Alstonine (BioDeep_00000000653)

   

PANOMIX_OTCML-2023 natural product


代谢物信息卡片


Oxayohimbanium, 3,4,5,6,16,17-hexadehydro-16-(methoxycarbonyl)-19-methyl-, inner salt, (19α,20α)-

化学式: C21H20N2O3 (348.1474)
中文名称: 鸭脚木碱
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 40.63%

Reviewed

Last reviewed on 2024-07-04.

Cite this Page

Alstonine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/alstonine (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000000653). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: CC1C2CN3C=CC4=C5C=CC=CC5=NC4=C3CC2C(=CO1)C(=O)OC
InChI: InChI=1S/C21H20N2O3/c1-12-16-10-23-8-7-14-13-5-3-4-6-18(13)22-20(14)19(23)9-15(16)17(11-26-12)21(24)25-2/h3-8,11-12,15-16H,9-10H2,1-2H3/t12-,15-,16-/m0/s1

描述信息

Alstonine is an indole alkaloid with formula C21H20N2O3, isolated from several Rauvolfia species and exhibits antipsychotic activity. It has a role as an antipsychotic agent. It is a methyl ester, an organic heteropentacyclic compound, a zwitterion and an indole alkaloid. It is a conjugate base of an alstonine(1+).
Alstonine is a natural product found in Alstonia constricta, Rauvolfia vomitoria, and other organisms with data available.
An indole alkaloid with formula C21H20N2O3, isolated from several Rauvolfia species and exhibits antipsychotic activity.

Oxayohimbanium, 3,4,5,6,16,17-hexadehydro-16-(methoxycarbonyl)-19-methyl-, inner salt, (19α,20α)-. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=642-18-2 (retrieved 2024-07-04) (CAS RN: 642-18-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

同义名列表

25 个代谢物同义名

methyl (15S,16S,20S)-16-methyl-17-oxa-3,13-diazapentacyclo[11.8.0.02,10.04,9.015,20]henicosa-1,3,5,7,9,11,18-heptaene-19-carboxylate; (4S,4aS,14aS)-1-(methoxycarbonyl)-4-methyl-4a,5,14,14a-tetrahydro-4H-indolo[2,3-a]pyrano[3,4-g]quinolizin-6-ium-13-ide; OXAYOHIMBANIUM, 3,4,5,6,16,17-HEXADEHYDRO-16-(METHOXYCARBONYL)-19-METHYL-, INNER SALT, (19.ALPHA.,20.ALPHA.)-; Oxayohimbanium, 3,4,5,6,16,17-hexadehydro-16-(methoxycarbonyl)-19-methyl-, inner salt, (19alpha,20alpha)-; (19alpha,20alpha)-16-(methoxycarbonyl)-19-methyl-3,4,5,6,16,17-hexadehydro-18-oxayohimban-4-ium-1-ide; 20alpha-Oxayohimbanium, 3,4,5,6,16,17-hexadehydro-16-(methoxycarbonyl)-19alpha-methyl-; 3,4,5,6,16,17-Hexadehydro-16-(methoxycarbonyl)-19alpha-methyl-20alpha-oxayohimbanium; 3,4,5,6,16,17-Hexadehydro-16-(methoxycarbonyl)-19a-methyl-20a-oxayohimbanium; serpentine (alkaloid), (19alpha,20alpha)-hydroxide inner salt; serpentine (alkaloid), hydrogen tartrate (1:1) salt; serpentine (alkaloid), (19alpha,20alpha)-isomer; serpentine (alkaloid), hydroxide inner salt; Alstonine, hydroxide, inner salt; serpentine (alkaloid); Indole alkaloid; UNII-SB0M27Q90X; ALSTONINE [MI]; NCI60_041680; serpentine; SB0M27Q90X; Alstonine; alstonin; AC1L9C1H; NSC646665; Alstonine



数据库引用编号

18 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

27 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 12 ABCB1, BCL2, CASP3, CAT, MAPK14, MSMP, MTOR, PRL, PTGS2, TFDP3, TP53, VEGFA
Peripheral membrane protein 3 CYP1B1, MTOR, PTGS2
Endoplasmic reticulum membrane 4 BCL2, CYP1B1, MTOR, PTGS2
Nucleus 9 BCL2, CASP3, MAPK14, MTOR, PARP1, PRL, TFDP3, TP53, VEGFA
cytosol 7 BCL2, CASP3, CAT, MAPK14, MTOR, PARP1, TP53
dendrite 3 HTR2A, HTR2C, MTOR
nuclear body 1 PARP1
phagocytic vesicle 1 MTOR
centrosome 1 TP53
nucleoplasm 7 CASP3, MAPK14, MTOR, PARP1, PRL, PRODH, TP53
RNA polymerase II transcription regulator complex 1 PRL
Cell membrane 4 ABCB1, HTR2A, HTR2C, TNF
Cytoplasmic side 1 MTOR
Cell projection, axon 1 HTR2A
Multi-pass membrane protein 3 ABCB1, HTR2A, HTR2C
Golgi apparatus membrane 1 MTOR
Synapse 1 HTR2C
cell surface 3 ABCB1, TNF, VEGFA
dendritic shaft 1 HTR2A
glutamatergic synapse 3 CASP3, HTR2A, MAPK14
Golgi apparatus 1 VEGFA
Golgi membrane 1 MTOR
lysosomal membrane 1 MTOR
mitochondrial inner membrane 1 PRODH
neuronal cell body 3 CASP3, HTR2A, TNF
presynaptic membrane 1 HTR2A
Cytoplasm, cytosol 1 PARP1
Lysosome 1 MTOR
Presynapse 1 HTR2A
plasma membrane 4 ABCB1, HTR2A, HTR2C, TNF
Membrane 8 ABCB1, BCL2, CAT, CYP1B1, MTOR, PARP1, TP53, VEGFA
apical plasma membrane 1 ABCB1
axon 1 HTR2A
caveola 2 HTR2A, PTGS2
extracellular exosome 2 ABCB1, CAT
Lysosome membrane 1 MTOR
endoplasmic reticulum 4 BCL2, PTGS2, TP53, VEGFA
extracellular space 6 CXCL8, IL6, MSMP, PRL, TNF, VEGFA
adherens junction 1 VEGFA
mitochondrion 7 BCL2, CAT, CYP1B1, MAPK14, PARP1, PRODH, TP53
protein-containing complex 5 BCL2, CAT, PARP1, PTGS2, TP53
intracellular membrane-bounded organelle 3 CAT, CYP1B1, PRODH
Microsome membrane 3 CYP1B1, MTOR, PTGS2
postsynaptic density 1 CASP3
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Secreted 5 CXCL8, IL6, MSMP, PRL, VEGFA
extracellular region 7 CAT, CXCL8, IL6, MAPK14, PRL, TNF, VEGFA
Mitochondrion outer membrane 2 BCL2, MTOR
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 2 BCL2, MTOR
Mitochondrion matrix 1 TP53
mitochondrial matrix 3 CAT, PRODH, TP53
transcription regulator complex 3 PARP1, TFDP3, TP53
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 TP53
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 1 TNF
Secreted, extracellular space, extracellular matrix 1 VEGFA
cytoplasmic vesicle 1 HTR2A
nucleolus 2 PARP1, TP53
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
postsynaptic membrane 1 HTR2A
Apical cell membrane 1 ABCB1
Membrane raft 1 TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton 1 TP53
focal adhesion 1 CAT
extracellular matrix 1 VEGFA
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Nucleus, PML body 2 MTOR, TP53
PML body 2 MTOR, TP53
secretory granule 1 VEGFA
nuclear speck 1 MAPK14
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
neuron projection 1 PTGS2
chromatin 4 PARP1, PRL, TFDP3, TP53
phagocytic cup 1 TNF
Chromosome 1 PARP1
Nucleus, nucleolus 1 PARP1
spindle pole 1 MAPK14
nuclear replication fork 1 PARP1
chromosome, telomeric region 1 PARP1
site of double-strand break 2 PARP1, TP53
nuclear envelope 2 MTOR, PARP1
Endomembrane system 1 MTOR
endosome lumen 1 PRL
Membrane, caveola 1 HTR2A
cell body fiber 1 HTR2A
Cell projection, dendrite 1 HTR2A
germ cell nucleus 1 TP53
replication fork 1 TP53
myelin sheath 1 BCL2
ficolin-1-rich granule lumen 2 CAT, MAPK14
secretory granule lumen 2 CAT, MAPK14
endoplasmic reticulum lumen 2 IL6, PTGS2
nuclear matrix 1 TP53
transcription repressor complex 1 TP53
platelet alpha granule lumen 1 VEGFA
neurofilament 1 HTR2A
[Isoform 1]: Nucleus 1 TP53
protein-DNA complex 1 PARP1
external side of apical plasma membrane 1 ABCB1
death-inducing signaling complex 1 CASP3
Cytoplasmic vesicle, phagosome 1 MTOR
site of DNA damage 1 PARP1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
interleukin-6 receptor complex 1 IL6
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
BAD-BCL-2 complex 1 BCL2
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
G protein-coupled serotonin receptor complex 2 HTR2A, HTR2C
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Qin Yan, Jianfeng Jiang, Jingbo Xie, Shengbo Jiang, Yunting Bai. Inhibition of osteosarcoma cell proliferation in vitro and tumor growth in vivo in mice model by alstonine through AMPK-activation and PGC-1α/TFAM up-regulation. Acta biochimica Polonica. 2022 Aug; 69(3):543-549. doi: 10.18388/abp.2020_5769. [PMID: 35975969]
  • Yuchen Dai, Haotian Cha, Michael J Simmonds, Hedieh Fallahi, Hongjie An, Hang T Ta, Nam-Trung Nguyen, Jun Zhang, Antony P McNamee. Enhanced Blood Plasma Extraction Utilising Viscoelastic Effects in a Serpentine Microchannel. Biosensors. 2022 Feb; 12(2):. doi: 10.3390/bios12020120. [PMID: 35200380]
  • Kotaro Yamamoto, Dagny Grzech, Konstantinos Koudounas, Emily Amor Stander, Lorenzo Caputi, Tetsuro Mimura, Vincent Courdavault, Sarah E O'Connor. Improved virus-induced gene silencing allows discovery of a serpentine synthase gene in Catharanthus roseus. Plant physiology. 2021 10; 187(2):846-857. doi: 10.1093/plphys/kiab285. [PMID: 34608956]
  • Veronika Konečná, Sian Bray, Jakub Vlček, Magdalena Bohutínská, Doubravka Požárová, Rimjhim Roy Choudhury, Anita Bollmann-Giolai, Paulina Flis, David E Salt, Christian Parisod, Levi Yant, Filip Kolář. Parallel adaptation in autopolyploid Arabidopsis arenosa is dominated by repeated recruitment of shared alleles. Nature communications. 2021 08; 12(1):4979. doi: 10.1038/s41467-021-25256-5. [PMID: 34404804]
  • S Singh, S S Pandey, K Shanker, A Kalra. Endophytes enhance the production of root alkaloids ajmalicine and serpentine by modulating the terpenoid indole alkaloid pathway in Catharanthus roseus roots. Journal of applied microbiology. 2020 Apr; 128(4):1128-1142. doi: 10.1111/jam.14546. [PMID: 31821696]
  • Xiao-Ning Zhang, Jia Liu, Yang Liu, Yu Wang, Ann Abozeid, Zhi-Guo Yu, Zhong-Hua Tang. Metabolomics Analysis Reveals that Ethylene and Methyl Jasmonate Regulate Different Branch Pathways to Promote the Accumulation of Terpenoid Indole Alkaloids in Catharanthus roseus. Journal of natural products. 2018 02; 81(2):335-342. doi: 10.1021/acs.jnatprod.7b00782. [PMID: 29406718]
  • Pooja Sharma, Aparna Shukla, Komal Kalani, Vijaya Dubey, Suaib Luqman, Santosh Kumar Srivastava, Feroz Khan. In-silico & In-vitro Identification of Structure-Activity Relationship Pattern of Serpentine & Gallic Acid Targeting PI3Kγ as Potential Anticancer Target. Current cancer drug targets. 2017; 17(8):722-734. doi: 10.2174/1568009617666170330152617. [PMID: 28359246]
  • M K Sobczyk, J A C Smith, A J Pollard, D A Filatov. Evolution of nickel hyperaccumulation and serpentine adaptation in the Alyssum serpyllifolium species complex. Heredity. 2017 01; 118(1):31-41. doi: 10.1038/hdy.2016.93. [PMID: 27782119]
  • Stephanie S Porter, Peter L Chang, Christopher A Conow, Joseph P Dunham, Maren L Friesen. Association mapping reveals novel serpentine adaptation gene clusters in a population of symbiotic Mesorhizobium. The ISME journal. 2017 01; 11(1):248-262. doi: 10.1038/ismej.2016.88. [PMID: 27420027]
  • Kotaro Yamamoto, Katsutoshi Takahashi, Hajime Mizuno, Aya Anegawa, Kimitsune Ishizaki, Hidehiro Fukaki, Miwa Ohnishi, Mami Yamazaki, Tsutomu Masujima, Tetsuro Mimura. Cell-specific localization of alkaloids in Catharanthus roseus stem tissue measured with Imaging MS and Single-cell MS. Proceedings of the National Academy of Sciences of the United States of America. 2016 Apr; 113(14):3891-6. doi: 10.1073/pnas.1521959113. [PMID: 27001858]
  • N Ivalú Cacho, Daniel J Kliebenstein, Sharon Y Strauss. Macroevolutionary patterns of glucosinolate defense and tests of defense-escalation and resource availability hypotheses. The New phytologist. 2015 Nov; 208(3):915-27. doi: 10.1111/nph.13561. [PMID: 26192213]
  • Viviane M Linck, Marcelo Ganzella, Ana P Herrmann, Christopher O Okunji, Diogo O Souza, Marta C Antonelli, Elaine Elisabetsky. Original mechanisms of antipsychotic action by the indole alkaloid alstonine (Picralima nitida). Phytomedicine : international journal of phytotherapy and phytopharmacology. 2015 Jan; 22(1):52-5. doi: 10.1016/j.phymed.2014.10.010. [PMID: 25636871]
  • Shubhra Dutta, Anindya Roy Chowdhury, S K Srivastava, Ilora Ghosh, Kasturi Datta. Evidence for Serpentine as a novel antioxidant by a redox sensitive HABP1 overexpressing cell line by inhibiting its nuclear translocation of NF-κB. Free radical research. 2011 Nov; 45(11-12):1279-88. doi: 10.3109/10715762.2011.610794. [PMID: 21815883]
  • Ill-Min Chung, Eun-Hye Kim, Mai Li, Christie A M Peebles, Woo-Suk Jung, Hog-Keun Song, Joung-Kuk Ahn, Ka-Yiu San. Screening 64 cultivars Catharanthus roseus for the production of vindoline, catharanthine, and serpentine. Biotechnology progress. 2011 Jul; 27(4):937-43. doi: 10.1002/btpr.557. [PMID: 21674816]
  • L Cassina, E Tassi, E Morelli, L Giorgetti, D Remorini, R L Chaney, M Barbafieri. Exogenous cytokinin treatments of an Ni hyper-accumulator, Alyssum murale, grown in a serpentine soil: implications for phytoextraction. International journal of phytoremediation. 2011; 13 Suppl 1(?):90-101. doi: 10.1080/15226514.2011.568538. [PMID: 22046753]
  • David M Pereira, Federico Ferreres, Jorge M A Oliveira, Luís Gaspar, Joana Faria, Patrícia Valentão, Mariana Sottomayor, Paula B Andrade. Pharmacological effects of Catharanthus roseus root alkaloids in acetylcholinesterase inhibition and cholinergic neurotransmission. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2010 Jul; 17(8-9):646-52. doi: 10.1016/j.phymed.2009.10.008. [PMID: 19962870]
  • E K Espeland, K J Rice. Facilitation across stress gradients: the importance of local adaptation. Ecology. 2007 Sep; 88(9):2404-9. doi: 10.1890/06-1217.1. [PMID: 17918417]
  • Kendi F Davies, Susan Harrison, Hugh D Safford, Joshua H Viers. Productivity alters the scale dependence of the diversity-invasibility relationship. Ecology. 2007 Aug; 88(8):1940-7. doi: 10.1890/06-1907.1. [PMID: 17824424]
  • Akira Iwase, Hideki Aoyagi, Masaru Ohme-Takagi, Hideo Tanaka. Development of a novel system for producing ajmalicine and serpentine using direct culture of leaves in Catharanthus roseus intact plant. Journal of bioscience and bioengineering. 2005 Mar; 99(3):208-15. doi: 10.1263/jbb.99.208. [PMID: 16233779]
  • Erik H Hughes, Seung-Beom Hong, Susan I Gibson, Jacqueline V Shanks, K-Y Ka-Yiu San. Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine. Metabolic engineering. 2004 Oct; 6(4):268-76. doi: 10.1016/j.ymben.2004.03.002. [PMID: 15491856]
  • Jyoti Batra, Ajaswrata Dutta, Digvijay Singh, Sushil Kumar, Jayanti Sen. Growth and terpenoid indole alkaloid production in Catharanthus roseus hairy root clones in relation to left- and right-termini-linked Ri T-DNA gene integration. Plant cell reports. 2004 Sep; 23(3):148-54. doi: 10.1007/s00299-004-0815-x. [PMID: 15221274]
  • Luciane Costa-Campos, Maurice Iwu, Elaine Elisabetsky. Lack of pro-convulsant activity of the antipsychotic alkaloid alstonine. Journal of ethnopharmacology. 2004 Aug; 93(2-3):307-10. doi: 10.1016/j.jep.2004.03.056. [PMID: 15234769]
  • M A Favali, R Musetti, S Benvenuti, A Bianchi, L Pressacco. Catharanthus roseus L. plants and explants infected with phytoplasmas: alkaloid production and structural observations. Protoplasma. 2004 Mar; 223(1):45-51. doi: 10.1007/s00709-003-0024-4. [PMID: 15004742]
  • Cyril Tikhomiroff, Ségolène Allais, Maya Klvana, Steve Hisiger, Mario Jolicoeur. Continuous selective extraction of secondary metabolites from Catharanthus roseus hairy roots with silicon oil in a two-liquid-phase bioreactor. Biotechnology progress. 2002 Sep; 18(5):1003-9. doi: 10.1021/bp0255558. [PMID: 12363351]
  • J Zhao, Q Hu, Y Q Guo, W H Zhu. Effects of stress factors, bioregulators, and synthetic precursors on indole alkaloid production in compact callus clusters cultures of Catharanthus roseus. Applied microbiology and biotechnology. 2001 Jun; 55(6):693-8. doi: 10.1007/s002530000568. [PMID: 11525616]
  • L Dassonneville, K Bonjean, M C De Pauw-Gillet, P Colson, C Houssier, J Quetin-Leclercq, L Angenot, C Bailly. Stimulation of topoisomerase II-mediated DNA cleavage by three DNA-intercalating plant alkaloids: cryptolepine, matadine, and serpentine. Biochemistry. 1999 Jun; 38(24):7719-26. doi: 10.1021/bi990094t. [PMID: 10387011]
  • R Bhadra, J A Morgan, J V Shanks. Transient studies of light-adapted cultures of hairy roots of Catharanthus roseus: growth and indole alkaloid accumulation. Biotechnology and bioengineering. 1998 Dec; 60(6):670-8. doi: 10.1002/(sici)1097-0290(19981220)60:6<670::aid-bit4>3.0.co;2-j. [PMID: 10099477]
  • A Queraltó, J Hidalgo, M Sánchez. [The interaction of serpentine and seroalbumin by fluorescence quenching]. Il Farmaco; edizione pratica. 1986 Oct; 41(10):338-46. doi: NULL. [PMID: 3792536]
  • M Beljanski, M S Beljanski. Selective inhibition of in vitro synthesis of cancer DNA by alkaloids of beta-carboline class. Experimental cell biology. 1982; 50(2):79-87. doi: 10.1159/000163131. [PMID: 7075859]