Gibberellin A3 (BioDeep_00000001648)
Secondary id: BioDeep_00000398554
natural product human metabolite PANOMIX_OTCML-2023 Endogenous Plant Hormones BioNovoGene_Lab2019
代谢物信息卡片
化学式: C19H22O6 (346.1416)
中文名称: 赤霉素, 6-呋喃氨基嘌呤(赤霉素、赤霉酸GA3)
谱图信息:
最多检出来源 Viridiplantae(plant) 50.72%
分子结构信息
SMILES: C=C1CC23CC1(O)CCC2C12C=CC(O)C(C)(C(=O)O1)C2C3C(=O)O
InChI: InChI=1S/C19H22O6/c1-9-7-17-8-18(9,24)5-3-10(17)19-6-4-11(20)16(2,15(23)25-19)13(19)12(17)14(21)22/h4,6,10-13,20,24H,1,3,5,7-8H2,2H3,(H,21,22)
描述信息
Gibberellic acid, also known as gibberellin A3, GA, or GA3, is a very potent hormone whose natural occurrence in plants controls their development. Since GA regulates growth, applications of very low concentrations can have a profound effect while too much will have the opposite effect. Gibberellic acid is a hormone found in plants. Gibberellic acid is a simple gibberellin promoting the growth and elongation of cells. It affects the decomposition of plants. It also helps plants grow if used in small amounts but eventually, plants grow a tolerance for it. Gibberellic acid stimulates the cells of germinating seeds to produce mRNA molecules that code for hydrolytic enzymes.
Gibberellic acid is a white powder. (NTP, 1992)
Gibberellin A3 is a C19-gibberellin that is a pentacyclic diterpenoid responsible for promoting growth and elongation of cells in plants. Initially identified in Gibberella fujikuroi,it differs from gibberellin A1 in the presence of a double bond between C-3 and C-4. It has a role as a plant metabolite and a mouse metabolite. It is a lactone, a gibberellin monocarboxylic acid, an organic heteropentacyclic compound and a C19-gibberellin. It is a conjugate acid of a gibberellin A3(1-).
Gibberellic acid is a natural product found in Cocos nucifera, Prunus cerasus, and other organisms with data available.
Gibberellins (GAs) are plant hormones that regulate growth and influence various developmental processes, including stem elongation, germination, dormancy, flowering, sex expression, enzyme induction, and leaf and fruit senescence. Gibberellins is found in many foods, some of which are common wheat, potato, sunflower, and common pea.
D006133 - Growth Substances > D010937 - Plant Growth Regulators > D005875 - Gibberellins
CONFIDENCE standard compound; INTERNAL_ID 449; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3262; ORIGINAL_PRECURSOR_SCAN_NO 3260
CONFIDENCE standard compound; INTERNAL_ID 449; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3253; ORIGINAL_PRECURSOR_SCAN_NO 3251
CONFIDENCE standard compound; INTERNAL_ID 449; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3271; ORIGINAL_PRECURSOR_SCAN_NO 3269
CONFIDENCE standard compound; INTERNAL_ID 449; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3249; ORIGINAL_PRECURSOR_SCAN_NO 3246
CONFIDENCE standard compound; INTERNAL_ID 449; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3255; ORIGINAL_PRECURSOR_SCAN_NO 3254
KEIO_ID G074
Gibberellic Acid is named after a fungus Gibberella fujikuroi . Gibberellic Acid regulates processes of plant development and growth, including seed development and germination, stem and root growth, cell division, and flowering time[1].
Gibberellic Acid is named after a fungus Gibberella fujikuroi . Gibberellic Acid regulates processes of plant development and growth, including seed development and germination, stem and root growth, cell division, and flowering time[1].
同义名列表
147 个代谢物同义名
(1S,2S,4aR,4bR,7S,9aS,10S,10aR)-2,7-dihydroxy-1-methyl-8-methylidene-13-oxo-1,2,4b,5,6,7,8,9,10,10a-decahydro-4a,1-(epoxymethano)-7,9a-methanobenzo[a]azulene-10-carboxylic acid; (1S,2S,4aR,4bR,7S,9aS,10S,10aR)-2,7-dihydroxy-1-methyl-8-methylene-13-oxo-1,2,4b,5,6,7,8,9,10,10a-decahydro-4a,1-(epoxymethano)-7,9a-methanobenzo[a]azulene-10-carboxylic acid; (1R,2R,5S,8S,9S,10R,11S,12S)-5,12-dihydroxy-11-methyl-6-methylidene-16-oxo-15-oxapentacyclo[9.3.2.1^{5,8}.0^{1,10}.0^{2,8}]heptadec-13-ene-9-carboxylic acid; (1R,2R,5S,8S,9S,10R,11R,12S)-5,12-dihydroxy-11-methyl-6-methylidene-16-oxo-15-oxapentacyclo[9.3.2.1^{5,8}.0^{1,10}.0^{2,8}]heptadec-13-ene-9-carboxylic acid; (1R,2R,5S,8S,9S,10R,11S,12S)-5,12-dihydroxy-11-methyl-6-methylidene-16-oxo-15-oxapentacyclo[9.3.2.1(5,8).0(1,10).0(2,8)]heptadec-13-ene-9-carboxylic acid; (1R,2R,5S,8S,9S,10R,11S,12S)-5,12-dihydroxy-11-methyl-6-methylidene-16-oxo-15-oxapentacyclo(9.3.2.1(5,8).0(1,10).0(2,8))heptadec-13-ene-9-carboxylic acid; 3S,3aS,4S, 4aS,6S,8aR,8bR,11S)-6,11-dihydroxy-3-methyl-12-methylene-2-oxo-4a,6-ethano-3, 8b-prop-l-enoperhydroindeno-(1,2-b)furan-4-carboxylic acid; (3S,3aS,4S,4aS,6S,8aR,8bR,11S)-6,11-dihydroxy-3-methyl-12-methylene-2-oxo-4a,6-ethano-3,8b-prop-1-enoperhydroindeno(1,2-b)furan-4-carboxylic acid; (3S,3aS,4S,4aS,6S,8aS,8bS,11S)-6,11-Dihydroxy-3-methyl-12-methylene-2-oxo-4a,6-ethano-3,8b-prop-1-enoperhydroindeno(1,2-b)furan-4-carboxylic acid; (3S,3aR,4S,4aS,7S,9aR,9bR,12S)-7,12-Dihydroxy-3-methyl-6-methylene-2-oxoperhydro-4a,7-methano-9b,3-propenoazuleno(1,2-b)furan-4-carboxylic acid; Gibb-3-ene-1,10-dicarboxylic acid, 2,4a,7-trihydroxy-1-methyl-8-methylene-, 1,4a-lactone, (1.alpha.,2.beta.,4a.alpha.,4b.beta.,10.beta.)-; (3S,3aS,4S,4aS,7S,9aR,9bR,12S)-7,12-Dihydroxy-3-methyl-6-methylene-2-oxoperhydro-4a,7-methano-9b,3-propeno(1,2-b)furan-4-carboxylic acid; (1.ALPHA.,2.BETA.,4A.ALPHA.,4B.BETA.,10.BETA.)-2,4A,7-TRIHYDROXY-1-METHYL-8-METHYLENEGIBB-3-ENE-1,10-DICARBOXYLIC ACID 1,4A-LACTONE; 2beta,7alpha-dihydroxy-1beta-methyl-8-methylidene-13-oxo-4a,1alpha-epoxymethano-4aalpha,4bbeta-gibb-3-ene-10beta-carboxylic acid; Gibb-3-ene-1,10-dicarboxylic acid, 2,4a,7-trihydroxy-1-methyl-8-methylene-, 1,4a-lactone, (1alpha,2beta,4aalpha,4bbeta,10beta)-; 2Beta,4aAlpha,7-trihydroxy-1Beta-methyl-8-methylene-4aAlpha,4bBeta-gibb-3-ene-1alpha,10Beta-dicarboxylic acid 1-4a lactone; 2beta,4aalpha,7-Trihydroxy-1beta-methyl-8-methylene-4aalpha,4bbeta-gibb-3-ene-1alpha,10beta-dicarboxylic acid 1,4a-lactone; (1alpha,2beta,4aalpha,4bbeta,10beta)-2,4a,7-Trihydroxy-1-methyl-8-methylenegibb-3-ene-1,10-dicarboxylic acid 1,4a-lactone; 2Beta,4Alpha,7-Trihydroxy-1-methyl-8-methylene-4aAlpha,4bBeta-gibb-3-ene-1alpha, 10beta-dicarboxylic acid 1,4a-lactone; 2beta,4alpha,7-Trihydroxy-1-methyl-8-methylene-4aalpha,4bbeta-gibb-3-ene-1alpha,10beta-dicarboxylic acid 1,4a-lactone; Gibb-3-ene-1, 2,4a,7-trihydroxy-1-methyl-8-methylene-, 1,4a-lactone, (1.alpha.,2.beta.,4a.alpha.,4b.beta.,10.beta.)-; (3S,3aS,4S,4aS,6S,8aS,8bS,11S)-6,11-Dihydroxy-3-methyl-12-methylene-2-oxo-4a,6-ethano-3,8b-prop-1-enoperhydroindeno; (3S,3aR,4S,4aS,7S,9aR,9bR,12S)-7,12-Dihydroxy-3-methyl-6-methylene-2-oxoperhydro-4a,7-methano-9b,3-propenoazuleno; Gibberellic acid, plant cell culture tested, BioReagent, >=90\\% gibberellin A3 basis (of total gibberellins.); 2beta,4alpha,7-Trihydroxy-1-methylene-4aalpha,4bbeta-gibb-3-ene-1alpha,10beta-dicarboxylic acid 1,4a-lactone; (3S,3aS,4S,4aS,7S,9aR,9bR,12S)-7,12-Dihydroxy-3-methyl-6-methylene-2-oxoperhydro-4a,7-methano-9b,3-propeno; 2,4 alpha,7-trihydroxy-1-methyl-8-methylenegibb-3-ene-1,10 beta-dicarboxylic acid 1,4 alpha-lactone; 2,4.ALPHA.,7-TRIHYDROXY-1-METHYL-8-METHYLENEGIBB-3-ENE-1,10-DICARBOXYLIC ACID 1,4-.ALPHA.-LACTONE; 2,4alpha,7-Trihydroxy-1-methyl-8-methylenegibb-3-ene-1,10 beta-dicarboxylic acid 1,4alpha-lactone; 2,4alpha,7-TRIHYDROXY-1-METHYL-8-METHYLENEGIBB-3-ENE-1,10-DICARBOXYLIC ACID 1,4-alpha-LACTONE; 4A,1-(EPOXYMETHANO)-7,9A-METHANOBENZ(A)AZULENE, GIBB-3-ENE-1,10-DICARBOXYLIC ACID DERIV.; Gibb-3-ene-1,10-dicarboxylic acid, 2,4a,7-trihydroxy-1-methyl-8-methylene-, 1,4a-lactone; 2,4a,7-Trihydroxy-1-methyl-8-methylenegibb-3-ene-1,10-dicarboxylic acid 1,4a-lactone; 2,4a,7-Trihydroxy-1-methyl-8-methylenegibb-3-ene-1,10-carboxylic acid 1-4-lactone; 2,4A,7-TRIHYDROXY-1-METHYL-8-METHYLENEGIBB-3-ENE-1,10-CARBOXYLIC ACID 1,4-LACTONE; Gibberellic Acid, Pharmaceutical Secondary Standard; Certified Reference Material; 2,7-Trihydroxy-1-methyl-8-methylenegibb-3-ene-1,10-carboxylic acid 1-4-lactone; Gibberellic acid, United States Pharmacopeia (USP) Reference Standard; gibberellic acid, (1alpha,2beta,4aalpha,4bbeta,6alpha,10beta)-isomer; Gibberellic acid, 90\\% gibberellin A3 basis (HPLC); Gibberellic acid, PESTANAL(R), analytical standard; 5-18-09-00269 (Beilstein Handbook Reference); Gibberellin, 80\\% gibberellin A3 basis (TLC); gibberellic acid, monopotassium salt; 6F94D8A8-3230-4AB5-93C1-46F5E84FE343; gibberellic acid, monoammonium salt; gibberellic acid, monosodium salt; gibberellic acid, potassium salt; Acide gibberellique [ISO-French]; 1-(4-Fluorophenyl)hydrazine; GA [Plant Growth Regulator]; GA (Plant Growth Regulator); Gibberellic acid [BSI:ISO]; Gibberellic acid [ISO:BSI]; GIBBERELLIC ACID [USP-RS]; GIBBERELLIC ACID (USP-RS); GibberellinsA currencyure; gibberellic acid (ga-3); 2b-Hydroxygibberellin 1; GIBBERELLIC ACID [HSDB]; GIBBERELLIC ACID [INCI]; GIBBERELLIC ACID [ISO]; potassium gibberellate; GIBBERELLIC ACID, 90\\%; GIBBERELLIC ACID [MI]; (+)-Gibberellic Acid; Gibberellic acid GA3; Acide gibberellique; (+)-Gibberellin A3; Gibberellins A4A7; Gibberellinsaeure; Prestwick3_000965; Prestwick0_000965; GA(3) gibberellin; Prestwick1_000965; Prestwick2_000965; Spectrum4_001444; Gibberellate ga3; Gibberellin (GA); Spectrum5_000027; (+)-Gibberellate; Gibberellic acid; Spectrum2_000311; BCBcMAP01_000012; Gibberillic acid; Spectrum3_001301; Gibberellin GA3; GA3 gibberellin; GIBERILLIC ACID; Gibberelic acid; UNII-BU0A7MWB6L; gibberellin A3; TU 64-3-103-75; MEGxm0_000440; BPBio1_001067; Pro-Gibb Plus; DivK1c_006244; Gibberellin X; gibberellin 3; Gibberellate; PS49_SUPELCO; NCI60_000922; Gibberellins; KBio2_006244; ACon1_000551; KBio2_001108; KBio1_001188; Tox21_303023; KBio3_002181; KBio2_003676; ACon0_000224; Gibberillate; Tox21_202052; Gibberellic; SMP1_000136; Gibberelate; CAS-77-06-5; Gibberellin; Gibberelin; GIBERELLIN; Release LC; Activol GA; BU0A7MWB6L; Gibrescol; AI3-52922; Gibb-tabs; Gibreskol; Gib-Tabs; Pro-Vide; Pro-Gibb; Cekugib; Gib-Sol; Brellin; Berelex; Gibefol; Gibbrel; Regulex; Pgr-iv; Grocel; Ralex; Ryzup; 4psb; 4q0k; GA3; GA; Gibberelin A3; Gibberellin A3
数据库引用编号
53 个数据库交叉引用编号
- ChEBI: CHEBI:28833
- KEGG: C01699
- PubChem: 439551
- PubChem: 6466
- PubChem: 522636
- HMDB: HMDB0003559
- Metlin: METLIN6954
- DrugBank: DB07814
- ChEMBL: CHEMBL1232952
- Wikipedia: Gibberellic_acid
- LipidMAPS: LMPR0104170002
- MeSH: gibberellic acid
- MeSH: Gibberellins
- ChemIDplus: 0000077065
- MetaCyc: GIBBERELLIN
- KNApSAcK: C00000003
- foodb: FDB005727
- chemspider: 7995349
- chemspider: 6223
- CAS: 77-06-5
- CAS: 1232779-37-1
- CAS: 83313-40-0
- MoNA: PS064410
- MoNA: KO000931
- MoNA: KO000930
- MoNA: PS064411
- MoNA: PR020139
- MoNA: LU044956
- MoNA: PS064409
- MoNA: PR020140
- MoNA: PS064407
- MoNA: LU044953
- MoNA: LU044954
- MoNA: PS064408
- MoNA: PR020138
- MoNA: KO000929
- MoNA: LU044955
- MoNA: KO000932
- MoNA: PS064412
- MoNA: LU044951
- MoNA: LU044952
- MoNA: KO000928
- medchemexpress: HY-N1964
- PMhub: MS000000914
- PubChem: 4839
- PDB-CCD: GA3
- 3DMET: B01481
- NIKKAJI: J8.602I
- RefMet: Gibberellin A3
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-864
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-888
- KNApSAcK: 28833
- LOTUS: LTS0185015
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
代谢反应
9 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(9)
- gibberellin biosynthesis V:
2-oxoglutarate + O2 + gibberellin A5 ⟶ CO2 + gibberellin A6 + succinate
- superpathway of gibberellin biosynthesis:
2-oxoglutarate + O2 + gibberellin A5 ⟶ CO2 + gibberellin A6 + succinate
- gibberellin biosynthesis V:
2-oxoglutarate + O2 + gibberellin A5 ⟶ CO2 + gibberellin A6 + succinate
- gibberellin biosynthesis V:
2-oxoglutarate + O2 + gibberellin A5 ⟶ CO2 + gibberellin A3 + succinate
- superpathway of gibberellin biosynthesis:
(-)-ent-copalyl diphosphate ⟶ ent-kaurene + diphosphate
- superpathway of gibberellin biosynthesis:
(-)-ent-copalyl diphosphate ⟶ ent-kaurene + diphosphate
- gibberellin biosynthesis V:
2-oxoglutarate + O2 + gibberellin A5 ⟶ CO2 + gibberellin A3 + succinate
- gibberellin biosynthesis V:
2-oxoglutarate + O2 + gibberellin A5 ⟶ CO2 + gibberellin A3 + succinate
- superpathway of gibberellin biosynthesis:
(-)-ent-copalyl diphosphate ⟶ ent-kaurene + diphosphate
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
165 个相关的物种来源信息
- 183218 - Abelmoschus: 10.1016/S0176-1617(96)80184-2
- 183218 - Abelmoschus: LTS0185015
- 455045 - Abelmoschus esculentus: 10.1016/S0176-1617(96)80184-2
- 455045 - Abelmoschus esculentus: LTS0185015
- 65556 - Alcea: LTS0185015
- 65557 - Alcea rosea: 10.1016/S0031-9422(00)82904-0
- 65557 - Alcea rosea: LTS0185015
- 470585 - Alcea setosa: 10.1016/S0031-9422(00)82904-0
- 28211 - Alphaproteobacteria: LTS0185015
- 145744 - Althaea: 10.1016/S0031-9422(00)82904-0
- 145744 - Althaea: LTS0185015
- 3702 - Arabidopsis thaliana:
- 4890 - Ascomycota: LTS0185015
- 4496 - Avena: LTS0185015
- 4498 - Avena sativa: 10.1104/PP.58.2.131
- 4498 - Avena sativa: LTS0185015
- 191 - Azospirillum: LTS0185015
- 192 - Azospirillum brasilense: 10.1016/0038-0717(92)90036-W
- 192 - Azospirillum brasilense: 10.1104/PP.90.1.45
- 192 - Azospirillum brasilense: LTS0185015
- 193 - Azospirillum lipoferum: 10.1016/0038-0717(92)90036-W
- 193 - Azospirillum lipoferum: 10.1104/PP.90.1.45
- 193 - Azospirillum lipoferum: LTS0185015
- 2 - Bacteria: LTS0185015
- 3705 - Brassica: LTS0185015
- 3708 - Brassica napus: 10.1034/J.1399-3054.1990.790416.X
- 3711 - Brassica rapa: 10.1034/J.1399-3054.1990.790416.X
- 3711 - Brassica rapa: LTS0185015
- 145471 - Brassica rapa subsp. oleifera: 10.1034/J.1399-3054.1990.790416.X
- 145471 - Brassica rapa subsp. oleifera: LTS0185015
- 3700 - Brassicaceae: LTS0185015
- 3648 - Carica: 10.1080/00021369.1991.10870990
- 3648 - Carica: LTS0185015
- 3649 - Carica papaya: 10.1080/00021369.1991.10870990
- 3649 - Carica papaya: LTS0185015
- 3647 - Caricaceae: LTS0185015
- 53851 - Cassia: LTS0185015
- 53852 - Cassia fistula: 10.1016/S0031-9422(00)85173-0
- 53852 - Cassia fistula: LTS0185015
- 4583 - Cenchrus: LTS0185015
- 4543 - Cenchrus americanus: 10.1007/BF00029894
- 4543 - Cenchrus americanus: LTS0185015
- 7711 - Chordata: LTS0185015
- 2706 - Citrus: 10.1007/BF02021820
- 2706 - Citrus: LTS0185015
- 171249 - Citrus limonia: LTS0185015
- 2711 - Citrus sinensis: 10.1007/BF02021820
- 2711 - Citrus sinensis: LTS0185015
- 4118 - Convolvulaceae: LTS0185015
- 3655 - Cucumis: 10.1007/BF00386846
- 3655 - Cucumis: LTS0185015
- 3656 - Cucumis melo: 10.1007/BF00386846
- 3656 - Cucumis melo: LTS0185015
- 3659 - Cucumis sativus: 10.1007/BF00386846
- 3659 - Cucumis sativus: LTS0185015
- 3650 - Cucurbitaceae: LTS0185015
- 53862 - Dalbergia: 10.1007/BF00191599
- 53862 - Dalbergia: LTS0185015
- 2759 - Eukaryota: LTS0185015
- 3803 - Fabaceae: LTS0185015
- 4751 - Fungi: LTS0185015
- 5506 - Fusarium: LTS0185015
- 5127 - Fusarium fujikuroi:
- 5127 - Fusarium fujikuroi: LTS0185015
- 9606 - Homo sapiens: -
- 4512 - Hordeum: 10.1016/0031-9422(73)85062-9
- 4512 - Hordeum: LTS0185015
- 4513 - Hordeum vulgare:
- 4513 - Hordeum vulgare: 10.1016/0031-9422(73)85062-9
- 4513 - Hordeum vulgare: 10.1271/BBB.59.1969
- 4513 - Hordeum vulgare: LTS0185015
- 4119 - Ipomoea: LTS0185015
- 89636 - Ipomoea aquatica: 10.1271/BBB1961.48.2935
- 89636 - Ipomoea aquatica: LTS0185015
- 4120 - Ipomoea batatas: 10.1080/00021369.1984.10866625
- 4120 - Ipomoea batatas: 10.1271/BBB1961.48.2935
- 4120 - Ipomoea batatas: LTS0185015
- 35883 - Ipomoea nil: 10.1080/00021369.1984.10866625
- 4121 - Ipomoea purpurea: 10.1080/00021369.1984.10866625
- 4121 - Ipomoea purpurea: 10.1080/00021369.1985.10866667
- 4121 - Ipomoea purpurea: LTS0185015
- 89660 - Ipomoea quamoclit: 10.1080/00021369.1984.10866625
- 89660 - Ipomoea quamoclit: 10.1271/BBB1961.48.2935
- 89660 - Ipomoea quamoclit: LTS0185015
- 89664 - Ipomoea tricolor: 10.1080/00021369.1984.10866625
- 89664 - Ipomoea tricolor: 10.1271/BBB1961.48.2935
- 89664 - Ipomoea tricolor: LTS0185015
- 4447 - Liliopsida: LTS0185015
- 4520 - Lolium: LTS0185015
- 34176 - Lolium temulentum: 10.1104/PP.119.4.1271
- 34176 - Lolium temulentum: LTS0185015
- 3869 - Lupinus: LTS0185015
- 3870 - Lupinus albus: 10.1016/0031-9422(92)80325-9
- 3870 - Lupinus albus: LTS0185015
- 3398 - Magnoliopsida: LTS0185015
- 3629 - Malvaceae: LTS0185015
- 40674 - Mammalia: LTS0185015
- 48241 - Marah: LTS0185015
- 48242 - Marah macrocarpa: 10.1016/0031-9422(96)00179-3
- 48242 - Marah macrocarpa: LTS0185015
- 2802924 - Marginella: 10.1007/BF00386846
- 1580174 - Merremia hirta: 10.1080/00021369.1984.10866625
- 1580174 - Merremia hirta: 10.1271/BBB1961.48.2935
- 33208 - Metazoa: LTS0185015
- 10066 - Muridae: LTS0185015
- 10088 - Mus: LTS0185015
- 10090 - Mus musculus: 10.1007/BF00192525
- 10090 - Mus musculus: LTS0185015
- 10090 - Mus musculus: NA
- 110618 - Nectriaceae: LTS0185015
- 5140 - Neurospora: LTS0185015
- 5141 - Neurospora crassa: 10.1080/00021369.1983.10865848
- 5141 - Neurospora crassa: LTS0185015
- 3883 - Phaseolus: LTS0185015
- 3886 - Phaseolus coccineus: 10.1016/S0031-9422(00)86455-9
- 3886 - Phaseolus coccineus: LTS0185015
- 412098 - Phaseolus coccineus subsp. coccineus: 10.1016/S0031-9422(00)86455-9
- 412098 - Phaseolus coccineus subsp. coccineus: LTS0185015
- 3884 - Phaseolus lunatus: 10.1016/S0031-9422(00)86455-9
- 3885 - Phaseolus vulgaris: 10.1016/S0031-9422(00)86455-9
- 3318 - Pinaceae: LTS0185015
- 58019 - Pinopsida: LTS0185015
- 3337 - Pinus: LTS0185015
- 71624 - Pinus attenuata:
- 71624 - Pinus attenuata: 10.1016/S0031-9422(00)86837-5
- 71624 - Pinus attenuata: LTS0185015
- 3349 - Pinus sylvestris:
- 3349 - Pinus sylvestris: 10.1111/J.1399-3054.1996.TB00542.X
- 3349 - Pinus sylvestris: LTS0185015
- 421375 - Pison: 10.1007/BF00208236
- 3887 - Pisum: 10.1007/BF00208236
- 3887 - Pisum: LTS0185015
- 3888 - Pisum sativum: 10.1007/BF00208236
- 3888 - Pisum sativum: LTS0185015
- 4479 - Poaceae: LTS0185015
- 3754 - Prunus: LTS0185015
- 42229 - Prunus avium:
- 42229 - Prunus avium: 10.1016/S0031-9422(00)86860-0
- 42229 - Prunus avium: LTS0185015
- 140311 - Prunus cerasus:
- 140311 - Prunus cerasus: 10.1016/0031-9422(96)00035-0
- 140311 - Prunus cerasus: LTS0185015
- 151430 - Prunus davidiana:
- 3760 - Prunus persica:
- 3760 - Prunus persica: 10.1104/PP.93.1.20
- 3760 - Prunus persica: LTS0185015
- 3356 - Pseudotsuga: LTS0185015
- 3357 - Pseudotsuga menziesii: 10.1034/J.1399-3054.1992.850312.X
- 3357 - Pseudotsuga menziesii: LTS0185015
- 41295 - Rhodospirillaceae: LTS0185015
- 3745 - Rosaceae: LTS0185015
- 23513 - Rutaceae: 10.4314/TJPR.V16I9.22
- 23513 - Rutaceae: LTS0185015
- 184139 - Sechium: 10.1016/S0031-9422(00)80147-8
- 184139 - Sechium: LTS0185015
- 184140 - Sechium edule: 10.1016/S0031-9422(00)80147-8
- 64231 - Sicyos: 10.1016/S0031-9422(00)80147-8
- 184140 - Sicyos edulis: 10.1016/S0031-9422(00)80147-8
- 4081 - Solanum lycopersicum: 10.1016/S0031-9422(97)00383-X
- 5148 - Sordariaceae: LTS0185015
- 147550 - Sordariomycetes: LTS0185015
- 35493 - Streptophyta: LTS0185015
- 58023 - Tracheophyta: LTS0185015
- 4565 - Triticum aestivum: 10.1007/BF00192540
- 33090 - Viridiplantae: LTS0185015
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Jia Liu, Sumei Qiu, Tingting Xue, Yingdan Yuan. Physiology and transcriptome of Eucommia ulmoides seeds at different germination stages.
Plant signaling & behavior.
2024 Dec; 19(1):2329487. doi:
10.1080/15592324.2024.2329487
. [PMID: 38493506] - Ping Huang, Jie Yang, Jiapeng Ke, Li Cai, Yingxiong Hu, Jun Ni, Chaoqiong Li, Zeng-Fu Xu, Mingyong Tang. Inhibition of flowering by gibberellins in the woody plant Jatropha curcas is restored by overexpression of JcFT.
Plant science : an international journal of experimental plant biology.
2024 Jul; 344(?):112100. doi:
10.1016/j.plantsci.2024.112100
. [PMID: 38679393] - Jiujun Du, Hantian Wei, Xueqin Song, Lei Zhang, Jianjun Hu. PdRabG3f interfered with gibberellin-mediated internode elongation and xylem developing in poplar.
Plant science : an international journal of experimental plant biology.
2024 Jun; 343(?):112074. doi:
10.1016/j.plantsci.2024.112074
. [PMID: 38548138] - Noura E Mahmoud, Hassan Abdel-Gawad, Reda M Abdelhameed. Post-synthetic modification of nano-chitosan using gibberellic acid: Foliar application on sorghum under salt stress conditions and estimation of biochemical parameters.
Plant physiology and biochemistry : PPB.
2024 Jun; 211(?):108655. doi:
10.1016/j.plaphy.2024.108655
. [PMID: 38744086] - Ying Li, Xifu Yang, Enping Feng, Kunming Zhao, Zhibin Zhang. Plant hormones mediate the interaction between oak acorn germination and rodent hoarding behaviour.
The New phytologist.
2024 Jun; 242(5):2237-2250. doi:
10.1111/nph.19424
. [PMID: 38037212] - Liangxin Wang, Yuanxiu Lin, Guoyan Hou, Min Yang, Yuting Peng, Yuyan Jiang, Caixia He, Musha She, Qing Chen, Mengyao Li, Yong Zhang, Yunting Zhang, Yan Wang, Wen He, Xiaorong Wang, Haoru Tang, Ya Luo. A histone deacetylase, FaSRT1-2, plays multiple roles in regulating fruit ripening, plant growth and stresses resistance of cultivated strawberry.
Plant, cell & environment.
2024 Jun; 47(6):2258-2273. doi:
10.1111/pce.14885
. [PMID: 38482979] - Xiaoguang Lu, Fuzhi Zhang, Chenglong Zhang, Guorui Li, Yuchen Du, Cicong Zhao, Wei Zhao, Fengmei Gao, Lianshuang Fu, Xin Liu, Jun Liu, Xiaonan Wang. TaTPS11 enhances wheat cold resistance by regulating source-sink factor.
Plant physiology and biochemistry : PPB.
2024 Jun; 211(?):108695. doi:
10.1016/j.plaphy.2024.108695
. [PMID: 38744088] - Ting Li, Yongqin Wang, Annelore Natran, Yi Zhang, Hao Wang, Kangxi Du, Peng Qin, Hua Yuan, Weilan Chen, Bin Tu, Dirk Inzé, Marieke Dubois. C-TERMINAL DOMAIN PHOSPHATASE-LIKE 3 contributes to GA-mediated growth and flowering by interaction with DELLA proteins.
The New phytologist.
2024 Jun; 242(6):2555-2569. doi:
10.1111/nph.19742
. [PMID: 38594216] - Yangang Pei, Qihan Xue, Peng Shu, Weijie Xu, Xiaofei Du, Mengbo Wu, Kaidong Liu, Julien Pirrello, Mondher Bouzayen, Yiguo Hong, Mingchun Liu. Bifunctional transcription factors SlERF.H5 and H7 activate cell wall and repress gibberellin biosynthesis genes in tomato via a conserved motif.
Developmental cell.
2024 May; 59(10):1345-1359.e6. doi:
10.1016/j.devcel.2024.03.006
. [PMID: 38579721] - Haoyang Sun, Chunping Li, Siyu Li, Jiaxin Ma, Shuo Li, Xin Li, Cai Gao, Rongchen Yang, Nan Ma, Jing Yang, Peizhi Yang, Xueqing He, Tianming Hu. Identification and validation of stable reference genes for RT-qPCR analyses of Kobresia littledalei seedlings.
BMC plant biology.
2024 May; 24(1):389. doi:
10.1186/s12870-024-04924-w
. [PMID: 38730341] - Subhan Danish, Sundas Sana, Muhammad Baqir Hussain, Khadim Dawar, Hesham S Almoallim, Mohammad Javed Ansari, Misbah Hareem, Rahul Datta. Effect of methyl jasmonate and GA3 on canola (Brassica napus L.) growth, antioxidants activity, and nutrient concentration cultivated in salt-affected soils.
BMC plant biology.
2024 May; 24(1):363. doi:
10.1186/s12870-024-05074-9
. [PMID: 38724910] - Barbora Ndreca, Alison Huttly, Sajida Bibi, Carlos Bayon, George Lund, Joshua Ham, Rocío Alarcón-Reverte, John Addy, Danuše Tarkowská, Stephen Pearce, Peter Hedden, Stephen G Thomas, Andrew L Phillips. Stacked mutations in wheat homologues of rice SEMI-DWARF1 confer a novel semi-dwarf phenotype.
BMC plant biology.
2024 May; 24(1):384. doi:
10.1186/s12870-024-05098-1
. [PMID: 38724935] - Bihai Shi, Amelia Felipo-Benavent, Guillaume Cerutti, Carlos Galvan-Ampudia, Lucas Jilli, Geraldine Brunoud, Jérome Mutterer, Elody Vallet, Lali Sakvarelidze-Achard, Jean-Michel Davière, Alejandro Navarro-Galiano, Ankit Walia, Shani Lazary, Jonathan Legrand, Roy Weinstain, Alexander M Jones, Salomé Prat, Patrick Achard, Teva Vernoux. A quantitative gibberellin signaling biosensor reveals a role for gibberellins in internode specification at the shoot apical meristem.
Nature communications.
2024 May; 15(1):3895. doi:
10.1038/s41467-024-48116-4
. [PMID: 38719832] - Jorge Hernández-García, Antonio Serrano-Mislata, María Lozano-Quiles, Cristina Úrbez, María A Nohales, Noel Blanco-Touriñán, Huadong Peng, Rodrigo Ledesma-Amaro, Miguel A Blázquez. DELLA proteins recruit the Mediator complex subunit MED15 to coactivate transcription in land plants.
Proceedings of the National Academy of Sciences of the United States of America.
2024 May; 121(19):e2319163121. doi:
10.1073/pnas.2319163121
. [PMID: 38696472] - Ivan Visentin, Leticia Frizzo Ferigolo, Giulia Russo, Paolo Korwin Krukowski, Caterina Capezzali, Danuše Tarkowská, Francesco Gresta, Eleonora Deva, Fabio Tebaldi Silveira Nogueira, Andrea Schubert, Francesca Cardinale. Strigolactones promote flowering by inducing the miR319-LA-SFT module in tomato.
Proceedings of the National Academy of Sciences of the United States of America.
2024 May; 121(19):e2316371121. doi:
10.1073/pnas.2316371121
. [PMID: 38701118] - Zhongtian Zheng, Wei Li, Yuhang Ding, Yinting Wu, Qinyue Jiang, Yijun Wang. Integrative transcriptome analysis uncovers common components containing CPS2 regulated by maize lncRNA GARR2 in gibberellin response.
Planta.
2024 May; 259(6):146. doi:
10.1007/s00425-024-04425-y
. [PMID: 38713242] - Vincent Castric, Rita A Batista, Amélie Carré, Soraya Mousavi, Clément Mazoyer, Cécile Godé, Sophie Gallina, Chloé Ponitzki, Anthony Theron, Arnaud Bellec, William Marande, Sylvain Santoni, Roberto Mariotti, Andrea Rubini, Sylvain Legrand, Sylvain Billiard, Xavier Vekemans, Philippe Vernet, Pierre Saumitou-Laprade. The homomorphic self-incompatibility system in Oleaceae is controlled by a hemizygous genomic region expressing a gibberellin pathway gene.
Current biology : CB.
2024 05; 34(9):1967-1976.e6. doi:
10.1016/j.cub.2024.03.047
. [PMID: 38626763] - Jie Ya Sun, Rui Guo, Qi Jiang, Chang Zhao Chen, Yong Qiang Gao, Meng Meng Jiang, Ren Fang Shen, Xiao Fang Zhu, Jiu Huang. Brassinosteroid decreases cadmium accumulation via regulating gibberellic acid accumulation and Cd fixation capacity of root cell wall in rice (Oryza sativa).
Journal of hazardous materials.
2024 May; 469(?):133862. doi:
10.1016/j.jhazmat.2024.133862
. [PMID: 38432090] - Wen-Fang Li, Qi Zhou, Zong-Huan Ma, Cun-Wu Zuo, Ming-Yu Chu, Juan Mao, Bai-Hong Chen. Regulatory mechanism of GA3 application on grape (Vitis vinifera L.) berry size.
Plant physiology and biochemistry : PPB.
2024 May; 210(?):108543. doi:
10.1016/j.plaphy.2024.108543
. [PMID: 38554534] - Jennifer Andres, Lisa J Schmunk, Federico Grau-Enguix, Justine Braguy, Sophia L Samodelov, Tim Blomeier, Rocio Ochoa-Fernandez, Wilfried Weber, Salim Al-Babili, David Alabadí, Miguel A Blázquez, Matias D Zurbriggen. Ratiometric gibberellin biosensors for the analysis of signaling dynamics and metabolism in plant protoplasts.
The Plant journal : for cell and molecular biology.
2024 May; 118(4):927-939. doi:
10.1111/tpj.16725
. [PMID: 38525669] - Qingqing Qin, Lei Zhang, Hua Yin, Junhong Yu, Shumin Hu, Zhijun Zhang, Jia Liu. Enhancing malting performance of harder barley varieties through ultrasound treatment.
Ultrasonics sonochemistry.
2024 May; 105(?):106860. doi:
10.1016/j.ultsonch.2024.106860
. [PMID: 38554531] - Yongfeng Gao, Zihao Chen, Qian Feng, Tao Long, Jihua Ding, Peng Shu, Heng Deng, Peizhi Yu, Wenrong Tan, Siqin Liu, Lucas Gutierrez Rodriguez, Lijun Wang, Víctor Resco de Dios, Yinan Yao. ELONGATED HYPOCOTYL 5a modulates FLOWERING LOCUS T2 and gibberellin levels to control dormancy and bud break in poplar.
The Plant cell.
2024 May; 36(5):1963-1984. doi:
10.1093/plcell/koae022
. [PMID: 38271284] - Martin Balcerowicz. Detecting the ebb and flow of a phytohormone: a ratiometric biosensor to analyse gibberellin dynamics.
The Plant journal : for cell and molecular biology.
2024 May; 118(4):925-926. doi:
10.1111/tpj.16780
. [PMID: 38743849] - Nikita Sajeev, Maarten Koornneef, Leónie Bentsink. A commitment for life: Decades of unraveling the molecular mechanisms behind seed dormancy and germination.
The Plant cell.
2024 May; 36(5):1358-1376. doi:
10.1093/plcell/koad328
. [PMID: 38215009] - Hui Wei, Jinxin Chen, Xingyue Zhang, Zixuan Lu, Guoyuan Liu, Bolin Lian, Chunmei Yu, Yanhong Chen, Fei Zhong, Jian Zhang. Characterization, expression pattern, and function analysis of gibberellin oxidases in Salix matsudana.
International journal of biological macromolecules.
2024 May; 266(Pt 1):131095. doi:
10.1016/j.ijbiomac.2024.131095
. [PMID: 38537859] - Eilon Shani, Peter Hedden, Tai-Ping Sun. Highlights in gibberellin research: A tale of the dwarf and the slender.
Plant physiology.
2024 Apr; 195(1):111-134. doi:
10.1093/plphys/kiae044
. [PMID: 38290048] - Meng Wang, Jiaxue Li, Tao Li, Shaoling Kang, Senrong Jiang, Jiaquan Huang, Hua Tang. Light Supplementation in Pitaya Orchards Induces Pitaya Flowering in Winter by Promoting Phytohormone Biosynthesis.
International journal of molecular sciences.
2024 Apr; 25(9):. doi:
10.3390/ijms25094794
. [PMID: 38732009] - Liu Liu, Lincheng Zhang, Longhuan Yang, Jiahua Zheng, Jing Jin, Shuoqiu Tong, Yongjun Wu. Genome-wide characterization and expression analysis of the HD-Zip II gene family in response to drought and GA3 stresses in Nicotiana tabacum.
Molecular biology reports.
2024 Apr; 51(1):581. doi:
10.1007/s11033-024-09527-0
. [PMID: 38668759] - Liuyan Qin, Dandan Tian, Chenglin Guo, Liping Wei, Zhangfei He, Wei Zhou, Quyan Huang, Baoshen Li, Chaosheng Li, Mengyun Jiang. Discovery of gene regulation mechanisms associated with uniconazole-induced cold tolerance in banana using integrated transcriptome and metabolome analysis.
BMC plant biology.
2024 Apr; 24(1):342. doi:
10.1186/s12870-024-05027-2
. [PMID: 38671368] - Wei Gao, Yating Jiang, Xiaohu Yang, Ting Li, Litian Zhang, Shengnan Yan, Jiajia Cao, Jie Lu, Chuanxi Ma, Cheng Chang, Haiping Zhang. Functional analysis of a wheat class III peroxidase gene, TaPer12-3A, in seed dormancy and germination.
BMC plant biology.
2024 Apr; 24(1):318. doi:
10.1186/s12870-024-05041-4
. [PMID: 38654190] - Changxia Li, Xuemei Hou, Zongxi Zhao, Huwei Liu, Panpan Huang, Meimei Shi, Xuetong Wu, Rong Gao, Zhiya Liu, Lijuan Wei, Yihua Li, Weibiao Liao. A tomato NAC transcription factor, SlNAP1, directly regulates gibberellin-dependent fruit ripening.
Cellular & molecular biology letters.
2024 Apr; 29(1):57. doi:
10.1186/s11658-024-00577-7
. [PMID: 38649857] - Jan Kępczyński, Michal Dziurka, Agata Wójcik. KAR1-induced dormancy release in Avena fatua caryopses involves reduction of caryopsis sensitivity to ABA and ABA/GAs ratio in coleorhiza and radicle.
Planta.
2024 Apr; 259(6):126. doi:
10.1007/s00425-024-04387-1
. [PMID: 38635035] - Ali Salehi Sardoei, Mojtaba Tahmasebi, Fatemeh Bovand, Mansour Ghorbanpour. Exogenously applied gibberellic acid and benzylamine modulate growth and chemical constituents of dwarf schefflera: a stepwise regression analysis.
Scientific reports.
2024 04; 14(1):7896. doi:
10.1038/s41598-024-57985-0
. [PMID: 38570571] - Hany M El-Naggar, Shimaa M Ali, Amira R Osman. A novel efficient multi-walled carbon nanotubes/gibberellic acid composite for enhancement vase life and quality of Rosa hybrida cv. 'Moonstone'.
BMC plant biology.
2024 Apr; 24(1):239. doi:
10.1186/s12870-024-04925-9
. [PMID: 38570782] - Yuhang Wang, Shuo Zhao, Shuhong Wang, Jing Zhang, Yanli Zhao, Cai Ye, Zhiyu Zhao, Jinlian Li, Hongkuan Shen, Dongmei Wu. Electrochemistry detection of estrogenic effect: Regulation of de novo purine synthesis and catabolism by gibberellin and fulvestrant.
Bioelectrochemistry (Amsterdam, Netherlands).
2024 Apr; 156(?):108634. doi:
10.1016/j.bioelechem.2023.108634
. [PMID: 38160510] - Karen Velandia, Alejandro Correa-Lozano, Peter M McGuiness, James B Reid, Eloise Foo. Cell-layer specific roles for gibberellins in nodulation and root development.
The New phytologist.
2024 Apr; 242(2):626-640. doi:
10.1111/nph.19623
. [PMID: 38396236] - Yanqing Zhang, Zaohai Zeng, Huimin Hu, Minglei Zhao, Chengjie Chen, Xingshuai Ma, Guanliang Li, Jianguo Li, Yuanlong Liu, Yanwei Hao, Jing Xu, Rui Xia. MicroRNA482/2118 is lineage-specifically involved in gibberellin signalling via the regulation of GID1 expression by targeting noncoding PHAS genes and subsequently instigated phasiRNAs.
Plant biotechnology journal.
2024 Apr; 22(4):819-832. doi:
10.1111/pbi.14226
. [PMID: 37966709] - Enyang Mei, Mingliang He, Min Xu, Jiaqi Tang, Jiali Liu, Yingxiang Liu, Zhipeng Hong, Xiufeng Li, Zhenyu Wang, Qingjie Guan, Xiaojie Tian, Qingyun Bu. OsWRKY78 regulates panicle exsertion via gibberellin signaling pathway in rice.
Journal of integrative plant biology.
2024 Apr; 66(4):771-786. doi:
10.1111/jipb.13636
. [PMID: 38470298] - Yutao Huang, Gaofu Mei, Kehua Zhu, Xiaoli Ruan, Huaping Wu, Dongdong Cao. Shading treatment during late stage of seed development promotes subsequent seed germination and seedlings establishment in sunflower.
Plant science : an international journal of experimental plant biology.
2024 Apr; 341(?):111996. doi:
10.1016/j.plantsci.2024.111996
. [PMID: 38272070] - Yadveer Kaur, Niranjan Das. Gibberellin 2-Oxidases in Potato (Solanum tuberosum L.): Cloning, Characterization, In Silico Analysis and Molecular Docking.
Molecular biotechnology.
2024 Apr; 66(4):902-917. doi:
10.1007/s12033-023-00745-8
. [PMID: 37061992] - Peng Zeng, Ting Xie, Jiaxin Shen, Taokai Liang, Lu Yin, Kexin Liu, Ying He, Mingming Chen, Haijuan Tang, Sunlu Chen, Sergey Shabala, Hongsheng Zhang, Jinping Cheng. Potassium transporter OsHAK9 regulates seed germination under salt stress by preventing gibberellin degradation through mediating OsGA2ox7 in rice.
Journal of integrative plant biology.
2024 Apr; 66(4):731-748. doi:
10.1111/jipb.13642
. [PMID: 38482956] - Rashmi Garg, Hrishikesh Mahato, Upasana Choudhury, Ravindra S Thakur, Pratima Debnath, Nasreen G Ansari, Vidhu A Sane, Aniruddha P Sane. The tomato EAR-motif repressor, SlERF36, accelerates growth transitions and reduces plant life cycle by regulating GA levels and responses.
Plant biotechnology journal.
2024 Apr; 22(4):848-862. doi:
10.1111/pbi.14228
. [PMID: 38127946] - Peng He, Liping Zhu, Xin Zhou, Xuan Fu, Yu Zhang, Peng Zhao, Bin Jiang, Huiqin Wang, Guanghui Xiao. Gibberellic acid promotes single-celled fiber elongation through the activation of two signaling cascades in cotton.
Developmental cell.
2024 Mar; 59(6):723-739.e4. doi:
10.1016/j.devcel.2024.01.018
. [PMID: 38359829] - Jie Wang, Weixiong Long, Jintao Pan, Xiaolin Zhang, Lihua Luo, Mingjuan Qian, Wei Chen, Laiyang Luo, Weibiao Xu, Yonghui Li, Yaohui Cai, Hongwei Xie. DNAL7, a new allele of NAL11, has major pleiotropic effects on rice architecture.
Planta.
2024 Mar; 259(5):93. doi:
10.1007/s00425-024-04376-4
. [PMID: 38509429] - Yumang Zhang, Chunyuan Yang, Shuxia Liu, Zhonglei Xie, Hongyan Chang, Tong Wu. Phytohormones-mediated strategies for mitigation of heavy metals toxicity in plants focused on sustainable production.
Plant cell reports.
2024 Mar; 43(4):99. doi:
10.1007/s00299-024-03189-9
. [PMID: 38494540] - Trang Thi Nguyen, Thanh Chi Nguyen, Phat Tien Do, Huong Thi Mai To. Effect of gibberellin on crown root development in the mutant of the rice plasmodesmal Germin-like protein OsGER4.
Functional & integrative genomics.
2024 Mar; 24(2):59. doi:
10.1007/s10142-024-01341-y
. [PMID: 38498207] - Ziying He, Rui Jiang, Xiaojing Wang, Yaqin Wang. A GASA Protein Family Gene, CmGEG, Inhibits Petal Growth in Chrysanthemum.
International journal of molecular sciences.
2024 Mar; 25(6):. doi:
10.3390/ijms25063367
. [PMID: 38542341] - Tauseef Anwar, Huma Qureshi, Mah Jabeen, Wajid Zaman, Hayssam M Ali. Mitigation of cadmium-induced stress in maize via synergistic application of biochar and gibberellic acid to enhance morpho-physiological and biochemical traits.
BMC plant biology.
2024 Mar; 24(1):192. doi:
10.1186/s12870-024-04805-2
. [PMID: 38491471] - Wenshu Kang, Yuxi Duan, Piao Lei. Transcriptomic changes in soybean underlying growth promotion and defense against cyst nematode after Bacillus simplex Sneb545 treatment.
Gene.
2024 Mar; 898(?):148080. doi:
10.1016/j.gene.2023.148080
. [PMID: 38101712] - Yue Yang, Ziyun Ren, Lei Li, Yu Li, Yi Han, Yongxiu Liu, Hong Cao. WOX2 functions redundantly with WOX1 and WOX4 to positively regulate seed germination in Arabidopsis.
Planta.
2024 Mar; 259(4):83. doi:
10.1007/s00425-024-04357-7
. [PMID: 38441675] - Junpeng Niu, Mingzhen Xu, Na Zong, Jia Sun, Lei Zhao, Wei Hui. Ascorbic acid releases dormancy and promotes germination by an integrated regulation of abscisic acid and gibberellin in Pyrus betulifolia seeds.
Physiologia plantarum.
2024 Mar; 176(2):e14271. doi:
10.1111/ppl.14271
. [PMID: 38566130] - Lamia Sakouhi, Muhammad Hussaan, Yoshiyuki Murata, Abdelilah Chaoui. Role of calcium signaling in cadmium stress mitigation by indol-3-acetic acid and gibberellin in chickpea seedlings.
Environmental science and pollution research international.
2024 Mar; 31(11):16972-16985. doi:
10.1007/s11356-024-32327-9
. [PMID: 38329668] - Kriti Roopendra, Priyanka, Amaresh Chandra, Yusuf Akhter, Sangeeta Saxena. Transcriptome scale analysis to decode the differential sucrose accumulation mechanisms in sugarcane under the effect of gibberellin.
Physiologia plantarum.
2024 Mar; 176(2):e14290. doi:
10.1111/ppl.14290
. [PMID: 38634341] - Yiqi Wan, Yuman Cao, Zhiqiang Zhang, Bo Han, Maojin Lu, Zijie Zhuo, Xinyi Gao, Peizhi Yang, Yafang Wang. Overexpression of the alfalfa (Medicago sativa) gene, MsKMS1, negatively regulates seed germination in transgenic tobacco (Nicotiana tabacum).
Functional plant biology : FPB.
2024 03; 51(?):. doi:
10.1071/fp23210
. [PMID: 38467137] - Qingqing Yao, Ying Feng, Jiajie Wang, Yushi Zhang, Fei Yi, Zhaohu Li, Mingcai Zhang. Integrated Metabolome and Transcriptome Analysis of Gibberellins Mediated the Circadian Rhythm of Leaf Elongation by Regulating Lignin Synthesis in Maize.
International journal of molecular sciences.
2024 Feb; 25(5):. doi:
10.3390/ijms25052705
. [PMID: 38473951] - Lisheng Qian, Shoucheng Huang, Zhihua Song, Shah Fahad, Khadim Dawar, Subhan Danish, Hina Saif, Khurram Shahzad, Mohammad Javed Ansari, Saleh H Salmen. Effect of carboxymethyl cellulose and gibberellic acid-enriched biochar on osmotic stress tolerance in cotton.
BMC plant biology.
2024 Feb; 24(1):137. doi:
10.1186/s12870-024-04792-4
. [PMID: 38408939] - Vivek Kumar Awon, Debabrata Dutta, Saptadipa Banerjee, Soumili Pal, Gaurab Gangopadhyay. Integrated metabolomics and transcriptomics analysis highlight key pathways involved in the somatic embryogenesis of Darjeeling tea.
BMC genomics.
2024 Feb; 25(1):207. doi:
10.1186/s12864-024-10119-2
. [PMID: 38395740] - Zainab Mirza, Meetu Gupta. Iron reprogrammes the root system architecture by regulating OsWRKY71 in arsenic-stressed rice (Oryza sativa L.).
Plant molecular biology.
2024 Feb; 114(1):11. doi:
10.1007/s11103-024-01420-5
. [PMID: 38324196] - Hanxin Wu, Jianhao Tong, Xiaohan Jiang, Jing Wang, Haonan Zhang, Yating Luo, Jingli Pang, Jiyan Shi. More effective than direct contact: Nano hydroxyapatite pre-treatment regulates the growth and Cd uptake of rice (Oryza sativa L.) seedlings.
Journal of hazardous materials.
2024 02; 463(?):132889. doi:
10.1016/j.jhazmat.2023.132889
. [PMID: 37922579] - Wang Ki Min, Dae Hwan Kwon, Jong Tae Song, Hak Soo Seo. Arabidopsis retromer subunit AtVPS29 is involved in SLY1-mediated gibberellin signaling.
Plant cell reports.
2024 Feb; 43(2):53. doi:
10.1007/s00299-024-03144-8
. [PMID: 38315261] - Jingyun Lu, Guifang Zhang, Chao Ma, Yao Li, Chuyan Jiang, Yaru Wang, Bingjie Zhang, Rui Wang, Yuexuan Qiu, Yanxing Ma, Yangchao Jia, Cai-Zhong Jiang, Xiaoming Sun, Nan Ma, Yunhe Jiang, Junping Gao. The F-box protein RhSAF destabilizes the gibberellic acid receptor RhGID1 to mediate ethylene-induced petal senescence in rose.
The Plant cell.
2024 Feb; ?(?):. doi:
10.1093/plcell/koae035
. [PMID: 38315889] - Jie-Qing Ma. Gibberellic acid induced oxidative stress, endoplasmic reticulum stress, and apoptosis in the livers of gibel carp (Carassius auratus gibelio).
Aquatic toxicology (Amsterdam, Netherlands).
2024 Feb; 267(?):106807. doi:
10.1016/j.aquatox.2023.106807
. [PMID: 38183776] - Zhuo Li, Huan Chen, Qingjie Guan, Lixin Li, Yuan Hu Xuan. Gibberellic acid signaling promotes resistance to saline-alkaline stress by increasing the uptake of ammonium in rice.
Plant physiology and biochemistry : PPB.
2024 Feb; 207(?):108424. doi:
10.1016/j.plaphy.2024.108424
. [PMID: 38335888] - Arjun Adhikari, Eun-Hae Kwon, Muhammad Aaqil Khan, Shifa Shaffique, Sang-Mo Kang, In-Jung Lee. Enhanced use of chemical fertilizers and mitigation of heavy metal toxicity using biochar and the soil fungus Bipolaris maydis AF7 in rice: Genomic and metabolomic perspectives.
Ecotoxicology and environmental safety.
2024 Feb; 271(?):115938. doi:
10.1016/j.ecoenv.2024.115938
. [PMID: 38218102] - Iftah Marash, Rupali Gupta, Gautam Anand, Meirav Leibman-Markus, Naomi Lindner, Alon Israeli, Dov Nir, Adi Avni, Maya Bar. TOR coordinates cytokinin and gibberellin signals mediating development and defense.
Plant, cell & environment.
2024 Feb; 47(2):629-650. doi:
10.1111/pce.14748
. [PMID: 37904283] - Jun Liu, Zhengfang Wang, Chunzhi Zhao, Bei Lu, Yongjun Zhao. Phytohormone gibberellins treatment enhances multiple antibiotics removal efficiency of different bacteria-microalgae-fungi symbionts.
Bioresource technology.
2024 Feb; 394(?):130182. doi:
10.1016/j.biortech.2023.130182
. [PMID: 38081467] - Tian-Qiong Shi, Yi-Hang Shen, Ya-Wen Li, Zi-Yi Huang, Zhi-Kui Nie, Chao Ye, Yue-Tong Wang, Qi Guo. Improving the productivity of gibberellic acid by combining small-molecule compounds-based targeting technology and transcriptomics analysis in Fusarium fujikuroi.
Bioresource technology.
2024 Feb; 394(?):130299. doi:
10.1016/j.biortech.2024.130299
. [PMID: 38185446] - Shizhan Chen, Xiaocong Fan, Meifang Song, Shuaitao Yao, Tong Liu, Wusi Ding, Lei Liu, Menglan Zhang, Weimin Zhan, Lei Yan, Guanghua Sun, Hongdan Li, Lijian Wang, Kang Zhang, Xiaolin Jia, Qinghua Yang, Jianping Yang. Cryptochrome 1b represses gibberellin signaling to enhance lodging resistance in maize.
Plant physiology.
2024 Jan; 194(2):902-917. doi:
10.1093/plphys/kiad546
. [PMID: 37934825] - Selvaraj Ramchander, Andrew-Peter-Leon M T, Yasin Jeshima Khan, Jegadeesan Souframanien, Madhavan Arumugam Pillai. Molecular and physiological characterization of early semi-dwarf mutants of rice and localization of SNP variants in Sd1 locus generated through gamma radiation.
International journal of radiation biology.
2024 Jan; ?(?):1-13. doi:
10.1080/09553002.2024.2304827
. [PMID: 38285971] - Baoshan Xian, Muhammad Saad Rehmani, Yueni Fan, Xiaofeng Luo, Ranran Zhang, Jiahui Xu, Shaowei Wei, Lei Wang, Juan He, Aigen Fu, Kai Shu. The ABI4-RGL2 module serves as a double agent to mediate the antagonistic crosstalk between ABA and GA signals.
The New phytologist.
2024 Jan; ?(?):. doi:
10.1111/nph.19533
. [PMID: 38287207] - Jian-Ping An, Rui-Rui Xu, Xiao-Na Wang, Xiao-Wei Zhang, Chun-Xiang You, Yuepeng Han. MdbHLH162 connects the gibberellin and jasmonic acid signals to regulate anthocyanin biosynthesis in apple.
Journal of integrative plant biology.
2024 Jan; ?(?):. doi:
10.1111/jipb.13608
. [PMID: 38284786] - Kiyoshi Yamazaki, Yoshihiro Ohmori, Hirokazu Takahashi, Atsushi Toyoda, Yutaka Sato, Mikio Nakazono, Toru Fujiwara. Transcriptome analysis of rice root tips reveals auxin, gibberellin, and ethylene signalling underlying nutritropism.
Plant & cell physiology.
2024 Jan; ?(?):. doi:
10.1093/pcp/pcae003
. [PMID: 38226464] - Le-Le Chu, Wei-Xuan Zheng, Hai-Qiang Liu, Xing-Xing Sheng, Qing-Ye Wang, Yue Wang, Chun-Gen Hu, Jin-Zhi Zhang. ACC SYNTHASE4 inhibits gibberellin biosynthesis and FLOWERING LOCUS T expression during citrus flowering.
Plant physiology.
2024 Jan; ?(?):. doi:
10.1093/plphys/kiae022
. [PMID: 38227428] - Shalini Jhanji, Eena Goyal, Manisha Chumber, Gurpreet Kaur. Exploring fine tuning between phytohormones and ROS signaling cascade in regulation of seed dormancy, germination and seedling development.
Plant physiology and biochemistry : PPB.
2024 Jan; 207(?):108352. doi:
10.1016/j.plaphy.2024.108352
. [PMID: 38266558] - Yu Lin, Meng Liang, Hao Pang, Zilong Wang, Hai Bi, Yutuo Wei, Liqin Du. Production of Gibberellins via a Non-Natural Pathway Using Steviol as a Substrate.
Journal of agricultural and food chemistry.
2024 Jan; 72(1):540-548. doi:
10.1021/acs.jafc.3c06932
. [PMID: 38131295] - Shengxiang Chen, Xujiao Wei, Xiaoli Hu, Peng Zhang, Kailin Chang, Dongyang Zhang, Wei Chen, Dandan Tang, Qian Tang, Pinwu Li, Liqiang Tan. Genome-Wide Analysis of Nuclear factor-YC Genes in the Tea Plant (Camellia sinensis) and Functional Identification of CsNF-YC6.
International journal of molecular sciences.
2024 Jan; 25(2):. doi:
10.3390/ijms25020836
. [PMID: 38255910] - Shuhao Li, Shengxiang Ran, Song Yuan, Kaizhen Chang, Mingxuan Han, Fenglin Zhong. Gibberellin-mediated far-red light-induced leaf expansion in cucumber seedlings.
Protoplasma.
2024 Jan; ?(?):. doi:
10.1007/s00709-023-01923-w
. [PMID: 38170395] - Qian-Qian Gan, Ping Yang, Hong-Lan Wang, Wen-Tao Zhu, Jing-Cheng Wang, Teng Liu, Jiu-Zhen DU, Shun-Yuan Jiang. [Morphological and biochemical characterization during seed development of Notopterygium incisum].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2024 Jan; 49(2):354-360. doi:
10.19540/j.cnki.cjcmm.20230906.101
. [PMID: 38403311] - H Ren, Z Wang, X Shang, X Zhang, L Ma, Y Bian, D Wang, W Liu. Involvement of GA3-oxidase in inhibitory effect of nitric oxide on primary root growth in Arabidopsis.
Plant biology (Stuttgart, Germany).
2024 Jan; 26(1):117-125. doi:
10.1111/plb.13600
. [PMID: 38014496] - Sofia Carreras Kàtcheff, Moises Labrador-Horrillo, Borja Bartolomé, Teresa Garriga-Baraut. Allergy to Gibberellin-regulated proteins in an adolescent: A case of orange-induced anaphylaxis mediated by cofactors.
Allergologia et immunopathologia.
2024; 52(2):48-50. doi:
10.15586/aei.v52i2.1014
. [PMID: 38459890] - Yufei Zhang, Lingyan Wang, Yuexin Wu, Donghui Wang, Xin-Qiang He. Gibberellin promotes cambium reestablishment during secondary vascular tissue regeneration after girdling in an auxin-dependent manner in Populus.
Journal of integrative plant biology.
2024 Jan; 66(1):86-102. doi:
10.1111/jipb.13591
. [PMID: 38051026] - Changguang Liao, Hui Shen, Zihan Gao, Yunshu Wang, Zhiguo Zhu, Qiaoli Xie, Ting Wu, Guoping Chen, Zongli Hu. Overexpression of SlCRF6 in tomato inhibits leaf development and affects plant morphology.
Plant science : an international journal of experimental plant biology.
2024 Jan; 338(?):111921. doi:
10.1016/j.plantsci.2023.111921
. [PMID: 37949361] - Yanzhao Yang, Chengcai Chu, Qian Qian, Hongning Tong. Leveraging brassinosteroids towards the next Green Revolution.
Trends in plant science.
2024 01; 29(1):86-98. doi:
10.1016/j.tplants.2023.09.005
. [PMID: 37805340] - Nagarajan Nivetha, Arambam Devi Asha, Gopinathan Kumar Krishna, Viswanathan Chinnusamy, Sangeeta Paul. Rhizobacteria Bacillus spp. mitigate osmotic stress and improve seed germination in mustard by regulating osmolyte and plant hormone signaling.
Physiologia plantarum.
2024 Jan; 176(1):e14202. doi:
10.1111/ppl.14202
. [PMID: 38356406] - Shoaib Liaqat, Zulfiqar Ali, Muhammad Abu Bakar Saddique, Rao Muhammad Ikram, Imtiaz Ali. Comparative transcript abundance of gibberellin oxidases genes in two barley (Hordeum vulgare) genotypes with contrasting lodging resistance under different regimes of water deficit.
Functional plant biology : FPB.
2024 01; 51(?):. doi:
10.1071/fp23246
. [PMID: 38252957] - Ulrich Kutschera, Rajnish Khanna. Mendel-200: Pea as a model system to analyze hormone-mediated stem elongation.
Plant signaling & behavior.
2023 Dec; 18(1):2207845. doi:
10.1080/15592324.2023.2207845
. [PMID: 37166004] - Chihiro Miura, Yuki Furui, Tatsuki Yamamoto, Yuri Kanno, Masaya Honjo, Katsushi Yamaguchi, Kenji Suetsugu, Takahiro Yagame, Mitsunori Seo, Shuji Shigenobu, Masahide Yamato, Hironori Kaminaka. Autoactivation of mycorrhizal symbiosis signaling through gibberellin deactivation in orchid seed germination.
Plant physiology.
2023 Dec; 194(1):546-563. doi:
10.1093/plphys/kiad517
. [PMID: 37776523] - Zizhao Xie, Liang Jin, Ying Sun, Chenghang Zhan, Siqi Tang, Tian Qin, Nian Liu, Junli Huang. OsNAC120 balances plant growth and drought tolerance by integrating GA and ABA signaling in rice.
Plant communications.
2023 Dec; ?(?):100782. doi:
10.1016/j.xplc.2023.100782
. [PMID: 38148603] - Yanqing Wu, Jiao Liu, Hao Wu, Yiming Zhu, Irshad Ahmad, Guisheng Zhou. The Roles of Mepiquate Chloride and Melatonin in the Morpho-Physiological Activity of Cotton under Abiotic Stress.
International journal of molecular sciences.
2023 Dec; 25(1):. doi:
10.3390/ijms25010235
. [PMID: 38203405] - Chi-Chieh Hu, Chin-Yu Wu, Min-Yu Yang, Jian-Zhi Huang, Chih-Wen Wu, Chwan-Yang Hong. Catalase associated with antagonistic changes of abscisic acid and gibberellin response, biosynthesis and catabolism is involved in eugenol-inhibited seed germination in rice.
Plant cell reports.
2023 Dec; 43(1):10. doi:
10.1007/s00299-023-03096-5
. [PMID: 38135798] - Wangshu Zhang, Yue Xu, Luyang Jing, Baoxin Jiang, Qinghao Wang, Yuxi Wang. Preliminary Study on the Formation Mechanism of Malformed Sweet Cherry (Prunus avium L.) Fruits in Southern China Using Transcriptome and Metabolome Data.
International journal of molecular sciences.
2023 Dec; 25(1):. doi:
10.3390/ijms25010153
. [PMID: 38203324] - Keisuke Okamoto, Taiki Inoue, Tsunesato Nagano, Sho Miyazaki, Ikuo Takahashi, Tadao Asami, Kazunori Okada, Kazuma Okada, Masatoshi Nakajima. Chemical screening of inhibitors specific for MdDOX-Co that cause an apple columnar tree-shape.
Bioscience, biotechnology, and biochemistry.
2023 Dec; 88(1):63-69. doi:
10.1093/bbb/zbad142
. [PMID: 37791963] - Qin Song, Lingfei Kong, Jiarui Yang, Minghui Lin, Yuqian Zhang, Xuerui Yang, Xiaojing Wang, Zhengjie Zhao, Meng Zhang, Jiarui Pan, Shunqin Zhu, Bo Jiao, Changzheng Xu, Keming Luo. The transcription factor PtoMYB142 enhances drought tolerance in Populus tomentosa by regulating gibberellin catabolism.
The Plant journal : for cell and molecular biology.
2023 Dec; ?(?):. doi:
10.1111/tpj.16588
. [PMID: 38112614] - Xia Zhang, Kaien Fujino, Hanako Shimura. Transcriptomic Analyses Reveal the Role of Cytokinin and the Nodal Stem in Microtuber Sprouting in Potato (Solanum tuberosum L.).
International journal of molecular sciences.
2023 Dec; 24(24):. doi:
10.3390/ijms242417534
. [PMID: 38139361] - Chang Liu, Xiaopeng Chang, Fuxuan Li, Yana Yan, Xiru Zuo, Guiyan Huang, Ruimin Li. Transcriptome analysis of Citrus sinensis reveals potential responsive events triggered by Candidatus Liberibacter asiaticus.
Protoplasma.
2023 Dec; ?(?):. doi:
10.1007/s00709-023-01911-0
. [PMID: 38092896] - Kun Hu, Qiao Dai, Babatope Samuel Ajayo, Hao Wang, Yufeng Hu, Yangping Li, Huanhuan Huang, Hanmei Liu, Yinghong Liu, Yayun Wang, Lei Gao, Ying Xie. Insights into ZmWAKL in maize kernel development: genome-wide investigation and GA-mediated transcription.
BMC genomics.
2023 Dec; 24(1):760. doi:
10.1186/s12864-023-09849-6
. [PMID: 38082218] - Rizwana Begum Syed Nabi, Myoung Hee Lee, Kwang-Soo Cho, Rupesh Tayade, Sungup Kim, Jung-In Kim, Min-Young Kim, Eunsoo Lee, Jungeun Lee, Sang-Woo Kim, Eunyoung Oh. Genome-Wide Identification and Comprehensive Analysis of the GASA Gene Family in Peanuts (Arachis hypogaea L.) under Abiotic Stress.
International journal of molecular sciences.
2023 Dec; 24(23):. doi:
10.3390/ijms242317117
. [PMID: 38069439] - Zijing Zhou, Zhengchun Li, Fuhua Fan, Huijuan Qin, Guijie Ding. Effects of exogenous GA3 on stem secondary growth of Pinus massoniana seedlings.
Plant physiology and biochemistry : PPB.
2023 Dec; 206(?):108254. doi:
10.1016/j.plaphy.2023.108254
. [PMID: 38056037] - Mingzhe Yang, Chaoyang Liu, Wei Zhang, Jing Wu, Ziqin Zhong, Wen Yi, Hui Liu, Yan Leng, Weisheng Sun, Aiping Luan, Yehua He. Genome-Wide Identification and Characterization of Gibberellic Acid-Stimulated Arabidopsis Gene Family in Pineapple (Ananas comosus).
International journal of molecular sciences.
2023 Dec; 24(23):. doi:
10.3390/ijms242317063
. [PMID: 38069384]