Strictosidine (BioDeep_00000004076)
natural product PANOMIX_OTCML-2023
代谢物信息卡片
化学式: C27H34N2O9 (530.2264194)
中文名称:
谱图信息:
最多检出来源 Viridiplantae(plant) 0.05%
分子结构信息
SMILES: C=CC1C(OC2OC(CO)C(O)C(O)C2O)OC=C(C(=O)OC)C1CC1NCCc2c1[nH]c1ccccc21
InChI: InChI=1S/C27H34N2O9/c1-3-13-16(10-19-21-15(8-9-28-19)14-6-4-5-7-18(14)29-21)17(25(34)35-2)12-36-26(13)38-27-24(33)23(32)22(31)20(11-30)37-27/h3-7,12-13,16,19-20,22-24,26-33H,1,8-11H2,2H3/t13-,16+,19+,20-,22-,23+,24-,26+,27+/m1/s1
描述信息
D000970 - Antineoplastic Agents > D014748 - Vinca Alkaloids
Annotation level-3
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.677
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.675
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.666
同义名列表
2 个代谢物同义名
数据库引用编号
19 个数据库交叉引用编号
- ChEBI: CHEBI:17559
- KEGG: C03470
- PubChem: 161336
- PubChem: 3262516
- Metlin: METLIN64341
- ChEMBL: CHEMBL402211
- MetaCyc: STRICTOSIDINE
- KNApSAcK: C00029058
- CAS: 20824-29-7
- MoNA: PR311110
- MoNA: CCMSLIB00004680055
- MoNA: BML82477
- MoNA: BML82476
- MoNA: BML82475
- PMhub: MS000143250
- PMhub: MS000015221
- PubChem: 6287
- 3DMET: B01662
- NIKKAJI: J15.956E
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(3)
代谢反应
243 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(231)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
DMAPP + genistein ⟶ PPi + lupiwighteone
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
secologanin + tryptamine ⟶ H2O + strictosidine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
secologanin + tryptamine ⟶ H2O + strictosidine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
L-Phe ⟶ ammonia + trans-cinnamate
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Secologanin and strictosidine biosynthesis:
GPP + H2O ⟶ PPi + geraniol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Secologanin and strictosidine biosynthesis:
L-Trp ⟶ carbon dioxide + tryptamine
INOH(0)
PlantCyc(11)
- ajmaline and sarpagine biosynthesis:
3-α(S)-strictosidine + H2O ⟶ D-glucopyranose + strictosidine aglycone
- ajmaline and sarpagine biosynthesis:
3-α(S)-strictosidine + H2O ⟶ D-glucopyranose + strictosidine aglycone
- vindoline, vindorosine and vinblastine biosynthesis:
catharanthine + hydrogen peroxide + vindoline ⟶ α-3',4'-anhydrovinblastine radical + H2O
- camptothecin biosynthesis:
deoxypumiloside ⟶ D-glucopyranose + camptothecin
- camptothecin biosynthesis:
deoxypumiloside ⟶ D-glucopyranose + camptothecin
- ajmaline and sarpagine biosynthesis:
H2O + polyneuridine aldehyde ⟶ 16-epivellosimine + CO2 + MeOH
- vindoline, vindorosine and vinblastine biosynthesis:
catharanthine + hydrogen peroxide + vindoline ⟶ α-3',4'-anhydrovinblastine radical + H2O
- secologanin and strictosidine biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- secologanin and strictosidine biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- secologanin and strictosidine biosynthesis:
(6E)-8-oxogeranial + H+ + NAD(P)H ⟶ (+)-cis,trans-nepetalactol + NAD(P)+
- secologanin and strictosidine biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + geraniol ⟶ (6E)-8-hydroxygeraniol + H2O + an oxidized [NADPH-hemoprotein reductase]
COVID-19 Disease Map(0)
PathBank(1)
- Indole Alkaloid Biosynthesis:
17-O-Acetylnorajmaline + Water ⟶ Acetic acid + Norajmaline
PharmGKB(0)
20 个相关的物种来源信息
- 1504383 - Alstonia angustiloba:
- 1504383 - Alstonia angustiloba: 10.1016/J.PHYTOCHEM.2011.08.001
- 52822 - Alstonia scholaris:
- 52822 - Alstonia scholaris: 10.1016/J.PHYTOCHEM.2005.02.018
- 141609 - Amsonia orientalis: 10.3987/R-1984-09-2023
- 4058 - Catharanthus roseus:
- 4058 - Catharanthus roseus: 10.3987/R-1984-01-0085
- 43461 - Cephalanthus occidentalis: 10.1055/S-2005-864103
- 128292 - Chimarrhis turbinata:
- 128292 - Chimarrhis turbinata: 10.1021/NP1007476
- 153742 - Cinchona calisaya: 10.1016/0031-9422(91)80068-C
- 96273 - Palicourea acuminata: 10.1016/J.PHYTOCHEM.2017.07.016
- 4059 - Rauvolfia: 10.1021/NP0200919
- 4060 - Rauvolfia serpentina:
- 396313 - Rhazya stricta: 10.3987/R-1984-09-2023
- 336032 - Stenostomum acreanum: 10.1055/S-2006-957449
- 1343448 - Strychnos mellodora:
- 28545 - Strychnos nux-vomica: 10.1055/S-2006-957807
- 99302 - Strychnos spinosa: 10.1021/NP058062W
- 52861 - Tabernaemontana divaricata:
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Lei Gu, Yongyan Cao, Xuanxuan Chen, Hongcheng Wang, Bin Zhu, Xuye Du, Yiyue Sun. The Genome-Wide Identification, Characterization, and Expression Analysis of the Strictosidine Synthase-like Family in Maize (Zea mays L.).
International journal of molecular sciences.
2023 Sep; 24(19):. doi:
10.3390/ijms241914733
. [PMID: 37834181] - Ruiqi Wang, Wenna Zhao, Wenjing Yao, Yuting Wang, Tingbo Jiang, Huanzhen Liu. Genome-Wide Analysis of Strictosidine Synthase-like Gene Family Revealed Their Response to Biotic/Abiotic Stress in Poplar.
International journal of molecular sciences.
2023 Jun; 24(12):. doi:
10.3390/ijms241210117
. [PMID: 37373265] - Cheng-Xi Jiang, Jia-Xing Yu, Xuan Fei, Xiao-Jun Pan, Ning-Ning Zhu, Chong-Liang Lin, Dan Zhou, Hao-Ru Zhu, Yu Qi, Zhi-Gang Wu. Gene coexpression networks allow the discovery of two strictosidine synthases underlying monoterpene indole alkaloid biosynthesis in Uncaria rhynchophylla.
International journal of biological macromolecules.
2023 Jan; 226(?):1360-1373. doi:
10.1016/j.ijbiomac.2022.11.249
. [PMID: 36442554] - Joshua Misa, John M Billingsley, Kanji Niwa, Rachel K Yu, Yi Tang. Engineered Production of Strictosidine and Analogues in Yeast.
ACS synthetic biology.
2022 04; 11(4):1639-1649. doi:
10.1021/acssynbio.2c00037
. [PMID: 35294193] - Xiaolan Zhao, Xiaodi Hu, Kunxi OuYang, Jing Yang, Qingmin Que, Jianmei Long, Jianxia Zhang, Tong Zhang, Xue Wang, Jiayu Gao, Xinquan Hu, Shuqi Yang, Lisu Zhang, Shufen Li, Wujun Gao, Benping Li, Wenkai Jiang, Erik Nielsen, Xiaoyang Chen, Changcao Peng. Chromosome-level assembly of the Neolamarckia cadamba genome provides insights into the evolution of cadambine biosynthesis.
The Plant journal : for cell and molecular biology.
2022 02; 109(4):891-908. doi:
10.1111/tpj.15600
. [PMID: 34807496] - Inês Carqueijeiro, Konstantinos Koudounas, Thomas Dugé de Bernonville, Liuda Johana Sepúlveda, Angela Mosquera, Dikki Pedenla Bomzan, Audrey Oudin, Arnaud Lanoue, Sébastien Besseau, Pamela Lemos Cruz, Natalja Kulagina, Emily A Stander, Sébastien Eymieux, Julien Burlaud-Gaillard, Emmanuelle Blanchard, Marc Clastre, Lucia Atehortùa, Benoit St-Pierre, Nathalie Giglioli-Guivarc'h, Nicolas Papon, Dinesh A Nagegowda, Sarah E O'Connor, Vincent Courdavault. Alternative splicing creates a pseudo-strictosidine β-d-glucosidase modulating alkaloid synthesis in Catharanthus roseus.
Plant physiology.
2021 04; 185(3):836-856. doi:
10.1093/plphys/kiaa075
. [PMID: 33793899] - Francesco Trenti, Kotaro Yamamoto, Benke Hong, Christian Paetz, Yoko Nakamura, Sarah E O'Connor. Early and Late Steps of Quinine Biosynthesis.
Organic letters.
2021 03; 23(5):1793-1797. doi:
10.1021/acs.orglett.1c00206
. [PMID: 33625237] - Amit Rai, Hideki Hirakawa, Ryo Nakabayashi, Shinji Kikuchi, Koki Hayashi, Megha Rai, Hiroshi Tsugawa, Taiki Nakaya, Tetsuya Mori, Hideki Nagasaki, Runa Fukushi, Yoko Kusuya, Hiroki Takahashi, Hiroshi Uchiyama, Atsushi Toyoda, Shoko Hikosaka, Eiji Goto, Kazuki Saito, Mami Yamazaki. Chromosome-level genome assembly of Ophiorrhiza pumila reveals the evolution of camptothecin biosynthesis.
Nature communications.
2021 01; 12(1):405. doi:
10.1038/s41467-020-20508-2
. [PMID: 33452249] - Danielle A Yee, Anthony B DeNicola, John M Billingsley, Jenette G Creso, Vidya Subrahmanyam, Yi Tang. Engineered mitochondrial production of monoterpenes in Saccharomyces cerevisiae.
Metabolic engineering.
2019 09; 55(?):76-84. doi:
10.1016/j.ymben.2019.06.004
. [PMID: 31226348] - Ahmed Bahieldin, Ahmed Atef, Sherif Edris, Nour O Gadalla, Mohammed Al-Matary, Magdy A Al-Kordy, Ahmed M Ramadan, Sameera Bafeel, Mona G Alharbi, Diana A H Al-Quwaie, Jamal S M Sabir, Hassan S Al-Zahrani, Mahmoud E Nasr, Fotouh M El-Domyati. Stepwise response of MeJA-induced genes and pathways in leaves of C. roseus.
Comptes rendus biologies.
2018 Nov; 341(9-10):411-420. doi:
10.1016/j.crvi.2018.10.001
. [PMID: 30472986] - Evangelos C Tatsis, Inês Carqueijeiro, Thomas Dugé de Bernonville, Jakob Franke, Thu-Thuy T Dang, Audrey Oudin, Arnaud Lanoue, Florent Lafontaine, Anna K Stavrinides, Marc Clastre, Vincent Courdavault, Sarah E O'Connor. A three enzyme system to generate the Strychnos alkaloid scaffold from a central biosynthetic intermediate.
Nature communications.
2017 08; 8(1):316. doi:
10.1038/s41467-017-00154-x
. [PMID: 28827772] - Richard M E Payne, Deyang Xu, Emilien Foureau, Marta Ines Soares Teto Carqueijeiro, Audrey Oudin, Thomas Dugé de Bernonville, Vlastimil Novak, Meike Burow, Carl-Erik Olsen, D Marc Jones, Evangelos C Tatsis, Ali Pendle, Barbara Ann Halkier, Fernando Geu-Flores, Vincent Courdavault, Hussam Hassan Nour-Eldin, Sarah E O'Connor. An NPF transporter exports a central monoterpene indole alkaloid intermediate from the vacuole.
Nature plants.
2017 01; 3(?):16208. doi:
10.1038/nplants.2016.208
. [PMID: 28085153] - Anna Stavrinides, Evangelos C Tatsis, Lorenzo Caputi, Emilien Foureau, Clare E M Stevenson, David M Lawson, Vincent Courdavault, Sarah E O'Connor. Structural investigation of heteroyohimbine alkaloid synthesis reveals active site elements that control stereoselectivity.
Nature communications.
2016 07; 7(?):12116. doi:
10.1038/ncomms12116
. [PMID: 27418042] - Alex Campbell, Philippe Bauchart, Nicholas D Gold, Yun Zhu, Vincenzo De Luca, Vincent J J Martin. Engineering of a Nepetalactol-Producing Platform Strain of Saccharomyces cerevisiae for the Production of Plant Seco-Iridoids.
ACS synthetic biology.
2016 05; 5(5):405-14. doi:
10.1021/acssynbio.5b00289
. [PMID: 26981892] - Kotaro Yamamoto, Katsutoshi Takahashi, Hajime Mizuno, Aya Anegawa, Kimitsune Ishizaki, Hidehiro Fukaki, Miwa Ohnishi, Mami Yamazaki, Tsutomu Masujima, Tetsuro Mimura. Cell-specific localization of alkaloids in Catharanthus roseus stem tissue measured with Imaging MS and Single-cell MS.
Proceedings of the National Academy of Sciences of the United States of America.
2016 Apr; 113(14):3891-6. doi:
10.1073/pnas.1521959113
. [PMID: 27001858] - Thomas Dugé de Bernonville, Marc Clastre, Sébastien Besseau, Audrey Oudin, Vincent Burlat, Gaëlle Glévarec, Arnaud Lanoue, Nicolas Papon, Nathalie Giglioli-Guivarc'h, Benoit St-Pierre, Vincent Courdavault. Phytochemical genomics of the Madagascar periwinkle: Unravelling the last twists of the alkaloid engine.
Phytochemistry.
2015 May; 113(?):9-23. doi:
10.1016/j.phytochem.2014.07.023
. [PMID: 25146650] - Anna Stavrinides, Evangelos C Tatsis, Emilien Foureau, Lorenzo Caputi, Franziska Kellner, Vincent Courdavault, Sarah E O'Connor. Unlocking the diversity of alkaloids in Catharanthus roseus: nuclear localization suggests metabolic channeling in secondary metabolism.
Chemistry & biology.
2015 Mar; 22(3):336-41. doi:
10.1016/j.chembiol.2015.02.006
. [PMID: 25772467] - Stephanie Brown, Marc Clastre, Vincent Courdavault, Sarah E O'Connor. De novo production of the plant-derived alkaloid strictosidine in yeast.
Proceedings of the National Academy of Sciences of the United States of America.
2015 Mar; 112(11):3205-10. doi:
10.1073/pnas.1423555112
. [PMID: 25675512] - Liqun Xia, Martin Ruppert, Meitian Wang, Santosh Panjikar, Haili Lin, Chitra Rajendran, Leif Barleben, Joachim Stöckigt. Structures of alkaloid biosynthetic glucosidases decode substrate specificity.
ACS chemical biology.
2012 Jan; 7(1):226-34. doi:
10.1021/cb200267w
. [PMID: 22004291] - Xiang-Hai Cai, Mei-Fen Bao, Yu Zhang, Chun-Xia Zeng, Ya-Ping Liu, Xiao-Dong Luo. A new type of monoterpenoid indole alkaloid precursor from Alstonia rostrata.
Organic letters.
2011 Jul; 13(14):3568-71. doi:
10.1021/ol200996a
. [PMID: 21688858] - Souvik Kusari, Sebastian Zühlke, Michael Spiteller. Effect of artificial reconstitution of the interaction between the plant Camptotheca acuminata and the fungal endophyte Fusarium solani on camptothecin biosynthesis.
Journal of natural products.
2011 Apr; 74(4):764-75. doi:
10.1021/np1008398
. [PMID: 21348469] - Grégory Guirimand, Anthony Guihur, Olivia Ginis, Pierre Poutrain, François Héricourt, Audrey Oudin, Arnaud Lanoue, Benoit St-Pierre, Vincent Burlat, Vincent Courdavault. The subcellular organization of strictosidine biosynthesis in Catharanthus roseus epidermis highlights several trans-tonoplast translocations of intermediate metabolites.
The FEBS journal.
2011 Mar; 278(5):749-63. doi:
10.1111/j.1742-4658.2010.07994.x
. [PMID: 21205206] - Grégory Guirimand, Vincent Courdavault, Arnaud Lanoue, Samira Mahroug, Anthony Guihur, Nathalie Blanc, Nathalie Giglioli-Guivarc'h, Benoit St-Pierre, Vincent Burlat. Strictosidine activation in Apocynaceae: towards a "nuclear time bomb"?.
BMC plant biology.
2010 Aug; 10(?):182. doi:
10.1186/1471-2229-10-182
. [PMID: 20723215] - Liuqing Yang, Hongbin Zou, Huajian Zhu, Martin Ruppert, Jingxu Gong, Joachim Stöckigt. Improved expression of His(6)-tagged strictosidine synthase cDNA for chemo-enzymatic alkaloid diversification.
Chemistry & biodiversity.
2010 Apr; 7(4):860-70. doi:
10.1002/cbdv.201000052
. [PMID: 20397221] - Yang Lu, Hongshen Wang, Wei Wang, Zhongying Qian, Li Li, Jing Wang, Genyu Zhou, Guoyin Kai. Molecular characterization and expression analysis of a new cDNA encoding strictosidine synthase from Ophiorrhiza japonica.
Molecular biology reports.
2009 Sep; 36(7):1845-52. doi:
10.1007/s11033-008-9389-y
. [PMID: 18987991] - Weerawat Runguphan, Sarah E O'Connor. Metabolic reprogramming of periwinkle plant culture.
Nature chemical biology.
2009 Mar; 5(3):151-3. doi:
10.1038/nchembio.141
. [PMID: 19151732] - László F Szabó. Rigorous biogenetic network for a group of indole alkaloids derived from strictosidine.
Molecules (Basel, Switzerland).
2008 Aug; 13(8):1875-96. doi:
10.3390/molecules13081875
. [PMID: 18794791] - Joachim Stöckigt, Leif Barleben, Santosh Panjikar, Elke A Loris. 3D-Structure and function of strictosidine synthase--the key enzyme of monoterpenoid indole alkaloid biosynthesis.
Plant physiology and biochemistry : PPB.
2008 Mar; 46(3):340-55. doi:
10.1016/j.plaphy.2007.12.011
. [PMID: 18280746] - Leif Barleben, Santosh Panjikar, Martin Ruppert, Juergen Koepke, Joachim Stöckigt. Molecular architecture of strictosidine glucosidase: the gateway to the biosynthesis of the monoterpenoid indole alkaloid family.
The Plant cell.
2007 Sep; 19(9):2886-97. doi:
10.1105/tpc.106.045682
. [PMID: 17890378] - Elke A Loris, Santosh Panjikar, Martin Ruppert, Leif Barleben, Matthias Unger, Helmut Schübel, Joachim Stöckigt. Structure-based engineering of strictosidine synthase: auxiliary for alkaloid libraries.
Chemistry & biology.
2007 Sep; 14(9):979-85. doi:
10.1016/j.chembiol.2007.08.009
. [PMID: 17884630] - Brian O Bachmann. Foundations for directed alkaloid biosynthesis.
Chemistry & biology.
2007 Aug; 14(8):875-6. doi:
10.1016/j.chembiol.2007.08.001
. [PMID: 17719485] - Kenichiro Inoue. [Cytochrome P450 enzymes in biosyntheses of some plant secondary metabolites].
Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan.
2005 Jan; 125(1):31-49. doi:
10.1248/yakushi.125.31
. [PMID: 15635280] - Carmen Lucia Cardoso, Dulce Helena Siqueira Silva, Daniela Maria Tomazela, Hugo Verli, Maria Claudia Marx Young, Maysa Furlan, Marcos Nogueira Eberlin, Vanderlan da Silva Bolzani. Turbinatine, a potential key intermediate in the biosynthesis of corynanthean-type indole alkaloids.
Journal of natural products.
2003 Jul; 66(7):1017-21. doi:
10.1021/np020547m
. [PMID: 12880329] - Mariko Kitajima, Masashi Yokoya, Hiromitsu Takayama, Norio Aimi. Synthesis and absolute configuration of a new 3,4-dihydro-beta-carboline-type alkaloid, 3,4-dehydro-5(S)-5-carboxystrictosidine, isolated from Peruvian Uña de Gato (Uncaria tomentosa).
Chemical & pharmaceutical bulletin.
2002 Oct; 50(10):1376-8. doi:
10.1248/cpb.50.1376
. [PMID: 12372867] - A Geerlings, M M Ibañez, J Memelink, R van Der Heijden, R Verpoorte. Molecular cloning and analysis of strictosidine beta-D-glucosidase, an enzyme in terpenoid indole alkaloid biosynthesis in Catharanthus roseus.
The Journal of biological chemistry.
2000 Feb; 275(5):3051-6. doi:
10.1074/jbc.275.5.3051
. [PMID: 10652285] - T M Kutchan. Strictosidine: from alkaloid to enzyme to gene.
Phytochemistry.
1993 Feb; 32(3):493-506. doi:
10.1016/s0031-9422(00)95128-8
. [PMID: 7763429] - E J Pennings, R A van den Bosch, R van der Heijden, L H Stevens, J A Duine, R Verpoorte. Assay of strictosidine synthase from plant cell cultures by high-performance liquid chromatography.
Analytical biochemistry.
1989 Feb; 176(2):412-5. doi:
10.1016/0003-2697(89)90333-3
. [PMID: 2742131]