L-Serine (BioDeep_00000001374)

 

Secondary id: BioDeep_00000398118

natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019


代谢物信息卡片


(2S)-2-amino-3-hydroxypropanoic acid

化学式: C3H7NO3 (105.0426)
中文名称: L-丝氨酸, 丝氨酸
谱图信息: 最多检出来源 Homo sapiens(feces) 10.22%

Reviewed

Last reviewed on 2024-07-01.

Cite this Page

L-Serine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/l-serine (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000001374). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C(C(C(=O)O)N)O
InChI: InChI=1S/C3H7NO3/c4-2(1-5)3(6)7/h2,5H,1,4H2,(H,6,7)

描述信息

Serine (Ser) or L-serine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-serine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Serine is found in all organisms ranging from bacteria to plants to animals. It is classified as a polar, uncharged (at physiological pH), aliphatic amino acid. In humans, serine is a nonessential amino acid that can be easily derived from glycine. A non-essential amino acid is an amino acid that can be synthesized from central metabolic pathway intermediates in humans and is not required in the diet. Like all the amino acid building blocks of protein and peptides, serine can become essential under certain conditions, and is thus important in maintaining health and preventing disease. L-Serine may be derived from four possible sources: dietary intake; biosynthesis from the glycolytic intermediate 3-phosphoglycerate; from glycine; and by protein and phospholipid degradation. Little data is available on the relative contributions of each of these four sources of l-serine to serine homoeostasis. It is very likely that the predominant source of l-serine will be very different in different tissues and during different stages of human development. In the biosynthetic pathway, the glycolytic intermediate 3-phosphoglycerate is converted into phosphohydroxypyruvate, in a reaction catalyzed by 3-phosphoglycerate dehydrogenase (3- PGDH; EC 1.1.1.95). Phosphohydroxypyruvate is metabolized to phosphoserine by phosphohydroxypyruvate aminotransferase (EC 2.6.1.52) and, finally, phosphoserine is converted into l-serine by phosphoserine phosphatase (PSP; EC 3.1.3.3). In liver tissue, the serine biosynthetic pathway is regulated in response to dietary and hormonal changes. Of the three synthetic enzymes, the properties of 3-PGDH and PSP are the best documented. Hormonal factors such as glucagon and corticosteroids also influence 3-PGDH and PSP activities in interactions dependent upon the diet. L-serine is the predominant source of one-carbon groups for the de novo synthesis of purine nucleotides and deoxythymidine monophosphate. It has long been recognized that, in cell cultures, L-serine is a conditional essential amino acid, because it cannot be synthesized in sufficient quantities to meet the cellular demands for its utilization. In recent years, L-serine and the products of its metabolism have been recognized not only to be essential for cell proliferation, but also to be necessary for specific functions in the central nervous system. The findings of altered levels of serine and glycine in patients with psychiatric disorders and the severe neurological abnormalities in patients with defects of L-serine synthesis underscore the importance of L-serine in brain development and function. (PMID 12534373).
[Spectral] L-Serine (exact mass = 105.04259) and D-2-Aminobutyrate (exact mass = 103.06333) and 4-Aminobutanoate (exact mass = 103.06333) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions.
Dietary supplement. L-Serine is found in many foods, some of which are cold cut, mammee apple, coho salmon, and carrot.

L-Serine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=56-45-1 (retrieved 2024-07-01) (CAS RN: 56-45-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
L-Serine ((-)-Serine; (S)-Serine), one of the so-called non-essential amino acids, plays a central role in cellular proliferation.
L-Serine ((-)-Serine; (S)-Serine), one of the so-called non-essential amino acids, plays a central role in cellular proliferation.

同义名列表

49 个代谢物同义名

(3R,3R,6S)-4,5-DIDEHYDRO-5,6-DIHYDRO-BETA,BETA-CAROTENE-3,3-DIOL; (3R,3r,6S)-4,5-DIDEHYDRO-5,6-dihydro-b,b-carotene-3,3-diol; (3R,3r,6S)-4,5-DIDEHYDRO-5,6-dihydro-β,β-carotene-3,3-diol; (S)-alpha-Amino-beta-hydroxypropionic acid; (S)-beta-Amino-3-hydroxypropionic acid; (S)-alpha-Amino-beta-hydroxypropionate; (S)-2-Amino-3-hydroxy-propanoic acid; (2S)-2-Amino-3-hydroxypropanoic acid; (S)-2-Amino-3-hydroxypropanoic acid; (S)-b-Amino-3-hydroxypropionic acid; (S)-a-Amino-b-hydroxypropionic acid; (S)-Α-amino-β-hydroxypropionic acid; (S)-beta-Amino-3-hydroxypropionate; L-3-Hydroxy-2-aminopropionic acid; L-2-Amino-3-hydroxypropionic acid; (S)-2-Amino-3-hydroxy-propanoate; (2S)-2-Amino-3-hydroxypropanoate; (S)-b-Amino-3-hydroxypropionate; 2-Amino-3-hydroxypropanoic acid; (S)-2-Amino-3-hydroxypropanoate; (S)-Α-amino-β-hydroxypropionate; (S)-a-Amino-b-hydroxypropionate; L-3-Hydroxy-2-aminopropionate; L-2-Amino-3-hydroxypropionate; 2-Amino-3-hydroxypropanoate; beta-Hydroxy-L-alanine; beta-Hydroxyalanine; b-Hydroxy-L-alanine; Β-hydroxy-L-alanine; L-3-Hydroxy-alanine; 3-Hydroxy-L-alanine; b-Hydroxyalanine; Β-hydroxyalanine; (S)-(-)-Serine; L-(-)-Serine; XANTHOPHYLL; (-)-Serine; (S)-Serine; L-Serine; L Serine; L-Serin; e 161b; SERINE; Bo-Xan; L-Ser; Ser; S; Serine; L-Serine



数据库引用编号

51 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(2)

PlantCyc(0)

代谢反应

2736 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(8)

WikiPathways(2)

Plant Reactome(118)

  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide

INOH(6)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(2602)

PharmGKB(0)

430 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 15 ATM, CCND1, CDK2, CDK5, GSK3B, IRS1, MAPK8, MYLK, NFKB1, NOS3, OGT, PIK3R6, PPA1, PTPRF, RAF1
Peripheral membrane protein 2 ACHE, PIK3R6
Endoplasmic reticulum membrane 2 CD4, GRIA1
Mitochondrion membrane 1 OGT
Nucleus 12 ACHE, ATM, CCND1, CDK2, CDK5, GSK3B, IRS1, MAPK8, NFKB1, NOS3, OGT, RAF1
cytosol 16 ATM, CCND1, CDK2, CDK5, GRIA1, GSK3B, IRS1, LIPE, MAPK8, MYLK, NFKB1, NOS3, OGT, PIK3R6, PPA1, RAF1
dendrite 3 CDK5, GRIA1, GSK3B
mitochondrial membrane 1 OGT
centrosome 4 ATM, CCND1, CDK2, GSK3B
nucleoplasm 11 ATM, ATP2B1, CCND1, CDK2, CDK5, GSK3B, IRS1, MAPK8, NFKB1, NOS3, OGT
Cell membrane 10 ACHE, ATP2B1, CD4, CDK5, GRIA1, GSK3B, LIPE, OGT, PIK3R6, RAF1
Cleavage furrow 1 MYLK
lamellipodium 2 CDK5, MYLK
Cell projection, growth cone 1 CDK5
Early endosome membrane 1 GRIA1
Multi-pass membrane protein 2 ATP2B1, GRIA1
Synapse 6 ACHE, ATP2B1, CDK5, GRIA1, MAPK8, MYLK
cell junction 1 CDK5
cell surface 2 ACHE, GRIA1
dendritic shaft 1 GRIA1
glutamatergic synapse 4 ATP2B1, GRIA1, GSK3B, OGT
Golgi apparatus 3 ACHE, NOS3, RAF1
Golgi membrane 1 NOS3
growth cone 1 CDK5
neuromuscular junction 3 ACHE, CDK5, GRIA1
neuronal cell body 3 CDK5, GRIA1, PTPRF
postsynapse 1 GSK3B
presynaptic membrane 1 ATP2B1
Cytoplasm, cytosol 1 LIPE
Presynapse 3 CDK5, GRIA1, GSK3B
endosome 1 CDK2
plasma membrane 13 ACHE, ATP2B1, CD4, CDK5, GRIA1, GSK3B, IRS1, MYLK, NOS3, OGT, PIK3R6, PTPRF, RAF1
synaptic vesicle membrane 2 ATP2B1, GRIA1
Membrane 8 ACHE, ATP2B1, CDK5, GRIA1, LIPE, OGT, PIK3R6, PTPRF
axon 3 CDK5, GSK3B, MAPK8
basolateral plasma membrane 1 ATP2B1
caveola 3 IRS1, LIPE, NOS3
extracellular exosome 3 ATP2B1, PPA1, PTPRF
extracellular space 1 ACHE
perinuclear region of cytoplasm 2 ACHE, NOS3
bicellular tight junction 1 CCND1
mitochondrion 3 GSK3B, NFKB1, RAF1
protein-containing complex 1 OGT
intracellular membrane-bounded organelle 3 ATM, ATP2B1, IRS1
filopodium 1 CDK5
postsynaptic density 2 CDK5, GRIA1
protein kinase 5 complex 1 CDK5
Single-pass type I membrane protein 1 CD4
Secreted 1 ACHE
extracellular region 2 ACHE, NFKB1
Single-pass membrane protein 1 PTPRF
mitochondrial outer membrane 1 RAF1
excitatory synapse 1 GRIA1
neuronal cell body membrane 1 GRIA1
Extracellular side 1 ACHE
transcription regulator complex 2 CDK2, NFKB1
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 2 ATM, CDK2
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
Nucleus membrane 1 CCND1
nuclear membrane 1 CCND1
external side of plasma membrane 2 CD4, GRIA1
actin cytoskeleton 1 MYLK
dendritic spine 1 GRIA1
perikaryon 1 CDK5
beta-catenin destruction complex 1 GSK3B
cytoplasmic vesicle 1 ATM
nucleolus 1 ATM
Wnt signalosome 1 GSK3B
neuron spine 1 GRIA1
Cytoplasm, P-body 1 NOS3
P-body 1 NOS3
Early endosome 1 CD4
cell-cell junction 1 GRIA1
recycling endosome 1 GRIA1
postsynaptic membrane 1 GRIA1
presynaptic active zone membrane 1 GRIA1
Cell projection, lamellipodium 2 CDK5, MYLK
Membrane raft 1 CD4
spindle 1 ATM
basement membrane 1 ACHE
Peroxisome matrix 1 ATM
peroxisomal matrix 1 ATM
Cell projection, dendritic spine 1 GRIA1
lateral plasma membrane 1 ATP2B1
Postsynaptic cell membrane 1 GRIA1
neuron projection 2 CDK5, PTPRF
chromatin 1 NFKB1
cell projection 2 ATP2B1, OGT
cytoskeleton 1 NOS3
[Isoform 2]: Mitochondrion 1 OGT
chromosome, telomeric region 1 CDK2
postsynaptic density, intracellular component 1 GRIA1
Basolateral cell membrane 1 ATP2B1
Lipid-anchor, GPI-anchor 1 ACHE
site of double-strand break 1 ATM
nuclear envelope 1 CDK2
Recycling endosome membrane 1 GRIA1
Lipid droplet 1 LIPE
Membrane, caveola 1 LIPE
NSL complex 1 OGT
AMPA glutamate receptor complex 1 GRIA1
Cell projection, dendrite 1 GRIA1
Cytoplasm, Stress granule 1 NOS3
cytoplasmic stress granule 1 NOS3
Presynaptic cell membrane 1 ATP2B1
side of membrane 1 ACHE
pseudopodium 1 RAF1
stress fiber 1 MYLK
[Isoform 1]: Cytoplasm 1 CDK5
[Isoform 3]: Cytoplasm 1 OGT
[Isoform 4]: Cytoplasm 1 OGT
synaptic membrane 1 GRIA1
secretory granule lumen 1 NFKB1
endoplasmic reticulum lumen 1 CD4
transcription repressor complex 1 CCND1
male germ cell nucleus 1 CDK2
phosphatidylinositol 3-kinase complex 1 PIK3R6
phosphatidylinositol 3-kinase complex, class IA 1 PIK3R6
specific granule lumen 1 NFKB1
endocytic vesicle membrane 2 GRIA1, NOS3
extrinsic component of synaptic vesicle membrane 1 ATM
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 GRIA1
postsynaptic density membrane 1 GRIA1
immunological synapse 1 ATP2B1
ER to Golgi transport vesicle membrane 1 GRIA1
clathrin-coated endocytic vesicle membrane 1 CD4
Cytoplasm, cytoskeleton, stress fiber 1 MYLK
Cajal body 1 CDK2
synaptic cleft 1 ACHE
histone acetyltransferase complex 1 OGT
protein N-acetylglucosaminyltransferase complex 1 OGT
Sin3-type complex 1 OGT
basal dendrite 1 MAPK8
condensed chromosome 1 CDK2
DNA repair complex 1 ATM
Nucleus, Cajal body 1 CDK2
X chromosome 1 CDK2
Y chromosome 1 CDK2
dendritic spine membrane 1 GRIA1
cyclin-dependent protein kinase holoenzyme complex 3 CCND1, CDK2, CDK5
cyclin E1-CDK2 complex 1 CDK2
cyclin E2-CDK2 complex 1 CDK2
T cell receptor complex 1 CD4
insulin receptor complex 1 IRS1
proximal dendrite 1 GRIA1
photoreceptor ribbon synapse 1 ATP2B1
cyclin D1-CDK4 complex 1 CCND1
[Nuclear factor NF-kappa-B p105 subunit]: Cytoplasm 1 NFKB1
[Nuclear factor NF-kappa-B p50 subunit]: Nucleus 1 NFKB1
I-kappaB/NF-kappaB complex 1 NFKB1
NF-kappaB p50/p65 complex 1 NFKB1
cyclin A2-CDK2 complex 1 CDK2
[Isoform H]: Cell membrane 1 ACHE
cyclin D1-CDK6 complex 1 CCND1
cyclin A1-CDK2 complex 1 CDK2
axonal spine 1 GRIA1
perisynaptic space 1 GRIA1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3R6


文献列表

  • Yasmim Isabel Retore, Fabíola Lucini, Rafael Cardoso Rial, Claudia Andrea Lima Cardoso, Pedro Filho Noronha Souza, Simone Simionatto, Luana Rossato. Antifungal activity of Caryocar brasiliense camb. Alone or along with antifungal agents against multidrug-resistant Candida auris. Journal of ethnopharmacology. 2024 Aug; 330(?):118240. doi: 10.1016/j.jep.2024.118240. [PMID: 38677574]
  • Katarzyna Dettlaff, Gabriela Anglart, Agnieszka Gruszczyńska, Anna Jelińska. Compatibility studies of selected multichamber bag parenteral nutrition with fluconazole. Nutrition (Burbank, Los Angeles County, Calif.). 2024 Jul; 123(?):112417. doi: 10.1016/j.nut.2024.112417. [PMID: 38593672]
  • Xiaomei He, Tingting Lin, Yuying Xie, Jinjing Li, Yuanyuan Ge, Shuncheng Zhang, Jun Fan. Backbone cyclization of Salmonella typhimurium diaminopropionate ammonia-lyase to enhance the activity and stability. Protein expression and purification. 2024 Jun; 218(?):106447. doi: 10.1016/j.pep.2024.106447. [PMID: 38369031]
  • Tyler M Guido, Samuel D Ratcliffe, Amanda Rahmlow, Matthew A Zambrello, Anthony A Provates, Robert B Clark, Michael B Smith, Frank C Nichols. Metabolism of serine/glycine lipids by human gingival cells in culture. Molecular oral microbiology. 2024 Jun; 39(3):103-112. doi: 10.1111/omi.12439. [PMID: 37850509]
  • Zahra Saeidi, Rashin Giti, Azadeh Emami, Mehdi Rostami, Farhad Mohammadi. Thermosensitive and mucoadhesive gels containing solid lipid nanoparticles loaded with fluconazole and niosomes loaded with clindamycin for the treatment of periodontal diseases: a laboratory experiment. BMC oral health. 2024 May; 24(1):551. doi: 10.1186/s12903-024-04322-6. [PMID: 38734599]
  • Xin-Yu Cao, Xinge Li, Feng Wang, Yichen Duan, Xingmei Wu, Guo-Qiang Lin, Meiyu Geng, Min Huang, Ping Tian, Shuai Tang, Dingding Gao. Identification of benzo[b]thiophene-1,1-dioxide derivatives as novel PHGDH covalent inhibitors. Bioorganic chemistry. 2024 May; 146(?):107330. doi: 10.1016/j.bioorg.2024.107330. [PMID: 38579615]
  • Sicong Ma, Roger Sandhoff, Xiu Luo, Fuwei Shang, Qiaozhen Shi, Zhaolong Li, Jingxia Wu, Yanan Ming, Frank Schwarz, Alaa Madi, Nina Weisshaar, Alessa Mieg, Marvin Hering, Ferdinand Zettl, Xin Yan, Kerstin Mohr, Nora Ten Bosch, Zhe Li, Gernot Poschet, Hans-Reimer Rodewald, Nina Papavasiliou, Xi Wang, Pu Gao, Guoliang Cui. Serine enrichment in tumors promotes regulatory T cell accumulation through sphinganine-mediated regulation of c-Fos. Science immunology. 2024 Apr; 9(94):eadg8817. doi: 10.1126/sciimmunol.adg8817. [PMID: 38640251]
  • Anastasiia Delova, Andreea Pasc, Antonio Monari. Interaction of the Immune System TIM-3 Protein with a Model Cellular Membrane Containing Phosphatidyl-Serine Lipids. Chemistry (Weinheim an der Bergstrasse, Germany). 2024 Apr; 30(22):e202304318. doi: 10.1002/chem.202304318. [PMID: 38345892]
  • Xiaohu Yang, Wenchao Yang, Shuang He, He Ye, Shanshan Lei. Danhong formula alleviates endothelial dysfunction and reduces blood pressure in hypertension by regulating MicroRNA 24 - Phosphatidylinositol 3-Kinase-Serine/Threonine Kinase- Endothelial Nitric Oxide Synthase axis. Journal of ethnopharmacology. 2024 Apr; 323(?):117615. doi: 10.1016/j.jep.2023.117615. [PMID: 38163560]
  • Maria Alicia Rueda Huélamo, Alba Martínez Perlado, Valeria Consoli, Aurora García-Tejedor, Claudia Monika Haros, José Moisés Laparra Llopis. Improvement of hepatic innate immunity in chemically-injured livers to develop hepatocarcinoma by a serine type-protease inhibitors enriched extract from Chenopodium quinoa. Food & function. 2024 Apr; 15(7):3600-3614. doi: 10.1039/d3fo03083k. [PMID: 38469889]
  • Chun Chu, Shengquan Liu, Liangui Nie, Hongming Hu, Yi Liu, Jun Yang. The interactions and biological pathways among metabolomics products of patients with coronary heart disease. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2024 Apr; 173(?):116305. doi: 10.1016/j.biopha.2024.116305. [PMID: 38422653]
  • Qiushi Chen, Ya Li, Tianjiao Shen, Rong Wang, Meiling Su, Qiong Luo, Hua Shi, Guodong Lu, Zonghua Wang, Kevin G Hardwick, Mo Wang. Phosphorylation of Mad1 at serine 18 by Mps1 is required for the full virulence of rice blast fungus, Magnaporthe oryzae. Molecular plant pathology. 2024 Apr; 25(4):e13456. doi: 10.1111/mpp.13456. [PMID: 38619864]
  • Hanna Stieber, Lara Junghanns, Hannah Wilhelm, Maria Batliner, Alexander Maximilian Aldejohann, Oliver Kurzai, Ronny Martin. The sphingolipid inhibitor myriocin increases Candida auris susceptibility to amphotericin B. Mycoses. 2024 Apr; 67(4):e13723. doi: 10.1111/myc.13723. [PMID: 38551121]
  • Jiaci Li, Xinping Wei, Yuchen Sun, Xiaofang Chen, Ying Zhang, Xiaoyu Cui, Jianbo Shu, Dong Li, Chunquan Cai. Phosphoserine aminotransferase deficiency diagnosed by whole-exome sequencing and LC-MS/MS reanalysis: A case report and review of literature. Molecular genetics & genomic medicine. 2024 Apr; 12(4):e2400. doi: 10.1002/mgg3.2400. [PMID: 38546032]
  • Xiaojing Liu, Weijia Cheng, Peng Yao, Kexin Ren, Yu Wang, Yingnan Sun, Xin Hou, Li Lu, Xiangsong Chen. Conserved serine phosphorylation regulates histone deacetylase activity in Arabidopsis and humans. Plant physiology. 2024 Mar; 194(4):2017-2021. doi: 10.1093/plphys/kiad587. [PMID: 37966963]
  • Jason L J Lin, Hanna S Yuan. Lipid-Binding Regions within PKC-Related Serine/Threonine Protein Kinase N1 (PKN1) Required for Its Regulation. Biochemistry. 2024 Mar; 63(6):743-753. doi: 10.1021/acs.biochem.4c00009. [PMID: 38441874]
  • Fei Xie, Yumeng Hao, Yu Liu, Junhe Bao, Ruina Wang, Xiaochen Chi, Ting Wang, Shichong Yu, Yongsheng Jin, Liping Li, Yuanying Jiang, Dazhi Zhang, Lan Yan, Tingjunhong Ni. From Synergy to Monotherapy: Discovery of Novel 2,4,6-Trisubstituted Triazine Hydrazone Derivatives with Potent Antifungal Potency In Vitro and In Vivo. Journal of medicinal chemistry. 2024 Mar; 67(5):4007-4025. doi: 10.1021/acs.jmedchem.3c02292. [PMID: 38381075]
  • Katarina Jojić, Fabio Gherlone, Zoltán Cseresnyés, Alexander U Bissell, Sandra Hoefgen, Stefan Hoffmann, Ying Huang, Slavica Janevska, Marc Thilo Figge, Vito Valiante. The spatial organization of sphingofungin biosynthesis in Aspergillus fumigatus and its cross-interaction with sphingolipid metabolism. mBio. 2024 Mar; 15(3):e0019524. doi: 10.1128/mbio.00195-24. [PMID: 38380921]
  • Linsong Wang, Chenglei Qin, Qunqun Guo, Yi Han, Guicai Du, Ronggui Li. Transcriptome Study of Bursaphelenchus xylophilus Treated with Fomepizole Reveals a Serine/Threonine-Protein Phosphatase Gene that Is Substantially Linked with Vitality and Pathogenicity. Phytopathology. 2024 Mar; 114(3):630-640. doi: 10.1094/phyto-04-23-0113-r. [PMID: 38457135]
  • Mei Guo, Yanshuang Zhuang, Yang Wu, Chun Zhang, Xudong Cheng, Dong Xu, Zili Zhang. The cell fate regulator DACH1 modulates ferroptosis through affecting P53/SLC25A37 signaling in fibrotic disease. Hepatology communications. 2024 Mar; 8(3):. doi: 10.1097/hc9.0000000000000396. [PMID: 38437058]
  • Min Qiu, Yaru Sun, Siqun Tu, Huaibo Li, Xin Yang, Haiyang Zhao, Maozhu Yin, Yaning Li, Wenwu Ye, Ming Wang, Yuanchao Wang. Mining oomycete proteomes for phosphatome leads to the identification of specific expanded phosphatases in oomycetes. Molecular plant pathology. 2024 Mar; 25(3):e13425. doi: 10.1111/mpp.13425. [PMID: 38462784]
  • José Weverton Almeida-Bezerra, Rafael Pereira da Cruz, Viviane Bezerra da Silva, João Xavier Da Silva Neto, Larissa Alves Lopes de Souza, Daniele de Oliveira Bezerra de Sousa, Nadine Monteiro Salgueiro Araujo, Rafael Guimarães Gomes Silva, Blasco Quefi, Martinho Rau, Ricardo Andrade Rebelo, Sarah Castro Dos Santos, Luiz Everson da Silva, Henrique Douglas Melo Coutinho, Saulo Almeida Menezes, Maria Flaviana Bezerra Morais-Braga, Antonio Fernando Morais de Oliveira. Exploring the Fluconazole-Resistance Modifying Activity and Potential Mechanism of Action of Fixed Oil from Caryocar coriaceum Wittm. (Caryocaraceae) against Candida Species. Chemistry & biodiversity. 2024 Mar; 21(3):e202301960. doi: 10.1002/cbdv.202301960. [PMID: 38196022]
  • Viviane Bezerra da Silva, José Weverton Almeida-Bezerra, Maria Hellena Garcia Novais, Naiza Saraiva Farias, Janerson José Coelho, Paulo Riceli Vasconcelos Ribeiro, Kirley Marques Canuto, Henrique Douglas Melo Coutinho, Maria Flaviana Bezerra Morais-Braga, Antonio Fernando Morais de Oliveira. Chemical composition, antifungal, and anti-virulence action of the stem bark of Hancornia speciosa Gomes (Apocynaceae) against Candida spp. Journal of ethnopharmacology. 2024 Mar; 321(?):117506. doi: 10.1016/j.jep.2023.117506. [PMID: 38012976]
  • Lianghong Yin, Dandan Xi, Yuefeng Shen, Nana Ding, Qingsong Shao, Yongchang Qian, Yu Fang. Rewiring Metabolic Flux in Corynebacterium glutamicum Using a CRISPR/dCpf1-Based Bifunctional Regulation System. Journal of agricultural and food chemistry. 2024 Feb; 72(6):3077-3087. doi: 10.1021/acs.jafc.3c08529. [PMID: 38303604]
  • Wei Liu, Giovanni Giuriani, Anezka Havlikova, Dezhi Li, Douglas J Lamont, Susanne Neugart, Christos N Velanis, Jan Petersen, Ute Hoecker, John M Christie, Gareth I Jenkins. Phosphorylation of Arabidopsis UVR8 photoreceptor modulates protein interactions and responses to UV-B radiation. Nature communications. 2024 Feb; 15(1):1221. doi: 10.1038/s41467-024-45575-7. [PMID: 38336824]
  • Christopher W Benson, Matthew R Sheltra, David R Huff. The genome of Salmacisia buchloëana, the parasitic puppet master pulling strings of sexual phenotypic monstrosities in buffalograss. G3 (Bethesda, Md.). 2024 02; 14(2):. doi: 10.1093/g3journal/jkad238. [PMID: 37847611]
  • Hélène Sanfaçon, Tim Skern. AlphaFold modeling of nepovirus 3C-like proteinases provides new insights into their diverse substrate specificities. Virology. 2024 02; 590(?):109956. doi: 10.1016/j.virol.2023.109956. [PMID: 38052140]
  • Qianlu Yang, Sisi Deng, Heike Preibsch, Tim-Colin Schade, André Koch, Georgy Berezhnoy, Laimdota Zizmare, Anna Fischer, Brigitte Gückel, Annette Staebler, Andreas D Hartkopf, Bernd J Pichler, Christian la Fougère, Markus Hahn, Irina Bonzheim, Konstantin Nikolaou, Christoph Trautwein. Image-guided metabolomics and transcriptomics reveal tumour heterogeneity in luminal A and B human breast cancer beyond glucose tracer uptake. Clinical and translational medicine. 2024 02; 14(2):e1550. doi: 10.1002/ctm2.1550. [PMID: 38332687]
  • Rong-Shuai Li, Zhi-Chang Xu, Ding-Mei Qin, Jia-Bi Huang, Meng-Ru Wang, Xue-Rong Zhao, Quan-Yu Yang, Wei-Lie Xiao, Rui-Rui Wang, Xiao-Li Li. Three new diterpenoids isolated from Euphorbia nematocypha Hand.-Mazz and their anti-fungal activity. Natural product research. 2024 Feb; 38(5):838-847. doi: 10.1080/14786419.2023.2207134. [PMID: 37139787]
  • Chuanling Li, Xuetong Li, Zhiping Deng, Yuning Song, Xinye Liu, Xiaohan Alex Tang, Ziye Li, Ya Zhang, Baowen Zhang, Wenqiang Tang, Jian-Xiu Shang, Yu Sun. EGR1 and EGR2 positively regulate plant ABA signaling by modulating the phosphorylation of SnRK2.2. The New phytologist. 2024 Feb; 241(4):1492-1509. doi: 10.1111/nph.19458. [PMID: 38095247]
  • Lucas Frungillo. Serine biosynthetic pathways signal to diverse outputs in plants. The Plant cell. 2024 Jan; 36(2):221-222. doi: 10.1093/plcell/koad272. [PMID: 37877455]
  • Guixiang Li, Binglu Ru, Ling Zhang, Yiwen Li, Xuheng Gao, Qin Peng, Jianqiang Miao, Xili Liu. Mefentrifluconazole-Resistant Risk and Resistance-Related Point Mutation in FpCYP51B of Fusarium pseudograminearum. Journal of agricultural and food chemistry. 2024 Jan; 72(3):1516-1526. doi: 10.1021/acs.jafc.3c08014. [PMID: 38194482]
  • Mengyao Wang, Hiromitsu Tabeta, Kinuka Ohtaka, Ayuko Kuwahara, Ryuichi Nishihama, Toshiki Ishikawa, Kiminori Toyooka, Mayuko Sato, Mayumi Wakazaki, Hiromichi Akashi, Hiroshi Tsugawa, Tsubasa Shoji, Yozo Okazaki, Keisuke Yoshida, Ryoichi Sato, Ali Ferjani, Takayuki Kohchi, Masami Yokota Hirai. The phosphorylated pathway of serine biosynthesis affects sperm, embryo, and sporophyte development, and metabolism in Marchantia polymorpha. Communications biology. 2024 01; 7(1):102. doi: 10.1038/s42003-023-05746-6. [PMID: 38267515]
  • Yuhao Ma, Ganxian Cai, Jianfei Chen, Xue Yang, Guoying Hua, Deping Han, Xinhai Li, Dengzhen Feng, Xuemei Deng. Combined transcriptome and metabolome analysis reveals breed-specific regulatory mechanisms in Dorper and Tan sheep. BMC genomics. 2024 Jan; 25(1):70. doi: 10.1186/s12864-023-09870-9. [PMID: 38233814]
  • Viswanada R Bysani, Ayesha S Alam, Arren Bar-Even, Fabian Machens. Engineering and evolution of the complete Reductive Glycine Pathway in Saccharomyces cerevisiae for formate and CO2 assimilation. Metabolic engineering. 2024 Jan; 81(?):167-181. doi: 10.1016/j.ymben.2023.11.007. [PMID: 38040111]
  • Marco A de Oliveira, Lilian H Florentino, Thais T Sales, Rayane N Lima, Luciana R C Barros, Cintia G Limia, Mariana S M Almeida, Maria L Robledo, Leila M G Barros, Eduardo O Melo, Daniela M Bittencourt, Stevens K Rehen, Martín H Bonamino, Elibio Rech. Protocol for the establishment of a serine integrase-based platform for functional validation of genetic switch controllers in eukaryotic cells. PloS one. 2024; 19(5):e0303999. doi: 10.1371/journal.pone.0303999. [PMID: 38781126]
  • Qin Peng, Xiuhuan Li, Guixiang Li, Xinchang Hao, Xili Liu. Resistance risk assessment of mefentrifluconazole in Corynespora cassiicola and the control of cucumber target spot by a two-way mixture of mefentrifluconazole and prochloraz. Pesticide biochemistry and physiology. 2024 Jan; 198(?):105719. doi: 10.1016/j.pestbp.2023.105719. [PMID: 38225065]
  • Sakari Mäntyselkä, Kalle Kolari, Philipp Baumert, Laura Ylä-Outinen, Lauri Kuikka, Suvi Lahtonen, Perttu Permi, Henning Wackerhage, Elina Kalenius, Riikka Kivelä, Juha J Hulmi. Serine synthesis pathway enzyme PHGDH is critical for muscle cell biomass, anabolic metabolism, and mTORC1 signaling. American journal of physiology. Endocrinology and metabolism. 2024 Jan; 326(1):E73-E91. doi: 10.1152/ajpendo.00151.2023. [PMID: 37991454]
  • Zhishan Cao, Jinjun Cao, Volodymyr Vlasenko, Olha Bakumenko, Weihai Li. Molecular characterization and functional analysis of a beta-1,3-glucan recognition protein from oriental fruit moth Grapholita molesta (Lepidoptera: Tortricidae). Archives of insect biochemistry and physiology. 2024 Jan; 115(1):e22068. doi: 10.1002/arch.22068. [PMID: 38013606]
  • Guilherme Nuñez Jaroque, Augusto Leonardo Dos Santos, Patrícia Sartorelli, Luciano Caseli. Unsaturation of serine lipids modulating the interaction of a cytosporone with models of the external leaflet of tumorigenic cell membranes. Chemistry and physics of lipids. 2024 01; 258(?):105363. doi: 10.1016/j.chemphyslip.2023.105363. [PMID: 38042456]
  • Michele Galluccio, Tiziano Mazza, Mariafrancesca Scalise, Martina Tripicchio, Martina Scarpelli, Maria Tolomeo, Lorena Pochini, Cesare Indiveri. Over-Production of the Human SLC7A10 in E. coli and Functional Assay in Proteoliposomes. International journal of molecular sciences. 2023 Dec; 25(1):. doi: 10.3390/ijms25010536. [PMID: 38203703]
  • Hu Zhang, Juntao Wang, Mingrong Qian, Yuanxiang Jin. Mefentrifluconazole exposure disrupted hepatic lipid metabolism disorder tightly associated with gut barrier function abnormal in mice. The Science of the total environment. 2023 Dec; 905(?):167317. doi: 10.1016/j.scitotenv.2023.167317. [PMID: 37742980]
  • Hongyu Ji, You Wu, Xuewei Zhao, Jiang-Lin Miao, Shuwen Deng, Shixing Li, Rui Gao, Zhong-Jian Liu, Junwen Zhai. Genome-Wide Identification and Expression Analysis of WNK Kinase Gene Family in Acorus. International journal of molecular sciences. 2023 Dec; 24(24):. doi: 10.3390/ijms242417594. [PMID: 38139421]
  • Liping Li, Hao Wu, Jiayin Wang, Zhe Ji, Ting Fang, Hui Lu, Lan Yan, Fuming Shen, Dazhi Zhang, Yuanying Jiang, Tingjunhong Ni. Discovery of Novel 8-Hydroxyquinoline Derivatives with Potent In Vitro and In Vivo Antifungal Activity. Journal of medicinal chemistry. 2023 Dec; 66(23):16364-16376. doi: 10.1021/acs.jmedchem.3c01771. [PMID: 37975824]
  • Niloufar Saber-Moghaddam, Mohammad Moeini Nodeh, Vahid Ghavami, Hossein Rahimi, Sajjad Ataei Azimi, Mohsen Seddigh-Shamsi, Mostafa Kamandi, Abolghasem Allahyari, Somayeh Sadat Shariatmaghani, Sepideh Elyasi, Omid Arasteh. The evaluation of atorvastatin as an adjunct to fluconazole for the anti-fungal prophylaxis in acute myeloid leukemia: a multicenter, triple-blinded, randomized clinical trial. Naunyn-Schmiedeberg's archives of pharmacology. 2023 Dec; ?(?):. doi: 10.1007/s00210-023-02892-w. [PMID: 38095652]
  • Younès Dellero, Solenne Berardocco, Alain Bouchereau. U-13C-glucose incorporation into source leaves of Brassica napus highlights light-dependent regulations of metabolic fluxes within central carbon metabolism. Journal of plant physiology. 2023 Dec; 292(?):154162. doi: 10.1016/j.jplph.2023.154162. [PMID: 38103478]
  • Shihao Song, Shuo Zhao, Xiuyun Sun, Lili Meng, Zijie Wang, Huihui Tan, Jingyun Liu, Min Zhang, Yinyue Deng. Anti-virulence strategy of diaryl chalcogenide compounds against Candida albicans infection. Virulence. 2023 12; 14(1):2265012. doi: 10.1080/21505594.2023.2265012. [PMID: 37771181]
  • Alyssa R Stonebraker, Rachel Hankin, Kathryn L Kapp, Peng Li, Stephen J Valentine, Justin Legleiter. Charge within Nt17 peptides modulates huntingtin aggregation and initial lipid binding events. Biophysical chemistry. 2023 12; 303(?):107123. doi: 10.1016/j.bpc.2023.107123. [PMID: 37852163]
  • Huanjie Yang, Xeniya Kim, Jan Skłenar, Sébastien Aubourg, Gloria Sancho-Andrés, Elia Stahl, Marie-Charlotte Guillou, Nora Gigli-Bisceglia, Loup Tran Van Canh, Kyle W Bender, Annick Stintzi, Philippe Reymond, Clara Sánchez-Rodríguez, Christa Testerink, Jean-Pierre Renou, Frank L H Menke, Andreas Schaller, Jack Rhodes, Cyril Zipfel. Subtilase-mediated biogenesis of the expanded family of SERINE RICH ENDOGENOUS PEPTIDES. Nature plants. 2023 12; 9(12):2085-2094. doi: 10.1038/s41477-023-01583-x. [PMID: 38049516]
  • Dominik Awad, Pham Hong Anh Cao, Thomas L Pulliam, Meredith Spradlin, Elavarasan Subramani, Tristen V Tellman, Caroline F Ribeiro, Riccardo Muzzioli, Brittany E Jewell, Hubert Pakula, Jeffrey J Ackroyd, Mollianne M Murray, Jenny J Han, Mei Leng, Antrix Jain, Badrajee Piyarathna, JIngjing Liu, Xingzhi Song, Jianhua Zhang, Albert R Klekers, Justin M Drake, Michael M Ittmann, Cristian Coarfa, David Piwnica-Worms, Mary C Farach-Carson, Massimo Loda, Livia S Eberlin, Daniel E Frigo. Adipose triglyceride lipase is a therapeutic target in advanced prostate cancer that promotes metabolic plasticity. Cancer research. 2023 Dec; ?(?):. doi: 10.1158/0008-5472.can-23-0555. [PMID: 38038968]
  • Junhe Bao, Yumeng Hao, Tingjunhong Ni, Ruina Wang, Jiacun Liu, Xiaochen Chi, Ting Wang, Shichong Yu, Yongsheng Jin, Lan Yan, Xiaomei Li, Dazhi Zhang, Fei Xie. Design, synthesis and in vitro biological studies of novel triazoles with potent and broad-spectrum antifungal activity. Journal of enzyme inhibition and medicinal chemistry. 2023 Dec; 38(1):2244696. doi: 10.1080/14756366.2023.2244696. [PMID: 37553905]
  • Claudia Patricia Bravo-Chaucanés, Luis Carlos Chitiva, Yerly Vargas-Casanova, Valentina Diaz-Santoyo, Andrea Ximena Hernández, Geison M Costa, Claudia Marcela Parra-Giraldo. Exploring the Potential Mechanism of Action of Piperine against Candida albicans and Targeting Its Virulence Factors. Biomolecules. 2023 11; 13(12):. doi: 10.3390/biom13121729. [PMID: 38136600]
  • Guixiang Li, Ling Zhang, Huakai Wang, Xiuhuan Li, Fei Cheng, Jianqiang Miao, Qin Peng, Xili Liu. Resistance to the DMI fungicide mefentrifluconazole in Monilinia fructicola: risk assessment and resistance basis analysis. Pest management science. 2023 Nov; ?(?):. doi: 10.1002/ps.7909. [PMID: 38029343]
  • Kyong-Oh Shin, Bokyung Kim, Yerim Choi, Yoo-Jin Bae, Jae-Ho Park, Soo-Hyun Park, Jin-Taek Hwang, Eung Ho Choi, Yoshikazu Uchida, Kyungho Park. Barrier abnormalities in type 1 diabetes mellitus: the roles of inflammation and ceramide metabolism. The Journal of investigative dermatology. 2023 Nov; ?(?):. doi: 10.1016/j.jid.2023.10.010. [PMID: 37952608]
  • Takafumi Hashimoto, Kenji Hashimoto, Hiroki Shindo, Shoko Tsuboyama, Takuya Miyakawa, Masaru Tanokura, Kazuyuki Kuchitsu. Enhanced Ca2+ binding to EF-hands through phosphorylation of conserved serine residues activates MpRBOHB and chitin-triggered ROS production. Physiologia plantarum. 2023 Nov; 175(6):e14101. doi: 10.1111/ppl.14101. [PMID: 38148249]
  • Thomas Barske, Philipp Spät, Hendrik Schubert, Peter Walke, Boris Maček, Martin Hagemann. The Role of Serine/Threonine-Specific Protein Kinases in Cyanobacteria - SpkB Is Involved in Acclimation to Fluctuating Conditions in Synechocystis sp. PCC 6803. Molecular & cellular proteomics : MCP. 2023 Nov; 22(11):100656. doi: 10.1016/j.mcpro.2023.100656. [PMID: 37797745]
  • Xiaohui Wu, Ziqi Sun, Feiyan Qi, Hua Liu, Mingbo Zhao, Juan Wang, Mengmeng Wang, Ruifang Zhao, Yue Wu, Wenzhao Dong, Zheng Zheng, Xinyou Zhang. Cytological and transcriptomic analysis to unveil the mechanism of web blotch resistance in Peanut. BMC plant biology. 2023 Oct; 23(1):518. doi: 10.1186/s12870-023-04545-9. [PMID: 37884908]
  • Sara Rosa-Téllez, Andrea Alcántara-Enguídanos, Federico Martínez-Seidel, Ruben Casatejada-Anchel, Sompop Saeheng, Clayton L Bailes, Alexander Erban, David Barbosa-Medeiros, Paula Alepúz, José Tomás Matus, Joachim Kopka, Jesús Muñoz-Bertomeu, Stephan Krueger, Sanja Roje, Alisdair R Fernie, Roc Ros. The serine-glycine-one carbon metabolic network orchestrates changes in nitrogen and sulfur metabolism and shapes plant development. The Plant cell. 2023 Oct; ?(?):. doi: 10.1093/plcell/koad256. [PMID: 37804096]
  • Chiao-Hui Hsieh, Chen-Tsung Huang, Yi-Sheng Cheng, Chun-Hua Hsu, Wen-Ming Hsu, Yun-Hsien Chung, Yen-Lin Liu, Tsai-Shan Yang, Chia-Yu Chien, Yu-Hsuan Lee, Hsuan-Cheng Huang, Hsueh-Fen Juan. Homoharringtonine as a PHGDH inhibitor: Unraveling metabolic dependencies and developing a potent therapeutic strategy for high-risk neuroblastoma. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 Oct; 166(?):115429. doi: 10.1016/j.biopha.2023.115429. [PMID: 37673018]
  • João Antonio Siqueira, Youjun Zhang, Adriano Nunes-Nesi, Alisdair R Fernie, Wagner L Araújo. Beyond photorespiration: the significance of glycine and serine in leaf metabolism. Trends in plant science. 2023 10; 28(10):1092-1094. doi: 10.1016/j.tplants.2023.06.012. [PMID: 37407411]
  • Nidal Jaradat. Qualitative and Quantitative Comparison of Aromatic Oil Components and Antifungal Effects of Cymbopogon flexuosus Obtained with Supercritical CO2, Microwave-Ultrasonic, Steam Distillation, and Hydrodistillation Extraction Techniques. Molecules (Basel, Switzerland). 2023 Sep; 28(19):. doi: 10.3390/molecules28196870. [PMID: 37836713]
  • Steven Kildea, Pierre Hellin, Thies M Heick, Stephen Byrne, Fiona Hutton. Mefentrifluconazole sensitivity amongst European Zymoseptoria tritici populations and potential implications for its field efficacy. Pest management science. 2023 Sep; ?(?):. doi: 10.1002/ps.7795. [PMID: 37759353]
  • Xi Meng, Guoqi Yu, Tingyu Luo, Ruiyuan Zhang, Jun Zhang, Yongjie Liu. Transcriptomics integrated with metabolomics reveals perfluorobutane sulfonate (PFBS) exposure effect during pregnancy and lactation on lipid metabolism in rat offspring. Chemosphere. 2023 Sep; 341(?):140120. doi: 10.1016/j.chemosphere.2023.140120. [PMID: 37696479]
  • Robert J DiMario, Ashley N Kophs, Anthony J A Apalla, James N Schnable, Asaph B Cousins. Multiple highly expressed phosphoenolpyruvate carboxylase genes have divergent enzyme kinetic properties in two C4 grasses. Annals of botany. 2023 Sep; ?(?):. doi: 10.1093/aob/mcad116. [PMID: 37675505]
  • Ching-Huey Yang, Yun-Ching Chang, Chung-Chi Hsu, Cheng-Han Lin, I-Ju Chen, Yen-Ting Wu, Yu-Yan Lan. Fucoidan Enhances Cisplatin-induced Effects on SCC-25 Human Oral Cancer Cells by Inhibiting the PI3K/AKT Pathway. Anticancer research. 2023 Sep; 43(9):4015-4022. doi: 10.21873/anticanres.16589. [PMID: 37648299]
  • Juliana Rizzo, Adèle Trottier, Frédérique Moyrand, Jean-Yves Coppée, Corinne Maufrais, Ana Claudia G Zimbres, Thi Tuong Vi Dang, Alexandre Alanio, Marie Desnos-Ollivier, Isabelle Mouyna, Gérard Péhau-Arnaude, Pierre-Henri Commere, Sophie Novault, Iuliana V Ene, Leonardo Nimrichter, Marcio L Rodrigues, Guilhem Janbon. Coregulation of extracellular vesicle production and fluconazole susceptibility in Cryptococcus neoformans. mBio. 2023 08; 14(4):e0087023. doi: 10.1128/mbio.00870-23. [PMID: 37310732]
  • Kevin Ehemann, Andrés Contreras, Adriana Marcela Celis-Ramírez. In vitro sensitivity of Malassezia furfur isolates from HIV-positive and negative patients to antifungal agents. Biomedica : revista del Instituto Nacional de Salud. 2023 Aug; 43(Sp. 1):120-131. doi: 10.7705/biomedica.6871. [PMID: 37721914]
  • David R Boulware, Mucunguzi Atukunda, Enock Kagimu, Abdu K Musubire, Andrew Akampurira, Lillian Tugume, Kenneth Ssebambulidde, John Kasibante, Laura Nsangi, Timothy Mugabi, Jane Gakuru, Sarah Kimuda, Derrick Kasozi, Suzan Namombwe, Isaac Turyasingura, Morris K Rutakingirwa, Edward Mpoza, Enos Kigozi, Conrad Muzoora, Jayne Ellis, Caleb P Skipper, Theresa Matkovits, Peter R Williamson, Darlisha A Williams, Ann Fieberg, Kathy H Hullsiek, Mahsa Abassi, Biyue Dai, David B Meya. Oral Lipid Nanocrystal Amphotericin B for Cryptococcal Meningitis: A Randomized Clinical Trial. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2023 Aug; ?(?):. doi: 10.1093/cid/ciad440. [PMID: 37606364]
  • Jia-Xin Chen, Qi-Jun Fang, Yi-Gang Wan, Ying-Lu Liu, Yu Wang, Wei Wu, Yue Tu, Mei-Zi Wang, Dian-Guang Wang, Hai-Tao Ge. [Effects and mechanisms of total flavones of Abelmoschus manihot in inhibiting podocyte necroptosis and renal fibrosis in diabetic kidney disease]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2023 Aug; 48(15):4137-4146. doi: 10.19540/j.cnki.cjcmm.20230417.701. [PMID: 37802782]
  • Su-Bin Jin, Si-Wook Jang, Ji-Ae Shin, Na-Hee Jung, Hyun-A Kim, Seo-Young Park, Woo-Cheol Lee, Kwang-Hoon Kong. Functional significance of serine 13 in the active site of glutathione S-transferase F3 from Oryza sativa. Pesticide biochemistry and physiology. 2023 Aug; 194(?):105463. doi: 10.1016/j.pestbp.2023.105463. [PMID: 37532308]
  • Lin Du, Saikat Haldar, Jarrod B King, Allison O Mattes, Shikha Srivastava, Karen L Wendt, Jianlan You, Chad Cunningham, Robert H Cichewicz. Persephacin Is a Broad-Spectrum Antifungal Aureobasidin Metabolite That Overcomes Intrinsic Resistance in Aspergillus fumigatus. Journal of natural products. 2023 Jul; ?(?):. doi: 10.1021/acs.jnatprod.3c00382. [PMID: 37523665]
  • Angelo Spinello, Luisa D'Anna, Emmanuelle Bignon, Tom Miclot, Stéphanie Grandemange, Alessio Terenzi, Giampaolo Barone, Florent Barbault, Antonio Monari. Mechanism of the Covalent Inhibition of Human Transmembrane Protease Serine 2 as an Original Antiviral Strategy. The journal of physical chemistry. B. 2023 07; 127(28):6287-6295. doi: 10.1021/acs.jpcb.3c02910. [PMID: 37428676]
  • Hau Lam Choy, Elizabeth A Gaylord, Tamara L Doering. Ergosterol distribution controls surface structure formation and fungal pathogenicity. mBio. 2023 Jul; ?(?):e0135323. doi: 10.1128/mbio.01353-23. [PMID: 37409809]
  • Raimundo Samuel Leite Sampaio, Raimundo Luiz Silva Pereira, Henrique Douglas Melo Coutinho, José Weverton Almeida-Bezerra, Maria Flaviana Bezerra Morais-Braga, Mariana Dos Santos Santana, Maria Elenilda Paulino da Silva, Antonia Thassya Lucas Dos Santos, Victor Juno Alencar Fonseca, Adrielle Rodrigues Costa, Viviane Bezerra da Silva, Felicidade Caroline Rodrigues, José Jailson Lima Bezerra, António Raposo, João Paulo Martins de Lima, Luiz Marivando Barros. Chemical composition and antimicrobial potential of Acrocomia aculeata (Jacq.) Lodd. ex Mart. and Syagrus cearensis Noblick (Arecaceae). Microbial pathogenesis. 2023 Jul; 180(?):106147. doi: 10.1016/j.micpath.2023.106147. [PMID: 37169312]
  • Renle Xu, Kun Chen, Xu Han, Yuhang Lou, Shihao Gu, Yanqing Gao, Shibin Shang, Zhanqian Song, Jie Song, Jian Li. Design and Synthesis of Antifungal Candidates Containing Triazole Scaffold from Natural Rosin against Valsa mali for Crop Protection. Journal of agricultural and food chemistry. 2023 Jun; 71(25):9718-9727. doi: 10.1021/acs.jafc.3c02002. [PMID: 37318049]
  • Zhicheng Huang, Huijuan Cao, Huan Wang, Pengyun Huang, Jing Wang, Ying-Ying Cai, Qing Wang, Yan Li, Jiaoyu Wang, Xiao-Hong Liu, Fu-Cheng Lin, Jianping Lu. The triglyceride catabolism regulated by a serine/threonine protein phosphatase, Smek1, is required for development and plant infection in Magnaporthe oryzae. Molecular plant pathology. 2023 Jun; ?(?):. doi: 10.1111/mpp.13368. [PMID: 37357820]
  • Meng Zhang, Pu-Ting Dong, Hassan E Eldesouky, Yuewei Zhan, Haonan Lin, Zian Wang, Ehab A Salama, Sebastian Jusuf, Cheng Zong, Zhicong Chen, Mohamed N Seleem, Ji-Xin Cheng. Fingerprint Stimulated Raman Scattering Imaging Unveils Ergosteryl Ester as a Metabolic Signature of Azole-Resistant Candida albicans. Analytical chemistry. 2023 Jun; ?(?):. doi: 10.1021/acs.analchem.3c00900. [PMID: 37310727]
  • Matúš Štefánek, Martina Garaiová, Adam Valček, Luisa Jordao, Helena Bujdáková. Comparative Analysis of Two Candida parapsilosis Isolates Originating from the Same Patient Harbouring the Y132F and R398I Mutations in the ERG11 Gene. Cells. 2023 06; 12(12):. doi: 10.3390/cells12121579. [PMID: 37371049]
  • Xiao-Di Zhai, Su-Yun Zhang, Dong Chen, Wei-Jun Li, Jin-Jun Wang, Dong Wei. Comparative multi-tissue analyses identify testis-specific serine/threonine protein kinase (TSSK) genes involved in male fertility in the melon fly Zeugodacus cucurbitae. Pest management science. 2023 Jun; 79(6):2040-2049. doi: 10.1002/ps.7378. [PMID: 36693781]
  • Yun Yang, Yuan Xiong, Guanghao Zhu, Mengru Sun, Kun Zou, Yitian Zhao, Yong Zhang, Zhijian Xu, Yiming Li, Weiliang Zhu, Qi Jia, Bo Li, Guangbo Ge. Discovery of seven-membered ring berberine analogues as highly potent and specific hCES2A inhibitors. Chemico-biological interactions. 2023 Jun; 378(?):110501. doi: 10.1016/j.cbi.2023.110501. [PMID: 37080375]
  • Liuqin He, Yaqiong Ding, Xihong Zhou, Tiejun Li, Yulong Yin. Serine signaling governs metabolic homeostasis and health. Trends in endocrinology and metabolism: TEM. 2023 06; 34(6):361-372. doi: 10.1016/j.tem.2023.03.001. [PMID: 36967366]
  • Feng-Xia Liu, Yan Sun. Identification of the active ingredients and pharmacological effects of Kuntai capsules in the treatment of primary ovarian insufficiency: A review. Medicine. 2023 May; 102(21):e33884. doi: 10.1097/md.0000000000033884. [PMID: 37233423]
  • Justine Lallement, Ilyès Raho, Grégory Merlen, Dominique Rainteau, Mikael Croyal, Melody Schiffano, Nadim Kassis, Isabelle Doignon, Maud Soty, Floriane Lachkar, Michel Krempf, Matthias Van Hul, Patrice D Cani, Fabienne Foufelle, Chloé Amouyal, Hervé Le Stunff, Christophe Magnan, Thierry Tordjmann, Céline Cruciani-Guglielmacci. Hepatic deletion of serine palmitoyl transferase 2 impairs ceramide/sphingomyelin balance, bile acids homeostasis and leads to liver damage in mice. Biochimica et biophysica acta. Molecular and cell biology of lipids. 2023 May; 1868(8):159333. doi: 10.1016/j.bbalip.2023.159333. [PMID: 37224999]
  • Mingmin Tian, Anming Yang, Qinwei Lu, Xin Zhang, Guangjie Liu, Gaofeng Liu. Study on the mechanism of Baihe Dihuang decoction in treating menopausal syndrome based on network pharmacology. Medicine. 2023 May; 102(20):e33189. doi: 10.1097/md.0000000000033189. [PMID: 37335709]
  • Fei Xie, Yumeng Hao, Liping Li, Ruina Wang, Junhe Bao, Xiaochen Chi, Brian C Monk, Ting Wang, Shichong Yu, Yongsheng Jin, Dazhi Zhang, Tingjunhong Ni, Lan Yan. Novel antifungal triazoles with alkynyl-methoxyl side chains: Design, synthesis, and biological activity evaluation. European journal of medicinal chemistry. 2023 May; 257(?):115506. doi: 10.1016/j.ejmech.2023.115506. [PMID: 37216811]
  • A A Zorina, G V Novikova, N B Gusev, A V Leusenko, D A Los, O I Klychnikov. SpkH (Sll0005) from Synechocystis sp. PCC 6803 is an active Mn2+-dependent Ser kinase. Biochimie. 2023 May; ?(?):. doi: 10.1016/j.biochi.2023.05.006. [PMID: 37209809]
  • Wang Shunxi, Yuan Xiaoxue, Song Guanbin, Yang Li, Jin Junyu, Liu Wanqian. Serine metabolic reprogramming in tumorigenesis, tumor immunity and clinical treatment: Serine metabolic reprogramming in cancer. Advances in nutrition (Bethesda, Md.). 2023 May; ?(?):. doi: 10.1016/j.advnut.2023.05.007. [PMID: 37187454]
  • Shin-Ichi Miyazawa, Tokuko Ujino-Ihara, Takafumi Miyama, Ko Tahara, Hiroyuki Tobita, Yuji Suzuki, Mitsuru Nishiguchi. Different photorespiratory mechanisms in conifer leaves, where peroxisomes have intrinsically low catalase activity. The Plant journal : for cell and molecular biology. 2023 May; ?(?):. doi: 10.1111/tpj.16276. [PMID: 37162489]
  • Zi-Chang Jia, Debatosh Das, Youjun Zhang, Alisdair R Fernie, Ying-Gao Liu, Moxian Chen, Jianhua Zhang. Plant serine/arginine-rich proteins: versatile players in RNA processing. Planta. 2023 May; 257(6):109. doi: 10.1007/s00425-023-04132-0. [PMID: 37145304]
  • Yong Zhuo, Xiangyang Zou, Ya Wang, Xuemei Jiang, Mengmeng Sun, Shengyu Xu, Yan Lin, Lun Hua, Jian Li, Bin Feng, Zhengfeng Fang, Lianqiang Che, De Wu. Standardized ileal digestibility of amino acids in cottonseed meal fed to pregnant and non-pregnant sows. Journal of animal science. 2023 Apr; ?(?):. doi: 10.1093/jas/skad132. [PMID: 37119089]
  • Feng Yang, Eduardo F C Scopel, Hao Li, Liu-Liu Sun, Nora Kawar, Yong-Bing Cao, Yuan-Ying Jiang, Judith Berman. Antifungal Tolerance and Resistance Emerge at Distinct Drug Concentrations and Rely upon Different Aneuploid Chromosomes. mBio. 2023 04; 14(2):e0022723. doi: 10.1128/mbio.00227-23. [PMID: 36877011]
  • Xiling Zhu, Yan Li, Xiaodong Wang, Yuanshe Huang, Jingxin Mao. Investigation of the mechanism of Prunella vulgaris in treatment of papillary thyroid carcinoma based on network pharmacology integrated molecular docking and experimental verification. Medicine. 2023 Apr; 102(17):e33360. doi: 10.1097/md.0000000000033360. [PMID: 37115092]
  • Ajay Guru, Gokul Sudhakaran, S Karthick Raja Namasivayam, Boopathi Seenivasan, Mukesh Pasupulieti, Jesu Arockiaraj, Meivelu Moovendhan. Serine Threonine-Protein Kinase-Derived IW13 Improves Lipid Metabolism via C/EBP-α/SREBP1/FAS Signaling Pathways in HFD-Induced Zebrafish In Vivo Larval Model. Applied biochemistry and biotechnology. 2023 Apr; ?(?):. doi: 10.1007/s12010-023-04480-3. [PMID: 37079270]
  • Sivaraman Dhanasekaran, Pradeep Pushparaj Selvadoss, Solomon Sundar Manoharan, Srikanth Jeyabalan, Vijayarangan Devi Rajeswari. Revealing anti-fungal potential of plant-derived bioactive therapeutics in targeting secreted aspartyl proteinase (SAP) of Candida albicans: a molecular dynamics approach. Journal of biomolecular structure & dynamics. 2023 Apr; ?(?):1-15. doi: 10.1080/07391102.2023.2196703. [PMID: 37021476]
  • Priya Rawat, Shilpa Thakur, Surbhi Dogra, Kajal Jaswal, Budheswar Dehury, Prosenjit Mondal. Diet-induced induction of hepatic Serine/Threonine Kinase STK38 triggers proinflammation and hepatic lipid accumulation. The Journal of biological chemistry. 2023 Apr; ?(?):104678. doi: 10.1016/j.jbc.2023.104678. [PMID: 37028764]
  • Jing Jing Zhang, Yujia Niu, Cong Ma, Te Zhao, Hongwei Wang, Zishuo Yan, Lin Zhou, Xiangyang Liu, Fengzhi Piao, Nanshan Du. Accumulation and metabolism of pyroxasulfone in tomato seedlings. Ecotoxicology and environmental safety. 2023 Apr; 254(?):114765. doi: 10.1016/j.ecoenv.2023.114765. [PMID: 36907092]
  • Shota Suzuki, Daimu Tanaka, Atsuko Miyagi, Kentaro Takahara, Masaru Kono, Chaomurilege, Ko Noguchi, Toshiki Ishikawa, Minoru Nagano, Masatoshi Yamaguchi, Maki Kawai-Yamada. Loss of peroxisomal NAD kinase 3 (NADK3) affects photorespiration metabolism in Arabidopsis. Journal of plant physiology. 2023 Apr; 283(?):153950. doi: 10.1016/j.jplph.2023.153950. [PMID: 36889102]
  • Sophia Escobar-Correas, Omar Mendoza-Porras, Alfredo Castro-Vazquez, Israel A Vega, Michelle L Colgrave. Proteomic analysis of digestive tract peptidases and lipases from the invasive gastropod Pomacea canaliculata. Pest management science. 2023 Apr; 79(4):1420-1430. doi: 10.1002/ps.7311. [PMID: 36464640]
  • Ka Pui Sharon Yau, Harshini Weerasinghe, Francios A B Olivier, Tricia L Lo, David R Powell, Barbara Koch, Traude H Beilharz, Ana Traven. The proteasome regulator Rpn4 controls antifungal drug tolerance by coupling protein homeostasis with metabolic responses to drug stress. PLoS pathogens. 2023 Apr; 19(4):e1011338. doi: 10.1371/journal.ppat.1011338. [PMID: 37075064]