Arsenate (BioDeep_00000004697)
Secondary id: BioDeep_00001867766
human metabolite Endogenous
代谢物信息卡片
化学式: AsH3O4 (141.9247)
中文名称: 砷酸、原砷酸
谱图信息:
最多检出来源 Viridiplantae(plant) 73.52%
分子结构信息
SMILES: O=[As](O)(O)O
InChI: InChI=1S/AsH3O4/c2-1(3,4)5/h(H3,2,3,4,5)
描述信息
Arsenate is an ion consisting of arsenic. An arsenate is any compound containing the arsenate ion AsO43−. Arsenates are also referred to as pentavalent arsenic [As(V)] as the arsenic atom in arsenate has a valence of five. Arsenates can be both salts and esters of arsenic acid. Arsenate can be used as an indicator of mineral deposits, as a result of transition metals reacting with it to form bright colours. These mineral blooms can be used to find nickel (annabergite), copper (chalcophyllite), and cobalt (erythrite) arsenide ores. Arsenate is a chemical analogue of phosphate due to arsenic and phosphorous being part of the same group (pnictogens). Because of the similarities, arsenate can be taken by phosphate transporters due to imperfect selectivity (PMID: 328484, 8598055). Arsenate is much less toxic than the trivalent form arsenite, which is more mobile in groundwater and soils, and forms strong metal-like interactions with thiol groups in protein cysteine residues and small molecule thiols (PMID: 30852446).
The arsenate ion is AsO43−. An arsenate (compound) is any compound that contains this ion.The arsenic atom in arsenate has a valency of 5 and is also known as pentavalent arsenic or As[V].Arsenate resembles phosphate in many respects, since arsenic and phosphorus occur in the same group (column) of the periodic table.
D010575 - Pesticides > D006540 - Herbicides
D009676 - Noxae > D013723 - Teratogens
D016573 - Agrochemicals
同义名列表
21 个代谢物同义名
Orthoarsenic acid, dihydrate; Tetraoxidoarsenate(3-); Tetraoxoarsenate(3-); Tetraoxoarsenate(V); Orthoarsenic acid; Metaarsenic acid; Pyroarsenic acid; Arsenate ions; Orthoarsenate; arsenate(3-); arsoric acid; Arsenate ion; Arsenic acid; Arsic acid; [AsO(OH)3]; Arsorate; Arsenate; H3AsO4; Arsate; ART; Arsenic acid
数据库引用编号
15 个数据库交叉引用编号
- ChEBI: CHEBI:18231
- KEGG: C01478
- PubChem: 234
- HMDB: HMDB0012190
- ChEMBL: CHEMBL2374288
- Wikipedia: Arsenate
- MetaCyc: ARSENATE
- foodb: FDB028842
- chemspider: 229
- CAS: 7778-39-4
- PMhub: MS000017254
- PubChem: 4650
- PDB-CCD: ART
- NIKKAJI: J3.112G
- KNApSAcK: 18231
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
代谢反应
158 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(156)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
Al3+ + CIT ⟶ Al:citrate
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
Al3+ + CIT ⟶ Al:citrate
- Arsenic uptake and detoxification:
GSH + arsenite(3-) ⟶ As(III)-PC
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
INOH(0)
PlantCyc(2)
- arsenate reduction (respiratory):
A + H2O + arsenite ⟶ A(H2) + H+ + arsenate
- arsenate detoxification V:
D-glyceraldehyde 3-phosphate + NAD+ + arsenate ⟶ 1-arsono-3-phospho-D-glycerate + H+ + NADH
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Muhammad Saeed, Umar Masood Quraishi, Ghazala Mustafa, Abida Farooqi, Maria Greger, Riffat Naseem Malik. Metabolomics profiling reveals the detoxification and tolerance behavior of two bread wheat (Triticum aestivum L.) varieties under arsenate stress.
Food chemistry.
2024 Jun; 443(?):138612. doi:
10.1016/j.foodchem.2024.138612
. [PMID: 38306910] - Ze-Wen Wang, Guang Yang, Jian Chen, Yaoyu Zhou, Avelino Núñez Delgado, Hui-Ling Cui, Gui-Lan Duan, Barry P Rosen, Yong-Guan Zhu. Fundamentals and application in phytoremediation of an efficient arsenate reducing bacterium Pseudomonas putida ARS1.
Journal of environmental sciences (China).
2024 Mar; 137(?):237-244. doi:
10.1016/j.jes.2023.02.020
. [PMID: 37980011] - Pooja Singh, Saumya Jaiswal, Durgesh Kumar Tripathi, Vijay Pratap Singh. Nitric oxide acts upstream of indole-3-acetic acid in ameliorating arsenate stress in tomato seedlings.
Plant physiology and biochemistry : PPB.
2024 Mar; 208(?):108461. doi:
10.1016/j.plaphy.2024.108461
. [PMID: 38461754] - Jingyu Wen, Xin Tang, Mengyuan Wang, Li Mu, Weidan Hao, Jingxian Weng, Ziwei Gao, Xiangang Hu. Regulation and mechanism of pyrite and humic acid on the toxicity of arsenate in lettuce.
The Science of the total environment.
2024 Feb; 912(?):168980. doi:
10.1016/j.scitotenv.2023.168980
. [PMID: 38040366] - Juthathip Janejobkhet, Wasinee Pongprayoon, Kullanart Obsuwan, Supakit Jaiyindee, Sarunyaporn Maksup. Multifaceted response mechanisms of Oryza sativa L. 'KDML105' to high arsenite and arsenate stress levels.
Environmental science and pollution research international.
2024 Feb; 31(9):13816-13832. doi:
10.1007/s11356-024-32122-6
. [PMID: 38265595] - Muhammad Saeed, Umar Masood Quraishi, Tommy Landberg, Maria Greger, Riffat Naseem Malik. Phenomic profiling to reveal tolerance mechanisms and regulation of ascorbate-glutathione cycle in wheat varieties (Triticum aestivum L.) under arsenic stress.
Environmental geochemistry and health.
2023 Dec; 46(1):2. doi:
10.1007/s10653-023-01784-5
. [PMID: 38071652] - Adrián Domene, Helena Orozco, Pilar Rodríguez-Viso, Vicente Monedero, Manuel Zúñiga, Dinoraz Vélez, Vicenta Devesa. Impact of Chronic Exposure to Arsenate through Drinking Water on the Intestinal Barrier.
Chemical research in toxicology.
2023 Oct; ?(?):. doi:
10.1021/acs.chemrestox.3c00201
. [PMID: 37819996] - Yi Hao, Zeyu Cai, Chuanxin Ma, Jason C White, Yini Cao, Zhaofeng Chang, Xinxin Xu, Lanfang Han, Weili Jia, Jian Zhao, Baoshan Xing. Root Exposure of Graphitic Carbon Nitride (g-C3N4) Modulates Metabolite Profile and Endophytic Bacterial Community to Alleviate Cadmium- and Arsenate-Induced Phytotoxicity to Rice (Oryza sativa L.).
ACS nano.
2023 Oct; ?(?):. doi:
10.1021/acsnano.3c03066
. [PMID: 37812587] - Muhammad Qadir, Anwar Hussain, Mohib Shah, Muhammad Hamayun, Amjad Iqbal, Muhammad Irshad, Zafar Hayat Khan, Badshah Islam, Hosam O Elansary, Eman A Mahmoud, In-Jung Lee. Pantoea conspicua promoted sunflower growth and engulfed rhizospheric arsenate by secreting exopolysaccharide.
Plant physiology and biochemistry : PPB.
2023 Aug; 201(?):107826. doi:
10.1016/j.plaphy.2023.107826
. [PMID: 37331076] - Ambika Pandey, Lin-Bo Wu, Varunseelan Murugaiyan, Gabriel Schaaf, Jauhar Ali, Michael Frei. Differential effects of arsenite and arsenate on rice (Oryza sativa) plants differing in glutathione S-transferase gene expression.
Environmental science and pollution research international.
2023 Jul; ?(?):. doi:
10.1007/s11356-023-28833-x
. [PMID: 37486470] - Pengfei Wang, Zedong Chen, Yanjun Meng, Huanting Shi, Chuang Lou, Xu Zheng, Gezi Li, Xiangnan Li, Wanxi Peng, Guozhang Kang. Wheat PHT1;9 acts as one candidate arsenate absorption transporter for phytoremediation.
Journal of hazardous materials.
2023 06; 452(?):131219. doi:
10.1016/j.jhazmat.2023.131219
. [PMID: 36940527] - Yisong Liu, Yanting Zhang, Zhangqing Wang, Shiyuan Guo, Yanjun Fang, Zhenqian Zhang, Huiling Gao, Huimin Ren, Cun Wang. Plasma membrane-associated calcium signaling regulates arsenate tolerance in Arabidopsis.
Plant physiology.
2023 05; 192(2):910-926. doi:
10.1093/plphys/kiad171
. [PMID: 36943277] - Matheus Sampaio C Barreto, Evert J Elzinga, Donald L Sparks. The adsorption of arsenate and p-arsanilic acid onto ferrihydrite and subsequent desorption by sulfate and artificial seawater: Future implications of sea level rise.
Environmental pollution (Barking, Essex : 1987).
2023 Apr; 323(?):121302. doi:
10.1016/j.envpol.2023.121302
. [PMID: 36804144] - You-Jing Peng, Chun-Yan Hu, Wei Li, Zhi-Hua Dai, Chen-Jing Liu, Lena Q Ma. Arsenic induced plant growth by increasing its nutrient uptake in As-hyperaccumulator Pteris vittata: Comparison of arsenate and arsenite.
Environmental pollution (Barking, Essex : 1987).
2023 Apr; 322(?):121168. doi:
10.1016/j.envpol.2023.121168
. [PMID: 36740166] - Jasvinder Kaur, Vandana Anand, Sonal Srivastava, Vidisha Bist, Mariya Naseem, Pallavi Singh, Vartika Gupta, Poonam C Singh, Sangeeta Saxena, Saraswati Bisht, Pankaj Kumar Srivastava, Suchi Srivastava. Mitigation of arsenic toxicity in rice by the co-inoculation of arsenate reducer yeast with multifunctional arsenite oxidizing bacteria.
Environmental pollution (Barking, Essex : 1987).
2023 Mar; 320(?):120975. doi:
10.1016/j.envpol.2022.120975
. [PMID: 36584855] - Ghanshyam Kumar Satyapal, Raghawendra Kumar, Sanjeev Kumar, Ravi Shankar Singh, Prashant, Rajesh Kumar Ranjan, Kundan Kumar, Amrit Kumar Jha, Nater Pal Singh, Rizwanul Haque, Asheesh Shanker, Nitish Kumar. Cloning and functional characterization of arsenite oxidase (aoxB) gene associated with arsenic transformation in Pseudomonas sp. strain AK9.
Gene.
2023 Jan; 850(?):146926. doi:
10.1016/j.gene.2022.146926
. [PMID: 36191825] - Husna, Anwar Hussain, Mohib Shah, Muhammad Hamayun, Amjad Iqbal, Muhammad Qadir, Abed Alataway, Ahmed Z Dewidar, Hosam O Elansary, In-Jung Lee. Phytohormones producing rhizobacteria alleviate heavy metals stress in soybean through multilayered response.
Microbiological research.
2023 Jan; 266(?):127237. doi:
10.1016/j.micres.2022.127237
. [PMID: 36270107] - Fernanda Oliveira Reis, Eduarda de Moura Garcia, Lisiane Martins Volcão, Ronan Adler Tavella, Rodrigo de Lima Brum, Larissa Müller, Erico Kunde Correa, Juliane Ventura-Lima, Flavio Manoel Rodrigues da Silva Júnior. Arsenite and arsenate toxicity in the earthworm Eisenia andrei (Bouché 1972) in natural soil and tropical artificial soil.
Environmental science and pollution research international.
2023 Jan; 30(5):12872-12882. doi:
10.1007/s11356-022-23025-5
. [PMID: 36114968] - Yaqi Wang, Lingxuan Kong, Kang Wang, Yanjin Tao, Hao Qi, Yanan Wan, Qi Wang, Huafen Li. The combined impacts of selenium and phosphorus on the fate of arsenic in rice seedlings (Oryza sativa L.).
Chemosphere.
2022 Dec; 308(Pt 3):136590. doi:
10.1016/j.chemosphere.2022.136590
. [PMID: 36167200] - Kang Wang, Yaqi Wang, Chen Zhang, Lijie Zhao, Lingxuan Kong, Qi Wang, Huafen Li, Yanan Wan. Selenite and selenate showed contrasting impacts on the fate of arsenic in rice (Oryza sativa L.) regardless of the formation of iron plaque.
Environmental pollution (Barking, Essex : 1987).
2022 Nov; 312(?):120039. doi:
10.1016/j.envpol.2022.120039
. [PMID: 36041566] - Jiexuan Yu, Kegang Zhang, Xuelei Duan, Changxian Zhao, Xiaoyang Wei, Qi Guo, Chun-Gang Yuan. Simultaneous removal of arsenate and arsenite in water using a novel functional halloysite nanotube composite.
Environmental science and pollution research international.
2022 Nov; 29(51):77131-77144. doi:
10.1007/s11356-022-20261-7
. [PMID: 35676577] - Zhi-Hua Dai, You-Jing Peng, Song Ding, Jia-Yi Chen, Si-Xue He, Chun-Yan Hu, Yue Cao, Dong-Xing Guan, Lena Q Ma. Selenium Increased Arsenic Accumulation by Upregulating the Expression of Genes Responsible for Arsenic Reduction, Translocation, and Sequestration in Arsenic Hyperaccumulator Pteris vittata.
Environmental science & technology.
2022 10; 56(19):14146-14153. doi:
10.1021/acs.est.2c03147
. [PMID: 36121644] - Sheetal Bhadwal, Sucheta Sharma. Selenium alleviates physiological traits, nutrient uptake and nitrogen metabolism in rice under arsenate stress.
Environmental science and pollution research international.
2022 Oct; 29(47):70862-70881. doi:
10.1007/s11356-022-20762-5
. [PMID: 35589895] - Daniel Rodríguez-Martín, Antonio Murciano, Marta Herráiz, Patricia de Francisco, Francisco Amaro, Juan Carlos Gutiérrez, Ana Martín-González, Silvia Díaz. Arsenate and arsenite differential toxicity in Tetrahymena thermophila.
Journal of hazardous materials.
2022 06; 431(?):128532. doi:
10.1016/j.jhazmat.2022.128532
. [PMID: 35248958] - Nidhi Kandhol, Vijay Pratap Singh, Luis Herrera-Estrella, Lam-Son Phan Tran, Durgesh Kumar Tripathi. Arsenite: the umpire of arsenate perception and responses in plants.
Trends in plant science.
2022 05; 27(5):420-422. doi:
10.1016/j.tplants.2022.02.005
. [PMID: 35249810] - Mi-Mi Sun, Yan Tian, Mei Chun, Yi-Fang Chen. The Ubiquitin E3 Ligase PRU2 Modulates Phosphate Uptake in Arabidopsis.
International journal of molecular sciences.
2022 Feb; 23(4):. doi:
10.3390/ijms23042273
. [PMID: 35216388] - Guan-Hua Cao, Xi-Fu Wang, Ze-Dong Li, Xue Zhang, Xiao-Gang Li, Wen Gu, Fan Zhang, Jie Yu, Sen He. A Panax notoginseng phosphate transporter, PnPht1;3, greatly contributes to phosphate and arsenate uptake.
Functional plant biology : FPB.
2022 02; 49(3):259-271. doi:
10.1071/fp21218
. [PMID: 35115080] - Cristina Navarro, Cristian Mateo-Elizalde, Thotegowdanapalya C Mohan, Eduardo Sánchez-Bermejo, Oscar Urrutia, María Nieves Fernández-Muñiz, José M García-Mina, Riansares Muñoz, Javier Paz-Ares, Gabriel Castrillo, Antonio Leyva. Arsenite provides a selective signal that coordinates arsenate uptake and detoxification through the regulation of PHR1 stability in Arabidopsis.
Molecular plant.
2021 09; 14(9):1489-1507. doi:
10.1016/j.molp.2021.05.020
. [PMID: 34048950] - Amandeep Kaur, Rekha Rana, Tanu Saroha, Prabhu B Patil. Discerning the role of a functional arsenic-resistance cassette in the evolution and adaptation of a rice pathogen.
Microbial genomics.
2021 07; 7(7):. doi:
10.1099/mgen.0.000608
. [PMID: 34254933] - Rajani Singh, Amarendra Narayan Misra, Pallavi Sharma. Differential responses of thiol metabolism and genes involved in arsenic detoxification in tolerant and sensitive genotypes of bioenergy crop Ricinus communis.
Protoplasma.
2021 Mar; 258(2):391-401. doi:
10.1007/s00709-020-01577-y
. [PMID: 33130947] - Juan Francisco Martín, Paloma Liras. Molecular Mechanisms of Phosphate Sensing, Transport and Signalling in Streptomyces and Related Actinobacteria.
International journal of molecular sciences.
2021 Jan; 22(3):. doi:
10.3390/ijms22031129
. [PMID: 33498785] - Neera Garg, Amandeep Cheema. Relative roles of Arbuscular Mycorrhizae in establishing a correlation between soil properties, carbohydrate utilization and yield in Cicer arietinum L. under As stress.
Ecotoxicology and environmental safety.
2021 Jan; 207(?):111196. doi:
10.1016/j.ecoenv.2020.111196
. [PMID: 32890948] - Qi Wang, Jingyu Wen, Jinxin Zheng, Jiaqi Zhao, Chunsheng Qiu, Di Xiao, Li Mu, Xiaowei Liu. Arsenate phytotoxicity regulation by humic acid and related metabolic mechanisms.
Ecotoxicology and environmental safety.
2021 Jan; 207(?):111379. doi:
10.1016/j.ecoenv.2020.111379
. [PMID: 33017691] - Rong Zhao, Chao-Tian Xie, Yan Xu, De-Hua Ji, Chang-Sheng Chen, Jun Ye, Xi-Mei Xue, Wen-Lei Wang. The response of Pyropia haitanensis to inorganic arsenic under laboratory culture.
Chemosphere.
2020 Dec; 261(?):128160. doi:
10.1016/j.chemosphere.2020.128160
. [PMID: 33113648] - Thi Thuc Quyen Nguyen, Paripurnanda Loganathan, Tien Vinh Nguyen, Saravanamuthu Vigneswaran, Huu Hao Ngo. Iron and zirconium modified luffa fibre as an effective bioadsorbent to remove arsenic from drinking water.
Chemosphere.
2020 Nov; 258(?):127370. doi:
10.1016/j.chemosphere.2020.127370
. [PMID: 32554019] - Juan Manuel Peralta, Claudia N Travaglia, María C Romero-Puertas, Ana Furlan, Stella Castro, Eliana Bianucci. Unraveling the impact of arsenic on the redox response of peanut plants inoculated with two different Bradyrhizobium sp. strains.
Chemosphere.
2020 Nov; 259(?):127410. doi:
10.1016/j.chemosphere.2020.127410
. [PMID: 32615455] - Yuan Zhao, Changzhou Yan, Zhuo Zhen. Influence of environmental factors on arsenite transformation and fate in the Hydrilla verticillata (L.f.) royle - Medium system.
Chemosphere.
2020 Nov; 259(?):127442. doi:
10.1016/j.chemosphere.2020.127442
. [PMID: 32593827] - Mark Button, Iris Koch, Michael J Watts, Kenneth J Reimer. Arsenic speciation in the bracket fungus Fomitopsis betulina from contaminated and pristine sites.
Environmental geochemistry and health.
2020 Sep; 42(9):2723-2732. doi:
10.1007/s10653-019-00506-0
. [PMID: 31897873] - Barsha Majumder, Susmita Das, Soumyajit Biswas, Asis Mazumdar, Asok K Biswas. Differential responses of photosynthetic parameters and its influence on carbohydrate metabolism in some contrasting rice (Oryza sativa L.) genotypes under arsenate stress.
Ecotoxicology (London, England).
2020 Sep; 29(7):912-931. doi:
10.1007/s10646-020-02241-0
. [PMID: 32594380] - Jiating Wang, Guiwei Zhang, Zeheng Lin, Yu Luo, Heng Fang, Linjie Yang, Jinying Xie, Lianxian Guo. Determination of arsenicals in mouse tissues after simulated exposure to arsenic from rice for sixteen weeks and the effects on histopathological features.
Ecotoxicology and environmental safety.
2020 Sep; 200(?):110742. doi:
10.1016/j.ecoenv.2020.110742
. [PMID: 32470681] - Ze-Tao Liu, Wen-Dong Xian, Meng-Meng Li, Lan Liu, Yu-Zhen Ming, Jian-Yu Jiao, Bao-Zhu Fang, Min Xiao, Wen-Jun Li. Microvirga arsenatis sp. nov., an arsenate reduction bacterium isolated from Tibet hot spring sediments.
Antonie van Leeuwenhoek.
2020 Aug; 113(8):1147-1153. doi:
10.1007/s10482-020-01421-6
. [PMID: 32361956] - Ana Isabel González de Las Torres, Inmaculada Giráldez, Fátima Martínez, Pedro Palencia, Warren T Corns, Daniel Sánchez-Rodas. Arsenic accumulation and speciation in strawberry plants exposed to inorganic arsenic enriched irrigation.
Food chemistry.
2020 Jun; 315(?):126215. doi:
10.1016/j.foodchem.2020.126215
. [PMID: 32014664] - Eunjin Byeon, Cheolho Yoon, Jin-Sol Lee, Young Hwan Lee, Chang-Bum Jeong, Jae-Seong Lee, Hye-Min Kang. Interspecific biotransformation and detoxification of arsenic compounds in marine rotifer and copepod.
Journal of hazardous materials.
2020 06; 391(?):122196. doi:
10.1016/j.jhazmat.2020.122196
. [PMID: 32062345] - Di Cui, Peng Zhang, Haipu Li, Zhaoxue Zhang, Wenbao Luo, Zhaoguang Yang. Biotransformation of dietary inorganic arsenic in a freshwater fish Carassius auratus and the unique association between arsenic dimethylation and oxidative damage.
Journal of hazardous materials.
2020 06; 391(?):122153. doi:
10.1016/j.jhazmat.2020.122153
. [PMID: 32044628] - Reda A I Abou-Shanab, Prince P Mathai, Cara Santelli, Michael J Sadowsky. Indigenous soil bacteria and the hyperaccumulator Pteris vittata mediate phytoremediation of soil contaminated with arsenic species.
Ecotoxicology and environmental safety.
2020 Jun; 195(?):110458. doi:
10.1016/j.ecoenv.2020.110458
. [PMID: 32193021] - Brenda Gamboa-Loira, Mariano E Cebrián, Lizbeth López-Carrillo. Arsenic exposure in northern Mexican women.
Salud publica de Mexico.
2020 May; 62(3):262-269. doi:
10.21149/11085
. [PMID: 32520484] - Fan Du, Peng Liu, Kai Wang, Zhaoguang Yang, Lin Wang. Ionomic responses of rice plants to the stresses of different arsenic species in hydroponics.
Chemosphere.
2020 Mar; 243(?):125398. doi:
10.1016/j.chemosphere.2019.125398
. [PMID: 31770698] - Enrica Allevato, Silvia Rita Stazi, Rosita Marabottini, Alessandro D'Annibale. Mechanisms of arsenic assimilation by plants and countermeasures to attenuate its accumulation in crops other than rice.
Ecotoxicology and environmental safety.
2019 Dec; 185(?):109701. doi:
10.1016/j.ecoenv.2019.109701
. [PMID: 31562999] - Lanlan Xu, Zhen Lu, Chenglong Ji, Ming Cong, Fei Li, Xiujuan Shan, Huifeng Wu. Toxicological effects of As (V) in juvenile rockfish Sebastes schlegelii by a combined metabolomic and proteomic approach.
Environmental pollution (Barking, Essex : 1987).
2019 Dec; 255(Pt 2):113333. doi:
10.1016/j.envpol.2019.113333
. [PMID: 31610518] - Xiaoping Yu, Wanjing Cui, Qin Wang, Yafei Guo, Tianlong Deng. Speciation analysis of arsenic in samples containing high concentrations of chloride by LC-HG-AFS.
Analytical and bioanalytical chemistry.
2019 Nov; 411(27):7251-7260. doi:
10.1007/s00216-019-02093-6
. [PMID: 31612256] - Ying-Chin Lin, Chi-Jung Chung, Ya-Li Huang, Ru-Lan Hsieh, Pai-Tsang Huang, Mei-Yi Wu, Pui-Lam Ao, Horng-Sheng Shiue, Shiau-Rung Huang, Chien-Tien Su, Ming-I Lin, Shu-Chi Mu, Yu-Mei Hsueh. Association of plasma folate, vitamin B12 levels, and arsenic methylation capacity with developmental delay in preschool children in Taiwan.
Archives of toxicology.
2019 09; 93(9):2535-2544. doi:
10.1007/s00204-019-02540-4
. [PMID: 31473767] - Neha Pandey, S Keshavkant. Characterization of arsenic resistant plant-growth promoting indigenous soil bacteria isolated from Center-East regions of India.
Journal of basic microbiology.
2019 Aug; 59(8):807-819. doi:
10.1002/jobm.201800658
. [PMID: 31070248] - Sarah Zecchin, Milena Colombo, Lucia Cavalca. Exposure to different arsenic species drives the establishment of iron- and sulfur-oxidizing bacteria on rice root iron plaques.
World journal of microbiology & biotechnology.
2019 Jul; 35(8):117. doi:
10.1007/s11274-019-2690-1
. [PMID: 31332532] - Meng-Yang Xie, Zhi-Hui Tian, Xiao-Li Yang, Bao-Hui Liu, Jian Yang, Hong-Hui Lin. The role of OsNLA1 in regulating arsenate uptake and tolerance in rice.
Journal of plant physiology.
2019 May; 236(?):15-22. doi:
10.1016/j.jplph.2019.02.013
. [PMID: 30849693] - Marcela Nascimento Sertorio, Ana Cláudia Ferreira Souza, Daniel Silva Sena Bastos, Felipe Couto Santos, Luiz Otávio Guimarães Ervilha, Kenner Morais Fernandes, Leandro Licursi de Oliveira, Mariana Machado-Neves. Arsenic exposure intensifies glycogen nephrosis in diabetic rats.
Environmental science and pollution research international.
2019 Apr; 26(12):12459-12469. doi:
10.1007/s11356-019-04597-1
. [PMID: 30847815] - Elisabetta Franchi, Paola Cosmina, Francesca Pedron, Irene Rosellini, Meri Barbafieri, Gianniantonio Petruzzelli, Marco Vocciante. Improved arsenic phytoextraction by combined use of mobilizing chemicals and autochthonous soil bacteria.
The Science of the total environment.
2019 Mar; 655(?):328-336. doi:
10.1016/j.scitotenv.2018.11.242
. [PMID: 30471601] - Neera Garg, Lakita Kashyap. Joint effects of Si and mycorrhiza on the antioxidant metabolism of two pigeonpea genotypes under As (III) and (V) stress.
Environmental science and pollution research international.
2019 Mar; 26(8):7821-7839. doi:
10.1007/s11356-019-04256-5
. [PMID: 30680683] - Andrew T Jacobson, Maohong Fan. Evaluation of natural goethite on the removal of arsenate and selenite from water.
Journal of environmental sciences (China).
2019 Feb; 76(?):133-141. doi:
10.1016/j.jes.2018.04.016
. [PMID: 30528005] - Qiaoli Shi, Mingyan Ju, Xiaoxia Zhu, Hui Gan, Ruolan Gu, Zhuona Wu, Zhiyun Meng, Guifang Dou. Pharmacokinetic Properties of Arsenic Species after Intravenous and Intragastrical Administration of Arsenic Trioxide Solution in Cynomolgus Macaques Using HPLC-ICP-MS.
Molecules (Basel, Switzerland).
2019 Jan; 24(2):. doi:
10.3390/molecules24020241
. [PMID: 30634677] - Bishwajit Kumar Kushwaha, Samiksha Singh, Durgesh Kumar Tripathi, Shivesh Sharma, Sheo Mohan Prasad, Devendra Kumar Chauhan, Vipin Kumar, Vijay Pratap Singh. New adventitious root formation and primary root biomass accumulation are regulated by nitric oxide and reactive oxygen species in rice seedlings under arsenate stress.
Journal of hazardous materials.
2019 01; 361(?):134-140. doi:
10.1016/j.jhazmat.2018.08.035
. [PMID: 30176411] - Delphine Vromman, Juan-Pablo Martínez, Mahendra Kumar, Zdenka Šlejkovec, Stanley Lutts. Comparative effects of arsenite (As(III)) and arsenate (As(V)) on whole plants and cell lines of the arsenic-resistant halophyte plant species Atriplex atacamensis.
Environmental science and pollution research international.
2018 Dec; 25(34):34473-34486. doi:
10.1007/s11356-018-3351-x
. [PMID: 30311113] - Zhaojun Lin, Xin Wang, Xin Wu, Daihuan Liu, Yulong Yin, Yue Zhang, Sha Xiao, Baoshan Xing. Nitrate reduced arsenic redox transformation and transfer in flooded paddy soil-rice system.
Environmental pollution (Barking, Essex : 1987).
2018 Dec; 243(Pt B):1015-1025. doi:
10.1016/j.envpol.2018.09.054
. [PMID: 30248601] - Xiaoming Wan, Junxing Yang, Mei Lei. Speciation and uptake of antimony and arsenic by two populations of Pteris vittata L. and Holcus lanatus L. from co-contaminated soil.
Environmental science and pollution research international.
2018 Nov; 25(32):32447-32457. doi:
10.1007/s11356-018-3228-z
. [PMID: 30232773] - Ying Ding, Shengchun Kong, Shan Kang, Wei Chen. A semiparametric imputation approach for regression with censored covariate with application to an AMD progression study.
Statistics in medicine.
2018 10; 37(23):3293-3308. doi:
10.1002/sim.7816
. [PMID: 29845616] - Érica Barbosa Felestrino, Izadora Tabuso Vieira, Washington Luiz Caneschi, Isabella Ferreira Cordeiro, Renata de Almeida Barbosa Assis, Camila Gracyelle de Carvalho Lemes, Natasha Peixoto Fonseca, Angélica Bianchini Sanchez, Juan Carlos Caicedo Cepeda, Jesus Aparecido Ferro, Camila Carrião Machado Garcia, Flávio Fonseca do Carmo, Luciana Hiromi Yoshino Kamino, Leandro Marcio Moreira. Biotechnological potential of plant growth-promoting bacteria from the roots and rhizospheres of endemic plants in ironstone vegetation in southeastern Brazil.
World journal of microbiology & biotechnology.
2018 Oct; 34(10):156. doi:
10.1007/s11274-018-2538-0
. [PMID: 30284648] - Sylwia Budzyńska, Zuzanna Magdziak, Piotr Goliński, Przemysław Niedzielski, Mirosław Mleczek. Arsenic forms in phytoextraction of this metalloid in organs of 2-year-old Acer platanoides seedlings.
Environmental science and pollution research international.
2018 Sep; 25(27):27260-27273. doi:
10.1007/s11356-018-2739-y
. [PMID: 30030760] - Gerald Zvobgo, Tichaona Sagonda, Jonas Lwalaba Wa Lwalaba, James Mutemachani Mapodzeke, Noor Muhammad, Guang Chen, Imran Haider Shamsi, Guoping Zhang. Transcriptomic comparison of two barley genotypes differing in arsenic tolerance exposed to arsenate and phosphate treatments.
Plant physiology and biochemistry : PPB.
2018 Sep; 130(?):589-603. doi:
10.1016/j.plaphy.2018.08.006
. [PMID: 30121511] - Qinchun Li, Hongbin Wang, Haijuan Wang, Wen Zheng, Dongmo Wu, Zhongzhen Wang. Effects of kinetin on plant growth and chloroplast ultrastructure of two Pteris species under arsenate stress.
Ecotoxicology and environmental safety.
2018 Aug; 158(?):37-43. doi:
10.1016/j.ecoenv.2018.04.009
. [PMID: 29656162] - Anuradha Patel, Sanjesh Tiwari, Sheo Mohan Prasad. Toxicity assessment of arsenate and arsenite on growth, chlorophyll a fluorescence and antioxidant machinery in Nostoc muscorum.
Ecotoxicology and environmental safety.
2018 Aug; 157(?):369-379. doi:
10.1016/j.ecoenv.2018.03.056
. [PMID: 29631092] - Brenda Román-Ponce, Juan Ramos-Garza, Ivan Arroyo-Herrera, Jessica Maldonado-Hernández, Yanelly Bahena-Osorio, María Soledad Vásquez-Murrieta, En Tao Wang. Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production.
Archives of microbiology.
2018 Aug; 200(6):883-895. doi:
10.1007/s00203-018-1495-1
. [PMID: 29476206] - Lucas Schmidt, Julio Alberto Landero, Diogo La Rosa Novo, Fabio Andrei Duarte, Marcia Foster Mesko, Joseph A Caruso, Erico Marlon Moraes Flores. A feasible method for As speciation in several types of seafood by LC-ICP-MS/MS.
Food chemistry.
2018 Jul; 255(?):340-347. doi:
10.1016/j.foodchem.2018.02.079
. [PMID: 29571485] - Arifin Sandhi, Tommy Landberg, Maria Greger. Phytofiltration of arsenic by aquatic moss (Warnstorfia fluitans).
Environmental pollution (Barking, Essex : 1987).
2018 Jun; 237(?):1098-1105. doi:
10.1016/j.envpol.2017.11.038
. [PMID: 29157972] - Yu-Ping Yang, Hong-Mei Zhang, Hai-Yan Yuan, Gui-Lan Duan, De-Cai Jin, Fang-Jie Zhao, Yong-Guan Zhu. Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation.
Environmental pollution (Barking, Essex : 1987).
2018 May; 236(?):598-608. doi:
10.1016/j.envpol.2018.01.099
. [PMID: 29433100] - Xiaoyan Tang, Maya P Lim, Murray B McBride. Arsenic uptake by arugula (Eruca vesicaria, L.) cultivars as affected by phosphate availability.
Chemosphere.
2018 Mar; 195(?):559-566. doi:
10.1016/j.chemosphere.2017.12.110
. [PMID: 29277036] - Pokkate Wongsasuluk, Srilert Chotpantarat, Wattasit Siriwong, Mark Robson. Using urine as a biomarker in human exposure risk associated with arsenic and other heavy metals contaminating drinking groundwater in intensively agricultural areas of Thailand.
Environmental geochemistry and health.
2018 Feb; 40(1):323-348. doi:
10.1007/s10653-017-9910-0
. [PMID: 28176197] - Fen Yang, Shaowen Xie, Jinxin Liu, Chaoyang Wei, Hongzhi Zhang, Tao Chen, Jing Zhang. Arsenic concentrations and speciation in wild birds from an abandoned realgar mine in China.
Chemosphere.
2018 Feb; 193(?):777-784. doi:
10.1016/j.chemosphere.2017.11.098
. [PMID: 29175405] - Ignacio E Maldonado-Mendoza, Maria J Harrison. RiArsB and RiMT-11: Two novel genes induced by arsenate in arbuscular mycorrhiza.
Fungal biology.
2018 Feb; 122(2-3):121-130. doi:
10.1016/j.funbio.2017.11.003
. [PMID: 29458715] - Sen Lin, Hongjun Yang, Zhiye Na, Kuangfei Lin. A novel biodegradable arsenic adsorbent by immobilization of iron oxyhydroxide (FeOOH) on the root powder of long-root Eichhornia crassipes.
Chemosphere.
2018 Feb; 192(?):258-266. doi:
10.1016/j.chemosphere.2017.10.163
. [PMID: 29107877] - Nabeel Khan Niazi, Irshad Bibi, Muhammad Shahid, Yong Sik Ok, Edward D Burton, Hailong Wang, Sabry M Shaheen, Jörg Rinklebe, Andreas Lüttge. Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination.
Environmental pollution (Barking, Essex : 1987).
2018 Jan; 232(?):31-41. doi:
10.1016/j.envpol.2017.09.051
. [PMID: 28966026] - Yanli Liu, Rebecca Njeri Damaris, Pingfang Yang. Proteomics analysis identified a DRT protein involved in arsenic resistance in Populus.
Plant cell reports.
2017 Dec; 36(12):1855-1869. doi:
10.1007/s00299-017-2199-8
. [PMID: 28815368] - Young-Seoub Hong, Byeong-Jin Ye, Yu-Mi Kim, Byoung-Gwon Kim, Gyeong-Hui Kang, Jeong-Jin Kim, Ki-Hoon Song, Young-Hun Kim, Jeong-Wook Seo. Investigation of Health Effects According to the Exposure of Low Concentration Arsenic Contaminated Ground Water.
International journal of environmental research and public health.
2017 11; 14(12):. doi:
10.3390/ijerph14121461
. [PMID: 29186890] - Sun-Goo Hwang, Sandeep Chapagain, Jae Woo Lee, A-Reum Han, Cheol Seong Jang. Genome-wide transcriptome profiling of genes associated with arsenate toxicity in an arsenic-tolerant rice mutant.
Plant physiology and biochemistry : PPB.
2017 Nov; 120(?):40-51. doi:
10.1016/j.plaphy.2017.09.019
. [PMID: 28987861] - Zheyun Zhang, Hee Sun Moon, Satish C B Myneni, Peter R Jaffé. Phosphate enhanced abiotic and biotic arsenic mobilization in the wetland rhizosphere.
Chemosphere.
2017 Nov; 187(?):130-139. doi:
10.1016/j.chemosphere.2017.08.096
. [PMID: 28846968] - Xu Wang, Anjing Geng, Yan Dong, Chongyun Fu, Hanmin Li, Yarong Zhao, Qing X Li, Fuhua Wang. Comparison of Translocation and Transformation from Soil to Rice and Metabolism in Rats for Four Arsenic Species.
Journal of agricultural and food chemistry.
2017 Oct; 65(41):8992-8998. doi:
10.1021/acs.jafc.7b01779
. [PMID: 28862447] - Min Zhang, Quanli Zhao, Peiying Xue, Shijie Zhang, Bowen Li, Wenju Liu. Do Si/As ratios in growth medium affect arsenic uptake, arsenite efflux and translocation of arsenite in rice (Oryza sativa)?.
Environmental pollution (Barking, Essex : 1987).
2017 Oct; 229(?):647-654. doi:
10.1016/j.envpol.2017.06.078
. [PMID: 28689153] - Verónica Urrialde, Begoña Alburquerque, José Pedro Guirao-Abad, Jesús Pla, Juan Carlos Argüelles, Rebeca Alonso-Monge. Arsenic inorganic compounds cause oxidative stress mediated by the transcription factor PHO4 in Candida albicans.
Microbiological research.
2017 Oct; 203(?):10-18. doi:
10.1016/j.micres.2017.06.004
. [PMID: 28754203] - Zeng-Xia Wang, Yun-He Li, Kang-Lai He, Shu-Xiong Bai, Tian-Tao Zhang, Wan-Zhi Cai, Zhen-Ying Wang. Does Bt maize expressing Cry1Ac protein have adverse effects on the parasitoid Macrocentrus cingulum (Hymenoptera: Braconidae)?.
Insect science.
2017 Aug; 24(4):599-612. doi:
10.1111/1744-7917.12352
. [PMID: 27126195] - Jiming Xu, Shulin Shi, Lei Wang, Zhong Tang, Tingting Lv, Xinlu Zhu, Xiaomeng Ding, Yifeng Wang, Fang-Jie Zhao, Zhongchang Wu. OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice.
The New phytologist.
2017 Aug; 215(3):1090-1101. doi:
10.1111/nph.14572
. [PMID: 28407265] - Suchismita Das, Letuzia M de Oliveira, Evandro da Silva, Lena Q Ma. Arsenate and fluoride enhanced each other's uptake in As-sensitive plant Pteris ensiformis.
Chemosphere.
2017 Aug; 180(?):448-454. doi:
10.1016/j.chemosphere.2017.04.050
. [PMID: 28419958] - Yu-Jun Wang, Ting-Ting Fan, Cun Liu, Wei Li, Meng-Qiang Zhu, Jian-Xin Fan, Hua Gong, Dong-Mei Zhou, Donald L Sparks. Macroscopic and microscopic investigation of adsorption and precipitation of Zn on γ-alumina in the absence and presence of As.
Chemosphere.
2017 Jul; 178(?):309-316. doi:
10.1016/j.chemosphere.2017.03.061
. [PMID: 28340456] - Georgina Guzmán-Rangel, Liske Versieren, Hao Qiu, Erik Smolders. Additive toxicity of zinc and arsenate on barley (Hordeum vulgare) root elongation.
Environmental toxicology and chemistry.
2017 06; 36(6):1556-1562. doi:
10.1002/etc.3674
. [PMID: 27808449] - Mohammad Ahmadi Jebelli, Afshin Maleki, Mohammad Ali Amoozegar, Enayatollah Kalantar, Behzad Shahmoradi, Fardin Gharibi. Isolation and identification of indigenous prokaryotic bacteria from arsenic-contaminated water resources and their impact on arsenic transformation.
Ecotoxicology and environmental safety.
2017 Jun; 140(?):170-176. doi:
10.1016/j.ecoenv.2017.02.051
. [PMID: 28259061] - Delphine Vromman, Juan-Pablo Martínez, Stanley Lutts. Phosphorus deficiency modifies As translocation in the halophyte plant species Atriplex atacamensis.
Ecotoxicology and environmental safety.
2017 May; 139(?):344-351. doi:
10.1016/j.ecoenv.2017.01.049
. [PMID: 28187398] - Anjing Geng, Xu Wang, Lishu Wu, Fuhua Wang, Yan Chen, Hui Yang, Zhan Zhang, Xiaoli Zhao. Arsenic accumulation and speciation in rice grown in arsanilic acid-elevated paddy soil.
Ecotoxicology and environmental safety.
2017 Mar; 137(?):172-178. doi:
10.1016/j.ecoenv.2016.11.030
. [PMID: 27936403] - Margherita Silvetti, Giovanni Garau, Daniela Demurtas, Salvatore Marceddu, Salvatore Deiana, Paola Castaldi. Influence of lead in the sorption of arsenate by municipal solid waste composts: metal(loid) retention, desorption and phytotoxicity.
Bioresource technology.
2017 Feb; 225(?):90-98. doi:
10.1016/j.biortech.2016.11.057
. [PMID: 27886634] - Xixiang Yin, Lihong Wang, Yifei Liu, Tenglong Jiang, Jianwei Gao. Characterization of Arsenic Biotransformation by a Typical Bryophyte Physcomitrella patens.
Bulletin of environmental contamination and toxicology.
2017 Feb; 98(2):251-256. doi:
10.1007/s00128-016-1997-y
. [PMID: 27933331] - Tomohiro Narukawa, Koichi Chiba, Savarin Sinaviwat, Jörg Feldmann. A rapid monitoring method for inorganic arsenic in rice flour using reversed phase-high performance liquid chromatography-inductively coupled plasma mass spectrometry.
Journal of chromatography. A.
2017 Jan; 1479(?):129-136. doi:
10.1016/j.chroma.2016.12.001
. [PMID: 27939600] - Namrata Singh, Sunil Gupta, Naina Marwa, Vivek Pandey, Praveen C Verma, Sushma Rathaur, Nandita Singh. Arsenic mediated modifications in Bacillus aryabhattai and their biotechnological applications for arsenic bioremediation.
Chemosphere.
2016 Dec; 164(?):524-534. doi:
10.1016/j.chemosphere.2016.08.119
. [PMID: 27619063] - Teresa Chávez-Capilla, William Maher, Tamsin Kelly, Simon Foster. Evaluation of the ability of arsenic species to traverse cell membranes by simple diffusion using octanol-water and liposome-water partition coefficients.
Journal of environmental sciences (China).
2016 Nov; 49(?):222-232. doi:
10.1016/j.jes.2016.08.007
. [PMID: 29216971]