Citrinin (BioDeep_00000001855)

Main id: BioDeep_00000398496

 

human metabolite PANOMIX_OTCML-2023 Antitumor activity natural product


代谢物信息卡片


(3R-trans)-4,6-Dihydro-8-hydroxy-3,4,5-trimethyl-6-oxo-3H-2-benzopyran-7-carboxylic acid

化学式: C13H14O5 (250.0841)
中文名称: 橘霉素
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC1=C2C(=COC(C)C2C)C(=O)C(C(=O)O)=C1O
InChI: InChI=1S/C13H14O5/c1-5-7(3)18-4-8-9(5)6(2)11(14)10(12(8)15)13(16)17/h4-5,7,14H,1-3H3,(H,16,17)

描述信息

Citrinin is a mycotoxin originally isolated from Penicillium citrinum. It has since been found to be produced by a variety of other fungi which are found or used in the production of human foods, such as grain, cheese, sake and red pigments. Citrinin has also been found in commercial red yeast rice supplements, and also in Aspergillus niveus and Aspergillus terreus (Hugo Vanden Bossche, D.W.R. Mackenzie and G. Cauwenbergh. Aspergillus and Aspergillosis, 1987).
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents
D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
Citrinin is a mycotoxin which causes contamination in the food and is associated with different toxic effects. Citrinin is usually found together with another nephrotoxic mycotoxin, Ochratoxin A. Citrinin is also reported to possess a broad spectrum of bioactivities, including antibacterial, antifungal, and potential anticancer and neuro-protective effects in vitro[1][2].

同义名列表

13 个代谢物同义名

(3R-trans)-4,6-Dihydro-8-hydroxy-3,4,5-trimethyl-6-oxo-3H-2-benzopyran-7-carboxylic acid; (3R,4S)-4,6-Dihydro-8-hydroxy-3,4,5-trimethyl-6-oxo-3H-2-benzopyran-7-carboxylic acid; (3R,4S)-8-hydroxy-3,4,5-trimethyl-6-oxo-4,6-dihydro-3H-2-benzopyran-7-carboxylic acid; (3R-trans)-4,6-Dihydro-8-hydroxy-3,4,5-trimethyl-6-oxo-3H-2-benzopyran-7-carboxylate; (3R,4S)-8-Hydroxy-3,4,5-trimethyl-6-oxo-4,6-dihydro-3H-isochromene-7-carboxylic acid; (3R,4S)-4,6-Dihydro-8-hydroxy-3,4,5-trimethyl-6-oxo-3H-2-benzopyran-7-carboxylate; (-)-Citrinin; Antimycin; Citriain; Citrinin; NSC 186; (3R,4S)-6-hydroxy-3,4,5-trimethyl-8-oxo-3,4-dihydroisochromene-7-carboxylic acid; Citrinin



数据库引用编号

23 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

50 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 AIMP2, BCL2, BCL2L1, CAT, CCNB1, DDIT3, HSPA5, TFDP3, TP53
Peripheral membrane protein 2 HSD17B6, NDUFA5
Endoplasmic reticulum membrane 3 BCL2, HMGCR, HSPA5
Mitochondrion membrane 1 BCL2L1
Nucleus 10 AIMP2, BCL2, CCNB1, CYC1, DDIT3, HSPA5, JUN, PDS5B, TFDP3, TP53
cytosol 9 AIMP2, BCL2, BCL2L1, CAT, CCNB1, DDIT3, HSPA5, PDS5B, TP53
centrosome 3 BCL2L1, CCNB1, TP53
nucleoplasm 5 ATP2B1, CCNB1, JUN, PDS5B, TP53
RNA polymerase II transcription regulator complex 2 DDIT3, JUN
Cell membrane 1 ATP2B1
Cytoplasmic side 1 BCL2L1
Early endosome membrane 1 HSD17B6
Multi-pass membrane protein 3 ATP2B1, HMGCR, MT-CYB
Synapse 1 ATP2B1
cell surface 1 HSPA5
glutamatergic synapse 1 ATP2B1
mitochondrial inner membrane 4 BCL2L1, CYC1, MT-CYB, NDUFA5
presynaptic membrane 1 ATP2B1
Cytoplasm, cytosol 2 AIMP2, BCL2L1
plasma membrane 3 ATP2B1, HSPA5, PIGR
synaptic vesicle membrane 2 ATP2B1, BCL2L1
Membrane 10 AIMP2, ATP2B1, BCL2, CAT, CCNB1, CYC1, HMGCR, HSPA5, MT-CYB, TP53
basolateral plasma membrane 1 ATP2B1
extracellular exosome 4 ATP2B1, CAT, HSPA5, PIGR
Lumenal side 1 HSD17B6
endoplasmic reticulum 6 BCL2, BCL2L1, HMGCR, HSD17B6, HSPA5, TP53
extracellular space 3 IL10, IL6, PIGR
mitochondrion 8 BCL2, BCL2L1, CAT, CYC1, HSPA5, MT-CYB, NDUFA5, TP53
protein-containing complex 4 BCL2, CAT, HSPA5, TP53
intracellular membrane-bounded organelle 4 ATP2B1, CAT, HSD17B6, HSPA5
Microsome membrane 1 HSD17B6
Single-pass type I membrane protein 1 PIGR
Secreted 2 IL10, IL6
extracellular region 3 CAT, IL10, IL6
Mitochondrion outer membrane 2 BCL2, BCL2L1
Single-pass membrane protein 3 BCL2, BCL2L1, CYC1
mitochondrial outer membrane 2 BCL2, BCL2L1
Mitochondrion matrix 2 BCL2L1, TP53
mitochondrial matrix 4 BCL2L1, CAT, CCNB1, TP53
transcription regulator complex 4 DDIT3, JUN, TFDP3, TP53
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 2 BCL2L1, TP53
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 2 ATP2B1, BCL2L1
Nucleus membrane 2 BCL2, BCL2L1
Bcl-2 family protein complex 2 BCL2, BCL2L1
nuclear membrane 2 BCL2, BCL2L1
nucleolus 1 TP53
midbody 1 HSPA5
Mitochondrion inner membrane 3 CYC1, MT-CYB, NDUFA5
Matrix side 1 NDUFA5
pore complex 1 BCL2
Cytoplasm, cytoskeleton 1 TP53
focal adhesion 2 CAT, HSPA5
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 2 CAT, HMGCR
Nucleus, PML body 1 TP53
PML body 1 TP53
lateral plasma membrane 1 ATP2B1
Late endosome 1 DDIT3
receptor complex 1 PIGR
chromatin 5 DDIT3, JUN, PDS5B, TFDP3, TP53
cell projection 1 ATP2B1
Chromosome 1 PDS5B
spindle pole 1 CCNB1
nuclear chromosome 1 JUN
Basolateral cell membrane 1 ATP2B1
site of double-strand break 1 TP53
Melanosome 1 HSPA5
euchromatin 1 JUN
Presynaptic cell membrane 1 ATP2B1
germ cell nucleus 1 TP53
replication fork 1 TP53
myelin sheath 1 BCL2
Peroxisome membrane 1 HMGCR
respiratory chain complex I 1 NDUFA5
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 1 CAT
endoplasmic reticulum lumen 2 HSPA5, IL6
nuclear matrix 1 TP53
transcription repressor complex 1 TP53
azurophil granule membrane 1 PIGR
immunological synapse 1 ATP2B1
chromosome, centromeric region 1 PDS5B
outer kinetochore 1 CCNB1
respiratory chain complex III 2 CYC1, MT-CYB
endoplasmic reticulum-Golgi intermediate compartment 1 HSPA5
[Isoform 1]: Nucleus 1 TP53
protein-DNA complex 1 DDIT3
aminoacyl-tRNA synthetase multienzyme complex 1 AIMP2
transcription factor AP-1 complex 1 JUN
secretory IgA immunoglobulin complex 1 PIGR
[Polymeric immunoglobulin receptor]: Cell membrane 1 PIGR
[Secretory component]: Secreted 1 PIGR
catalase complex 1 CAT
interleukin-6 receptor complex 1 IL6
cyclin B1-CDK1 complex 1 CCNB1
endoplasmic reticulum chaperone complex 1 HSPA5
BAD-BCL-2 complex 1 BCL2
photoreceptor ribbon synapse 1 ATP2B1
CHOP-C/EBP complex 1 DDIT3
CHOP-ATF3 complex 1 DDIT3
CHOP-ATF4 complex 1 DDIT3
[Isoform Bcl-X(L)]: Mitochondrion inner membrane 1 BCL2L1


文献列表

  • Dongyang Wang, Huanhuan Wang, Xuli Chen, Yanchao Xu, Wenwen He, Dan Wu, Mingxing Zuo, Weiming Zhu, Liping Wang. Five previously undescribed citrinin derivatives from the endophytic fungus Penicillium citrinum GZWMJZ-836. Phytochemistry. 2024 Apr; 220(?):114032. doi: 10.1016/j.phytochem.2024.114032. [PMID: 38369172]
  • Cong Song, Yang Zhang, Qian Zhao, Mengyao Chen, Yu Zhang, Congcong Gao, Zhenhua Jia, Shuishan Song, Junfeng Guan, Zhonglin Shang. Volatile organic compounds produced by Bacillus aryabhattai AYG1023 against Penicillium expansum causing blue mold on the Huangguan pear. Microbiological research. 2023 Oct; 278(?):127531. doi: 10.1016/j.micres.2023.127531. [PMID: 37871540]
  • Shanshan Wei, Zihuan Sang, Yanjiang Zhang, Huan Wang, Yan Chen, Hongxin Liu, Sasa Wang, Haibo Tan. Peniciriols A and B, two new citrinin derivatives from an endophytic fungus Penicillum citrinum TJNZ-27. Fitoterapia. 2023 Sep; 169(?):105572. doi: 10.1016/j.fitote.2023.105572. [PMID: 37315718]
  • Changrong Lai, Danmei Tian, Mingxin Zheng, Binglei Li, Jia Jia, Jihua Wei, Bin Wu, Hongkai Bi, Jinshan Tang. Novel citrinin derivatives from fungus Penicillium sp. TW131-64 and their antimicrobial activities. Applied microbiology and biotechnology. 2023 Aug; ?(?):. doi: 10.1007/s00253-023-12738-3. [PMID: 37642717]
  • Yanling Gui, Guangfu Tang, Haiqiao Man, Jiao Wang, Jie Han, Jiehong Zhao. Transportation of citrinin is regulated by the CtnC gene in the medicinal fungus Monascus purpureus. Journal of Zhejiang University. Science. B. 2023 Jun; 24(6):543-548. doi: 10.1631/jzus.b2300023. [PMID: 37309046]
  • Guangfu Tang, Haiqiao Man, Jiao Wang, Jie Zou, Jiehong Zhao, Jie Han. An oxidoreductase gene CtnD involved in citrinin biosynthesis in Monascus purpureus verified by CRISPR/Cas9 gene editing and overexpression. Mycotoxin research. 2023 Jun; ?(?):. doi: 10.1007/s12550-023-00491-5. [PMID: 37269452]
  • Qian Yang, Yanjing Guo, He Wang, Zhi Luo, Ying Chen, Mengyun Jiang, Huan Lu, Bernal E Valverde, Sheng Qiang, Reto Jörg Strasser, Shiguo Chen. Action of the fungal compound citrinin, a bioherbicide candidate, on photosystem II. Pest management science. 2023 Apr; ?(?):. doi: 10.1002/ps.7513. [PMID: 37103431]
  • Z A Chalyy, M G Kiseleva, I B Sedova, V A Tutelyan. [Mycotoxins in spices consumed in Russia]. Voprosy pitaniia. 2023; 92(2):26-34. doi: 10.33029/0042-8833-2023-92-2-26-34. [PMID: 37346017]
  • Jihua Wei, Xuexia Chen, Yichao Ge, Qizhao Yin, Xiaodan Wu, Jinshan Tang, Zunjing Zhang, Bin Wu. Citrinin Monomer, Trimer, and Tetracyclic Alkaloid Derivatives from the Hydrothermal Vent-Associated Fungus Penicillium citrinum TW132-59. The Journal of organic chemistry. 2022 10; 87(19):13270-13279. doi: 10.1021/acs.joc.2c01856. [PMID: 36131357]
  • Carla Teresinha Endres, Graziela Vargas Rigo, Luciana Angelo Loges, Melissa Fontes Landell, Denise Brentan Silva, Alexandre José Macedo, Tiana Tasca. Mass Spectrometry Metabolomics Approach Reveals Anti-Trichomonas vaginalis Scaffolds from Marine Fungi. Marine biotechnology (New York, N.Y.). 2022 Oct; 24(5):1014-1022. doi: 10.1007/s10126-022-10164-6. [PMID: 36102994]
  • Huan Chen, Jianwen Teng, Baoyao Wei, Ning Xia, Zhongyu Li, Li Huang. Development and evaluation of a qPCR detection method for citrinin in Liupao tea. Analytical biochemistry. 2022 Sep; 653(?):114771. doi: 10.1016/j.ab.2022.114771. [PMID: 35660508]
  • Nicholas N A Kyei, Benedikt Cramer, Hans-Ulrich Humpf, Gisela H Degen, Nurshad Ali, Sabine Gabrysch. Assessment of multiple mycotoxin exposure and its association with food consumption: a human biomonitoring study in a pregnant cohort in rural Bangladesh. Archives of toxicology. 2022 07; 96(7):2123-2138. doi: 10.1007/s00204-022-03288-0. [PMID: 35441239]
  • Alexandra Jaus, Peter Rhyn, Max Haldimann, Beat J Brüschweiler, Céline Fragnière Rime, Judith Jenny-Burri, Otmar Zoller. Biomonitoring of ochratoxin A, 2'R-ochratoxin A and citrinin in human blood serum from Switzerland. Mycotoxin research. 2022 May; 38(2):147-161. doi: 10.1007/s12550-022-00456-0. [PMID: 35446004]
  • Anan Liu, Amanda Juan Chen, Bingyu Liu, Qian Wei, Jian Bai, Youcai Hu. Investigation of citrinin and monacolin K gene clusters variation among pigment producer Monascus species. Fungal genetics and biology : FG & B. 2022 05; 160(?):103687. doi: 10.1016/j.fgb.2022.103687. [PMID: 35315337]
  • Dubravka Rašić, Srđan Stefanović, Dragan Milićević, Marin Mladinić, Davor Želježić, Alica Pizent, Paško Konjevoda, Maja Peraica. Ochratoxin A potentiates citrinin accumulation in kidney and liver of rats. Arhiv za higijenu rada i toksikologiju. 2022 Apr; 73(1):43-47. doi: 10.2478/aiht-2022-73-3605. [PMID: 35390240]
  • José Williams Gomes de Oliveira Filho, Teresinha de Jesus Aguiar Dos Santos Andrade, Rosália Maria Tôrres de Lima, Dulce Helena Siqueira Silva, Antonielly Campinho Dos Reis, José Victor de Oliveira Santos, Ag-Anne Pereira Melo de Meneses, Ricardo Melo de Carvalho, Ana Maria Oliveira da Mata, Marcus Vinícius Oliveira Barros de Alencar, Ana Carolina Soares Dias, Felipe Cavalcanti Carneiro da Silva, Muhammad Torequl Islam, Cain C T Clark, João Marcelo de Castro E Sousa, Ana Amélia de Carvalho Melo-Cavalcante. Cytogenotoxic evaluation of the acetonitrile extract, citrinin and dicitrinin-A from Penicillium citrinum. Drug and chemical toxicology. 2022 Mar; 45(2):688-697. doi: 10.1080/01480545.2020.1769642. [PMID: 32448000]
  • Dean Karaica, Vedran Micek, Dubravka Rašić, Maja Peraica, Maja Šegvić Klarić, Davorka Breljak. Subchronic exposure of individual and combined ochratoxin A and citrinin selectively affects the expression of rat renal organic cation transporters. Mycotoxin research. 2022 Feb; 38(1):61-70. doi: 10.1007/s12550-022-00450-6. [PMID: 35028911]
  • Song Zhang, Xiaofang Zeng, Qinlu Lin, Jun Liu. Analysis of secondary metabolite gene clusters and chitin biosynthesis pathways of Monascus purpureus with high production of pigment and citrinin based on whole-genome sequencing. PloS one. 2022; 17(6):e0263905. doi: 10.1371/journal.pone.0263905. [PMID: 35648754]
  • Dilek Çavuşoğlu. Powerful toxic activity of citrinin, a fungal phytotoxin, and its mode of action in onion cells. Environmental science and pollution research international. 2022 Jan; 29(4):6205-6218. doi: 10.1007/s11356-021-16009-4. [PMID: 34448135]
  • Chibundu N Ezekiel, Wilfred A Abia, Dominik Braun, Bojan Šarkanj, Kolawole I Ayeni, Oluwawapelumi A Oyedele, Emmanuel C Michael-Chikezie, Victoria C Ezekiel, Beatrice N Mark, Chinonso P Ahuchaogu, Rudolf Krska, Michael Sulyok, Paul C Turner, Benedikt Warth. Mycotoxin exposure biomonitoring in breastfed and non-exclusively breastfed Nigerian children. Environment international. 2022 01; 158(?):106996. doi: 10.1016/j.envint.2021.106996. [PMID: 34991256]
  • Da-Ae Kwon, Yong Sang Kim, Seul-Ki Kim, Sin Hwa Baek, Hyun Kyu Kim, Hak Sung Lee. Antioxidant and antifatigue effect of a standardized fraction (HemoHIM) from Angelica gigas, Cnidium officinale, and Paeonia lactiflora. Pharmaceutical biology. 2021 Dec; 59(1):391-400. doi: 10.1080/13880209.2021.1900878. [PMID: 33813987]
  • Zsolt Csenki, Edina Garai, Zelma Faisal, Rita Csepregi, Kitti Garai, Dóra Kánainé Sipos, István Szabó, Tamás Kőszegi, Árpád Czéh, Tamás Czömpöly, Krisztián Kvell, Miklós Poór. The individual and combined effects of ochratoxin A with citrinin and their metabolites (ochratoxin B, ochratoxin C, and dihydrocitrinone) on 2D/3D cell cultures, and zebrafish embryo models. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2021 Dec; 158(?):112674. doi: 10.1016/j.fct.2021.112674. [PMID: 34800554]
  • Agnieszka Tkaczyk, Piotr Jedziniak, Łukasz Zielonka, Michał Dąbrowski, Piotr Ochodzki, Adrianna Rudawska. Biomarkers of Deoxynivalenol, Citrinin, Ochratoxin A and Zearalenone in Pigs after Exposure to Naturally Contaminated Feed Close to Guidance Values. Toxins. 2021 10; 13(11):. doi: 10.3390/toxins13110750. [PMID: 34822534]
  • Alfonso Narváez, Luana Izzo, Yelko Rodríguez-Carrasco, Alberto Ritieni. Citrinin Dietary Exposure Assessment Approach through Human Biomonitoring High-Resolution Mass Spectrometry-Based Data. Journal of agricultural and food chemistry. 2021 Jun; 69(22):6330-6338. doi: 10.1021/acs.jafc.1c01776. [PMID: 34060319]
  • Emmanuel K Tangni, François Van Hove, Bart Huybrechts, Julien Masquelier, Karine Vandermeiren, Els Van Hoeck. Citrinin Determination in Food and Food Supplements by LC-MS/MS: Development and Use of Reference Materials in an International Collaborative Study. Toxins. 2021 03; 13(4):. doi: 10.3390/toxins13040245. [PMID: 33808320]
  • Hongyin Zhang, Joseph Ahima, Qiya Yang, Lina Zhao, Xiaoyun Zhang, Xiangfeng Zheng. A review on citrinin: Its occurrence, risk implications, analytical techniques, biosynthesis, physiochemical properties and control. Food research international (Ottawa, Ont.). 2021 03; 141(?):110075. doi: 10.1016/j.foodres.2020.110075. [PMID: 33641962]
  • Ying Xu, Biao Ma, Erjing Chen, Xiaoping Yu, Zihong Ye, Chuanxin Sun, Mingzhou Zhang. Dual fluorescent immunochromatographic assay for simultaneous quantitative detection of citrinin and zearalenone in corn samples. Food chemistry. 2021 Jan; 336(?):127713. doi: 10.1016/j.foodchem.2020.127713. [PMID: 32768909]
  • Ivana Spevakova, Maria-Luisa Fernandez-Cruz, Katarina Tokarova, Hana Greifova, Marcela Capcarova. The protective effect of stilbenes resveratrol and pterostilbene individually and combined with mycotoxin citrinin in human adenocarcinoma HT-29 cell line in vitro. Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering. 2021; 56(1):75-88. doi: 10.1080/10934529.2020.1839279. [PMID: 33112704]
  • Magdalena Twarużek, Robert Kosicki, Justyna Kwiatkowska-Giżyńska, Jan Grajewski, Iwona Ałtyn. Ochratoxin A and citrinin in green coffee and dietary supplements with green coffee extract. Toxicon : official journal of the International Society on Toxinology. 2020 Dec; 188(?):172-177. doi: 10.1016/j.toxicon.2020.10.021. [PMID: 33096150]
  • Celine Meerpoel, Arnau Vidal, Emmanuel K Tangni, Bart Huybrechts, Liesbeth Couck, Riet De Rycke, Lobke De Bels, Sarah De Saeger, Wim Van den Broeck, Mathias Devreese, Siska Croubels. A Study of Carry-Over and Histopathological Effects after Chronic Dietary Intake of Citrinin in Pigs, Broiler Chickens and Laying Hens. Toxins. 2020 11; 12(11):. doi: 10.3390/toxins12110719. [PMID: 33207646]
  • Nurshad Ali, Gisela H Degen. Biological monitoring for ochratoxin A and citrinin and their metabolites in urine samples of infants and children in Bangladesh. Mycotoxin research. 2020 Nov; 36(4):409-417. doi: 10.1007/s12550-020-00407-7. [PMID: 32820428]
  • Dean Karaica, Vedran Micek, Dubravka Rašić, Maja Peraica, Maja Šegvić Klarić, Davorka Breljak. Subchronic exposure to individual and combined ochratoxin A and citrinin affects the expression of rat renal organic anion transporters. Mycotoxin research. 2020 Nov; 36(4):339-352. doi: 10.1007/s12550-020-00399-4. [PMID: 32653990]
  • Sanka N Atapattu, Colin F Poole. Recent advances in analytical methods for the determination of citrinin in food matrices. Journal of chromatography. A. 2020 Sep; 1627(?):461399. doi: 10.1016/j.chroma.2020.461399. [PMID: 32823104]
  • Pankaj Ramji Jagdale, Indra Dev, Anjaneya Ayanur, Dhirendra Singh, Md Arshad, Kausar Mahmood Ansari. Safety evaluation of Ochratoxin A and Citrinin after 28 days repeated dose oral exposure to Wistar rats. Regulatory toxicology and pharmacology : RTP. 2020 Aug; 115(?):104700. doi: 10.1016/j.yrtph.2020.104700. [PMID: 32525063]
  • Ya-Ping Huang, Ping Li, Ting Du, Xin-Jun Du, Shuo Wang. Protective effect and mechanism of Monascus-fermented red yeast rice against colitis caused by Salmonella enterica serotype Typhimurium ATCC 14028. Food & function. 2020 Jul; 11(7):6363-6375. doi: 10.1039/d0fo01017k. [PMID: 32609139]
  • Celine Meerpoel, Arnau Vidal, Bart Huybrechts, Emmanuel K Tangni, Sarah De Saeger, Siska Croubels, Mathias Devreese. Comprehensive toxicokinetic analysis reveals major interspecies differences in absorption, distribution and elimination of citrinin in pigs and broiler chickens. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2020 Jul; 141(?):111365. doi: 10.1016/j.fct.2020.111365. [PMID: 32320715]
  • Liliana Silva, André Pereira, Sofia Duarte, Angelina Pena, Celeste Lino. Reviewing the Analytical Methodologies to Determine the Occurrence of Citrinin and its Major Metabolite, Dihydrocitrinone, in Human Biological Fluids. Molecules (Basel, Switzerland). 2020 Jun; 25(12):. doi: 10.3390/molecules25122906. [PMID: 32599786]
  • Salma Ouhibi, Arnau Vidal, Carla Martins, Ridha Gali, Abderrazzek Hedhili, Sarah De Saeger, Marthe De Boevre. LC-MS/MS methodology for simultaneous determination of patulin and citrinin in urine and plasma applied to a pilot study in colorectal cancer patients. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2020 Feb; 136(?):110994. doi: 10.1016/j.fct.2019.110994. [PMID: 31783110]
  • Nurshad Ali, Gisela H Degen. Citrinin biomarkers: a review of recent data and application to human exposure assessment. Archives of toxicology. 2019 11; 93(11):3057-3066. doi: 10.1007/s00204-019-02570-y. [PMID: 31501918]
  • Frantisek Malir, Miroslav Louda, Vladimir Ostry, Jakub Toman, Nurshad Ali, Yann Grosse, Eva Malirova, Jaroslav Pacovsky, Darina Pickova, Milos Brodak, Annie Pfohl-Leszkowicz, Gisela H Degen. Analyses of biomarkers of exposure to nephrotoxic mycotoxins in a cohort of patients with renal tumours. Mycotoxin research. 2019 Nov; 35(4):391-403. doi: 10.1007/s12550-019-00365-9. [PMID: 31254204]
  • Erjing Chen, Ying Xu, Biao Ma, Haifeng Cui, Chuanxin Sun, Mingzhou Zhang. Carboxyl-Functionalized, Europium Nanoparticle-Based Fluorescent Immunochromatographic Assay for Sensitive Detection of Citrinin in Monascus Fermented Food. Toxins. 2019 10; 11(10):. doi: 10.3390/toxins11100605. [PMID: 31627364]
  • Ines Klingelhöfer, Gertrud E Morlock. Lovastatin in lactone and hydroxy acid forms and citrinin in red yeast rice powders analyzed by HPTLC-UV/FLD. Analytical and bioanalytical chemistry. 2019 Oct; 411(25):6655-6665. doi: 10.1007/s00216-019-02039-y. [PMID: 31410535]
  • Amal Salah, Chayma Bouaziz, Ines Amara, Salwa Abid-Essefi, Hassen Bacha. Eugenol protects against citrinin-induced cytotoxicity and oxidative damages in cultured human colorectal HCT116 cells. Environmental science and pollution research international. 2019 Oct; 26(30):31374-31383. doi: 10.1007/s11356-019-06212-9. [PMID: 31473926]
  • Nikhil Maroli, Achuth Jayakrishnan, Renuka Ramalingam Manoharan, Ponmalai Kolandaivel, Kadirvelu Krishna. Combined Inhibitory Effects of Citrinin, Ochratoxin-A, and T-2 Toxin on Aquaporin-2. The journal of physical chemistry. B. 2019 07; 123(27):5755-5768. doi: 10.1021/acs.jpcb.9b03829. [PMID: 31204482]
  • Hu Wang, Fanny Cheung, Anna C Stoll, Patricia Rockwell, Maria E Figueiredo-Pereira. Mitochondrial and calcium perturbations in rat CNS neurons induce calpain-cleavage of Parkin: Phosphatase inhibition stabilizes pSer65Parkin reducing its calpain-cleavage. Biochimica et biophysica acta. Molecular basis of disease. 2019 06; 1865(6):1436-1450. doi: 10.1016/j.bbadis.2019.02.016. [PMID: 30796971]
  • Zelma Faisal, Virág Vörös, Beáta Lemli, Diána Derdák, Sándor Kunsági-Máté, Mónika Bálint, Csaba Hetényi, Rita Csepregi, Tamás Kőszegi, Dominik Bergmann, Franziska Sueck, Hans-Ulrich Humpf, Florian Hübner, Miklós Poór. Interaction of the mycotoxin metabolite dihydrocitrinone with serum albumin. Mycotoxin research. 2019 May; 35(2):129-139. doi: 10.1007/s12550-018-0336-z. [PMID: 30426325]
  • Zelma Faisal, Sándor Kunsági-Máté, Beáta Lemli, Lajos Szente, Dominik Bergmann, Hans-Ulrich Humpf, Miklós Poór. Interaction of Dihydrocitrinone with Native and Chemically Modified Cyclodextrins. Molecules (Basel, Switzerland). 2019 Apr; 24(7):. doi: 10.3390/molecules24071328. [PMID: 30987312]
  • D Rašić, V Micek, M S Klarić, M Peraica. Oxidative stress as a mechanism of combined OTA and CTN toxicity in rat plasma, liver and kidney. Human & experimental toxicology. 2019 Apr; 38(4):434-445. doi: 10.1177/0960327118819049. [PMID: 30545268]
  • Zhixin Zhen, Xiaoqian Xiong, Yingbao Liu, Jialan Zhang, Shaojin Wang, Li Li, Mengxiang Gao. NaCl Inhibits Citrinin and Stimulates Monascus Pigments and Monacolin K Production. Toxins. 2019 02; 11(2):. doi: 10.3390/toxins11020118. [PMID: 30769930]
  • Liang Gong, Hong Zhu, Taotao Li, Guangfeng Ming, Xuewu Duan, Jiasheng Wang, Yueming Jiang. Molecular signatures of cytotoxic effects in human embryonic kidney 293 cells treated with single and mixture of ochratoxin A and citrinin. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2019 Jan; 123(?):374-384. doi: 10.1016/j.fct.2018.11.015. [PMID: 30428381]
  • Alexander A Bulychev, Anna A Rybina. Long-range interactions of Chara chloroplasts are sensitive to plasma-membrane H+ flows and comprise separate photo- and dark-operated pathways. Protoplasma. 2018 Nov; 255(6):1621-1634. doi: 10.1007/s00709-018-1255-8. [PMID: 29704048]
  • Marie-Christin Schulz, Luise Schumann, Ulrike Rottkord, Hans-Ulrich Humpf, Michael Gekle, Gerald Schwerdt. Synergistic action of the nephrotoxic mycotoxins ochratoxin A and citrinin at nanomolar concentrations in human proximal tubule-derived cells. Toxicology letters. 2018 Jul; 291(?):149-157. doi: 10.1016/j.toxlet.2018.04.014. [PMID: 29673704]
  • Dubravka Rašić, Marin Mladinić, Davor Želježić, Alica Pizent, Srđan Stefanović, Dragan Milićević, Paško Konjevoda, Maja Peraica. Effects of combined treatment with ochratoxin A and citrinin on oxidative damage in kidneys and liver of rats. Toxicon : official journal of the International Society on Toxinology. 2018 May; 146(?):99-105. doi: 10.1016/j.toxicon.2018.03.002. [PMID: 29524438]
  • Hideaki Nakayama, Norio Kitagawa, Takahito Otani, Hiroshi Iida, Hisashi Anan, Tetsuichiro Inai. Ochratoxin A, citrinin and deoxynivalenol decrease claudin-2 expression in mouse rectum CMT93-II cells. Microscopy (Oxford, England). 2018 Apr; 67(2):99-111. doi: 10.1093/jmicro/dfy005. [PMID: 29474583]
  • Nurshad Ali, Khaled Hossain, Gisela H Degen. Blood plasma biomarkers of citrinin and ochratoxin A exposure in young adults in Bangladesh. Mycotoxin research. 2018 Mar; 34(1):59-67. doi: 10.1007/s12550-017-0299-5. [PMID: 29143924]
  • Gisela H Degen, Nurshad Ali, Ursula Gundert-Remy. Preliminary data on citrinin kinetics in humans and their use to estimate citrinin exposure based on biomarkers. Toxicology letters. 2018 Jan; 282(?):43-48. doi: 10.1016/j.toxlet.2017.10.006. [PMID: 29030270]
  • José Williams Gomes de Oliveira Filho, Muhammad Torequl Islam, Eunus S Ali, Shaikh Jamal Uddin, Jose Victor de Oliveira Santos, Marcus Vinícius Oliveira Barros de Alencar, Antonio Luiz Gomes Júnior, Márcia Fernanda Correia Jardim Paz, Maria Dos Remédios Mendes de Brito, João Marcelo de Castro E Sousa, Subrata Shaw, Maria das Graças Freire de Medeiros, Sandra Maria Mendes de Moura Dantas, Hercília Maria Lins Rolim, Paulo Michel Pinheiro Ferreira, Mohammad Amjad Kamal, Magdalena D Pieczynska, Niranjan Das, Vijai K Gupta, Andrei Mocan, Teresinha de Jesus Aguiar Dos Santos Andrade, Brahma Nand Singh, Siddhartha K Mishra, Atanas G Atanasov, Ana Amélia de Carvalho Melo-Cavalcante. A comprehensive review on biological properties of citrinin. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2017 Dec; 110(?):130-141. doi: 10.1016/j.fct.2017.10.002. [PMID: 28993214]
  • Belén Guijarro, Inmaculada Larena, Paloma Melgarejo, Antonieta De Cal. Adaptive conditions and safety of the application of Penicillium frequentans as a biocontrol agent on stone fruit. International journal of food microbiology. 2017 Aug; 254(?):25-35. doi: 10.1016/j.ijfoodmicro.2017.05.004. [PMID: 28511111]
  • Fan Wang, Shu-Na Fu, Yi-Xuan Bao, Yu Yang, Hui-Fang Shen, Bi-Run Lin, Guang-Xiong Zhou. Kitamycin C, a new antimycin-type antibiotic from Streptomyces antibioticus strain 200-09. Natural product research. 2017 Aug; 31(15):1819-1824. doi: 10.1080/14786419.2017.1295240. [PMID: 28278640]
  • Shimuye Kalayu Yirga, Sumei Ling, Yanling Yang, Jun Yuan, Shihua Wang. The Preparation and Identification of a Monoclonal Antibody against Citrinin and the Development of Detection via Indirect Competitive ELISA. Toxins. 2017 03; 9(3):. doi: 10.3390/toxins9030110. [PMID: 28304351]
  • Taotao Li, Guoxiang Jiang, Hongxia Qu, Yong Wang, Yehui Xiong, Qijie Jian, Yu Wu, Xuewu Duan, Xiangrong Zhu, Wenzhong Hu, Jiasheng Wang, Liang Gong, Yueming Jiang. Comparative Transcriptome Analysis of Penicillium citrinum Cultured with Different Carbon Sources Identifies Genes Involved in Citrinin Biosynthesis. Toxins. 2017 02; 9(2):. doi: 10.3390/toxins9020069. [PMID: 28230802]
  • Victor Limay-Rios, J David Miller, Arthur W Schaafsma. Occurrence of Penicillium verrucosum, ochratoxin A, ochratoxin B and citrinin in on-farm stored winter wheat from the Canadian Great Lakes Region. PloS one. 2017; 12(7):e0181239. doi: 10.1371/journal.pone.0181239. [PMID: 28749978]
  • Amal Salah, Chayma Bouaziz, Alexandre Prola, Julie Pires Da Silva, Hassen Bacha, Salwa Abid-Essefi, Christophe Lemaire. Citrinin induces apoptosis in human HCT116 colon cancer cells through endoplasmic reticulum stress. Journal of toxicology and environmental health. Part A. 2017; 80(23-24):1230-1241. doi: 10.1080/15287394.2017.1359127. [PMID: 29165056]
  • Borna Čulig, Martina Bevardi, Jasna Bošnir, Sonja Serdar, Dario Lasić, Aleksandar Racz, Antonija Galić, Željka Kuharić. PRESENCE OF CITRININ IN GRAINS AND ITS POSSIBLE HEALTH EFFECTS. African journal of traditional, complementary, and alternative medicines : AJTCAM. 2017; 14(3):22-30. doi: 10.21010/ajtcam.v14i3.3. [PMID: 28480413]
  • Nurshad Ali, Meinolf Blaszkewicz, Abdul Alim, Khaled Hossain, Gisela H Degen. Urinary biomarkers of ochratoxin A and citrinin exposure in two Bangladeshi cohorts: follow-up study on regional and seasonal influences. Archives of toxicology. 2016 Nov; 90(11):2683-2697. doi: 10.1007/s00204-015-1654-y. [PMID: 26705708]
  • Nurshad Ali, Meinolf Blaszkewicz, M Manirujjaman, Gisela H Degen. Biomonitoring of concurrent exposure to ochratoxin A and citrinin in pregnant women in Bangladesh. Mycotoxin research. 2016 Aug; 32(3):163-72. doi: 10.1007/s12550-016-0251-0. [PMID: 27185052]
  • Riyad El-Khoury, Eveliina Kaulio, Katariina A Lassila, Damian C Crowther, Howard T Jacobs, Pierre Rustin. Expression of the alternative oxidase mitigates beta-amyloid production and toxicity in model systems. Free radical biology & medicine. 2016 07; 96(?):57-66. doi: 10.1016/j.freeradbiomed.2016.04.006. [PMID: 27094492]
  • Melanie Adler, Susanne Ramm, Marc Hafner, Jeremy L Muhlich, Esther Maria Gottwald, Elijah Weber, Alenka Jaklic, Amrendra Kumar Ajay, Daniel Svoboda, Scott Auerbach, Edward J Kelly, Jonathan Himmelfarb, Vishal S Vaidya. A Quantitative Approach to Screen for Nephrotoxic Compounds In Vitro. Journal of the American Society of Nephrology : JASN. 2016 Apr; 27(4):1015-28. doi: 10.1681/asn.2015010060. [PMID: 26260164]
  • Rashmi Dikshit, Padmavathi Tallapragada. Statistical optimization of lovastatin and confirmation of nonexistence of citrinin under solid-state fermentation by Monascus sanguineus. Journal of food and drug analysis. 2016 04; 24(2):433-440. doi: 10.1016/j.jfda.2015.11.008. [PMID: 28911599]
  • Nittin Dev Singh, Anil Kumar Sharma, Prabhaker Dwivedi, Geeta Devi Leishangthem, Shafiqur Rahman, Jamuna Reddy, Manoj Kumar. Effect of feeding graded doses of citrinin on apoptosis and oxidative stress in male Wistar rats through the F1 generation. Toxicology and industrial health. 2016 Mar; 32(3):385-97. doi: 10.1177/0748233713500836. [PMID: 24105066]
  • Miklós Poór, Beáta Lemli, Mónika Bálint, Csaba Hetényi, Nikolett Sali, Tamás Kőszegi, Sándor Kunsági-Máté. Interaction of Citrinin with Human Serum Albumin. Toxins. 2015 Dec; 7(12):5155-66. doi: 10.3390/toxins7124871. [PMID: 26633504]
  • B Huybrechts, J C Martins, Ph Debongnie, S Uhlig, A Callebaut. Fast and sensitive LC-MS/MS method measuring human mycotoxin exposure using biomarkers in urine. Archives of toxicology. 2015 Nov; 89(11):1993-2005. doi: 10.1007/s00204-014-1358-8. [PMID: 25209565]
  • Loganathan Gayathri, Rajakumar Dhivya, Dharumadurai Dhanasekaran, Vaiyapuri S Periasamy, Ali A Alshatwi, Mohammad A Akbarsha. Hepatotoxic effect of ochratoxin A and citrinin, alone and in combination, and protective effect of vitamin E: In vitro study in HepG2 cell. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2015 Sep; 83(?):151-63. doi: 10.1016/j.fct.2015.06.009. [PMID: 26111808]
  • Xiaofeng Ji, Junfeng Xu, Xiaofu Wang, Peipei Qi, Wei Wei, Xiaoyun Chen, Rui Li, Yu Zhou. Citrinin Determination in Red Fermented Rice Products by Optimized Extraction Method Coupled to Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS). Journal of food science. 2015 Jun; 80(6):T1438-44. doi: 10.1111/1750-3841.12900. [PMID: 25943499]
  • Marianna D'Arco, Wojciech Margas, John S Cassidy, Annette C Dolphin. The upregulation of α2δ-1 subunit modulates activity-dependent Ca2+ signals in sensory neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2015 Apr; 35(15):5891-903. doi: 10.1523/jneurosci.3997-14.2015. [PMID: 25878262]
  • Nurshad Ali, Meinolf Blaszkewicz, Gisela H Degen. Occurrence of the mycotoxin citrinin and its metabolite dihydrocitrinone in urines of German adults. Archives of toxicology. 2015 Apr; 89(4):573-8. doi: 10.1007/s00204-014-1363-y. [PMID: 25224402]
  • Ana-Rosa Ballester, Marina Marcet-Houben, Elena Levin, Noa Sela, Cristina Selma-Lázaro, Lourdes Carmona, Michael Wisniewski, Samir Droby, Luis González-Candelas, Toni Gabaldón. Genome, Transcriptome, and Functional Analyses of Penicillium expansum Provide New Insights Into Secondary Metabolism and Pathogenicity. Molecular plant-microbe interactions : MPMI. 2015 Mar; 28(3):232-48. doi: 10.1094/mpmi-09-14-0261-fi. [PMID: 25338147]
  • Guisheng Zhou, Lei Fu, Xiaobo Li. Optimisation of ultrasound-assisted extraction conditions for maximal recovery of active monacolins and removal of toxic citrinin from red yeast rice by a full factorial design coupled with response surface methodology. Food chemistry. 2015 Mar; 170(?):186-92. doi: 10.1016/j.foodchem.2014.08.080. [PMID: 25306334]
  • Nurshad Ali, Meinolf Blaszkewicz, Nayan Chandra Mohanto, Mashiur Rahman, Abdul Alim, Khaled Hossain, Gisela H Degen. First results on citrinin biomarkers in urines from rural and urban cohorts in Bangladesh. Mycotoxin research. 2015 Feb; 31(1):9-16. doi: 10.1007/s12550-014-0217-z. [PMID: 25488509]
  • Lada Rumora, Ana-Marija Domijan, Tihana Zanić Grubišić, Maja Segvić Klarić. Differential activation of MAPKs by individual and combined ochratoxin A and citrinin treatments in porcine kidney PK15 cells. Toxicon : official journal of the International Society on Toxinology. 2014 Nov; 90(?):174-83. doi: 10.1016/j.toxicon.2014.08.006. [PMID: 25128707]
  • Maja Segvić Klarić, Nevena Medić, Andrea Hulina, Tihana Zanić Grubišić, Lada Rumora. Disturbed Hsp70 and Hsp27 expression and thiol redox status in porcine kidney PK15 cells provoked by individual and combined ochratoxin A and citrinin treatments. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2014 Sep; 71(?):97-105. doi: 10.1016/j.fct.2014.06.002. [PMID: 24930758]
  • Amparo Pascual-Ahuir, Elena Vanacloig-Pedros, Markus Proft. Toxicity mechanisms of the food contaminant citrinin: application of a quantitative yeast model. Nutrients. 2014 May; 6(5):2077-87. doi: 10.3390/nu6052077. [PMID: 24858409]
  • Wolfram Föllmann, Claudia Behm, Gisela H Degen. Toxicity of the mycotoxin citrinin and its metabolite dihydrocitrinone and of mixtures of citrinin and ochratoxin A in vitro. Archives of toxicology. 2014 May; 88(5):1097-107. doi: 10.1007/s00204-014-1216-8. [PMID: 24577378]
  • Nicolás E Blanco, Manuel Guinea-Díaz, James Whelan, Åsa Strand. Interaction between plastid and mitochondrial retrograde signalling pathways during changes to plastid redox status. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 2014 Apr; 369(1640):20130231. doi: 10.1098/rstb.2013.0231. [PMID: 24591717]
  • Manoj Kumar, Prabhaker Dwivedi, Anil Kumar Sharma, Muthu Sankar, Rajendra Damu Patil, Nittin Dev Singh. Apoptosis and lipid peroxidation in ochratoxin A- and citrinin-induced nephrotoxicity in rabbits. Toxicology and industrial health. 2014 Feb; 30(1):90-8. doi: 10.1177/0748233712452598. [PMID: 22773436]
  • Younes Filali-Zegzouti, Jean-Louis Rouanet, Toufiq Fechtali, Damien Roussel. Mitochondrial oxidative energy metabolism in guanethidine-induced sympathectomized ducklings. General physiology and biophysics. 2014; 33(1):91-7. doi: 10.4149/gpb_2013072. [PMID: 24334534]
  • J Wawrzyniak, A Waśkiewicz. Ochratoxin A and citrinin production by Penicillium verrucosum on cereal solid substrates. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment. 2014; 31(1):139-48. doi: 10.1080/19440049.2013.861933. [PMID: 24199782]
  • Vladimir Ostry, Frantisek Malir, Jiri Ruprich. Producers and important dietary sources of ochratoxin A and citrinin. Toxins. 2013 Sep; 5(9):1574-86. doi: 10.3390/toxins5091574. [PMID: 24048364]
  • Ken Kuroda, Yuji Ishii, Shinji Takasu, Aki Kijima, Kohei Matsushita, Maiko Watanabe, Haruo Takahashi, Yoshiko Sugita-Konishi, Hiroki Sakai, Tokuma Yanai, Takehiko Nohmi, Kumiko Ogawa, Takashi Umemura. Cell cycle progression, but not genotoxic activity, mainly contributes to citrinin-induced renal carcinogenesis. Toxicology. 2013 Sep; 311(3):216-24. doi: 10.1016/j.tox.2013.07.003. [PMID: 23856526]
  • Ágnes Blaskó, Nóra Mike, Pál Gróf, Zoltán Gazdag, Zsuzsanna Czibulya, Lívia Nagy, Sándor Kunsági-Máté, Miklós Pesti. Citrinin-induced fluidization of the plasma membrane of the fission yeast Schizosaccharomyces pombe. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2013 Sep; 59(?):636-42. doi: 10.1016/j.fct.2013.07.006. [PMID: 23851147]
  • Meinolf Blaszkewicz, Katherine Muñoz, Gisela H Degen. Methods for analysis of citrinin in human blood and urine. Archives of toxicology. 2013 Jun; 87(6):1087-94. doi: 10.1007/s00204-013-1010-z. [PMID: 23354378]
  • Biljana Nigović, Miranda Sertić, Ana Mornar. Simultaneous determination of lovastatin and citrinin in red yeast rice supplements by micellar electrokinetic capillary chromatography. Food chemistry. 2013 May; 138(1):531-8. doi: 10.1016/j.foodchem.2012.10.104. [PMID: 23265521]
  • Bavneet Benipal, Lawrence H Lash. Modulation of mitochondrial glutathione status and cellular energetics in primary cultures of proximal tubular cells from remnant kidney of uninephrectomized rats. Biochemical pharmacology. 2013 May; 85(9):1379-88. doi: 10.1016/j.bcp.2013.02.013. [PMID: 23419872]
  • Ana Mornar, Miranda Sertić, Biljana Nigović. Development of a rapid LC/DAD/FLD/MS(n) method for the simultaneous determination of monacolins and citrinin in red fermented rice products. Journal of agricultural and food chemistry. 2013 Feb; 61(5):1072-80. doi: 10.1021/jf304881g. [PMID: 23305336]
  • Dan Zhu, Hongyan Zhang, Xin Bing. Preparation of an immunoaffinity column for the clean-up of fermented food samples contaminated with citrinin. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment. 2013; 30(2):389-94. doi: 10.1080/19440049.2012.743042. [PMID: 23157620]
  • Matteo Lulli, Ewa Witort, Laura Papucci, Eugenio Torre, Christian Schipani, Christian Bergamini, Massimo Dal Monte, Sergio Capaccioli. Coenzyme Q10 instilled as eye drops on the cornea reaches the retina and protects retinal layers from apoptosis in a mouse model of kainate-induced retinal damage. Investigative ophthalmology & visual science. 2012 Dec; 53(13):8295-302. doi: 10.1167/iovs.12-10374. [PMID: 23154463]
  • Anne Marie Allen, Annette Graham. Mitochondrial function is involved in regulation of cholesterol efflux to apolipoprotein (apo)A-I from murine RAW 264.7 macrophages. Lipids in health and disease. 2012 Dec; 11(?):169. doi: 10.1186/1476-511x-11-169. [PMID: 23227865]
  • Ting-Shuan Wu, Jiann-Jou Yang, Feng-Yih Yu, Biing-Hui Liu. Evaluation of nephrotoxic effects of mycotoxins, citrinin and patulin, on zebrafish (Danio rerio) embryos. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2012 Dec; 50(12):4398-404. doi: 10.1016/j.fct.2012.07.040. [PMID: 22847133]
  • Li-Chuan Hsu, Ya-Wen Hsu, Yu-Han Liang, Zhi-Hu Lin, Yao-Haur Kuo, Tzu-Ming Pan. Protective effect of deferricoprogen isolated from Monascus purpureus NTU 568 on citrinin-induced apoptosis in HEK-293 cells. Journal of agricultural and food chemistry. 2012 Aug; 60(32):7880-5. doi: 10.1021/jf301889q. [PMID: 22835031]