amorpha-4,11-diene (BioDeep_00000010997)

   

natural product


代谢物信息卡片


(1R,4R,4aS,8aR)-4,7-dimethyl-1-(prop-1-en-2-yl)-1,2,3,4,4a,5,6,8a-octahydronaphthalene

化学式: C15H24 (204.1878)
中文名称:
谱图信息: 最多检出来源 Macaca mulatta(lipidsearch) 20.95%

分子结构信息

SMILES: C=C(C)C1CCC(C)C2CCC(C)=CC12
InChI: InChI=1S/C15H24/c1-10(2)13-8-6-12(4)14-7-5-11(3)9-15(13)14/h9,12-15H,1,5-8H2,2-4H3/t12-,13+,14+,15-/m1/s1



数据库引用编号

16 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(1)

代谢反应

2 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(1)

  • artemisinin biosynthesis: (+)-amorpha-4,11-diene + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + artemisinic alcohol

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(1)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

6 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 APP, FASN, FDPS, HMGCS1, IPP, MVD, MVK, PTPN1, PTPN2
Peripheral membrane protein 3 CYP1B1, PTPN1, SQLE
Endoplasmic reticulum membrane 7 CYP1B1, FDFT1, HMGCR, HSP90B1, PTPN1, RAC2, SQLE
Nucleus 3 APP, HSP90B1, PTPN2
cytosol 12 AKR1A1, APP, FASN, FDPS, HMGCS1, HSP90B1, MVD, MVK, PMVK, PTPN1, PTPN2, RAC2
dendrite 1 APP
nucleoplasm 2 FDPS, PTPN2
Cell membrane 1 APP
Cytoplasmic side 1 PTPN1
lamellipodium 1 RAC2
Cell projection, growth cone 1 APP
Multi-pass membrane protein 2 FDFT1, HMGCR
Synapse 2 AKR1A1, APP
cell surface 2 APP, TNR
ciliary rootlet 1 APP
dendritic shaft 1 APP
glutamatergic synapse 2 PTPN1, TNR
Golgi apparatus 2 APP, FASN
growth cone 1 APP
mitochondrial inner membrane 1 APP
neuromuscular junction 1 APP
postsynapse 1 PTPN1
smooth endoplasmic reticulum 2 APP, HSP90B1
synaptic vesicle 1 APP
Cytoplasm, cytosol 2 AKR1A1, PMVK
endosome 1 APP
plasma membrane 4 APP, FASN, PTPN2, RAC2
presynaptic active zone 1 APP
Membrane 11 APP, CYP1B1, FASN, FDFT1, FDPS, HMGCR, HSP90B1, PMVK, PTPN1, PTPN2, SQLE
apical plasma membrane 1 AKR1A1
axon 1 APP
extracellular exosome 6 AKR1A1, APP, FASN, HSP90B1, PMVK, RAC2
endoplasmic reticulum 7 APP, FDFT1, HMGCR, HSP90B1, PTPN1, PTPN2, SQLE
extracellular space 3 AKR1A1, APP, TNR
perinuclear region of cytoplasm 2 APP, HSP90B1
Schaffer collateral - CA1 synapse 1 TNR
mitochondrion 1 CYP1B1
protein-containing complex 2 HSP90B1, PTPN1
intracellular membrane-bounded organelle 3 CYP1B1, MVK, SQLE
Microsome membrane 2 CYP1B1, SQLE
Single-pass type I membrane protein 1 APP
Secreted 1 APP
extracellular region 4 APP, HSP90B1, PROK2, TNR
mitochondrial outer membrane 1 RAC2
mitochondrial matrix 2 FDPS, PTPN1
Secreted, extracellular space, extracellular matrix 1 TNR
actin cytoskeleton 1 IPP
dendritic spine 1 APP
perikaryon 1 APP
cytoplasmic vesicle 1 APP
midbody 1 HSP90B1
Early endosome 2 APP, PTPN1
Membrane, clathrin-coated pit 1 APP
apical part of cell 1 APP
cell-cell junction 1 APP
clathrin-coated pit 1 APP
COPII-coated ER to Golgi transport vesicle 1 APP
Golgi-associated vesicle 1 APP
recycling endosome 1 APP
spindle midzone 1 APP
vesicle 1 APP
Apical cell membrane 1 AKR1A1
Membrane raft 2 APP, TNR
focal adhesion 2 HSP90B1, RAC2
Peroxisome 3 FDPS, MVK, PMVK
peroxisomal membrane 1 HMGCR
collagen-containing extracellular matrix 2 HSP90B1, TNR
receptor complex 1 APP
phagocytic vesicle membrane 1 RAC2
mitochondrial crista 1 PTPN1
[Isoform 1]: Endoplasmic reticulum 1 PTPN2
nuclear envelope 1 RAC2
Endomembrane system 2 PTPN1, PTPN2
endosome lumen 3 APP, PTPN1, PTPN2
sorting endosome 1 PTPN1
Melanosome 2 FASN, HSP90B1
sperm plasma membrane 1 HSP90B1
Peroxisome membrane 1 HMGCR
trans-Golgi network membrane 1 APP
Golgi lumen 1 APP
endoplasmic reticulum lumen 2 APP, HSP90B1
platelet alpha granule lumen 1 APP
perineuronal net 1 TNR
nuclear envelope lumen 1 APP
Sarcoplasmic reticulum lumen 1 HSP90B1
endoplasmic reticulum-Golgi intermediate compartment 1 PTPN2
endocytic vesicle lumen 1 HSP90B1
NADPH oxidase complex 1 RAC2
[C83]: Endoplasmic reticulum 1 APP
[C99]: Early endosome 1 APP
[Soluble APP-beta]: Secreted 1 APP
[Amyloid-beta protein 40]: Cell surface 1 APP
[Amyloid-beta protein 42]: Cell surface 1 APP
[Gamma-secretase C-terminal fragment 59]: Nucleus 1 APP
endoplasmic reticulum chaperone complex 1 HSP90B1
cytoplasmic side of endoplasmic reticulum membrane 1 PTPN1
tenascin complex 1 TNR
glycogen granule 1 FASN


文献列表

  • Monireh Marsafari, Fidelis Azi, Shaohua Dou, Peng Xu. Modular co-culture engineering of Yarrowia lipolytica for amorphadiene biosynthesis. Microbial cell factories. 2022 Dec; 21(1):279. doi: 10.1186/s12934-022-02010-0. [PMID: 36587216]
  • Hegar Pramastya, Dan Xue, Ingy I Abdallah, Rita Setroikromo, Wim J Quax. High level production of amorphadiene using Bacillus subtilis as an optimized terpenoid cell factory. New biotechnology. 2021 Jan; 60(?):159-167. doi: 10.1016/j.nbt.2020.10.007. [PMID: 33148534]
  • Shivangi Mishra, Parul Pandey, Ashutosh Prakash Dubey, Aafreen Zehra, Chandan Singh Chanotiya, Anil Kumar Tripathi, Mukti Nath Mishra. Engineering a Carotenoid-Overproducing Strain of Azospirillum brasilense for Heterologous Production of Geraniol and Amorphadiene. Applied and environmental microbiology. 2020 08; 86(17):. doi: 10.1128/aem.00414-20. [PMID: 32591387]
  • Xin Fang, Jian-Xu Li, Jin-Quan Huang, You-Li Xiao, Peng Zhang, Xiao-Ya Chen. Systematic identification of functional residues of Artemisia annua amorpha-4,11-diene synthase. The Biochemical journal. 2017 06; 474(13):2191-2202. doi: 10.1042/bcj20170060. [PMID: 28526743]
  • Tomasz Czechowski, Tony R Larson, Theresa M Catania, David Harvey, Geoffrey D Brown, Ian A Graham. Artemisia annua mutant impaired in artemisinin synthesis demonstrates importance of nonenzymatic conversion in terpenoid metabolism. Proceedings of the National Academy of Sciences of the United States of America. 2016 12; 113(52):15150-15155. doi: 10.1073/pnas.1611567113. [PMID: 27930305]
  • Zhenqiu Li, Ruiping Gao, Qinggang Hao, Huifang Zhao, Longbin Cheng, Fang He, Li Liu, Xiuhua Liu, Wayne K W Chou, Huajie Zhu, David E Cane. The T296V Mutant of Amorpha-4,11-diene Synthase Is Defective in Allylic Diphosphate Isomerization but Retains the Ability To Cyclize the Intermediate (3R)-Nerolidyl Diphosphate to Amorpha-4,11-diene. Biochemistry. 2016 Dec; 55(48):6599-6604. doi: 10.1021/acs.biochem.6b01004. [PMID: 27933789]
  • Paskorn Muangphrom, Hikaru Seki, Munenori Suzuki, Aya Komori, Mika Nishiwaki, Ryota Mikawa, Ery Odette Fukushima, Toshiya Muranaka. Functional Analysis of Amorpha-4,11-Diene Synthase (ADS) Homologs from Non-Artemisinin-Producing Artemisia Species: The Discovery of Novel Koidzumiol and (+)-α-Bisabolol Synthases. Plant & cell physiology. 2016 Aug; 57(8):1678-88. doi: 10.1093/pcp/pcw094. [PMID: 27273626]
  • Congqiang Zhang, Ruiyang Zou, Xixian Chen, Gregory Stephanopoulos, Heng-Phon Too. Experimental design-aided systematic pathway optimization of glucose uptake and deoxyxylulose phosphate pathway for improved amorphadiene production. Applied microbiology and biotechnology. 2015 May; 99(9):3825-37. doi: 10.1007/s00253-015-6463-y. [PMID: 25715782]
  • Sarah Rodriguez, James Kirby, Charles M Denby, Jay D Keasling. Production and quantification of sesquiterpenes in Saccharomyces cerevisiae, including extraction, detection and quantification of terpene products and key related metabolites. Nature protocols. 2014 Aug; 9(8):1980-96. doi: 10.1038/nprot.2014.132. [PMID: 25058645]
  • Zhiqiang Sun, Hailin Meng, Jing Li, Jianfeng Wang, Qian Li, Yong Wang, Yansheng Zhang. Identification of novel knockout targets for improving terpenoids biosynthesis in Saccharomyces cerevisiae. PloS one. 2014; 9(11):e112615. doi: 10.1371/journal.pone.0112615. [PMID: 25386654]
  • Aya Komori, Munenori Suzuki, Hikaru Seki, Tomoko Nishizawa, Jacobus Johannes Marion Meyer, Hideaki Shimizu, Shigeyuki Yokoyama, Toshiya Muranaka. Comparative functional analysis of CYP71AV1 natural variants reveals an important residue for the successive oxidation of amorpha-4,11-diene. FEBS letters. 2013 Jan; 587(3):278-84. doi: 10.1016/j.febslet.2012.11.031. [PMID: 23246612]
  • Hongzhen Wang, Junli Han, Selvaraju Kanagarajan, Anneli Lundgren, Peter E Brodelius. Trichome-specific expression of the amorpha-4,11-diene 12-hydroxylase (cyp71av1) gene, encoding a key enzyme of artemisinin biosynthesis in Artemisia annua, as reported by a promoter-GUS fusion. Plant molecular biology. 2013 Jan; 81(1-2):119-38. doi: 10.1007/s11103-012-9986-y. [PMID: 23161198]
  • Selvaraju Kanagarajan, Saraladevi Muthusamy, Anna Gliszczyńska, Anneli Lundgren, Peter E Brodelius. Functional expression and characterization of sesquiterpene synthases from Artemisia annua L. using transient expression system in Nicotiana benthamiana. Plant cell reports. 2012 Jul; 31(7):1309-19. doi: 10.1007/s00299-012-1250-z. [PMID: 22565787]
  • Patrick J Westfall, Douglas J Pitera, Jacob R Lenihan, Diana Eng, Frank X Woolard, Rika Regentin, Tizita Horning, Hiroko Tsuruta, David J Melis, Andrew Owens, Scott Fickes, Don Diola, Kirsten R Benjamin, Jay D Keasling, Michael D Leavell, Derek J McPhee, Neil S Renninger, Jack D Newman, Chris J Paddon. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proceedings of the National Academy of Sciences of the United States of America. 2012 Jan; 109(3):E111-8. doi: 10.1073/pnas.1110740109. [PMID: 22247290]
  • Moran Farhi, Elena Marhevka, Julius Ben-Ari, Anna Algamas-Dimantov, Zhuobin Liang, Vardit Zeevi, Orit Edelbaum, Ben Spitzer-Rimon, Hagai Abeliovich, Betty Schwartz, Tzvi Tzfira, Alexander Vainstein. Generation of the potent anti-malarial drug artemisinin in tobacco. Nature biotechnology. 2011 Dec; 29(12):1072-4. doi: 10.1038/nbt.2054. [PMID: 22158354]
  • Ruiyi Yang, Xueqin Yang, Liling Feng, Qingping Zeng. [Isolation and characterization of promoter of ADS from Artemisia annua]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2011 Aug; 36(15):2052-5. doi: 10.4268/cjcmm20111509. [PMID: 22066438]
  • Wei Wen, Rongmin Yu. Artemisinin biosynthesis and its regulatory enzymes: Progress and perspective. Pharmacognosy reviews. 2011 Jul; 5(10):189-94. doi: 10.4103/0973-7847.91118. [PMID: 22279377]
  • Yansheng Zhang, Goska Nowak, Darwin W Reed, Patrick S Covello. The production of artemisinin precursors in tobacco. Plant biotechnology journal. 2011 May; 9(4):445-54. doi: 10.1111/j.1467-7652.2010.00556.x. [PMID: 20723135]
  • Linda Olofsson, Alexander Engström, Anneli Lundgren, Peter E Brodelius. Relative expression of genes of terpene metabolism in different tissues of Artemisia annua L. BMC plant biology. 2011 Mar; 11(?):45. doi: 10.1186/1471-2229-11-45. [PMID: 21388533]
  • Katarina Cankar, Adèle van Houwelingen, Dirk Bosch, Theo Sonke, Harro Bouwmeester, Jules Beekwilder. A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene. FEBS letters. 2011 Jan; 585(1):178-82. doi: 10.1016/j.febslet.2010.11.040. [PMID: 21115006]
  • Satoru Sawai, Kazuki Saito. Triterpenoid biosynthesis and engineering in plants. Frontiers in plant science. 2011; 2(?):25. doi: 10.3389/fpls.2011.00025. [PMID: 22639586]
  • Teun W J M van Herpen, Katarina Cankar, Marilise Nogueira, Dirk Bosch, Harro J Bouwmeester, Jules Beekwilder. Nicotiana benthamiana as a production platform for artemisinin precursors. PloS one. 2010 Dec; 5(12):e14222. doi: 10.1371/journal.pone.0014222. [PMID: 21151979]
  • Abdul Mannan, Ibrar Ahmed, Waheed Arshad, Muhammad F Asim, Rizwana A Qureshi, Izhar Hussain, Bushra Mirza. Survey of artemisinin production by diverse Artemisia species in northern Pakistan. Malaria journal. 2010 Nov; 9(?):310. doi: 10.1186/1475-2875-9-310. [PMID: 21047440]
  • Patrick R Arsenault, Daniel Vail, Kristin K Wobbe, Karen Erickson, Pamela J Weathers. Reproductive development modulates gene expression and metabolite levels with possible feedback inhibition of artemisinin in Artemisia annua. Plant physiology. 2010 Oct; 154(2):958-68. doi: 10.1104/pp.110.162552. [PMID: 20724645]
  • Mamoru Komatsu, Takuma Uchiyama, Satoshi Omura, David E Cane, Haruo Ikeda. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proceedings of the National Academy of Sciences of the United States of America. 2010 Feb; 107(6):2646-51. doi: 10.1073/pnas.0914833107. [PMID: 20133795]
  • Nicholas Schramek, Huahong Wang, Werner Römisch-Margl, Birgit Keil, Tanja Radykewicz, Bernhard Winzenhörlein, Ludger Beerhues, Adelbert Bacher, Felix Rohdich, Jonathan Gershenzon, Benye Liu, Wolfgang Eisenreich. Artemisinin biosynthesis in growing plants of Artemisia annua. A 13CO2 study. Phytochemistry. 2010 Feb; 71(2-3):179-87. doi: 10.1016/j.phytochem.2009.10.015. [PMID: 19932496]
  • Dongming Ma, Gaobin Pu, Caiyan Lei, Lanqing Ma, Huahong Wang, Yanwu Guo, Jianlin Chen, Zhigao Du, Hong Wang, Guofeng Li, Hechun Ye, Benye Liu. Isolation and characterization of AaWRKY1, an Artemisia annua transcription factor that regulates the amorpha-4,11-diene synthase gene, a key gene of artemisinin biosynthesis. Plant & cell physiology. 2009 Dec; 50(12):2146-61. doi: 10.1093/pcp/pcp149. [PMID: 19880398]
  • Mikael E Olsson, Linda M Olofsson, Ann-Louise Lindahl, Anneli Lundgren, Maria Brodelius, Peter E Brodelius. Localization of enzymes of artemisinin biosynthesis to the apical cells of glandular secretory trichomes of Artemisia annua L. Phytochemistry. 2009 Jun; 70(9):1123-1128. doi: 10.1016/j.phytochem.2009.07.009. [PMID: 19664791]
  • J-Q Kong, K Jiang-Qiang, W Wang, W Wei, L-N Wang, W Li-Na, X-D Zheng, Z Xiao-Dong, K-D Cheng, C Ke-Di, P Zhu, Z Ping. The improvement of amorpha-4,11-diene production by a yeast-conform variant. Journal of applied microbiology. 2009 Mar; 106(3):941-51. doi: 10.1111/j.1365-2672.2008.04063.x. [PMID: 19191957]
  • Hiroko Tsuruta, Christopher J Paddon, Diana Eng, Jacob R Lenihan, Tizita Horning, Larry C Anthony, Rika Regentin, Jay D Keasling, Neil S Renninger, Jack D Newman. High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PloS one. 2009; 4(2):e4489. doi: 10.1371/journal.pone.0004489. [PMID: 19221601]
  • Dae-Kyun Ro, Mario Ouellet, Eric M Paradise, Helcio Burd, Diana Eng, Chris J Paddon, Jack D Newman, Jay D Keasling. Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid. BMC biotechnology. 2008 Nov; 8(?):83. doi: 10.1186/1472-6750-8-83. [PMID: 18983675]
  • David Lubertozzi, Jay D Keasling. Expression of a synthetic Artemesia annua amorphadiene synthase in Aspergillus nidulans yields altered product distribution. Journal of industrial microbiology & biotechnology. 2008 Oct; 35(10):1191-8. doi: 10.1007/s10295-008-0400-3. [PMID: 18651187]
  • Yansheng Zhang, Keat H Teoh, Darwin W Reed, Lies Maes, Alain Goossens, Douglas J H Olson, Andrew R S Ross, Patrick S Covello. The molecular cloning of artemisinic aldehyde Delta11(13) reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua. The Journal of biological chemistry. 2008 Aug; 283(31):21501-8. doi: 10.1074/jbc.m803090200. [PMID: 18495659]
  • Qingping Zeng, Frank Qiu, Ling Yuan. Production of artemisinin by genetically-modified microbes. Biotechnology letters. 2008 Apr; 30(4):581-92. doi: 10.1007/s10529-007-9596-y. [PMID: 18008167]
  • Soon-Hee Kim, Yung-Jin Chang, Soo-Un Kim. Tissue specificity and developmental pattern of amorpha-4,11-diene synthase (ADS) proved by ADS promoter-driven GUS expression in the heterologous plant, Arabidopsis thaliana. Planta medica. 2008 Feb; 74(2):188-93. doi: 10.1055/s-2008-1034276. [PMID: 18203058]
  • Jian-qiang Kong, Ke-di Cheng, Li-na Wang, Xiao-dong Zheng, Jun-gui Dai, Ping Zhu, Wei Wang. [Increase of copy number of HMG-CoA reductase and FPP synthase genes improves the amorpha4,11-diene production in engineered yeast]. Yao xue xue bao = Acta pharmaceutica Sinica. 2007 Dec; 42(12):1314-9. doi: . [PMID: 18338647]
  • Mattijs K Julsing, Michael Rijpkema, Herman J Woerdenbag, Wim J Quax, Oliver Kayser. Functional analysis of genes involved in the biosynthesis of isoprene in Bacillus subtilis. Applied microbiology and biotechnology. 2007 Jul; 75(6):1377-84. doi: 10.1007/s00253-007-0953-5. [PMID: 17458547]
  • Michelle C Y Chang, Rachel A Eachus, William Trieu, Dae-Kyun Ro, Jay D Keasling. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nature chemical biology. 2007 May; 3(5):274-7. doi: 10.1038/nchembio875. [PMID: 17438551]
  • Shuiqin Wu, Michel Schalk, Anthony Clark, R Brandon Miles, Robert Coates, Joe Chappell. Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nature biotechnology. 2006 Nov; 24(11):1441-7. doi: 10.1038/nbt1251. [PMID: 17057703]
  • . . . . doi: . [PMID: 15678372]
  • . . . . doi: . [PMID: 16458889]
  • . . . . doi: . [PMID: 11289612]
  • . . . . doi: . [PMID: 17399751]