Alstonine (BioDeep_00000000653)
PANOMIX_OTCML-2023
代谢物信息卡片
化学式: C21H20N2O3 (348.147385)
中文名称: 鸭脚木碱
谱图信息:
最多检出来源 Chinese Herbal Medicine(otcml) 1.95%
Last reviewed on 2024-07-04.
Cite this Page
Alstonine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/alstonine (retrieved
2024-11-08) (BioDeep RN: BioDeep_00000000653). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CC1C2CN3C=CC4=C5C=CC=CC5=NC4=C3CC2C(=CO1)C(=O)OC
InChI: InChI=1S/C21H20N2O3/c1-12-16-10-23-8-7-14-13-5-3-4-6-18(13)22-20(14)19(23)9-15(16)17(11-26-12)21(24)25-2/h3-8,11-12,15-16H,9-10H2,1-2H3/t12-,15-,16-/m0/s1
描述信息
Alstonine is an indole alkaloid with formula C21H20N2O3, isolated from several Rauvolfia species and exhibits antipsychotic activity. It has a role as an antipsychotic agent. It is a methyl ester, an organic heteropentacyclic compound, a zwitterion and an indole alkaloid. It is a conjugate base of an alstonine(1+).
Alstonine is a natural product found in Alstonia constricta, Rauvolfia vomitoria, and other organisms with data available.
An indole alkaloid with formula C21H20N2O3, isolated from several Rauvolfia species and exhibits antipsychotic activity.
Oxayohimbanium, 3,4,5,6,16,17-hexadehydro-16-(methoxycarbonyl)-19-methyl-, inner salt, (19α,20α)-. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=642-18-2 (retrieved 2024-07-04) (CAS RN: 642-18-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
同义名列表
24 个代谢物同义名
methyl (15S,16S,20S)-16-methyl-17-oxa-3,13-diazapentacyclo[11.8.0.02,10.04,9.015,20]henicosa-1,3,5,7,9,11,18-heptaene-19-carboxylate; (4S,4aS,14aS)-1-(methoxycarbonyl)-4-methyl-4a,5,14,14a-tetrahydro-4H-indolo[2,3-a]pyrano[3,4-g]quinolizin-6-ium-13-ide; OXAYOHIMBANIUM, 3,4,5,6,16,17-HEXADEHYDRO-16-(METHOXYCARBONYL)-19-METHYL-, INNER SALT, (19.ALPHA.,20.ALPHA.)-; Oxayohimbanium, 3,4,5,6,16,17-hexadehydro-16-(methoxycarbonyl)-19-methyl-, inner salt, (19alpha,20alpha)-; (19alpha,20alpha)-16-(methoxycarbonyl)-19-methyl-3,4,5,6,16,17-hexadehydro-18-oxayohimban-4-ium-1-ide; 20alpha-Oxayohimbanium, 3,4,5,6,16,17-hexadehydro-16-(methoxycarbonyl)-19alpha-methyl-; 3,4,5,6,16,17-Hexadehydro-16-(methoxycarbonyl)-19alpha-methyl-20alpha-oxayohimbanium; 3,4,5,6,16,17-Hexadehydro-16-(methoxycarbonyl)-19a-methyl-20a-oxayohimbanium; serpentine (alkaloid), (19alpha,20alpha)-hydroxide inner salt; serpentine (alkaloid), hydrogen tartrate (1:1) salt; serpentine (alkaloid), (19alpha,20alpha)-isomer; serpentine (alkaloid), hydroxide inner salt; Alstonine, hydroxide, inner salt; serpentine (alkaloid); Indole alkaloid; UNII-SB0M27Q90X; ALSTONINE [MI]; NCI60_041680; serpentine; SB0M27Q90X; Alstonine; alstonin; AC1L9C1H; NSC646665
数据库引用编号
16 个数据库交叉引用编号
- ChEBI: CHEBI:2612
- KEGG: C09028
- PubChem: 441979
- ChEMBL: CHEMBL1187439
- Wikipedia: Alstonine
- MeSH: serpentine (alkaloid)
- ChemIDplus: 0000642182
- KNApSAcK: C00001769
- CAS: 642-18-2
- medchemexpress: HY-121002
- PMhub: MS000020392
- MetaboLights: MTBLC2612
- PubChem: 11220
- KNApSAcK: C00001683
- 3DMET: B02624
- NIKKAJI: J39.244H
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
7 个相关的物种来源信息
- 1619820 - Alstonia constricta:
- 4058 - Catharanthus roseus: 10.1007/S11101-006-9047-8
- 4059 - Rauvolfia: 10.1016/S0021-9673(00)90403-5
- 681485 - Rauvolfia littoralis: 10.1007/BF00607562
- 4060 - Rauvolfia serpentina: 10.1007/BF00267656
- 947905 - Rauvolfia volkensii:
- 403115 - Rauvolfia vomitoria: 10.3987/R-1981-10-1727
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Qin Yan, Jianfeng Jiang, Jingbo Xie, Shengbo Jiang, Yunting Bai. Inhibition of osteosarcoma cell proliferation in vitro and tumor growth in vivo in mice model by alstonine through AMPK-activation and PGC-1α/TFAM up-regulation.
Acta biochimica Polonica.
2022 Aug; 69(3):543-549. doi:
10.18388/abp.2020_5769
. [PMID: 35975969] - Yuchen Dai, Haotian Cha, Michael J Simmonds, Hedieh Fallahi, Hongjie An, Hang T Ta, Nam-Trung Nguyen, Jun Zhang, Antony P McNamee. Enhanced Blood Plasma Extraction Utilising Viscoelastic Effects in a Serpentine Microchannel.
Biosensors.
2022 Feb; 12(2):. doi:
10.3390/bios12020120
. [PMID: 35200380] - Kotaro Yamamoto, Dagny Grzech, Konstantinos Koudounas, Emily Amor Stander, Lorenzo Caputi, Tetsuro Mimura, Vincent Courdavault, Sarah E O'Connor. Improved virus-induced gene silencing allows discovery of a serpentine synthase gene in Catharanthus roseus.
Plant physiology.
2021 10; 187(2):846-857. doi:
10.1093/plphys/kiab285
. [PMID: 34608956] - Veronika Konečná, Sian Bray, Jakub Vlček, Magdalena Bohutínská, Doubravka Požárová, Rimjhim Roy Choudhury, Anita Bollmann-Giolai, Paulina Flis, David E Salt, Christian Parisod, Levi Yant, Filip Kolář. Parallel adaptation in autopolyploid Arabidopsis arenosa is dominated by repeated recruitment of shared alleles.
Nature communications.
2021 08; 12(1):4979. doi:
10.1038/s41467-021-25256-5
. [PMID: 34404804] - S Singh, S S Pandey, K Shanker, A Kalra. Endophytes enhance the production of root alkaloids ajmalicine and serpentine by modulating the terpenoid indole alkaloid pathway in Catharanthus roseus roots.
Journal of applied microbiology.
2020 Apr; 128(4):1128-1142. doi:
10.1111/jam.14546
. [PMID: 31821696] - Xiao-Ning Zhang, Jia Liu, Yang Liu, Yu Wang, Ann Abozeid, Zhi-Guo Yu, Zhong-Hua Tang. Metabolomics Analysis Reveals that Ethylene and Methyl Jasmonate Regulate Different Branch Pathways to Promote the Accumulation of Terpenoid Indole Alkaloids in Catharanthus roseus.
Journal of natural products.
2018 02; 81(2):335-342. doi:
10.1021/acs.jnatprod.7b00782
. [PMID: 29406718] - Pooja Sharma, Aparna Shukla, Komal Kalani, Vijaya Dubey, Suaib Luqman, Santosh Kumar Srivastava, Feroz Khan. In-silico & In-vitro Identification of Structure-Activity Relationship Pattern of Serpentine & Gallic Acid Targeting PI3Kγ as Potential Anticancer Target.
Current cancer drug targets.
2017; 17(8):722-734. doi:
10.2174/1568009617666170330152617
. [PMID: 28359246] - M K Sobczyk, J A C Smith, A J Pollard, D A Filatov. Evolution of nickel hyperaccumulation and serpentine adaptation in the Alyssum serpyllifolium species complex.
Heredity.
2017 01; 118(1):31-41. doi:
10.1038/hdy.2016.93
. [PMID: 27782119] - Stephanie S Porter, Peter L Chang, Christopher A Conow, Joseph P Dunham, Maren L Friesen. Association mapping reveals novel serpentine adaptation gene clusters in a population of symbiotic Mesorhizobium.
The ISME journal.
2017 01; 11(1):248-262. doi:
10.1038/ismej.2016.88
. [PMID: 27420027] - Kotaro Yamamoto, Katsutoshi Takahashi, Hajime Mizuno, Aya Anegawa, Kimitsune Ishizaki, Hidehiro Fukaki, Miwa Ohnishi, Mami Yamazaki, Tsutomu Masujima, Tetsuro Mimura. Cell-specific localization of alkaloids in Catharanthus roseus stem tissue measured with Imaging MS and Single-cell MS.
Proceedings of the National Academy of Sciences of the United States of America.
2016 Apr; 113(14):3891-6. doi:
10.1073/pnas.1521959113
. [PMID: 27001858] - N Ivalú Cacho, Daniel J Kliebenstein, Sharon Y Strauss. Macroevolutionary patterns of glucosinolate defense and tests of defense-escalation and resource availability hypotheses.
The New phytologist.
2015 Nov; 208(3):915-27. doi:
10.1111/nph.13561
. [PMID: 26192213] - Viviane M Linck, Marcelo Ganzella, Ana P Herrmann, Christopher O Okunji, Diogo O Souza, Marta C Antonelli, Elaine Elisabetsky. Original mechanisms of antipsychotic action by the indole alkaloid alstonine (Picralima nitida).
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2015 Jan; 22(1):52-5. doi:
10.1016/j.phymed.2014.10.010
. [PMID: 25636871] - Shubhra Dutta, Anindya Roy Chowdhury, S K Srivastava, Ilora Ghosh, Kasturi Datta. Evidence for Serpentine as a novel antioxidant by a redox sensitive HABP1 overexpressing cell line by inhibiting its nuclear translocation of NF-κB.
Free radical research.
2011 Nov; 45(11-12):1279-88. doi:
10.3109/10715762.2011.610794
. [PMID: 21815883] - Ill-Min Chung, Eun-Hye Kim, Mai Li, Christie A M Peebles, Woo-Suk Jung, Hog-Keun Song, Joung-Kuk Ahn, Ka-Yiu San. Screening 64 cultivars Catharanthus roseus for the production of vindoline, catharanthine, and serpentine.
Biotechnology progress.
2011 Jul; 27(4):937-43. doi:
10.1002/btpr.557
. [PMID: 21674816] - L Cassina, E Tassi, E Morelli, L Giorgetti, D Remorini, R L Chaney, M Barbafieri. Exogenous cytokinin treatments of an Ni hyper-accumulator, Alyssum murale, grown in a serpentine soil: implications for phytoextraction.
International journal of phytoremediation.
2011; 13 Suppl 1(?):90-101. doi:
10.1080/15226514.2011.568538
. [PMID: 22046753] - David M Pereira, Federico Ferreres, Jorge M A Oliveira, Luís Gaspar, Joana Faria, Patrícia Valentão, Mariana Sottomayor, Paula B Andrade. Pharmacological effects of Catharanthus roseus root alkaloids in acetylcholinesterase inhibition and cholinergic neurotransmission.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2010 Jul; 17(8-9):646-52. doi:
10.1016/j.phymed.2009.10.008
. [PMID: 19962870] - E K Espeland, K J Rice. Facilitation across stress gradients: the importance of local adaptation.
Ecology.
2007 Sep; 88(9):2404-9. doi:
10.1890/06-1217.1
. [PMID: 17918417] - Kendi F Davies, Susan Harrison, Hugh D Safford, Joshua H Viers. Productivity alters the scale dependence of the diversity-invasibility relationship.
Ecology.
2007 Aug; 88(8):1940-7. doi:
10.1890/06-1907.1
. [PMID: 17824424] - Akira Iwase, Hideki Aoyagi, Masaru Ohme-Takagi, Hideo Tanaka. Development of a novel system for producing ajmalicine and serpentine using direct culture of leaves in Catharanthus roseus intact plant.
Journal of bioscience and bioengineering.
2005 Mar; 99(3):208-15. doi:
10.1263/jbb.99.208
. [PMID: 16233779] - Erik H Hughes, Seung-Beom Hong, Susan I Gibson, Jacqueline V Shanks, K-Y Ka-Yiu San. Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine.
Metabolic engineering.
2004 Oct; 6(4):268-76. doi:
10.1016/j.ymben.2004.03.002
. [PMID: 15491856] - Jyoti Batra, Ajaswrata Dutta, Digvijay Singh, Sushil Kumar, Jayanti Sen. Growth and terpenoid indole alkaloid production in Catharanthus roseus hairy root clones in relation to left- and right-termini-linked Ri T-DNA gene integration.
Plant cell reports.
2004 Sep; 23(3):148-54. doi:
10.1007/s00299-004-0815-x
. [PMID: 15221274] - Luciane Costa-Campos, Maurice Iwu, Elaine Elisabetsky. Lack of pro-convulsant activity of the antipsychotic alkaloid alstonine.
Journal of ethnopharmacology.
2004 Aug; 93(2-3):307-10. doi:
10.1016/j.jep.2004.03.056
. [PMID: 15234769] - M A Favali, R Musetti, S Benvenuti, A Bianchi, L Pressacco. Catharanthus roseus L. plants and explants infected with phytoplasmas: alkaloid production and structural observations.
Protoplasma.
2004 Mar; 223(1):45-51. doi:
10.1007/s00709-003-0024-4
. [PMID: 15004742] - Cyril Tikhomiroff, Ségolène Allais, Maya Klvana, Steve Hisiger, Mario Jolicoeur. Continuous selective extraction of secondary metabolites from Catharanthus roseus hairy roots with silicon oil in a two-liquid-phase bioreactor.
Biotechnology progress.
2002 Sep; 18(5):1003-9. doi:
10.1021/bp0255558
. [PMID: 12363351] - J Zhao, Q Hu, Y Q Guo, W H Zhu. Effects of stress factors, bioregulators, and synthetic precursors on indole alkaloid production in compact callus clusters cultures of Catharanthus roseus.
Applied microbiology and biotechnology.
2001 Jun; 55(6):693-8. doi:
10.1007/s002530000568
. [PMID: 11525616] - L Dassonneville, K Bonjean, M C De Pauw-Gillet, P Colson, C Houssier, J Quetin-Leclercq, L Angenot, C Bailly. Stimulation of topoisomerase II-mediated DNA cleavage by three DNA-intercalating plant alkaloids: cryptolepine, matadine, and serpentine.
Biochemistry.
1999 Jun; 38(24):7719-26. doi:
10.1021/bi990094t
. [PMID: 10387011] - R Bhadra, J A Morgan, J V Shanks. Transient studies of light-adapted cultures of hairy roots of Catharanthus roseus: growth and indole alkaloid accumulation.
Biotechnology and bioengineering.
1998 Dec; 60(6):670-8. doi:
10.1002/(sici)1097-0290(19981220)60:6<670::aid-bit4>3.0.co;2-j
. [PMID: 10099477] - A Queraltó, J Hidalgo, M Sánchez. [The interaction of serpentine and seroalbumin by fluorescence quenching].
Il Farmaco; edizione pratica.
1986 Oct; 41(10):338-46. doi:
NULL
. [PMID: 3792536] - M Beljanski, M S Beljanski. Selective inhibition of in vitro synthesis of cancer DNA by alkaloids of beta-carboline class.
Experimental cell biology.
1982; 50(2):79-87. doi:
10.1159/000163131
. [PMID: 7075859]