyclo[6.3.1.02,6.09,11]dodec-3-en-9-yl)-6-methyl-14-[(E)-2-methylbut-2-enoyl]oxy-3,9-dioxatetracyclo[6.6.1.01,5.011,15]pentadecane-4,11-dicarboxylate; Azadirachtinin; 3-Acetyl-1-tigloylazadirachtinin; AZADIRACHTINB(P); Azadirachtin A



数据库引用编号

63 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

26 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 BCL2, BIRC5, CASP3, CASP9, CAT, CCND1, HPGDS, MMP3, MYL9, NFKB1, TP53
Peripheral membrane protein 2 CYP1B1, GORASP1
Endoplasmic reticulum membrane 3 BCL2, CYP1B1, HSP90B1
Nucleus 10 BCL2, BIRC5, CASP3, CASP9, CCND1, HSP90B1, MMP3, NFKB1, PCNA, TP53
cytosol 13 BCL2, BIRC5, CASP3, CASP9, CAT, CCND1, HPGDS, HSP90B1, LIPE, MMP3, MYL9, NFKB1, TP53
nuclear body 1 PCNA
centrosome 3 CCND1, PCNA, TP53
nucleoplasm 8 ATP2B1, BIRC5, CASP3, CCND1, HPGDS, NFKB1, PCNA, TP53
Cell membrane 3 ATP2B1, LIPE, TNF
Cytoplasmic side 1 GORASP1
Multi-pass membrane protein 1 ATP2B1
Golgi apparatus membrane 1 GORASP1
Synapse 1 ATP2B1
cell cortex 1 MYL9
cell surface 1 TNF
glutamatergic synapse 2 ATP2B1, CASP3
Golgi apparatus 1 GORASP1
Golgi membrane 2 GORASP1, INS
neuronal cell body 2 CASP3, TNF
presynaptic membrane 1 ATP2B1
smooth endoplasmic reticulum 1 HSP90B1
Cytoplasm, cytosol 1 LIPE
plasma membrane 2 ATP2B1, TNF
synaptic vesicle membrane 1 ATP2B1
Membrane 7 ATP2B1, BCL2, CAT, CYP1B1, HSP90B1, LIPE, TP53
basolateral plasma membrane 1 ATP2B1
caveola 1 LIPE
extracellular exosome 4 ATP2B1, CAT, HSP90B1, PCNA
endoplasmic reticulum 3 BCL2, HSP90B1, TP53
extracellular space 3 INS, MMP3, TNF
perinuclear region of cytoplasm 1 HSP90B1
bicellular tight junction 1 CCND1
mitochondrion 7 BCL2, CASP9, CAT, CYP1B1, MMP3, NFKB1, TP53
protein-containing complex 6 BCL2, BIRC5, CASP9, CAT, HSP90B1, TP53
intracellular membrane-bounded organelle 4 ATP2B1, CAT, CYP1B1, HPGDS
Microsome membrane 1 CYP1B1
postsynaptic density 1 CASP3
Secreted 2 INS, MMP3
extracellular region 6 CAT, HSP90B1, INS, MMP3, NFKB1, TNF
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 1 BCL2
Mitochondrion matrix 1 TP53
mitochondrial matrix 2 CAT, TP53
transcription regulator complex 2 NFKB1, TP53
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 TP53
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
Nucleus membrane 2 BCL2, CCND1
Bcl-2 family protein complex 1 BCL2
nuclear membrane 2 BCL2, CCND1
external side of plasma membrane 1 TNF
Z disc 1 MYL9
microtubule cytoskeleton 1 BIRC5
nucleolus 1 TP53
midbody 2 BIRC5, HSP90B1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Membrane raft 1 TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton 2 MYL9, TP53
Cytoplasm, cytoskeleton, spindle 1 BIRC5
focal adhesion 2 CAT, HSP90B1
microtubule 1 BIRC5
spindle 1 BIRC5
cis-Golgi network 1 GORASP1
extracellular matrix 1 MMP3
Peroxisome 1 CAT
myofibril 1 MYL9
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Nucleus, PML body 1 TP53
PML body 1 TP53
collagen-containing extracellular matrix 1 HSP90B1
lateral plasma membrane 1 ATP2B1
interphase microtubule organizing center 1 BIRC5
chromatin 3 NFKB1, PCNA, TP53
cell projection 1 ATP2B1
phagocytic cup 1 TNF
Chromosome 1 BIRC5
centriole 1 BIRC5
nuclear replication fork 1 PCNA
chromosome, telomeric region 1 PCNA
nuclear chromosome 1 BIRC5
Cytoplasm, cell cortex 1 MYL9
Basolateral cell membrane 1 ATP2B1
site of double-strand break 1 TP53
endosome lumen 1 INS
Lipid droplet 1 LIPE
Membrane, caveola 1 LIPE
Chromosome, centromere 1 BIRC5
Chromosome, centromere, kinetochore 1 BIRC5
Melanosome 1 HSP90B1
Presynaptic cell membrane 1 ATP2B1
germ cell nucleus 1 TP53
replication fork 2 PCNA, TP53
myelin sheath 1 BCL2
sperm plasma membrane 1 HSP90B1
stress fiber 1 MYL9
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 3 CAT, INS, NFKB1
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 HSP90B1, INS
nuclear matrix 1 TP53
transcription repressor complex 2 CCND1, TP53
male germ cell nucleus 1 PCNA
specific granule lumen 1 NFKB1
kinetochore 1 BIRC5
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 2 GORASP1, INS
immunological synapse 1 ATP2B1
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
apoptosome 1 CASP9
chromosome, centromeric region 1 BIRC5
nuclear lamina 1 PCNA
Sarcoplasmic reticulum lumen 1 HSP90B1
chromosome passenger complex 1 BIRC5
[Isoform 1]: Nucleus 1 TP53
cytoplasmic microtubule 1 BIRC5
spindle microtubule 1 BIRC5
survivin complex 1 BIRC5
death-inducing signaling complex 1 CASP3
cyclin-dependent protein kinase holoenzyme complex 2 CCND1, PCNA
endocytic vesicle lumen 1 HSP90B1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
muscle myosin complex 1 MYL9
endoplasmic reticulum chaperone complex 1 HSP90B1
BAD-BCL-2 complex 1 BCL2
photoreceptor ribbon synapse 1 ATP2B1
cyclin D1-CDK4 complex 1 CCND1
PCNA complex 1 PCNA
PCNA-p21 complex 1 PCNA
replisome 1 PCNA
[Nuclear factor NF-kappa-B p105 subunit]: Cytoplasm 1 NFKB1
[Nuclear factor NF-kappa-B p50 subunit]: Nucleus 1 NFKB1
I-kappaB/NF-kappaB complex 1 NFKB1
NF-kappaB p50/p65 complex 1 NFKB1
cyclin D1-CDK6 complex 1 CCND1
caspase complex 1 CASP9
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Siti Ainnsyah Omar, Sharmilla Ashokhan, Nazia Abdul Majid, Saiful Anuar Karsani, Benjamin Yii Chung Lau, Jamilah Syafawati Yaacob. Enhanced azadirachtin production in neem (Azadirachta indica) callus through NaCl elicitation: Insights into differential protein regulation via shotgun proteomics. Pesticide biochemistry and physiology. 2024 Feb; 199(?):105778. doi: 10.1016/j.pestbp.2024.105778. [PMID: 38458685]
  • Celeste E Wheeler, Christine Vandervoort, John C Wise. Trunk injection to control Xylosandrus germanus (Coleoptera: Curculionidae) in topworked apple trees. Journal of economic entomology. 2023 Nov; ?(?):. doi: 10.1093/jee/toad217. [PMID: 38011810]
  • Natalie Constancio, Douglas Higgins, Mary Hausbeck, Zsofia Szendrei. Managing insect and plant pathogen pests with organic and conventional pesticides in onions. Journal of economic entomology. 2023 Nov; ?(?):. doi: 10.1093/jee/toad201. [PMID: 37931224]
  • Siddavaram Nagini, Manikandan Palrasu, Anupam Bishayee. Limonoids from neem (Azadirachta Indica A. Juss.) are potential anticancer drug candidates. Medicinal research reviews. 2023 Aug; ?(?):. doi: 10.1002/med.21988. [PMID: 37589457]
  • Rajendra Acharya, Sushant Raj Sharma, Apurba K Barman, Sang-Mok Kim, Kyeong-Yeoll Lee. Control efficacy of azadirachtin on the fall armyworm, Spodoptera frugiperda (J. E. Smith) by soil drenching. Archives of insect biochemistry and physiology. 2023 Apr; ?(?):e22020. doi: 10.1002/arch.22020. [PMID: 37106481]
  • B J Sampson, N Tabanca, C T Werle, S J Stringer, D E Wedge, R Moraes. Insecticidal Activity of Jatropha Extracts Against the Azalea Lace Bug, Stephanitis pyrioides (Hemiptera: Tingidae). Journal of economic entomology. 2023 02; 116(1):192-201. doi: 10.1093/jee/toac187. [PMID: 36534944]
  • Soumendranath Chatterjee, Souvik Bag, Debraj Biswal, Dipanwita Sarkar Paria, Raktima Bandyopadhyay, Basanta Sarkar, Abhijit Mandal, Tushar Kanti Dangar. Neem-based products as potential eco-friendly mosquito control agents over conventional eco-toxic chemical pesticides-A review. Acta tropica. 2023 Feb; 240(?):106858. doi: 10.1016/j.actatropica.2023.106858. [PMID: 36750152]
  • Sandeep Kumar, Anmol, Upendra Sharma, Sg Eswara Reddy. Insecticidal potential of extracts, fractions, and molecules of Aconitum heterophyllum Wall ex. Royle against aphid Aphis craccivora Koch (Hemiptera: Aphididae). Pest management science. 2022 Dec; ?(?):. doi: 10.1002/ps.7324. [PMID: 36519419]
  • Weihua Zhao, Qun Zheng, Deqiang Qin, Peiru Luo, Cuiyi Ye, Shigang Shen, Dongmei Cheng, Suqing Huang, Lihui Liu, Hanhong Xu, Zhixiang Zhang. Azadirachtin inhibits the development and metabolism of the silk glands of Spodoptera frugiperda and affects spinning behavior. Pest management science. 2022 Dec; 78(12):5293-5301. doi: 10.1002/ps.7151. [PMID: 36053871]
  • Upma Singh, Prasun Roy, Shilpi Sharma. Bacterial inoculants as effective agents in minimizing the non-target impact of azadirachtin pesticide and promoting plant growth of Vigna radiata. Archives of microbiology. 2022 Aug; 204(9):555. doi: 10.1007/s00203-022-03162-8. [PMID: 35962834]
  • Kunyu Zhao, Hao Wu, Ruiquan Hou, Jiyingzi Wu, Yongqing Wang, Suqing Huang, Dongmei Cheng, Hanhong Xu, Zhixiang Zhang. Effects of sublethal azadirachtin on the immune response and midgut microbiome of Apis cerana cerana (Hymenoptera: Apidae). Ecotoxicology and environmental safety. 2022 Jan; 229(?):113089. doi: 10.1016/j.ecoenv.2021.113089. [PMID: 34929506]
  • Meihong Lin, Sifan Yang, Jiguang Huang, Lijuan Zhou. Insecticidal Triterpenes in Meliaceae: Plant Species, Molecules and Activities: Part Ⅰ (Aphanamixis-Chukrasia). International journal of molecular sciences. 2021 Dec; 22(24):. doi: 10.3390/ijms222413262. [PMID: 34948062]
  • Sukun Lin, Shengnan Li, Zhenghui Liu, Li Zhang, Hao Wu, Dongmei Cheng, Zhixiang Zhang. Using Azadirachtin to Transform Spodoptera frugiperda from Pest to Natural Enemy. Toxins. 2021 08; 13(8):. doi: 10.3390/toxins13080541. [PMID: 34437412]
  • Inoussa Sanané, Judith Legrand, Christine Dillmann, Frédéric Marion-Poll. High-Throughput Feeding Bioassay for Lepidoptera Larvae. Journal of chemical ecology. 2021 Jul; 47(7):642-652. doi: 10.1007/s10886-021-01290-x. [PMID: 34331170]
  • Benshui Shu, Haikuo Yu, Yuning Li, Hongxin Zhong, Xiangli Li, Liang Cao, Jintian Lin. Identification of azadirachtin responsive genes in Spodoptera frugiperda larvae based on RNA-seq. Pesticide biochemistry and physiology. 2021 Feb; 172(?):104745. doi: 10.1016/j.pestbp.2020.104745. [PMID: 33518039]
  • Francisco Cen-Pacheco, Araceli Ortiz-Celiseo, Alvaro Peniche-Cardeña, Omar Bravo-Ruiz, Fernando C López-Fentanes, Gerardo Valerio-Alfaro, José J Fernández. Studies on the bioactive flavonoids isolated from Azadirachta indica. Natural product research. 2020 Dec; 34(24):3483-3491. doi: 10.1080/14786419.2019.1579808. [PMID: 30835540]
  • Yueyue Tian, Zejun Chen, Xiaoqin Huang, Lixia Zhang, Zhengqun Zhang. Evaluation of Botanicals for Management of Piercing-Sucking Pests and the Effect on Beneficial Arthropod Populations in Tea Trees Camellia sinensis (L.) O. Kuntze (Theaceae). Journal of insect science (Online). 2020 Nov; 20(6):. doi: 10.1093/jisesa/ieaa101. [PMID: 33211857]
  • Selma Mokrane, Giuseppe Cavallo, Francesco Tortorici, Elena Romero, Alberto Fereres, Khaled Djelouah, Vincenzo Verrastro, Daniele Cornara. Behavioral effects induced by organic insecticides can be exploited for a sustainable control of the Orange Spiny Whitefly Aleurocanthus spiniferus. Scientific reports. 2020 09; 10(1):15746. doi: 10.1038/s41598-020-72972-x. [PMID: 32978466]
  • Yi Zhang, Boyang Liu, Kaixi Huang, Shiying Wang, Rafael Lopes Quirino, Zhi-Xiang Zhang, Chaoqun Zhang. Eco-Friendly Castor Oil-Based Delivery System with Sustained Pesticide Release and Enhanced Retention. ACS applied materials & interfaces. 2020 Aug; 12(33):37607-37618. doi: 10.1021/acsami.0c10620. [PMID: 32814393]
  • Karina D Amaral, Lailla C Gandra, Marco Antonio de Oliveira, Danival J de Souza, Terezinha M C Della Lucia. Effect of azadirachtin on mortality and immune response of leaf-cutting ants. Ecotoxicology (London, England). 2019 Dec; 28(10):1190-1197. doi: 10.1007/s10646-019-02124-z. [PMID: 31696443]
  • N Mukherjee, N Joardar, S P Sinha Babu. Antifilarial activity of azadirachtin fuelled through reactive oxygen species induced apoptosis: a thorough molecular study on Setaria cervi. Journal of helminthology. 2019 Sep; 93(5):519-528. doi: 10.1017/s0022149x18000615. [PMID: 30032733]
  • Hannah Hodgson, Ricardo De La Peña, Michael J Stephenson, Ramesha Thimmappa, Jason L Vincent, Elizabeth S Sattely, Anne Osbourn. Identification of key enzymes responsible for protolimonoid biosynthesis in plants: Opening the door to azadirachtin production. Proceedings of the National Academy of Sciences of the United States of America. 2019 08; 116(34):17096-17104. doi: 10.1073/pnas.1906083116. [PMID: 31371503]
  • G K Challa, D M Firake, G T Behere. Bio-pesticide applications may impair the pollination services and survival of foragers of honey bee, Apis cerana Fabricius in oilseed brassica. Environmental pollution (Barking, Essex : 1987). 2019 Jun; 249(?):598-609. doi: 10.1016/j.envpol.2019.03.048. [PMID: 30933757]
  • Meng Bai, Cai-Juan Zheng, Guo-Lei Huang, Rong-Qing Mei, Bin Wang, You-Ping Luo, Chao Zheng, Zhi-Gang Niu, Guang-Ying Chen. Bioactive Meroterpenoids and Isocoumarins from the Mangrove-Derived Fungus Penicillium sp. TGM112. Journal of natural products. 2019 05; 82(5):1155-1164. doi: 10.1021/acs.jnatprod.8b00866. [PMID: 30990038]
  • Farhan Mahmood Shah, Muhammad Razaq, Qasim Ali, Sarfraz Ali Shad, Muhammad Aslam, Ian C W Hardy. Field evaluation of synthetic and neem-derived alternative insecticides in developing action thresholds against cauliflower pests. Scientific reports. 2019 05; 9(1):7684. doi: 10.1038/s41598-019-44080-y. [PMID: 31118444]
  • Sara R Fernandes, Luisa Barreiros, Rita F Oliveira, Agostinho Cruz, Cristina Prudêncio, Ana Isabel Oliveira, Cláudia Pinho, Nuno Santos, Joaquim Morgado. Chemistry, bioactivities, extraction and analysis of azadirachtin: State-of-the-art. Fitoterapia. 2019 Apr; 134(?):141-150. doi: 10.1016/j.fitote.2019.02.006. [PMID: 30738093]
  • Richa Dubey, Ketaki Patil, Sarath C Dantu, Devika M Sardesai, Parnika Bhatia, Nikita Malik, Jhankar D Acharya, Soham Sarkar, Soumadwip Ghosh, Rajarshi Chakrabarti, Shilpy Sharma, Ashutosh Kumar. Azadirachtin inhibits amyloid formation, disaggregates pre-formed fibrils and protects pancreatic β-cells from human islet amyloid polypeptide/amylin-induced cytotoxicity. The Biochemical journal. 2019 03; 476(5):889-907. doi: 10.1042/bcj20180820. [PMID: 30814273]
  • Nathan J Herrick, Raymond A Cloyd, Amy L Raudenbush. Systemic Insecticide Applications: Effects on Citrus Mealybug (Hemiptera: Pseudococcidae) Populations Under Greenhouse Conditions. Journal of economic entomology. 2019 02; 112(1):266-276. doi: 10.1093/jee/toy352. [PMID: 30476177]
  • Carmen G Hernández-Valencia, Angélica Román-Guerrero, Ángeles Aguilar-Santamaría, Luis Cira, Keiko Shirai. Cross-Linking Chitosan into Hydroxypropylmethylcellulose for the Preparation of Neem Oil Coating for Postharvest Storage of Pitaya (Stenocereus pruinosus). Molecules (Basel, Switzerland). 2019 Jan; 24(2):. doi: 10.3390/molecules24020219. [PMID: 30634411]
  • Moataza A Dorrah, Amr A Mohamed, El-Sayed H Shaurub. Immunosuppressive effects of the limonoid azadirachtin, insights on a nongenotoxic stress botanical, in flesh flies. Pesticide biochemistry and physiology. 2019 Jan; 153(?):55-66. doi: 10.1016/j.pestbp.2018.11.004. [PMID: 30744897]
  • Verena Christen, Petra Y Kunz, Karl Fent. Endocrine disruption and chronic effects of plant protection products in bees: Can we better protect our pollinators?. Environmental pollution (Barking, Essex : 1987). 2018 Dec; 243(Pt B):1588-1601. doi: 10.1016/j.envpol.2018.09.117. [PMID: 30296754]
  • Pratheep Thangaraj, Ramesh Kumar Neelamegam, Kayalvizhi Nagarajan, Krishnan Muthukalingan. Interaction of azadirachtin with the lipid-binding domain: Suppression of lipid transportation in the silkworm, Bombyx mori. Pesticide biochemistry and physiology. 2018 Nov; 152(?):62-68. doi: 10.1016/j.pestbp.2018.09.001. [PMID: 30497712]
  • Thiagarayaselvam Aarthy, Fayaj A Mulani, Avinash Pandreka, Ashish Kumar, Sharvani S Nandikol, Saikat Haldar, Hirekodathakallu V Thulasiram. Tracing the biosynthetic origin of limonoids and their functional groups through stable isotope labeling and inhibition in neem tree (Azadirachta indica) cell suspension. BMC plant biology. 2018 Oct; 18(1):230. doi: 10.1186/s12870-018-1447-6. [PMID: 30314459]
  • Sumaira Saleem, Gulzar Muhammad, Muhammad Ajaz Hussain, Syed Nasir Abbas Bukhari. A comprehensive review of phytochemical profile, bioactives for pharmaceuticals, and pharmacological attributes of Azadirachta indica. Phytotherapy research : PTR. 2018 Jul; 32(7):1241-1272. doi: 10.1002/ptr.6076. [PMID: 29671907]
  • Vedran Mužinić, Davor Želježić. Non-target toxicity of novel insecticides. Arhiv za higijenu rada i toksikologiju. 2018 Jun; 69(2):86-102. doi: 10.2478/aiht-2018-69-3111. [PMID: 29990301]
  • Fangxue Xu, Shiyuan Wang, Yujuan Li, Mengmeng Zheng, Xiaozhi Xi, Hui Cao, Xiaowei Cui, Hong Guo, Chunchao Han. Yield enhancement strategies of rare pharmaceutical metabolites from endophytes. Biotechnology letters. 2018 May; 40(5):797-807. doi: 10.1007/s10529-018-2531-6. [PMID: 29605937]
  • Douglas Silva Parreira, Ricardo Alcántara-de la Cruz, Germano Leão Demolin Leite, Francisco de Souza Ramalho, José Cola Zanuncio, José Eduardo Serrão. Quantifying the harmful potential of ten essential oils on immature Trichogramma pretiosum stages. Chemosphere. 2018 May; 199(?):670-675. doi: 10.1016/j.chemosphere.2018.02.083. [PMID: 29471237]
  • Gonca Alak, Arzu Ucar, Veysel Parlak, Aslı Çilingir Yeltekin, Ismail Hakkı Taş, Doğukan Ölmez, Esat Mahmut Kocaman, Mustafa Yılgın, Muhammed Atamanalp, Telat Yanık. Assessment of 8-hydroxy-2-deoxyguanosine activity, gene expression and antioxidant enzyme activity on rainbow trout (Oncorhynchus mykiss) tissues exposed to biopesticide. Comparative biochemistry and physiology. Toxicology & pharmacology : CBP. 2017 Dec; 203(?):51-58. doi: 10.1016/j.cbpc.2017.10.007. [PMID: 29111472]
  • Valentine C Mbatchou, David P Tchouassi, Rita A Dickson, Kofi Annan, Abraham Y Mensah, Isaac K Amponsah, Julia W Jacob, Xavier Cheseto, Solomon Habtemariam, Baldwyn Torto. Mosquito larvicidal activity of Cassia tora seed extract and its key anthraquinones aurantio-obtusin and obtusin. Parasites & vectors. 2017 Nov; 10(1):562. doi: 10.1186/s13071-017-2512-y. [PMID: 29126433]
  • S Divya Reddy, Bandi Siva, V S Phani Babu, M Vijaya, V Lakshma Nayak, Reeta Mandal, Ashok K Tiwari, P Shashikala, K Suresh Babu. New cycloartane type-triterpenoids from the areal parts of Caragana sukiensis and their biological activities. European journal of medicinal chemistry. 2017 Aug; 136(?):74-84. doi: 10.1016/j.ejmech.2017.04.065. [PMID: 28482219]
  • Samira Kilani-Morakchi, Radia Bezzar-Bendjazia, Maroua Ferdenache, Nadia Aribi. Preimaginal exposure to azadirachtin affects food selection and digestive enzymes in adults of Drosophila melanogaster (Diptera: Drosophilidae). Pesticide biochemistry and physiology. 2017 Aug; 140(?):58-64. doi: 10.1016/j.pestbp.2017.06.004. [PMID: 28755695]
  • Quan Gao, Jia Sun, Hang Xun, Xi Yao, Jin Wang, Feng Tang. A new azadirachta from the crude extracts of neem (Azadirachta Indica A. Juss) seeds. Natural product research. 2017 Aug; 31(15):1739-1746. doi: 10.1080/14786419.2017.1290616. [PMID: 28278641]
  • Sweta Bhambhani, Deepika Lakhwani, Parul Gupta, Ashutosh Pandey, Yogeshwar Vikram Dhar, Sumit Kumar Bag, Mehar Hasan Asif, Prabodh Kumar Trivedi. Transcriptome and metabolite analyses in Azadirachta indica: identification of genes involved in biosynthesis of bioactive triterpenoids. Scientific reports. 2017 07; 7(1):5043. doi: 10.1038/s41598-017-05291-3. [PMID: 28698613]
  • Nisha Dahiya, Giuseppina Chianese, Solomon Mequanente Abay, Orazio Taglialatela-Scafati, Fulvio Esposito, Giulio Lupidi, Massimo Bramucci, Luana Quassinti, George Christophides, Annette Habluetzel, Leonardo Lucantoni. In vitro and ex vivo activity of an Azadirachta indica A.Juss. seed kernel extract on early sporogonic development of Plasmodium in comparison with azadirachtin A, its most abundant constituent. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2016 Dec; 23(14):1743-1752. doi: 10.1016/j.phymed.2016.10.019. [PMID: 27912876]
  • Luca Pretali, Letizia Bernardo, Timothy S Butterfield, Marco Trevisan, Luigi Lucini. Botanical and biological pesticides elicit a similar Induced Systemic Response in tomato (Solanum lycopersicum) secondary metabolism. Phytochemistry. 2016 Oct; 130(?):56-63. doi: 10.1016/j.phytochem.2016.04.002. [PMID: 27251587]
  • Kurt Put, Tim Bollens, Felix Wäckers, Apostolos Pekas. Non-target effects of commonly used plant protection products in roses on the predatory mite Euseius gallicus Kreiter & Tixier (Acari: Phytoseidae). Pest management science. 2016 Jul; 72(7):1373-80. doi: 10.1002/ps.4162. [PMID: 26434923]
  • Shanal Shah, Karthik Venkataraghavan, Prashant Choudhary, Shameer Mohammad, Krishna Trivedi, Shalin G Shah. Evaluation of antimicrobial effect of azadirachtin plant extract (Soluneem (™)) on commonly found root canal pathogenic microorganisms (viz. Enterococcus faecalis) in primary teeth: A microbiological study. Journal of the Indian Society of Pedodontics and Preventive Dentistry. 2016 Jul; 34(3):210-6. doi: 10.4103/0970-4388.186741. [PMID: 27461802]
  • Camila R Murussi, Maiara D Costa, Jossiele W Leitemperger, Fábio Flores-Lopes, Charlene C Menezes, Luisa Loebens, Luis Antonio de Avila, Tiele M Rizzetti, Martha B Adaime, Renato Zanella, Vania L Loro. Acute exposure to the biopesticide azadirachtin affects parameters in the gills of common carp (Cyprinus carpio). Comparative biochemistry and physiology. Toxicology & pharmacology : CBP. 2016 Feb; 180(?):49-55. doi: 10.1016/j.cbpc.2015.12.003. [PMID: 26689640]
  • Gadir Nouri-Ganbalani, Ehsan Borzoui, Arman Abdolmaleki, Zahra Abedi, Shizuo George Kamita. Individual and Combined Effects of Bacillus Thuringiensis and Azadirachtin on Plodia Interpunctella Hübner (Lepidoptera: Pyralidae). Journal of insect science (Online). 2016; 16(1):. doi: 10.1093/jisesa/iew086. [PMID: 27638953]
  • Sunil Singh, Rashi Gupta, Madhu Kumari, Shilpi Sharma. Nontarget effects of chemical pesticides and biological pesticide on rhizospheric microbial community structure and function in Vigna radiata. Environmental science and pollution research international. 2015 Aug; 22(15):11290-300. doi: 10.1007/s11356-015-4341-x. [PMID: 25801369]
  • Huan Liu, Guo-Cai Wang, Mao-Xin Zhang, Bing Ling. The cytotoxicology of momordicins I and II on Spodoptera litura cultured cell line SL-1. Pesticide biochemistry and physiology. 2015 Jul; 122(?):110-8. doi: 10.1016/j.pestbp.2014.12.007. [PMID: 26071815]
  • Sunil Singh, Rashi Gupta, Shilpi Sharma. Effects of chemical and biological pesticides on plant growth parameters and rhizospheric bacterial community structure in Vigna radiata. Journal of hazardous materials. 2015 Jun; 291(?):102-10. doi: 10.1016/j.jhazmat.2015.02.053. [PMID: 25791643]
  • Edson G Dembo, Solomon M Abay, Nisha Dahiya, Johnbull S Ogboi, George K Christophides, Giulio Lupidi, Giuseppina Chianese, Leonardo Lucantoni, Annette Habluetzel. Impact of repeated NeemAzal-treated blood meals on the fitness of Anopheles stephensi mosquitoes. Parasites & vectors. 2015 Feb; 8(?):94. doi: 10.1186/s13071-015-0700-1. [PMID: 25884799]
  • H E Öztürk, Ö Güven, I Karaca. EFFECTS OF SOME BIOINSECTICIDES AND ENTOMOPATHOGENIC FUNGI ON COLORADO POTATO BEETLE (LEPTINOTARSA DECEMLINEATA L.). Communications in agricultural and applied biological sciences. 2015; 80(2):205-11. doi: ". [PMID: 27145587]
  • Anirban Banerjee, Subha Manna, Samar Kumar Saha. Effect of aqueous extract of Azadirachta indica A. Juss (neem) leaf on oocyte maturation, oviposition, reproductive potentials and embryonic development of a freshwater fish ectoparasite Argulus bengalensis Ramakrishna, 1951 (Crustacea: Branchiura). Parasitology research. 2014 Dec; 113(12):4641-50. doi: 10.1007/s00436-014-4155-7. [PMID: 25270235]
  • Sukriti Gupta, Rashi Gupta, Shilpi Sharma. Impact of pesticides on plant growth promotion of Vigna radiata and non-target microbes: comparison between chemical- and bio-pesticides. Ecotoxicology (London, England). 2014 Aug; 23(6):1015-21. doi: 10.1007/s10646-014-1245-3. [PMID: 24799184]
  • Darly G Soares, Adriana M Godin, Raquel R Menezes, Rafaela D Nogueira, Ana Mercy S Brito, Ivo S F Melo, Giovanna Maria E Coura, Danielle G Souza, Flávio A Amaral, Tony P Paulino, Márcio M Coelho, Renes R Machado. Anti-inflammatory and antinociceptive activities of azadirachtin in mice. Planta medica. 2014 Jun; 80(8-9):630-6. doi: 10.1055/s-0034-1368507. [PMID: 24871207]
  • N S Baligar, R H Aladakatti, Mukhtar Ahmed, M B Hiremath. Hepatoprotective activity of the neem-based constituent azadirachtin-A in carbon tetrachloride intoxicated Wistar rats. Canadian journal of physiology and pharmacology. 2014 Apr; 92(4):267-77. doi: 10.1139/cjpp-2013-0449. [PMID: 24708208]
  • Ismael Sánchez-Ramos, Susana Pascual, Aránzazu Marcotegui, Cristina E Fernández, Manuel González-Núñez. Laboratory evaluation of alternative control methods against the false tiger, Monosteira unicostata (Hemiptera: Tingidae). Pest management science. 2014 Mar; 70(3):454-61. doi: 10.1002/ps.3593. [PMID: 23765699]
  • Zahra Abedi, Moosa Saber, Samad Vojoudi, Vahid Mahdavi, Ehsan Parsaeyan. Acute, sublethal, and combination effects of azadirachtin and Bacillus thuringiensis on the cotton bollworm, Helicoverpa armigera. Journal of insect science (Online). 2014 Feb; 14(?):30. doi: 10.1093/jis/14.1.30. [PMID: 25373177]
  • Smita Srivastava, A K Srivastava. Effect of elicitors and precursors on azadirachtin production in hairy root culture of Azadirachta indica. Applied biochemistry and biotechnology. 2014 Feb; 172(4):2286-97. doi: 10.1007/s12010-013-0664-6. [PMID: 24357500]
  • Sukriti Gupta, Rashi Gupta, Shilpi Sharma. Impact of chemical- and bio-pesticides on bacterial diversity in rhizosphere of Vigna radiata. Ecotoxicology (London, England). 2013 Dec; 22(10):1479-89. doi: 10.1007/s10646-013-1134-1. [PMID: 24085606]
  • Smita Srivastava, Ashok K Srivastava. Production of the biopesticide azadirachtin by hairy root cultivation of Azadirachta indica in liquid-phase bioreactors. Applied biochemistry and biotechnology. 2013 Nov; 171(6):1351-61. doi: 10.1007/s12010-013-0432-7. [PMID: 23955295]
  • Saurav Kumar, R P Raman, Kundan Kumar, P K Pandey, Neeraj Kumar, B Mallesh, Snatashree Mohanty, Abhay Kumar. Effect of azadirachtin on haematological and biochemical parameters of Argulus-infested goldfish Carassius auratus (Linn. 1758). Fish physiology and biochemistry. 2013 Aug; 39(4):733-47. doi: 10.1007/s10695-012-9736-8. [PMID: 23090629]
  • M A Silva, G C D Bezerra-Silva, J D Vendramim, T Mastrangelo, M R Forim. Neem derivatives are not effective as toxic bait for tephritid fruit flies. Journal of economic entomology. 2013 Aug; 106(4):1772-9. doi: 10.1603/ec12071. [PMID: 24020292]
  • Saurav Kumar, R P Raman, P K Pandey, Snatashree Mohanty, Abhay Kumar, Kundan Kumar. Effect of orally administered azadirachtin on non-specific immune parameters of goldfish Carassius auratus (Linn. 1758) and resistance against Aeromonas hydrophila. Fish & shellfish immunology. 2013 Feb; 34(2):564-73. doi: 10.1016/j.fsi.2012.11.038. [PMID: 23261511]
  • Y F Ma, C Xiao. Push-pull effects of three plant secondary metabolites on oviposition of the potato tuber moth, Phthorimaea operculella. Journal of insect science (Online). 2013; 13(?):128. doi: 10.1673/031.013.12801. [PMID: 24786822]
  • Smita Srivastava, A K Srivastava. Azadirachtin production by hairy root cultivation of Azadirachta indica in a modified stirred tank reactor. Bioprocess and biosystems engineering. 2012 Nov; 35(9):1549-53. doi: 10.1007/s00449-012-0745-x. [PMID: 22580745]
  • Bruna Dallaqua, Felipe Hiroshi Saito, Tiago Rodrigues, Iracema Mattos Paranhos Calderon, Marilza Vieira Cunha Rudge, Emilio Herrera, Débora Cristina Damasceno. Treatment with Azadirachta indica in diabetic pregnant rats: negative effects on maternal outcome. Journal of ethnopharmacology. 2012 Oct; 143(3):805-11. doi: 10.1016/j.jep.2012.07.023. [PMID: 22921950]
  • Smita Srivastava, Ashok Kumar Srivastava. Strategies to overcome oxygen transfer limitations during hairy root cultivation of Azadiracta indica for enhanced azadirachtin production. Applied biochemistry and biotechnology. 2012 Jul; 167(6):1818-30. doi: 10.1007/s12010-011-9531-5. [PMID: 22246729]
  • Vineet K Shukla, Raghvendra S Yadav, Poonam Yadav, Avinash C Pandey. Green synthesis of nanosilver as a sensor for detection of hydrogen peroxide in water. Journal of hazardous materials. 2012 Apr; 213-214(?):161-6. doi: 10.1016/j.jhazmat.2012.01.071. [PMID: 22365140]
  • Souvik Kusari, Vijay C Verma, Marc Lamshoeft, Michael Spiteller. An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World journal of microbiology & biotechnology. 2012 Mar; 28(3):1287-94. doi: 10.1007/s11274-011-0876-2. [PMID: 22805849]
  • Smita Srivastava, A K Srivastava. In vitro azadirachtin production by hairy root cultivation of Azadirachta indica in nutrient mist bioreactor. Applied biochemistry and biotechnology. 2012 Jan; 166(2):365-78. doi: 10.1007/s12010-011-9430-9. [PMID: 22083394]
  • V A Vassiliou. Botanical insecticides in controlling Kelly's citrus thrips (Thysanoptera: Thripidae) on organic grapefruits. Journal of economic entomology. 2011 Dec; 104(6):1979-85. doi: 10.1603/ec11105. [PMID: 22299360]
  • Susana Grimalt, Dean Thompson, Derek Chartrand, John McFarlane, Blair Helson, Barry Lyons, Joe Meating, Taylor Scarr. Foliar residue dynamics of azadirachtins following direct stem injection into white and green ash trees for control of emerald ash borer. Pest management science. 2011 Oct; 67(10):1277-84. doi: 10.1002/ps.2183. [PMID: 21567888]
  • R Giglioti, M R Forim, H N Oliveira, A C S Chagas, J Ferrezini, L G Brito, T O R S Falcoski, L G Albuquerque, M C S Oliveira. In vitro acaricidal activity of neem (Azadirachta indica) seed extracts with known azadirachtin concentrations against Rhipicephalus microplus. Veterinary parasitology. 2011 Sep; 181(2-4):309-15. doi: 10.1016/j.vetpar.2011.03.053. [PMID: 21536387]
  • David Kreutzweiser, Dean Thompson, Susana Grimalt, Derek Chartrand, Kevin Good, Taylor Scarr. Environmental safety to decomposer invertebrates of azadirachtin (neem) as a systemic insecticide in trees to control emerald ash borer. Ecotoxicology and environmental safety. 2011 Sep; 74(6):1734-41. doi: 10.1016/j.ecoenv.2011.04.021. [PMID: 21531021]
  • Susana Grimalt, Dean G Thompson, Melanie Coppens, Derek T Chartrand, Thomas Shorney, Joe Meating, Taylor Scarr. Analytical study of azadirachtin and 3-tigloylazadirachtol residues in foliage and phloem of hardwood tree species by liquid chromatography-electrospray mass spectrometry. Journal of agricultural and food chemistry. 2011 Aug; 59(15):8070-7. doi: 10.1021/jf2023947. [PMID: 21726086]
  • Priyanka Srivastava, Rakhi Chaturvedi. Increased production of azadirachtin from an improved method of androgenic cultures of a medicinal tree Azadirachta indica A. Juss. Plant signaling & behavior. 2011 Jul; 6(7):974-81. doi: 10.4161/psb.6.7.15503. [PMID: 21701249]
  • Maikho Thoh, Banaganapalli Babajan, Pongali B Raghavendra, Chitta Sureshkumar, Sunil K Manna. Azadirachtin interacts with retinoic acid receptors and inhibits retinoic acid-mediated biological responses. The Journal of biological chemistry. 2011 Feb; 286(6):4690-702. doi: 10.1074/jbc.m110.169334. [PMID: 21127062]
  • W Kwankua, S Sengsai, C Kuleung, N Euawong. Sunlight decreased genotoxicity of azadirachtin on root tip cells of Allium cepa and Eucrosia bicolor. Ecotoxicology and environmental safety. 2010 Jul; 73(5):949-54. doi: 10.1016/j.ecoenv.2010.04.001. [PMID: 20452021]
  • Wagner S Tavares, Ivan Cruz, Felipe G Fonseca, Natalia L Gouveia, José E Serrão, José C Zanuncio. Deleterious activity of natural products on postures of Spodoptera frugiperda (Lepidoptera: Noctuidae) and Diatraea saccharalis (Lepidoptera: Pyralidae). Zeitschrift fur Naturforschung. C, Journal of biosciences. 2010 May; 65(5-6):412-8. doi: 10.1515/znc-2010-5-615. [PMID: 20653245]
  • Mohanji Saxena, Kotagiri Ravikanth, Abhishek Kumar, Ashish Gupta, Brijpal Singh, Anirudh Sharma. Purification of Azadirachta indica seed cake and its impact on nutritional and antinutritional factors. Journal of agricultural and food chemistry. 2010 Apr; 58(8):4939-44. doi: 10.1021/jf904336k. [PMID: 20218605]
  • Sebastian Menke, Daniel Gerhard. Detection of a related difference in efficacy of azadirachtin treatments for the control of whiteflies on Gerbera jamesonii by testing for interactions in generalised linear models. Pest management science. 2010 Apr; 66(4):358-64. doi: 10.1002/ps.1881. [PMID: 19924680]
  • Leonardo Lucantoni, Rakiswendé S Yerbanga, Giulio Lupidi, Luciano Pasqualini, Fulvio Esposito, Annette Habluetzel. Transmission blocking activity of a standardized neem (Azadirachta indica) seed extract on the rodent malaria parasite Plasmodium berghei in its vector Anopheles stephensi. Malaria journal. 2010 Mar; 9(?):66. doi: 10.1186/1475-2875-9-66. [PMID: 20196858]
  • Maikho Thoh, Pankaj Kumar, Hampathalu A Nagarajaram, Sunil K Manna. Azadirachtin interacts with the tumor necrosis factor (TNF) binding domain of its receptors and inhibits TNF-induced biological responses. The Journal of biological chemistry. 2010 Feb; 285(8):5888-95. doi: 10.1074/jbc.m109.065847. [PMID: 20018848]
  • Hai-Yan Lu, Fang Liu, Shu-De Zhu, Qing Zhang. [Effects of azadirachtin on rice plant volatiles induced by Nilaparvata lugens]. Ying yong sheng tai xue bao = The journal of applied ecology. 2010 Jan; 21(1):197-202. doi: . [PMID: 20387443]
  • Susmita Ganguly, Sima Bhattacharya, Sukumar Mandi, Jayanta Tarafdar. Biological detection and analysis of toxicity of organophosphate- and azadirachtin-based insecticides in Lathyrus sativus L. Ecotoxicology (London, England). 2010 Jan; 19(1):85-95. doi: 10.1007/s10646-009-0391-5. [PMID: 19618265]
  • Raymond A Cloyd, Nicholas R Timmons, Jessica M Goebel, Kenneth E Kemp. Effect of pesticides on adult rove beetle Atheta coriaria (Coleoptera: Staphylinidae) survival in growing medium. Journal of economic entomology. 2009 Oct; 102(5):1750-8. doi: 10.1603/029.102.0504. [PMID: 19886438]
  • Dariusz Drozdzyński, Jolanta Kowalska. Rapid analysis of organic farming insecticides in soil and produce using ultra-performance liquid chromatography/tandem mass spectrometry. Analytical and bioanalytical chemistry. 2009 Aug; 394(8):2241-7. doi: 10.1007/s00216-009-2931-5. [PMID: 19579019]
  • V Simeone, N Baser, D Perrelli, G Cesari, H El Bilali, P Natale. Residues of rotenone, azadirachtin, pyrethrins and copper used to control Bactrocera oleae (Gmel.) in organic olives and oil. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment. 2009 Apr; 26(4):475-81. doi: 10.1080/02652030802562938. [PMID: 19680921]
  • Giorgia Sarais, Alberto Angioni, Francesco Lai, Paolo Cabras, Pierluigi Caboni. Persistence of two neem formulations on peach leaves and fruit: effect of the distribution. Journal of agricultural and food chemistry. 2009 Mar; 57(6):2457-61. doi: 10.1021/jf803697h. [PMID: 19292469]
  • G Christopher Cutler, Krilen Ramanaidu, T Astatkie, Murray B Isman. Green peach aphid, Myzus persicae (Hemiptera: Aphididae), reproduction during exposure to sublethal concentrations of imidacloprid and azadirachtin. Pest management science. 2009 Feb; 65(2):205-9. doi: 10.1002/ps.1669. [PMID: 19089851]
  • Gunjan Prakash, Ashok K Srivastava. Production of biopesticides in an in situ cell retention bioreactor. Applied biochemistry and biotechnology. 2008 Dec; 151(2-3):307-18. doi: 10.1007/s12010-008-8191-6. [PMID: 18392561]
  • Miroslav Kostić, Zorica Popović, Dejan Brkić, Slobodan Milanović, Ivan Sivcev, Sladjan Stanković. Larvicidal and antifeedant activity of some plant-derived compounds to Lymantria dispar L. (Lepidoptera: Limantriidae). Bioresource technology. 2008 Nov; 99(16):7897-901. doi: 10.1016/j.biortech.2008.02.010. [PMID: 18364253]
  • Alan Bezerra Ribeiro, Patrícia Verardi Abdelnur, Cleverson Fernando Garcia, Adriana Belini, Vanessa G Pasqualotto Severino, M Fátima das G F da Silva, João B Fernandes, Paulo C Vieira, Sérgio A de Carvalho, Alessandra A de Souza, Marcos A Machado. Chemical characterization of Citrus sinensis grafted on C. limonia and the effect of some isolated compounds on the growth of Xylella fastidiosa. Journal of agricultural and food chemistry. 2008 Sep; 56(17):7815-22. doi: 10.1021/jf801103p. [PMID: 18683948]
  • Sirisuda Siriwattanarungsee, Kabkaew L Sukontason, Jimmy K Olson, Orawon Chailapakul, Kom Sukontason. Efficacy of neem extract against the blowfly and housefly. Parasitology research. 2008 Aug; 103(3):535-44. doi: 10.1007/s00436-008-1004-6. [PMID: 18481088]
  • Sengottayan Senthil Nathan, Man Young Choi, Hong Yul Seo, Chae Hoon Paik, Kandaswamy Kalaivani, Jae Duk Kim. Effect of azadirachtin on acetylcholinesterase (AChE) activity and histology of the brown planthopper Nilaparvata lugens (Stål). Ecotoxicology and environmental safety. 2008 Jun; 70(2):244-50. doi: 10.1016/j.ecoenv.2007.07.005. [PMID: 17765967]
  • Rebecca E Baumler, Daniel A Potter. Knockdown, residual, and antifeedant activity of pyrethroids and home landscape bioinsecticides against Japanese beetles (Coleoptera: Scarabaeidae) on Linden foliage. Journal of economic entomology. 2007 Apr; 100(2):451-8. doi: 10.1603/0022-0493(2007)100[451:kraaao]2.0.co;2. [PMID: 17461070]