Gamma-tocopherol (BioDeep_00000001000)
Secondary id: BioDeep_00000861372
natural product human metabolite PANOMIX_OTCML-2023 blood metabolite Volatile Flavor Compounds
代谢物信息卡片
化学式: C28H48O2 (416.36541079999995)
中文名称: D-gamma-生育酚, (+)-γ-维生素E, γ-生育酚
谱图信息:
最多检出来源 Macaca mulatta(otcml) 0.02%
Last reviewed on 2024-09-13.
Cite this Page
Gamma-tocopherol. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/gamma-tocopherol_beta-tocopherol (retrieved
2024-11-22) (BioDeep RN: BioDeep_00000001000). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C1(C)=C(C)C2O[C@@](CCC[C@]([H])(C)CCC[C@]([H])(C)CCCC(C)C)(C)CCC=2C=C1O
InChI: InChI=1/C28H48O2/c1-20(2)11-8-12-21(3)13-9-14-22(4)15-10-17-28(7)18-16-25-19-26(29)23(5)24(6)27(25)30-28/h19-22,29H,8-18H2,1-7H3/t21-,22-,28-/m1/s1
描述信息
Gamma-tocopherol is a tocopherol in which the chroman-6-ol core is substituted by methyl groups at positions 7 and 8. It is found particularly in maize (corn) oil and soya bean (soybean) oils. It has a role as a plant metabolite, a food antioxidant and an algal metabolite. It is a vitamin E and a tocopherol.
gamma-Tocopherol is under investigation in clinical trial NCT00836368 (In Vitro Basophil Responsiveness to Allergen Challenge After Gamma-tocopherol Supplementation in Allergic Asthmatics).
gamma-Tocopherol is a natural product found in Hypericum perfoliatum, Hypericum tomentosum, and other organisms with data available.
Gamma-Tocopherol is the orally bioavailable gamma form of the naturally-occurring fat-soluble vitamin E, found in certain nuts and seeds, with potential antioxidant activity. Although the exact mechanism of action of this tocopherol has yet to be fully identified, gamma-tocopherol appears to have the ability to scavenge free radicals, thereby protecting against oxidative damage.
A natural tocopherol with less antioxidant activity than ALPHA-TOCOPHEROL. It exhibits antioxidant activity by virtue of the phenolic hydrogen on the 2H-1-benzopyran-6-ol nucleus. As in BETA-TOCOPHEROL, it also has three methyl groups on the 6-chromanol nucleus but at different sites.
gamma-Tocopherol, also known as 7,8-dimethyltocol, belongs to the class of organic compounds known as tocopherols. These are vitamin E derivatives containing a saturated trimethyltridecyl chain attached to the carbon C6 atom of a benzopyran ring system. They differ from tocotrienols which contain an unsaturated trimethyltrideca-3,7,11-trien-1-yl chain. It is estimated that 50\\\\\% of gamma-tocopherol is metabolized into gamma-CEHC and excreted into the urine. gamma-Tocopherol is the predominant form of vitamin E in plant seeds and derived products (e.g. nuts and vegetable oils). Unlike alpha-tocopherol, gamma-tocopherol inhibits cyclooxygenase activity and, therefore, exhibit anti-inflammatory properties (PMID: 11722951).
Occurs in many nut and other vegetable oils such as soya and sunflower oil. It is used as antioxidant food additive. Member of Vitamin E group. Added to fats and oils to prevent rancidity. The naturally occurring tocopherol is a single steroisomer; synthetic forms are a mixture of all eight possible isomers [DFC]
A tocopherol in which the chroman-6-ol core is substituted by methyl groups at positions 7 and 8. It is found particularly in maize (corn) oil and soya bean (soybean) oils.
(+)-γ-Tocopherol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=54-28-4 (retrieved 2024-07-01) (CAS RN: 54-28-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
γ-Tocopherol (D-γ-Tocopherol) is a potent cyclooxygenase (COX) inhibitor. γ-Tocopherol is a naturally occurring form of Vitamin E in many plant seeds, such as corn oil and soybeans. γ-Tocopherol possesses antiinflammatory properties and anti-cancer activity[1].
γ-Tocopherol (D-γ-Tocopherol) is a potent cyclooxygenase (COX) inhibitor. γ-Tocopherol is a naturally occurring form of Vitamin E in many plant seeds, such as corn oil and soybeans. γ-Tocopherol possesses antiinflammatory properties and anti-cancer activity[1].
同义名列表
67 个代谢物同义名
2H-1-Benzopyran-6-ol, 3,4-dihydro-2,7,8-trimethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)-, (2R)-; (2R(2R*(4R*,8R*)))-3,4-Dihydro-2,7,8-trimethyl-2-(4,8,12-trimethyltridecyl)-2H-benzopyran-6-ol; 2H-1-Benzopyran-6-ol, 3,4-dihydro-2,7,8-trimethyl-2-[(4R,8R)-4,8,12-trimethyltridecyl]-, (2R)-; 2H-1-Benzopyran-6-ol,3,4-dihydro-2,7,8-trimethyl-2-[(4R,8R)-4,8,12-trimethyltridecyl]-, (2R)-; (2R)-3,4-dihydro-2,7,8-trimethyl-2-[(4R,8R)-4,8,12-trimethyltridecyl]-2H-1-benzopyran-6-ol; (2R)-2,7,8-Trimethyl-2-[(4R,8R)-4,8,12-trimethyltridecyl]-3,4-dihydro-2H-1-benzopyran-6-ol; (2R)-3,4-DIHYDRO-2,7,8-TRIMETHYL-2-((4R,8R)-4,8,12-TRIMETHYLTRIDECYL)-2H-1-BENZOPYRAN-6-OL; (2R)-2,7,8-trimethyl-2-[(4R,8R)-4,8,12-trimethyltridecyl]-3,4-dihydro-2H-chromen-6-ol; (2R)-2,7,8-trimethyl-2-[(4R,8R)-4,8,12-trimethyltridecyl]-3,4-dihydrochromen-6-ol; 3,4-Dihydro-2,7,8-trimethyl-2-(4,8,12-trimethyltridecyl)-2H-1-benzopyran-6-ol; (R)-2,7,8-trimethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chroman-6-ol; DL-alpha-Tocopherol succinate calcium;-Tocopherol succinate calcium; (+)-2,7,8-trimethyl-2-(4,8,12-trimethyltridecyl)-6-chromanol; 2,7,8-Trimethyl-2-(4,8,12-trimethyltridecyl)-6-chromanol; RRR-.ALPHA.-TOCOPHEROL IMPURITY C [EP IMPURITY]; (+)-gamma-Tocopherol, analytical standard; (+)-gamma-Tocopherol, >=96\\% (HPLC); 7,8-Dimethyltocolo-xylotocopherol; D--Tocopherol;(+)--Tocopherol; Vitamin E succinate (calcium); (2R,4r,8r)-gamma-Tocopherol; (r,r,r)-.gamma.-tocopherol; GAMMA-TOCOPHEROL [WHO-DD]; (2R,4’R,8’r)-γ-tocopherol; all-(R)-gamma-Tocopherol; (R,R,R)-gamma-Tocopherol; (2R,4r,8r)-g-Tocopherol; (2R,4r,8r)-Γ-tocopherol; .GAMMA.-TOCOPHEROL [MI]; (+)-.gamma.-Tocopherol; Rrr-.gamma.-tocopherol; all-(R)-Γ-tocopherol; (R,R,R)-Γ-tocopherol; RRR-gamma-Tocopherol; (R,R,R)-g-Tocopherol; gamma-Tocopherol, d-; (+)-gamma-Tocopherol; .gamma.-Tocopherol; D-gamma-Tocopherol; gamma -Tocopherol; 7,8-Dimethyltocol; RRR-g-Tocopherol; (+)-Γ-tocopherol; (+)-g-Tocopherol; o-Xylotocopherol; (+)-y-Tocopherol; gamma-Tocopherol; tocopherol gamma; RRR-Γ-tocopherol; Gamma tocopherol; Vitamin E gamma; UNII-8EF1Z1238F; D-g-Tocopherol; ??-Tocopherol; Methyltocols; γ-Tocopherol; Tox21_113559; g-Tocopherol; CAS-54-28-4; -Tocopherol; 8EF1Z1238F; e308; γ-Tocopherol; (±)-γ-Tocopherol; Tocopherols; D-γ-Tocopherol; gamma-Tocopherol
数据库引用编号
34 个数据库交叉引用编号
- ChEBI: CHEBI:18185
- KEGG: C02483
- PubChem: 92729
- PubChem: 14986
- HMDB: HMDB0001492
- Metlin: METLIN231
- DrugBank: DB15394
- ChEMBL: CHEMBL2151591
- Wikipedia: \\%CE\\%93-Tocopherol
- Wikipedia: Gamma-Tocopherol
- LipidMAPS: LMPR02020065
- MeSH: gamma-Tocopherol
- ChemIDplus: 0000054284
- MetaCyc: GAMA-TOCOPHEROL
- KNApSAcK: C00007365
- foodb: FDB002431
- chemspider: 83708
- CAS: 54-28-4
- CAS: 7616-22-0
- MoNA: PS069703
- MoNA: PS069701
- MoNA: PS069702
- MoNA: PS069704
- MoNA: PS069705
- medchemexpress: HY-N7148
- PMhub: MS000015936
- MetaboLights: MTBLC18185
- KNApSAcK: C00029470
- 3DMET: B01578
- NIKKAJI: J213.540J
- RefMet: gamma-Tocopherol
- PubChem: 5496
- KNApSAcK: 18185
- LOTUS: LTS0058127
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
133 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(3)
- vitamin E biosynthesis (tocopherols):
δ-tocopherol ⟶ 2-methyl-6-phytyl-1,4-benzoquinol
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis:
γ-tocopherol + SAM ⟶ α-tocopherol + S-adenosyl-L-homocysteine + H+
WikiPathways(0)
Plant Reactome(3)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
INOH(0)
PlantCyc(127)
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
2-methyl-6-phytyl-1,4-benzoquinol + SAM ⟶ 2,3-dimethyl-6-phytyl-1,4-benzoquinol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
H+ + homogentisate + phytyl diphosphate ⟶ 2-methyl-6-phytyl-1,4-benzoquinol + CO2 + diphosphate
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
2-methyl-6-phytyl-1,4-benzoquinol + SAM ⟶ 2,3-dimethyl-6-phytyl-1,4-benzoquinol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
δ-tocopherol + SAM ⟶ β-tocopherol + H+ + SAH
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
138 个相关的物种来源信息
- 3563 - Amaranthaceae: LTS0058127
- 4050 - Araliaceae: LTS0058127
- 4210 - Asteraceae: LTS0058127
- 1125166 - Calea jamaicensis: 10.1016/S0031-9422(00)97995-0
- 41495 - Calendula: LTS0058127
- 41496 - Calendula officinalis: 10.1111/J.1399-3054.1985.TB02321.X
- 41496 - Calendula officinalis: LTS0058127
- 40568 - Campanula: LTS0058127
- 56154 - Campanula medium: 10.1007/S10600-014-1165-8
- 56154 - Campanula medium: LTS0058127
- 4381 - Campanulaceae: LTS0058127
- 316668 - Caryodendron: LTS0058127
- 316669 - Caryodendron orinocense: 10.1046/J.1467-2494.2000.00034.X
- 316669 - Caryodendron orinocense: LTS0058127
- 1804623 - Chenopodiaceae: LTS0058127
- 3051 - Chlamydomonadaceae: LTS0058127
- 3052 - Chlamydomonas: LTS0058127
- 3055 - Chlamydomonas reinhardtii: 10.1111/TPJ.12747
- 3055 - Chlamydomonas reinhardtii: LTS0058127
- 3166 - Chlorophyceae: LTS0058127
- 3041 - Chlorophyta: LTS0058127
- 7711 - Chordata: LTS0058127
- 16906 - Cornus Officinalis Sieb. Et Zucc.: -
- 23159 - Crataegus: LTS0058127
- 140997 - Crataegus monogyna: 10.1016/S0031-9422(00)00250-8
- 140997 - Crataegus monogyna: LTS0058127
- 1475389 - Croton cortesianus: 10.1016/0031-9422(92)80479-X
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 25996 - Elaeagnaceae: LTS0058127
- 26019 - Eriocaulaceae: LTS0058127
- 26021 - Eriocaulon: LTS0058127
- 1387318 - Eriocaulon buergerianum: 10.1002/CHIN.200307175
- 1387318 - Eriocaulon buergerianum: LTS0058127
- 2759 - Eukaryota: LTS0058127
- 3977 - Euphorbiaceae: LTS0058127
- 3803 - Fabaceae: LTS0058127
- 3310 - Ginkgo: LTS0058127
- 3311 - Ginkgo biloba: 10.1515/ZNC-1992-7-805
- 3311 - Ginkgo biloba: LTS0058127
- 3309 - Ginkgoaceae: LTS0058127
- 29811 - Ginkgoopsida: LTS0058127
- 3846 - Glycine: LTS0058127
- 3847 - Glycine max: 10.1248/CPB.33.3834
- 3847 - Glycine max: LTS0058127
- 48233 - Hippophae: LTS0058127
- 193516 - Hippophae rhamnoides: 10.1016/J.PHYMED.2007.03.018
- 193516 - Hippophae rhamnoides: 10.1021/JF020421V
- 193516 - Hippophae rhamnoides: LTS0058127
- 9604 - Hominidae: LTS0058127
- 9605 - Homo: LTS0058127
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1038/NBT.2488
- 9606 - Homo sapiens: LTS0058127
- 228586 - Humulus Scandens (Lour.) Merr.: -
- 629714 - Hypericaceae: LTS0058127
- 55962 - Hypericum: LTS0058127
- 268990 - Hypericum ericoides: 10.1016/J.ARABJC.2013.10.019
- 268990 - Hypericum ericoides: LTS0058127
- 1137008 - Hypericum perfoliatum: 10.1016/J.ARABJC.2013.10.019
- 1137008 - Hypericum perfoliatum: LTS0058127
- 65561 - Hypericum perforatum: 10.1016/J.ARABJC.2013.10.019
- 65561 - Hypericum perforatum: LTS0058127
- 1137039 - Hypericum tomentosum: 10.1016/J.ARABJC.2013.10.019
- 1137039 - Hypericum tomentosum: LTS0058127
- 1127049 - Koanophyllon albicaule: 10.1016/0031-9422(92)83462-8
- 4136 - Lamiaceae: LTS0058127
- 4447 - Liliopsida: LTS0058127
- 4004 - Linaceae: LTS0058127
- 4005 - Linum: LTS0058127
- 4006 - Linum usitatissimum: 10.1021/JF960735G
- 4006 - Linum usitatissimum: LTS0058127
- 3398 - Magnoliopsida: LTS0058127
- 40674 - Mammalia: LTS0058127
- 33208 - Metazoa: LTS0058127
- 4145 - Olea: LTS0058127
- 4146 - Olea europaea: 10.1007/978-1-59259-887-8_10
- 4146 - Olea europaea: LTS0058127
- 4144 - Oleaceae: LTS0058127
- 39174 - Origanum: LTS0058127
- 497761 - Origanum dictamnus: 10.3109/09637489609031878
- 497761 - Origanum dictamnus: LTS0058127
- 452416 - Origanum onites: 10.3109/09637489609031878
- 452416 - Origanum onites: LTS0058127
- 39352 - Origanum vulgare: 10.3109/09637489609031878
- 39352 - Origanum vulgare: LTS0058127
- 4527 - Oryza: LTS0058127
- 4530 - Oryza sativa: 10.1007/BF02545312
- 4530 - Oryza sativa: LTS0058127
- 4180 - Pedaliaceae: LTS0058127
- 487989 - Persicaria barbata: 10.1055/S-2006-960187
- 3883 - Phaseolus: LTS0058127
- 3886 - Phaseolus coccineus: 10.1016/J.PHYTOCHEM.2008.05.008
- 3886 - Phaseolus coccineus: LTS0058127
- 13215 - Piper: LTS0058127
- 511543 - Piper guineense: 10.1002/CHIN.200340213
- 511543 - Piper guineense: LTS0058127
- 16739 - Piperaceae: LTS0058127
- 33090 - Plants: -
- 4479 - Poaceae: LTS0058127
- 22663 - Punica granatum: 10.1016/J.JEP.2006.09.006
- 3745 - Rosaceae: LTS0058127
- 23216 - Rubus: LTS0058127
- 32247 - Rubus idaeus:
- 32247 - Rubus idaeus: 10.1016/S0031-9422(00)00250-8
- 32247 - Rubus idaeus: 10.1016/S0308-8146(99)00260-5
- 32247 - Rubus idaeus: LTS0058127
- 49986 - Satureja: LTS0058127
- 49989 - Satureja thymbra: 10.3109/09637489609031878
- 49989 - Satureja thymbra: LTS0058127
- 46414 - Schefflera: LTS0058127
- 1433837 - Schefflera taiwaniana: 10.1002/JCCS.200200067
- 50507 - Schisandra chinensis (Turcz.) Baill.: -
- 4139 - Scutellaria: LTS0058127
- 1986532 - Scutellaria strigillosa: 10.1007/S11418-005-0023-1
- 1986532 - Scutellaria strigillosa: LTS0058127
- 4181 - Sesamum: LTS0058127
- 4182 - Sesamum indicum: 10.3109/10915819309140647
- 4182 - Sesamum indicum: LTS0058127
- 92921 - Silybum marianum: 10.1515/ZNC-1998-9-1001
- 3561 - Spinacia: LTS0058127
- 3562 - Spinacia oleracea: 10.1002/JSFA.2740600113
- 3562 - Spinacia oleracea: LTS0058127
- 85282 - Stemona japonica: 10.1002/HLCA.200790036
- 35493 - Streptophyta: LTS0058127
- 58023 - Tracheophyta: LTS0058127
- 21910 - Verbenaceae: LTS0058127
- 157791 - Vigna Radiata: -
- 33090 - Viridiplantae: LTS0058127
- 54476 - Vitex: LTS0058127
- 361442 - Vitex negundo: 10.3390/MOLECULES15118469
- 361442 - Vitex negundo: LTS0058127
- 223431 - Vitex negundo var. cannabifolia: 10.3390/MOLECULES15118469
- 223431 - Vitex negundo var. cannabifolia: LTS0058127
- 204215 - Vitex trifolia L.: -
- 204215 - Vitex trifolia l.var.simplicifolia Cham.: -
- 29760 - Vitis vinifera:
- 1679371 - Walsura yunnanensis: 10.4268/CJCMM20140519
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Sana Yakoubi. Enhancing plant-based cheese formulation through molecular docking and dynamic simulation of tocopherol and retinol complexes with zein, soy and almond proteins via SVM-machine learning integration.
Food chemistry.
2024 Sep; 452(?):139520. doi:
10.1016/j.foodchem.2024.139520
. [PMID: 38723573] - Wan-Zhen Li, Zi-Liang Song, Jun-le Li, Jia-Hui Yu, Du-Jian Deng, Xiao-Qing Cai, Martin J T Reaney, Zi-Zhe Cai, Yong Wang. Stability of tryptophan-containing LOs in flaxseed oil and their response towards γ-tocopherol.
Food chemistry.
2024 Aug; 448(?):139026. doi:
10.1016/j.foodchem.2024.139026
. [PMID: 38531298] - Grisel Ponciano, Niu Dong, Chen Dong, Andrew Breksa, Ana Vilches, Maha T Abutokaikah, Colleen McMahan, F Omar Holguin. Overexpression of tocopherol biosynthesis genes in guayule (Parthenium argentatum) reduces rubber, resin and argentatins content in stem and leaf tissues.
Phytochemistry.
2024 Jun; 222(?):114060. doi:
10.1016/j.phytochem.2024.114060
. [PMID: 38522560] - Chen Chen, Ping-Ping Ye, Feng-Jie Cui, Ming Tan, Hai-Bo Zhang, Tong-Lin Zhou, Jian-Cheng Shi, Xue-Quan Shu, Zhi-Wei Chen. Overall quality changes and deterioration mechanism of fragrant rapeseed oils during 6-Month storage.
Food chemistry.
2024 May; 439(?):138116. doi:
10.1016/j.foodchem.2023.138116
. [PMID: 38064830] - Weiwen Chai, Meng-Hua Tao. Overall and Sex-Specific Associations of Serum Lipid-Soluble Micronutrients with Metabolic Dysfunction-Associated Steatotic Liver Disease among Adults in the United States.
Nutrients.
2024 Apr; 16(8):. doi:
10.3390/nu16081242
. [PMID: 38674932] - Xuan Ma, Chongbo Huang, Chang Zheng, Weijun Wang, Huang Ying, Changsheng Liu. Effect of oil extraction methods on walnut oil quality characteristics and the functional properties of walnut protein isolate.
Food chemistry.
2024 Apr; 438(?):138052. doi:
10.1016/j.foodchem.2023.138052
. [PMID: 38006698] - My Abdelmajid Kassem, Dounya Knizia, Khalid Meksem. A Summary of Two Decades of QTL and Candidate Genes That Control Seed Tocopherol Contents in Maize (Zea mays L.).
Genes.
2024 Apr; 15(4):. doi:
10.3390/genes15040472
. [PMID: 38674406] - Sapna I, A Jayadeep. Enzyme-treated red rice (Oryza sativa L.) bran extracts mitigate inflammatory markers in RAW 264.7 macrophage cells and exhibit anti-inflammatory efficacy greater/comparable to ferulic acid, catechin, γ-tocopherol, and γ-oryzanol.
Journal of ethnopharmacology.
2024 Apr; 323(?):117616. doi:
10.1016/j.jep.2023.117616
. [PMID: 38142877] - Hao Tian, Yi-Fang Li, Gen-Long Jiao, Wan-Yang Sun, Rong-Rong He. Unveiling the antioxidant superiority of α-tocopherol: Implications for vitamin E nomenclature and classification.
Free radical biology & medicine.
2024 Apr; 216(?):46-49. doi:
10.1016/j.freeradbiomed.2024.03.003
. [PMID: 38458392] - Maria de Fátima Rodrigues, José Wellinton da Silva, Jucielma Silva de Lima, Bárbara de Azevedo Ramos, Silvania Tavares Paz, Diego Lomonaco, Davila Zampieri, Rafael Matos Ximenes. Antiulcer activity of Mauritia flexuosa L.f. (Arecaceae) pulp oil: An edible Amazonian species with functional properties.
Fitoterapia.
2024 Apr; 174(?):105857. doi:
10.1016/j.fitote.2024.105857
. [PMID: 38354821] - Denny Pellowski, Paula Kusch, Thorsten Henning, Bastian Kochlik, Maria Maares, Amy Schmiedeskamp, Gabriele Pohl, Monika Schreiner, Susanne Baldermann, Hajo Haase, Tanja Schwerdtle, Tilman Grune, Daniela Weber. Postprandial Micronutrient Variability and Bioavailability: An Interventional Meal Study in Young vs. Old Participants.
Nutrients.
2024 Feb; 16(5):. doi:
10.3390/nu16050625
. [PMID: 38474753] - Fazal Amin, Arwa Abdulkreem Al-Huqail, Sami Ullah, Muhammad Nauman Khan, Alevcan Kaplan, Baber Ali, Majid Iqbal, Fahmy Gad Elsaid, Sezai Ercisli, Tabarak Malik, Sami Asir Al-Robai, Amany H A Abeed. Mitigation effect of alpha-tocopherol and thermo-priming in Brassica napus L. under induced mercuric chloride stress.
BMC plant biology.
2024 Feb; 24(1):108. doi:
10.1186/s12870-024-04767-5
. [PMID: 38347449] - Ching-Yun Hsu, Chia-Chih Liao, Zih-Chan Lin, Ahmed Alalaiwe, Erica Hwang, Tzu-Wei Lin, Jia-You Fang. Facile adipocyte uptake and liver/adipose tissue delivery of conjugated linoleic acid-loaded tocol nanocarriers for a synergistic anti-adipogenesis effect.
Journal of nanobiotechnology.
2024 Feb; 22(1):50. doi:
10.1186/s12951-024-02316-8
. [PMID: 38317220] - Paula Muñoz, Verónica Tijero, Celia Vincent, Sergi Munné-Bosch. Abscisic acid triggers vitamin E accumulation by transient transcript activation of VTE5 and VTE6 in sweet cherry fruits.
The Biochemical journal.
2024 Feb; ?(?):. doi:
10.1042/bcj20230399
. [PMID: 38314636] - Zicong Hu, Chaofan Hu, Yanpo Li, Qiaojun Jiang, Qunhe Li, Cuilan Fang. Pumpkin seed oil: a comprehensive review of extraction methods, nutritional constituents, and health benefits.
Journal of the science of food and agriculture.
2024 Jan; 104(2):572-582. doi:
10.1002/jsfa.12952
. [PMID: 37650308] - Nannan Liu, Yuanhao Du, Shijuan Yan, Wei Chen, Min Deng, Shutu Xu, Hong Wang, Wei Zhan, Wenjie Huang, Yan Yin, Xiaohong Yang, Qiao Zhao, Alisdair R Fernie, Jianbing Yan. The light and hypoxia induced gene ZmPORB1 determines tocopherol content in the maize kernel.
Science China. Life sciences.
2024 Jan; ?(?):. doi:
10.1007/s11427-023-2489-2
. [PMID: 38289421] - Zhanghui Zeng, Wenqian Zhang, Yaqi Shi, Haonan Wei, Chun Zhou, Xiaoping Huang, Zhehao Chen, Taihe Xiang, Lilin Wang, Ning Han, Hongwu Bian. Coordinated Transcriptome and Metabolome Analyses of a Barley hvhggt Mutant Reveal a Critical Role of Tocotrienols in Endosperm Starch Accumulation.
Journal of agricultural and food chemistry.
2024 Jan; 72(2):1146-1161. doi:
10.1021/acs.jafc.3c06301
. [PMID: 38181192] - Nashwa Hagagy, Hamada AbdElgawad. Rapeseed plant: biostimulation effects of plant growth-promoting Actinobacteria on metabolites and antioxidant defense system under elevated CO2 conditions.
Journal of the science of food and agriculture.
2024 Jan; 104(1):51-62. doi:
10.1002/jsfa.12909
. [PMID: 37551636] - Lye Yee Chew, Suk Kuan Teng, Yun Ping Neo, Yan Yi Sim, Sook Chin Chew. The Potential of Roselle (Hibiscus sabdariffa) Plant in Industrial Applications: A Promising Source of Functional Compounds.
Journal of oleo science.
2024; 73(3):275-292. doi:
10.5650/jos.ess23111
. [PMID: 38432993] - Phumon Sookwong, Jitkunya Yuenyong, Chonlada Bennett. Bioactive Constituents in Cold-Pressed Plant Oils: Their Structure, Bioactivity and Chromatographic Analysis.
Journal of oleo science.
2024; 73(4):393-409. doi:
10.5650/jos.ess23164
. [PMID: 38556275] - Wei Zhang, Yuhuang Yang, Pengkai Xie, Pingping Ye, Xuequan Shu, Haibo Zhang, Yuhang Chen, Youfeng Zhang, Jun Jin. Effects of Silica Hydrogel on Degumming of Fragrant Rapeseed Oil.
Journal of oleo science.
2024; 73(1):45-53. doi:
10.5650/jos.ess23095
. [PMID: 38171730] - Alexandra Valencia, Ana María Muñoz, Monica Ramos-Escudero, Keidy Cancino Chavez, Fernando Ramos-Escudero. Carotenoid, Tocopherol, and Volatile Aroma Compounds in Eight Sacha Inchi Seed (Plukenetia volubilis L.) Oil Accessions.
Journal of oleo science.
2024; 73(5):665-674. doi:
10.5650/jos.ess23158
. [PMID: 38692890] - Jill Romer, Katharina Gutbrod, Antonia Schuppener, Michael Melzer, Stefanie J Müller-Schüssele, Andreas J Meyer, Peter Dörmann. Tocopherol and phylloquinone biosynthesis in chloroplasts requires the phytol kinase VTE5 and the farnesol kinase FOLK.
The Plant cell.
2023 Dec; ?(?):. doi:
10.1093/plcell/koad316
. [PMID: 38124486] - Chaimae Nasri, Yasmina Halabi, Ahmed Hajib, Hasnae Choukri, Hicham Harhar, Learn-Han Lee, Vasudevan Mani, Long Chiau Ming, Khang Wen Goh, Abdelhakim Bouyahya, Mohamed Tabyaoui. Proximate composition, lipid and elemental profiling of eight varieties of avocado (Persea americana).
Scientific reports.
2023 12; 13(1):22767. doi:
10.1038/s41598-023-50119-y
. [PMID: 38123687] - Mathilde Cancalon, Youna M Hemery, Nathalie Barouh, Bruno Baréa, Claire Berton-Carabin, Lucie Birault, Erwann Durand, Pierre Villeneuve, Claire Bourlieu-Lacanal. Comparison of the effect of various sources of saturated fatty acids on infant follow-on formulas oxidative stability and nutritional profile.
Food chemistry.
2023 Dec; 429(?):136854. doi:
10.1016/j.foodchem.2023.136854
. [PMID: 37531873] - Yunping Yao, Guilin Peng, Juan Tian, Xiaodi Qu, Changmo Li. Zeaxanthin Combined with Tocopherol to Improve the Oxidative Stability of Chicken Oil.
Journal of oleo science.
2023 Dec; 72(12):1063-1072. doi:
10.5650/jos.ess23079
. [PMID: 37989306] - Serafino Suriano, Pasquale Codianni, Anna Iannucci. Carotenoids and tocols comparison in different Subspecies of Triticum turgidum and aestivum.
Food research international (Ottawa, Ont.).
2023 Dec; 174(Pt 1):113620. doi:
10.1016/j.foodres.2023.113620
. [PMID: 37986473] - Marian Czauderna, Wiktoria Wojtak, Małgorzata Białek, Agnieszka Białek. Optimization of high-efficient pre-column sample treatments and C18-UFLC method for selective quantification of selected chemical forms of tocopherol and tocotrienol in diverse foods.
Food chemistry.
2023 Nov; 437(Pt 2):137909. doi:
10.1016/j.foodchem.2023.137909
. [PMID: 37939419] - Jing-Jing Zhang, Yan Gao, Xiao Xu, Mei-Ling Zhao, Bo-Nan Xi, Yu Shu, Cong Li, Yehua Shen. In Situ Rapid Analysis of Squalene, Tocopherols, and Sterols in Walnut Oils Based on Supercritical Fluid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry.
Journal of agricultural and food chemistry.
2023 Nov; 71(43):16371-16380. doi:
10.1021/acs.jafc.3c05857
. [PMID: 37867462] - Shalma Maman, Vignesh Muthusamy, Ashvinkumar Katral, Rashmi Chhabra, Nisrita Gain, Shashidhar Bayappa Reddappa, Suman Dutta, Amolkumar Uddhaorao Solanke, Rajkumar Uttamrao Zunjare, Chirravuri Naga Neeraja, Devendra Kumar Yadava, Firoz Hossain. Low expression of lipoxygenase 3 (LOX3) enhances the retention of kernel tocopherols in maize during storage.
Molecular biology reports.
2023 Nov; 50(11):9283-9294. doi:
10.1007/s11033-023-08820-8
. [PMID: 37812350] - Gregory T Connock, Xiao-Lei Liu. Tocopherols and associated derivatives track the phytoplanktonic response to evolving pelagic redox conditions spanning Oceanic Anoxic Event 2.
Geobiology.
2023 11; 21(6):743-757. doi:
10.1111/gbi.12570
. [PMID: 37563988] - Zhanghui Zeng, Yong Jia, Xiaoping Huang, Zhehao Chen, Taihe Xiang, Ning Han, Hongwu Bian, Chengdao Li. Transcriptional and protein structural characterization of homogentisate phytyltransferase genes in barley, wheat, and oat.
BMC plant biology.
2023 Oct; 23(1):528. doi:
10.1186/s12870-023-04535-x
. [PMID: 37904113] - He Huang, Baijun Chu, Qiaona Yuan, Pan Gao, Wu Zhong, Jiaojiao Yin, Chuanrong Hu, Dongping He, Xiaoming Jiang, Xingguo Wang. Effect of enzymatic Maillard reaction conditions on the physicochemical properties, nutrition, fatty acids composition, and key aroma compounds of fragrant rapeseed oil.
Journal of the science of food and agriculture.
2023 Oct; ?(?):. doi:
10.1002/jsfa.13082
. [PMID: 37897493] - Noura Bentarhlia, Badr Eddine Kartah, Mouhcine Fadil, Said El Harkaoui, Bertrand Matthäus, Oualid Abboussi, Hanaa Abdelmoumen, Omar Bouhnik, Hanae El Monfalouti. Exploring the wound-healing and antimicrobial potential of Dittrichia viscosa L lipidic extract: Chemical composition and in vivo evaluation.
Fitoterapia.
2023 Oct; 172(?):105707. doi:
10.1016/j.fitote.2023.105707
. [PMID: 37866421] - Ewa Olbińska, Agnieszka Trela-Makowej, Weronika Larysz, Aleksandra Orzechowska, Renata Szymańska. The effect of α-tocopherol incorporated into different carriers on the oxidative stability of oil in water (O/W) emulsions.
Colloids and surfaces. B, Biointerfaces.
2023 Oct; 230(?):113536. doi:
10.1016/j.colsurfb.2023.113536
. [PMID: 37696162] - Nadia Ayadi, Rayda Ben Ayed, Sezai Ercisli, Melekber Sulusoglu Durul, Ebru Sakar, Ahmed Rebai. γ-tocopherol methyltransferase gene sequencing and SNP discovery associated with olive oil quality.
Cellular and molecular biology (Noisy-le-Grand, France).
2023 Aug; 69(8):111-117. doi:
10.14715/cmb/2023.69.8.17
. [PMID: 37715410] - M Martini, I Altomonte, I Sodi, Y Vasylieva, F Salari. Sterols, tocopherols, and bioactive fatty acids differences between conventional, high quality, and organic cow milk.
Journal of dairy science.
2023 Aug; ?(?):. doi:
10.3168/jds.2023-23378
. [PMID: 37641300] - Junichi Fujii, Ken-Ichi Yamada. Defense systems to avoid ferroptosis caused by lipid peroxidation-mediated membrane damage.
Free radical research.
2023 Aug; ?(?):1-20. doi:
10.1080/10715762.2023.2244155
. [PMID: 37551716] - Ruggero Menci, Luisa Biondi, Antonio Natalello, Massimiliano Lanza, Alessandro Priolo, Bernardo Valenti, Antonino Bertino, Manuel Scerra, Giuseppe Luciano. Feeding hazelnut skin to lambs delays lipid oxidation in meat.
Meat science.
2023 Aug; 202(?):109218. doi:
10.1016/j.meatsci.2023.109218
. [PMID: 37207554] - Lin Tang, Minjie Cao, Can Liao, Ruijie Liu, Ming Chang, Xingguo Wang. Migration of tocopherols from the oil phase to the oil-water interface using phospholipids improved the oxidative stability of O/W emulsions.
Food chemistry.
2023 Jul; 414(?):135719. doi:
10.1016/j.foodchem.2023.135719
. [PMID: 36808031] - Elhadi M Yahia, Claudia Inés Victoria-Campos, Catalina Gonzalez-Nava. Bioactive compounds and antioxidant activity in garambullo fruit (Myrtillocactus geometrizans) at different ripening stages.
Journal of food science.
2023 Jun; ?(?):. doi:
10.1111/1750-3841.16663
. [PMID: 37326342] - Tania Mesa, Sergi Munné-Bosch. α-Tocopherol in chloroplasts: Nothing more than an antioxidant?.
Current opinion in plant biology.
2023 Jun; 74(?):102400. doi:
10.1016/j.pbi.2023.102400
. [PMID: 37311290] - Jiahui Jiang, Haiyan Ou, Ruiye Chen, Huiyun Lu, Longjian Zhou, Zhiyou Yang. The Ethnopharmacological, Phytochemical, and Pharmacological Review of Euryale ferox Salisb.: A Chinese Medicine Food Homology.
Molecules (Basel, Switzerland).
2023 May; 28(11):. doi:
10.3390/molecules28114399
. [PMID: 37298878] - Elaine Darnet, Bruno Teixeira, Hubert Schaller, Hervé Rogez, Sylvain Darnet. Elucidating the Mesocarp Drupe Transcriptome of Açai (Euterpe oleracea Mart.): An Amazonian Tree Palm Producer of Bioactive Compounds.
International journal of molecular sciences.
2023 May; 24(11):. doi:
10.3390/ijms24119315
. [PMID: 37298279] - Sijia Liao, André Gollowitzer, Lisa Börmel, Charlotte Maier, Luisa Gottschalk, Oliver Werz, Maria Wallert, Andreas Koeberle, Stefan Lorkowski. α-Tocopherol-13'-Carboxychromanol Induces Cell Cycle Arrest and Cell Death by Inhibiting the SREBP1-SCD1 Axis and Causing Imbalance in Lipid Desaturation.
International journal of molecular sciences.
2023 May; 24(11):. doi:
10.3390/ijms24119229
. [PMID: 37298183] - Dominik Kmiecik, Monika Fedko, Justyna Małecka, Aleksander Siger, Przemysław Łukasz Kowalczewski. Effect of Heating Temperature of High-Quality Arbequina, Picual, Manzanilla and Cornicabra Olive Oils on Changes in Nutritional Indices of Lipid, Tocopherol Content and Triacylglycerol Polymerization Process.
Molecules (Basel, Switzerland).
2023 May; 28(10):. doi:
10.3390/molecules28104247
. [PMID: 37241988] - Anna Grygier, Suryakant Chakradhari, Katarzyna Ratusz, Magdalena Rudzińska, Khageshwar Singh Patel, Danija Lazdiņa, Dalija Segliņa, Paweł Górnaś. Evaluation of Selected Medicinal, Timber and Ornamental Legume Species' Seed Oils as Sources of Bioactive Lipophilic Compounds.
Molecules (Basel, Switzerland).
2023 May; 28(10):. doi:
10.3390/molecules28103994
. [PMID: 37241735] - Ravi Gupta, Cheol Woo Min, Ju-Young Jung, Tae-Ho Ham, Jong-Seong Jeon, Lae-Hyeon Cho, Soon Wook Kwon, Sun Tae Kim. Proteome profiling highlights mechanisms underlying pigment and tocopherol accumulation in red and black rice seeds.
Proteomics.
2023 Apr; ?(?):e2300035. doi:
10.1002/pmic.202300035
. [PMID: 37058097] - Michelle Kearns, Jean-Christophe Jacquier, Sabine M Harrison, Raquel Cama-Moncunill, Tommy M Boland, Helen Sheridan, Alan K Kelly, Simona Grasso, Frank J Monahan. Effect of different botanically-diverse diets on the fatty acid profile, tocopherol content and oxidative stability of beef.
Journal of the science of food and agriculture.
2023 Apr; ?(?):. doi:
10.1002/jsfa.12633
. [PMID: 37058580] - Danni Chu, Zhifang Zhang, Yang Hu, Chao Fang, Xindan Xu, Jia Yuan, Jinsong Zhang, Zhixi Tian, Guodong Wang. Genome-wide scan for oil quality reveals a coregulation mechanism of tocopherols and fatty acids in soybean seeds.
Plant communications.
2023 Apr; ?(?):100598. doi:
10.1016/j.xplc.2023.100598
. [PMID: 37029487] - Ping Hai, Yunqing He, Ruirui Wang, Yuan Gao, Xudong Wu, Xuanqin Chen, Xianyan Li, Jin Yang, Jian Yang, Rongtao Li. New tocopherol and acylphloroglucinol derivatives from Dryopteris crassirhizoma and their antimicrobial activities.
Fitoterapia.
2023 Mar; 165(?):105401. doi:
10.1016/j.fitote.2022.105401
. [PMID: 36577455] - Jaapna Dhillon, John W Newman, Oliver Fiehn, Rudy M Ortiz. Almond Consumption for 8 Weeks Altered Host and Microbial Metabolism in Comparison to a Control Snack in Young Adults.
Journal of the American Nutrition Association.
2023 Mar; 42(3):242-254. doi:
10.1080/07315724.2021.2025168
. [PMID: 35512761] - Svetlana Momchilova, Adriana Kazakova, Sabina Taneva, Katerina Aleksieva, Ralitsa Mladenova, Yordanka Karakirova, Zhanina Petkova, Mariana Kamenova-Nacheva, Desislava Teneva, Petko Denev. Effect of Gamma Irradiation on Fat Content, Fatty Acids, Antioxidants and Oxidative Stability of Almonds, and Electron Paramagnetic Resonance (EPR) Study of Treated Nuts.
Molecules (Basel, Switzerland).
2023 Feb; 28(3):. doi:
10.3390/molecules28031439
. [PMID: 36771103] - Soniya Ashok Kumar, Noorul Samsoon Maharifa Haja Mohaideen, Hemalatha S. Phytocompounds From Edible Oil Seeds Target Hub Genes To Control Breast Cancer.
Applied biochemistry and biotechnology.
2023 Feb; 195(2):1231-1254. doi:
10.1007/s12010-022-04224-9
. [PMID: 36342625] - Hong-Sik Hwang, Jill K Winkler-Moser. Bicarbonates and carbonates as antioxidants in vegetable oils at frying temperatures.
Journal of food science.
2023 Feb; 88(2):717-731. doi:
10.1111/1750-3841.16442
. [PMID: 36576154] - Aleksander Siger, Paweł Górnaś. Free tocopherols and tocotrienols in 82 plant species' oil: Chemotaxonomic relation as demonstrated by PCA and HCA.
Food research international (Ottawa, Ont.).
2023 02; 164(?):112386. doi:
10.1016/j.foodres.2022.112386
. [PMID: 36737971] - Vassilis Athanasiadis, Theodoros Chatzimitakos, Dimitrios Kalompatsios, Dimitrios Palaiogiannis, Ioannis Makrygiannis, Eleni Bozinou, Stavros I Lalas. Evaluation of the Efficacy and Synergistic Effect of α- and δ-Tocopherol as Natural Antioxidants in the Stabilization of Sunflower Oil and Olive Pomace Oil during Storage Conditions.
International journal of molecular sciences.
2023 Jan; 24(2):. doi:
10.3390/ijms24021113
. [PMID: 36674630] - Salisa Chumsantea, Apiwat Jiruttisakul, Akkaradech Nakornsadet, Piraporn Sombutsuwan, Kornkanok Aryusuk. Simultaneous Determination of Vitamin E and γ-Oryzanol in Rice Bran Oil via HPSEC-PDA without Sample Pretreatment.
Journal of oleo science.
2023; 72(7):655-665. doi:
10.5650/jos.ess22257
. [PMID: 37380482] - Nuno Rodrigues, Fátima Peres, Susana Casal, Arantzazu Santamaria-Echart, Filomena Barreiro, António M Peres, José Alberto Pereira. Geographical discrimination of olive oils from Cv. 'Galega Vulgar'.
Food chemistry.
2023 Jan; 398(?):133945. doi:
10.1016/j.foodchem.2022.133945
. [PMID: 35986990] - Bruno Silvestre Lira, Giovanna Gramegna, Paula Amaral, Juliene Dos Reis Moreira, Raquel Tsu Ay Wu, Mateus Henrique Vicente, Fabio Tebaldi Silveira Nogueira, Luciano Freschi, Magdalena Rossi. Phytol recycling: essential, yet not limiting for tomato fruit tocopherol accumulation under normal growing conditions.
Plant molecular biology.
2023 Jan; ?(?):. doi:
10.1007/s11103-022-01331-3
. [PMID: 36587296] - Braulio Cervantes-Paz, Elhadi M Yahia, Alejandro Nuñez-Vilchis. Identification and quantification of fatty acids and lipid-soluble phytochemicals using GC-MS, HPLC-MS, and FTIR and their association with quality parameters during avocado ripening.
Journal of food science.
2023 Jan; 88(1):119-132. doi:
10.1111/1750-3841.16390
. [PMID: 36443948] - Aiyong Cui, Peilun Xiao, Zhiqiang Fan, Yuan Zeng, Hu Wang, Yan Zhuang. Associations between vitamin E status and bone mineral density in children and adolescents aged 8-19 years: Evidence based on NHANES 2005-2006, 2017-2018.
PloS one.
2023; 18(3):e0283127. doi:
10.1371/journal.pone.0283127
. [PMID: 36928218] - Yuan Guo, Dong Li, Tiantian Liu, Meifang Liao, Yuxin Li, Weitang Zhang, Zijin Liu, Mingxun Chen. Effect of Overexpression of γ-Tocopherol Methyltransferase on α-Tocopherol and Fatty Acid Accumulation and Tolerance to Salt Stress during Seed Germination in Brassica napus L.
International journal of molecular sciences.
2022 Dec; 23(24):. doi:
10.3390/ijms232415933
. [PMID: 36555573] - Dong-Min Kang, Ji-Min Kwon, Woo-Jin Jeong, Yu Jin Jung, Kwon Kyoo Kang, Mi-Jeong Ahn. Antioxidant Constituents and Activities of the Pulp with Skin of Korean Tomato Cultivars.
Molecules (Basel, Switzerland).
2022 Dec; 27(24):. doi:
10.3390/molecules27248741
. [PMID: 36557874] - Christelle Lopez, Elisabeth David-Briand, Cristelle Mériadec, Claudie Bourgaux, Javier Pérez, Franck Artzner. Milk sphingosomes as lipid carriers for tocopherols in aqueous foods: Thermotropic phase behaviour and morphology.
Food research international (Ottawa, Ont.).
2022 12; 162(Pt B):112115. doi:
10.1016/j.foodres.2022.112115
. [PMID: 36461349] - Qunfeng Zhang, Jianyun Ruan, Roland Mumm, Ric C H de Vos, Mei-Ya Liu. Dynamic Changes in the Antioxidative Defense System in the Tea Plant Reveal the Photoprotection-Mediated Temporal Accumulation of Flavonoids under Full Sunlight Exposure.
Plant & cell physiology.
2022 Nov; 63(11):1695-1708. doi:
10.1093/pcp/pcac125
. [PMID: 36043695] - Jacquelyn D Lajiness, Nansalmaa Amarsaikhan, Kiet Tat, Angar Tsoggerel, Joan M Cook-Mills. β-Glucosylceramides and Tocopherols Regulate Development and Function of Dendritic Cells.
Journal of immunology (Baltimore, Md. : 1950).
2022 11; 209(10):1837-1850. doi:
10.4049/jimmunol.2101188
. [PMID: 36426950] - Youssef Elouafy, Zineb Lakhlifi El Idrissi, Adil El Yadini, Hicham Harhar, Mohammed Merae Alshahrani, Ahmed Abdullah Al Awadh, Khang Wen Goh, Long Chiau Ming, Abdelhakim Bouyahya, Mohamed Tabyaoui. Variations in Antioxidant Capacity, Oxidative Stability, and Physicochemical Quality Parameters of Walnut (Juglans regia) Oil with Roasting and Accelerated Storage Conditions.
Molecules (Basel, Switzerland).
2022 Nov; 27(22):. doi:
10.3390/molecules27227693
. [PMID: 36431794] - Zineb Lakhlifi El Idrissi, Hamza El Moudden, Najoua Mghazli, Abdelhakim Bouyahya, Chakir El Guezzane, Mohammed Merae Alshahrani, Ahmed Abdullah Al Awadh, Khang Wen Goh, Long Chiau Ming, Hicham Harhar, Mohamed Tabyaoui. Effects of Extraction Methods on the Bioactivities and Nutritional Value of Virginia and Valencia-Type Peanut Oil.
Molecules (Basel, Switzerland).
2022 Nov; 27(22):. doi:
10.3390/molecules27227709
. [PMID: 36431807] - Youssef Elouafy, Adil El Yadini, Hamza El Moudden, Hicham Harhar, Mohammed Merae Alshahrani, Ahmed Abdullah Al Awadh, Khang Wen Goh, Long Chiau Ming, Abdelhakim Bouyahya, Mohamed Tabyaoui. Influence of the Extraction Method on the Quality and Chemical Composition of Walnut (Juglans regia L.) Oil.
Molecules (Basel, Switzerland).
2022 Nov; 27(22):. doi:
10.3390/molecules27227681
. [PMID: 36431782] - Alexander Montoya-Arroyo, Camilo Toro-González, Nadine Sus, Jorge Warner, Patricia Esquivel, Víctor M Jiménez, Jan Frank. Vitamin E and carotenoid profiles in leaves, stems, petioles and flowers of stinging nettle (Urtica leptophylla Kunth) from Costa Rica.
Journal of the science of food and agriculture.
2022 Nov; 102(14):6340-6348. doi:
10.1002/jsfa.11985
. [PMID: 35527679] - Truong Nhat Van Do, Tho Huu Le, Hai Xuan Nguyen, Trang Ngoc Tran Vo, Phu Hoang Dang, Nhan Trung Nguyen, Mai Thanh Thi Nguyen. δ-Tocopherol derivatives from the leaves of Muntingia calabura L.
Natural product research.
2022 Nov; 36(21):5524-5529. doi:
10.1080/14786419.2021.2018589
. [PMID: 34933616] - Stepan Myagkota, Roman Shevchuk, Oleg Sukach, Andriy Pushak, Taras Malyi, Mykhailo Fulmes. Spectral and Luminescence Properties of Linseed Oils of Different Prehistory.
Journal of fluorescence.
2022 Nov; 32(6):1991-1998. doi:
10.1007/s10895-022-02993-4
. [PMID: 35798985] - Mitchell DiPasquale, Michael H L Nguyen, Stuart R Castillo, Isabelle J Dib, Elizabeth G Kelley, Drew Marquardt. Vitamin E Does Not Disturb Polyunsaturated Fatty Acid Lipid Domains.
Biochemistry.
2022 11; 61(21):2366-2376. doi:
10.1021/acs.biochem.2c00405
. [PMID: 36227768] - Leila Rezig, Imen Ghzaiel, Mohamed Ksila, Aline Yammine, Thomas Nury, Amira Zarrouk, Mohammad Samadi, Moncef Chouaibi, Anne Vejux, Gérard Lizard. Cytoprotective activities of representative nutrients from the Mediterranean diet and of Mediterranean oils against 7-ketocholesterol- and 7β-hydroxycholesterol-induced cytotoxicity: Application to age-related diseases and civilization diseases.
Steroids.
2022 11; 187(?):109093. doi:
10.1016/j.steroids.2022.109093
. [PMID: 36029811] - Qian Xiong, Yee-Ying Lee, Ke-Yao Li, Wan-Zhen Li, Yue Du, Xue Liu, Guo-Yan Li, Martin T J Reaney, Zi-Zhe Cai, Yong Wang. Status of linusorbs in cold-pressed flaxseed oil during oxidation and their response toward antioxidants.
Food research international (Ottawa, Ont.).
2022 11; 161(?):111861. doi:
10.1016/j.foodres.2022.111861
. [PMID: 36192984] - Eman A R Abdelghffar, Heba A S El-Nashar, Shaimaa Fayez, Wael A Obaid, Omayma A Eldahshan. Ameliorative effect of oregano (Origanum vulgare) versus silymarin in experimentally induced hepatic encephalopathy.
Scientific reports.
2022 10; 12(1):17854. doi:
10.1038/s41598-022-20412-3
. [PMID: 36284120] - Mitchell D Culler, Ipek Bayram, Eric A Decker. Enzymatic Modification of Lecithin for Improved Antioxidant Activity in Combination with Tocopherol in Emulsions and Bulk Oil.
Journal of agricultural and food chemistry.
2022 Oct; 70(41):13404-13412. doi:
10.1021/acs.jafc.2c05182
. [PMID: 36215731] - Yolanda Carmona-Jiménez, Jose M Igartuburu, Dominico A Guillén-Sánchez, M Valme García-Moreno. Fatty Acid and Tocopherol Composition of Pomace and Seed Oil from Five Grape Varieties Southern Spain.
Molecules (Basel, Switzerland).
2022 Oct; 27(20):. doi:
10.3390/molecules27206980
. [PMID: 36296576] - Me-Sun Kim, Seo-Rin Ko, Van Trang Le, Moo-Gun Jee, Yu Jin Jung, Kwon-Kyoo Kang, Yong-Gu Cho. Development of SNP Markers from GWAS for Selecting Seed Coat and Aleurone Layers in Brown Rice (Oryza sativa L.).
Genes.
2022 10; 13(10):. doi:
10.3390/genes13101805
. [PMID: 36292692] - Xinyang Li, Yingyi Mao, Shuang Liu, Jin Wang, Xiang Li, Yanrong Zhao, David R Hill, Shuo Wang. Vitamins, Vegetables and Metal Elements Are Positively Associated with Breast Milk Oligosaccharide Composition among Mothers in Tianjin, China.
Nutrients.
2022 Oct; 14(19):. doi:
10.3390/nu14194131
. [PMID: 36235783] - Paweł Górnaś, Georgijs Baškirovs, Aleksander Siger. Free and Esterified Tocopherols, Tocotrienols and Other Extractable and Non-Extractable Tocochromanol-Related Molecules: Compendium of Knowledge, Future Perspectives and Recommendations for Chromatographic Techniques, Tools, and Approaches Used for Tocochromanol Determination.
Molecules (Basel, Switzerland).
2022 Oct; 27(19):. doi:
10.3390/molecules27196560
. [PMID: 36235100] - Atefeh Tavakoli, Mohammad Ali Sahari, Mohsen Barzegar, Hassan Ahmadi Gavlighi, Silvia Marzocchi, Sara Marziali, Maria Caboni. Deodorization of sunflower oil by high voltage electric field as a nonthermal method sunflower oil refining by electric field.
Journal of food science.
2022 Oct; 87(10):4363-4378. doi:
10.1111/1750-3841.16312
. [PMID: 36102045] - Ahsan Ausaf Ali, Yousef Bagheri, Qian Tian, Mingxu You. Advanced DNA Zipper Probes for Detecting Cell Membrane Lipid Domains.
Nano letters.
2022 09; 22(18):7579-7587. doi:
10.1021/acs.nanolett.2c02605
. [PMID: 36084301] - Rômulo Alves Morais, Gerson Lopes Teixeira, Sandra Regina Salvador Ferreira, Alejandro Cifuentes, Jane Mara Block. Nutritional Composition and Bioactive Compounds of Native Brazilian Fruits of the Arecaceae Family and Its Potential Applications for Health Promotion.
Nutrients.
2022 Sep; 14(19):. doi:
10.3390/nu14194009
. [PMID: 36235663] - Federica Pasini, Ana Maria Gómez-Caravaca, Thierry Blasco, Jelena Cvejić, Maria Fiorenza Caboni, Vito Verardo. Assessment of Lipid Quality in Commercial Omega-3 Supplements Sold in the French Market.
Biomolecules.
2022 Sep; 12(10):. doi:
10.3390/biom12101361
. [PMID: 36291569] - Venelina Popova, Zhana Petkova, Nadezhda Mazova, Tanya Ivanova, Nadezhda Petkova, Magdalena Stoyanova, Albena Stoyanova, Sezai Ercisli, Zuhal Okcu, Sona Skrovankova, Jiri Mlcek. Chemical Composition Assessment of Structural Parts (Seeds, Peel, Pulp) of Physalis alkekengi L. Fruits.
Molecules (Basel, Switzerland).
2022 Sep; 27(18):. doi:
10.3390/molecules27185787
. [PMID: 36144521] - Lirong Xu, Chenfei Zhu, Taorong Liu, Emad Karrar, Yucheng Ouyang, Duo Li. Effect of microwave heating on lipid composition, chemical properties and antioxidant activity of oils from Trichosanthes kirilowii seed.
Food research international (Ottawa, Ont.).
2022 09; 159(?):111643. doi:
10.1016/j.foodres.2022.111643
. [PMID: 35940816] - Abebe Teshome, Belay Dereje, Chibuzo S Nwankwo, Charles Odilichukwu R Okpala. Physiochemical Properties, Lipid Breakdown, β-Carotenoids, Tocopherols, Vitamins, Amino and Fatty Acid Profiles of Soxhlet Extracted Oil from Different Garden Cress Seed (Lepidium sativum L.) Genotypes in Ethiopia.
Journal of oleo science.
2022 Sep; 71(9):1299-1308. doi:
10.5650/jos.ess22046
. [PMID: 35965087] - Yu Zhang, Xiaolong Li, Yuanyuan Xu, Mengze Wang, Fengjun Wang. Comparison of chemical characterization and oxidative stability of Lycium barbarum seed oils: A comprehensive study based on processing methods.
Journal of food science.
2022 Sep; 87(9):3888-3899. doi:
10.1111/1750-3841.16280
. [PMID: 35984101] - Dunja Šamec, Monica Rosa Loizzo, Olga Gortzi, İrem Tatlı Çankaya, Rosa Tundis, İpek Suntar, Samira Shirooie, Gokhan Zengin, Hari Prasad Devkota, Patricia Reboredo-Rodríguez, Sherif T S Hassan, Azadeh Manayi, Hamid Reza Khayat Kashani, Seyed Mohammad Nabavi. The potential of pumpkin seed oil as a functional food-A comprehensive review of chemical composition, health benefits, and safety.
Comprehensive reviews in food science and food safety.
2022 09; 21(5):4422-4446. doi:
10.1111/1541-4337.13013
. [PMID: 35904246] - Fidel Ortega-Gavilán, Ana M Jiménez-Carvelo, Luis Cuadros-Rodríguez, M Gracia Bagur-González. The chromatographic similarity profile - An innovative methodology to detect fraudulent blends of virgin olive oils.
Journal of chromatography. A.
2022 Aug; 1679(?):463378. doi:
10.1016/j.chroma.2022.463378
. [PMID: 35933768] - Neven Žarković, Anna Jastrząb, Iwona Jarocka-Karpowicz, Biserka Orehovec, Bruno Baršić, Marko Tarle, Marta Kmet, Ivica Lukšić, Wojciech Łuczaj, Elżbieta Skrzydlewska. The Impact of Severe COVID-19 on Plasma Antioxidants.
Molecules (Basel, Switzerland).
2022 Aug; 27(16):. doi:
10.3390/molecules27165323
. [PMID: 36014561] - Jean-Marie Savignac, Vessela Atanasova, Sylvain Chéreau, Véronique Ortéga, Florence Richard-Forget. Role of Tocochromanols in Tolerance of Cereals to Biotic Stresses: Specific Focus on Pathogenic and Toxigenic Fungal Species.
International journal of molecular sciences.
2022 Aug; 23(16):. doi:
10.3390/ijms23169303
. [PMID: 36012567] - Di Wu, Xiaowei Li, Ryokei Tanaka, Joshua C Wood, Laura E Tibbs-Cortes, Maria Magallanes-Lundback, Nolan Bornowski, John P Hamilton, Brieanne Vaillancourt, Christine H Diepenbrock, Xianran Li, Nicholas T Deason, Gregory R Schoenbaum, Jianming Yu, C Robin Buell, Dean DellaPenna, Michael A Gore. Combining GWAS and TWAS to identify candidate causal genes for tocochromanol levels in maize grain.
Genetics.
2022 07; 221(4):. doi:
10.1093/genetics/iyac091
. [PMID: 35666198] - Radia Arab, Susana Casal, Teresa Pinho, Rebeca Cruz, Mohamed Lamine Freidja, José Manuel Lorenzo, Christophe Hano, Khodir Madani, Lila Boulekbache-Makhlouf. Effects of Seed Roasting Temperature on Sesame Oil Fatty Acid Composition, Lignan, Sterol and Tocopherol Contents, Oxidative Stability and Antioxidant Potential for Food Applications.
Molecules (Basel, Switzerland).
2022 Jul; 27(14):. doi:
10.3390/molecules27144508
. [PMID: 35889377] - Hao An, Yuxiang Ma, Xuede Wang, Yongzhan Zheng. Effects of Deodorization on the Formation of Processing Contaminants and Chemical Quality of Sunflower Oil.
Journal of oleo science.
2022 Jul; 71(7):975-984. doi:
10.5650/jos.ess22050
. [PMID: 35691841] - Miriam Distefano, Christof B Steingass, Cherubino Leonardi, Francesco Giuffrida, Ralf Schweiggert, Rosario P Mauro. Effects of a plant-derived biostimulant application on quality and functional traits of greenhouse cherry tomato cultivars.
Food research international (Ottawa, Ont.).
2022 07; 157(?):111218. doi:
10.1016/j.foodres.2022.111218
. [PMID: 35761540] - Kingsley O Omeje, Benjamin O Ezema, Juliet N Ozioko, Henry C Omeje, Emmanuel C Ossai, Sabinus O O Eze, Charles Odilichukwu R Okpala, Małgorzata Korzeniowska. Biochemical characterization of Soxhlet-extracted pulp oil of Canarium schweinfurthii Engl. fruit in Nigeria.
Scientific reports.
2022 06; 12(1):10291. doi:
10.1038/s41598-022-14381-w
. [PMID: 35717414]