Hypericin (BioDeep_00000378733)

Main id: BioDeep_00000000260

 

natural product PANOMIX_OTCML-2023 Chemicals and Drugs


代谢物信息卡片


5,7,11,18,22,24-HEXAHYDROXY-13,16-DIMETHYLOCTACYCLO[13.11.1.1(2),(1)?.0(3),?.0?,(2)?.0(1)?,(2)?.0(2)(1),(2)?.0(1)?,(2)?]OCTACOSA-1,3,5,7,10,12,14(28),15(27),16,18,21,23,25-TRIDECAENE-9,20-DIONE

化学式: C30H16O8 (504.0845)
中文名称: 金丝桃素, 金丝桃蒽酮
谱图信息: 最多检出来源 Viridiplantae(plant) 25.38%

分子结构信息

SMILES: C12C3=C4C(=O)C5C(=CC(C)=C(C6=C(C)C=C(O)C7C(C8C(=CC(O)=C(C3=C(O)C=C4O)C=8C=1C6=7)O)=O)C2=5)O
InChI: InChI=1S/C30H16O8/c1-7-3-9(31)19-23-15(7)16-8(2)4-10(32)20-24(16)28-26-18(12(34)6-14(36)22(26)30(20)38)17-11(33)5-13(35)21(29(19)37)25(17)27(23)28/h3-6,31-36H,1-2H3

描述信息

Hypericin is a carbopolycyclic compound. It has a role as an antidepressant. It derives from a hydride of a bisanthene.
Hypericin is a natural product found in Hypericum adenotrichum, Hypericum bithynicum, and other organisms with data available.
Hypericin is an anthraquinone derivative that is naturally found in the yellow flower of Hypericum perforatum (St. Johns wort) with antidepressant, potential antiviral, antineoplastic and immunostimulating activities. Hypericin appears to inhibit the neuronal uptake of serotonin, norepinephrine, dopamine, gamma-amino butyric acid (GABA) and L-glutamate, which may contribute to its antidepressant effect. Hypericin may also prevent the replication of encapsulated viruses probably due to inhibition of the assembly and shedding of virus particles in infected cells. This agent also exerts potent phototoxic effects by triggering apoptotic signaling that results in formation of reactive oxygen species.
D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents
D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents
C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product
D000890 - Anti-Infective Agents > D000998 - Antiviral Agents
D011838 - Radiation-Sensitizing Agents
D000970 - Antineoplastic Agents
C1907 - Drug, Natural Product
D004791 - Enzyme Inhibitors
Hypericin is a naturally occurring substance found in Hyperlcurn perforatum L. Hypericin is an inhibitor of PKC (protein kinase C), MAO (monoaminoxidase), dopamine-beta-hydroxylase, reverse transcriptase, telomerase and CYP (cytochrome P450). Hypericin shows antitumor, antiviral, antidepressive activities, and can induce apoptosis[1][2][3].
Hypericin is a naturally occurring substance found in Hyperlcurn perforatum L. Hypericin is an inhibitor of PKC (protein kinase C), MAO (monoaminoxidase), dopamine-beta-hydroxylase, reverse transcriptase, telomerase and CYP (cytochrome P450). Hypericin shows antitumor, antiviral, antidepressive activities, and can induce apoptosis[1][2][3].

同义名列表

47 个代谢物同义名

5,7,11,18,22,24-HEXAHYDROXY-13,16-DIMETHYLOCTACYCLO[13.11.1.1(2),(1)?.0(3),?.0?,(2)?.0(1)?,(2)?.0(2)(1),(2)?.0(1)?,(2)?]OCTACOSA-1,3,5,7,10,12,14(28),15(27),16,18,21,23,25-TRIDECAENE-9,20-DIONE; 9,11,13,16,18,20-hexahydroxy-5,24-dimethyloctacyclo[13.11.1.12,10.03,8.04,25.019,27.021,26.014,28]octacosa-1(26),2,4(25),5,8,10,12,14(28),15(27),16,18,20,23-tridecaene-7,22-dione; 5,7,11,18,22,24-hexahydroxy-13,16-dimethyloctacyclo[13.11.1.12,10.03,8.04,25.019,27.021,26.014,28]octacosa-1(27),2(28),3,5,7,10,12,14,16,18,21,23,25-tridecaene-9,20-dione; InChI=1/C30H16O8/c1-7-3-9(31)19-23-15(7)16-8(2)4-10(32)20-24(16)28-26-18(12(34)6-14(36)22(26)30(20)38)17-11(33)5-13(35)21(29(19)37)25(17)27(23)28/h3-6,31-36H,1-2H; rac-(3aM,10aM)-1,3,4,6,8,13-hexahydroxy-10,11- dimethylphenanthro[1,10,9,8-opqra]perylene-7,14- dione; Phenanthro[1,10,9,8-opqra]perylene-7,14-dione,1,3,4,6,8,13-hexahydroxy-10,11-dimethyl-, stereoisomer; Phenanthro[1,9,8-opqra]perylene-7,14-dione,1,3,4,6,8,13-hexahydroxy-10,11-dimethyl-, stereoisomer; 1,4,6,8,13-Hexahydroxy-10,11-dimethylphenanthro [1,10,9,8-opqra]perylene-7,14-dione P-conformer; 1,3,4,6,8,13-Hexahydroxy-10,11-dimethylphenanthro[1,10,9,8-opqra]perylene-7,14-dione, 9CI; Phenanthro(1,10,9,8-opqra)perylene-7,14-dione, 1,3,4,6,8,13-hexahydroxy-10,11-dimethyl-; Phenanthro[1,10,9,8-opqra]perylene-7,14-dione, 1,3,4,6,8,13-hexahydroxy-10,11-dimethyl-; 1,3,4,6,8,13-hexahydroxy-10,11-dimethylphenanthro(1,10,9,8-opqra)perylene-7,14-dione; 1,3,4,6,8,13-Hexahydroxy-10,11-dimethylphenanthro[1,10,9,8-opqra]perylene-7,14-dione; Hypericin is known as an anthroquinone derivative found in St. Johns Wort.; 1:6:8:10:11:13-hexahydroxy-3:4-dimethyl-meso-naphthodianthrene-7:14-dione; 4,5,7,4,5,7-Hexahydroxy-2,2-dimethyl-mesonapthtodianthron; 4,5,7,4,5,7-Hexahydroxy-2,2-dimethylnaphthodianthrone; Hypericin, primary pharmaceutical reference standard; Hypericin from Hypericum perforatum, ~95\\% (HPLC); (component of) Hypericum spp (st. Johns wort); Hypericin from Hypericum perforatum; hexahydroxy(dimethyl)[?]dione; BTXNYTINYBABQR-UHFFFAOYSA-N; Hypericin & Visible light; HYPERICIN [WHO-DD]; Hypericin [USAN]; BiomolKI2_000040; hypericin [INN]; UNII-7V2F1075HD; Mycoporphyrin; hypericum red; NCI60_003879; HSCI1_000202; NCI60_006799; Cyclo werro; Cyclo-Werol; hipericina; 7V2F1075HD; hypericine; Hyperizin; Hypericin; hipericin; Cyclosan; C30H16O8; VIMRxyn; BMK1-D8; Hypericin



数据库引用编号

42 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

210 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 12 ABCB1, ALB, ANG, ANXA5, BCL2, CASP3, CAT, MAPK14, PRKX, TNK1, TP53, VEGFA
Peripheral membrane protein 2 ANXA5, TNK1
Endoplasmic reticulum membrane 2 BCL2, CD4
Mitochondrion membrane 1 ABCG2
Nucleus 9 ALB, ANG, BCL2, CASP3, MAPK14, PARP1, PRKX, TP53, VEGFA
cytosol 10 ALB, ANG, ANXA5, BCL2, CASP3, CAT, MAPK14, PARP1, PRKCQ, TP53
mitochondrial membrane 1 ABCG2
nuclear body 1 PARP1
centrosome 2 ALB, TP53
nucleoplasm 6 ABCG2, CASP3, MAPK14, PARP1, PRKX, TP53
Cell membrane 4 ABCB1, ABCG2, CD4, TNF
Multi-pass membrane protein 2 ABCB1, ABCG2
cell surface 3 ABCB1, TNF, VEGFA
glutamatergic synapse 2 CASP3, MAPK14
Golgi apparatus 2 ALB, VEGFA
Golgi membrane 1 INS
growth cone 1 ANG
lysosomal membrane 1 EGF
neuronal cell body 3 ANG, CASP3, TNF
sarcolemma 1 ANXA5
Cytoplasm, cytosol 1 PARP1
plasma membrane 7 ABCB1, ABCG2, CD4, EGF, PRKCQ, TNF, TNK1
Membrane 10 ABCB1, ABCG2, ANXA5, BCL2, CAT, EGF, PARP1, TNK1, TP53, VEGFA
apical plasma membrane 2 ABCB1, ABCG2
extracellular exosome 5 ABCB1, ALB, ANXA5, CAT, EGF
endoplasmic reticulum 4 ALB, BCL2, TP53, VEGFA
extracellular space 7 ALB, ANG, EGF, IL6, INS, TNF, VEGFA
adherens junction 1 VEGFA
mitochondrion 5 BCL2, CAT, MAPK14, PARP1, TP53
protein-containing complex 5 ALB, BCL2, CAT, PARP1, TP53
intracellular membrane-bounded organelle 1 CAT
postsynaptic density 1 CASP3
Single-pass type I membrane protein 1 CD4
Secreted 5 ALB, ANG, IL6, INS, VEGFA
extracellular region 10 ALB, ANG, ANXA5, CAT, EGF, IL6, INS, MAPK14, TNF, VEGFA
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 1 BCL2
Mitochondrion matrix 1 TP53
mitochondrial matrix 2 CAT, TP53
anchoring junction 1 ALB
transcription regulator complex 2 PARP1, TP53
centriolar satellite 1 PRKCQ
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 TP53
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 3 ANXA5, CD4, TNF
Secreted, extracellular space, extracellular matrix 1 VEGFA
actin cytoskeleton 1 ANG
nucleolus 3 ANG, PARP1, TP53
Early endosome 1 CD4
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Apical cell membrane 2 ABCB1, ABCG2
Membrane raft 3 ABCG2, CD4, TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton 1 TP53
focal adhesion 2 ANXA5, CAT
extracellular matrix 1 VEGFA
Peroxisome 1 CAT
basement membrane 1 ANG
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Nucleus, PML body 1 TP53
PML body 1 TP53
collagen-containing extracellular matrix 1 ANXA5
secretory granule 1 VEGFA
nuclear speck 1 MAPK14
Zymogen granule membrane 1 ANXA5
ciliary basal body 1 ALB
chromatin 2 PARP1, TP53
phagocytic cup 1 TNF
Chromosome 2 ANG, PARP1
centriole 1 ALB
brush border membrane 1 ABCG2
Nucleus, nucleolus 2 ANG, PARP1
spindle pole 2 ALB, MAPK14
nuclear replication fork 1 PARP1
chromosome, telomeric region 1 PARP1
blood microparticle 1 ALB
site of double-strand break 2 PARP1, TP53
nuclear envelope 1 PARP1
endosome lumen 1 INS
Cytoplasm, Stress granule 1 ANG
cytoplasmic stress granule 1 ANG
germ cell nucleus 1 TP53
replication fork 1 TP53
myelin sheath 1 BCL2
ficolin-1-rich granule lumen 2 CAT, MAPK14
secretory granule lumen 3 CAT, INS, MAPK14
Golgi lumen 1 INS
endoplasmic reticulum lumen 4 ALB, CD4, IL6, INS
nuclear matrix 1 TP53
transcription repressor complex 1 TP53
platelet alpha granule lumen 3 ALB, EGF, VEGFA
endocytic vesicle 1 ANG
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
immunological synapse 1 PRKCQ
aggresome 1 PRKCQ
vesicle membrane 1 ANXA5
clathrin-coated endocytic vesicle membrane 2 CD4, EGF
[Isoform 1]: Nucleus 1 TP53
protein-DNA complex 1 PARP1
external side of apical plasma membrane 2 ABCB1, ABCG2
death-inducing signaling complex 1 CASP3
site of DNA damage 1 PARP1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
T cell receptor complex 1 CD4
angiogenin-PRI complex 1 ANG
catalase complex 1 CAT
interleukin-6 receptor complex 1 IL6
endothelial microparticle 1 ANXA5
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
BAD-BCL-2 complex 1 BCL2
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
ciliary transition fiber 1 ALB
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Xin Liu, Xiao-Ying He, Bo-Long Liu, Ping-Shun Song. [Determination of 13 chemical components of Epimedii Folium in pharmacopoeia by UPLC method combined with quantitative analysis of multicomponents by single-marker]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2024 Feb; 49(4):981-988. doi: 10.19540/j.cnki.cjcmm.20231115.103. [PMID: 38621905]
  • Hongxiao Xie, Zhiqiang Xie, Fei Luan, Jiuseng Zeng, Xiumeng Zhang, Li Chen, Nan Zeng, Rong Liu. Potential therapeutic effects of Chinese herbal medicine in postpartum depression: Mechanisms and future directions. Journal of ethnopharmacology. 2024 Jan; 324(?):117785. doi: 10.1016/j.jep.2024.117785. [PMID: 38262525]
  • Vanessa Fabienne Abegg, Miljenko Valentin Panajatovic, Riccardo Vincenzo Mancuso, Julien Arthur Allard, Urs Duthaler, Alex Odermatt, Stephan Krähenbühl, Jamal Bouitbir. Mechanisms of hepatocellular toxicity associated with the components of St. John's Wort extract hypericin and hyperforin in HepG2 and HepaRG cells. Toxicology letters. 2024 Jan; 393(?):1-13. doi: 10.1016/j.toxlet.2024.01.008. [PMID: 38219807]
  • Viktória Pevná, Ľuboš Zauška, Anass Benziane, György Vámosi, Vladimír Girman, Monika Miklóšová, Vladimír Zeleňák, Veronika Huntošová, Miroslav Almáši. Effective transport of aggregated hypericin encapsulated in SBA-15 nanoporous silica particles for photodynamic therapy of cancer cells. Journal of photochemistry and photobiology. B, Biology. 2023 Oct; 247(?):112785. doi: 10.1016/j.jphotobiol.2023.112785. [PMID: 37714000]
  • Martyna Nowak-Perlak, Piotr Ziółkowski, Marta Woźniak. A promising natural anthraquinones mediated by photodynamic therapy for anti-cancer therapy. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2023 Oct; 119(?):155035. doi: 10.1016/j.phymed.2023.155035. [PMID: 37603973]
  • Zhaolei Peng, Jing Lu, Kai Liu, Long Xie, Yulin Wang, Chunyan Cai, Dejun Yang, Jingjing Xi, Chunmei Yan, Xiaofang Li, Mingyi Shi. Hypericin as a promising natural bioactive naphthodianthrone: A review of its pharmacology, pharmacokinetics, toxicity, and safety. Phytotherapy research : PTR. 2023 Sep; ?(?):. doi: 10.1002/ptr.8011. [PMID: 37690821]
  • Patricia Rocha de Araújo, Mariana Rillo Sato, Marcela Tavares Luiz, Marlus Chorilli. Validation of an innovative chromatographic method for hypericin quantification in nanostructured lipid carriers. Journal of AOAC International. 2023 Sep; ?(?):. doi: 10.1093/jaoacint/qsad100. [PMID: 37672013]
  • Flávia Amanda Pedroso de Morais, Rodolfo Bento Balbinot, Amanda Beatriz Kawano Bakoshi, Danielle Lazarin-Bidoia, Katieli da Silva Souza Campanholi, Ranulfo Combuca da Silva Junior, Renato Sonchini Gonçalves, Tânia Ueda-Nakamura, Sueli de Oliveira Silva, Wilker Caetano, Celso Vataru Nakamura. Advanced theranostic nanoplatforms for hypericin delivery in the cancer treatment. Journal of photochemistry and photobiology. B, Biology. 2023 Sep; 247(?):112782. doi: 10.1016/j.jphotobiol.2023.112782. [PMID: 37660488]
  • Viktória Pevná, Ľuboš Zauška, Miroslav Almáši, Andrej Hovan, Gregor Bánó, Mariana Máčajová, Boris Bilčík, Vladimír Zeleňák, Veronika Huntošová. Redistribution of hydrophobic hypericin from nanoporous particles of SBA-15 silica in vitro, in cells and in vivo. International journal of pharmaceutics. 2023 Jul; 643(?):123288. doi: 10.1016/j.ijpharm.2023.123288. [PMID: 37532008]
  • Moritz Winker, Antoine Chauveau, Martin Smieško, Olivier Potterat, Alexander Areesanan, Amy Zimmermann-Klemd, Carsten Gründemann. Immunological evaluation of herbal extracts commonly used for treatment of mental diseases during pregnancy. Scientific reports. 2023 Jun; 13(1):9630. doi: 10.1038/s41598-023-35952-5. [PMID: 37316493]
  • Chunguang Lei, Ningning Li, Jianhua Chen, Qingzhong Wang. Hypericin Ameliorates Depression-like Behaviors via Neurotrophin Signaling Pathway Mediating m6A Epitranscriptome Modification. Molecules (Basel, Switzerland). 2023 May; 28(9):. doi: 10.3390/molecules28093859. [PMID: 37175269]
  • Antoine Chauveau, Andrea Treyer, Annelies Geirnaert, Lea Bircher, Angela Babst, Vanessa Fabienne Abegg, Ana Paula Simões-Wüst, Christophe Lacroix, Olivier Potterat, Matthias Hamburger. Intestinal permeability and gut microbiota interactions of pharmacologically active compounds in valerian and St. John's wort. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 Apr; 162(?):114652. doi: 10.1016/j.biopha.2023.114652. [PMID: 37027987]
  • Camila Barros Galinari, Tiago de Paula Biachi, Renato Sonchini Gonçalves, Gabriel Batista Cesar, Eduardo Victor Bergmann, Luis Carlos Malacarne, Érika Seki Kioshima Cotica, Patrícia de Souza Bonfim-Mendonça, Terezinha Inez Estivalet Svidzinski. Photoactivity of hypericin: from natural product to antifungal application. Critical reviews in microbiology. 2023 Feb; 49(1):38-56. doi: 10.1080/1040841x.2022.2036100. [PMID: 35171731]
  • Ane Sager Longva, Kristian Berg, Anette Weyergang. Light-enhanced VEGF121/rGel induce immunogenic cell death and increase the antitumor activity of αCTLA4 treatment. Frontiers in immunology. 2023; 14(?):1278000. doi: 10.3389/fimmu.2023.1278000. [PMID: 38173721]
  • Shuping Yang, Junting Ma, Tian Li, Peng Wang, Xudan Wang, Jian Zhang, Yicheng Ni, Haibo Shao. Radioiodinated hypericin as a tracer for detection of acute myocardial infarction: SPECT-CT imaging in a swine model. Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology. 2022 12; 29(6):3432-3439. doi: 10.1007/s12350-022-02933-6. [PMID: 35296972]
  • Mariana Rillo Sato, João Augusto Oshiro-Junior, Camila Fernanda Rodero, Fernanda Isadora Boni, Victor Hugo Sousa Araújo, Taís Maria Bauab, Dean Nicholas, John F Callan, Marlus Chorilli. Photodynamic therapy-mediated hypericin-loaded nanostructured lipid carriers against vulvovaginal candidiasis. Journal de mycologie medicale. 2022 Nov; 32(4):101296. doi: 10.1016/j.mycmed.2022.101296. [PMID: 35660541]
  • Kang Cao, Yan Zhang, Qian Yao, Yanjuan Peng, Qu Pan, Qiuxia Jiao, Ke Ren, Fenghui Sun, Qian Zhang, Ran Guo, Jiali Zhang, Tian Chen. Hypericin blocks the function of HSV-1 alkaline nuclease and suppresses viral replication. Journal of ethnopharmacology. 2022 Oct; 296(?):115524. doi: 10.1016/j.jep.2022.115524. [PMID: 35811028]
  • Heba Abd-El-Azim, Ismaiel A Tekko, Ahlam Ali, Alyaa Ramadan, Noha Nafee, Nawal Khalafallah, Taifur Rahman, William Mcdaid, Rania G Aly, Lalitkumar K Vora, Steven J Bell, Fiona Furlong, Helen O McCarthy, Ryan F Donnelly. Hollow microneedle assisted intradermal delivery of hypericin lipid nanocapsules with light enabled photodynamic therapy against skin cancer. Journal of controlled release : official journal of the Controlled Release Society. 2022 08; 348(?):849-869. doi: 10.1016/j.jconrel.2022.06.027. [PMID: 35728715]
  • Dharmendra Kashyap, Rajarshi Roy, Parimal Kar, Hem Chandra Jha. Plant-derived active compounds as a potential nucleocapsid protein inhibitor of SARS-CoV-2: an in-silico study. Journal of biomolecular structure & dynamics. 2022 May; ?(?):1-16. doi: 10.1080/07391102.2022.2072951. [PMID: 35532092]
  • Larissa Mendes de Souza, Fernanda Diniz de Sousa, Roberta Cristina Ribeiro Cruz, Denise Crispim Tavares, Pollyanna Francielli de Oliveira. Hypericin, a medicinal compound from St. John's Wort, inhibits genotoxicity induced by mutagenic agents in V79 cells. Drug and chemical toxicology. 2022 May; 45(3):1302-1307. doi: 10.1080/01480545.2020.1822389. [PMID: 33050761]
  • Esra Saçıcı, Erdem Yesilada. Development of new and validated HPTLC methods for the qualitative and quantitative analysis of hyperforin, hypericin and hyperoside contents in Hypericum species. Phytochemical analysis : PCA. 2022 Apr; 33(3):355-364. doi: 10.1002/pca.3093. [PMID: 34734668]
  • Xuejia Zhai, Yan Chen, Xuemei Han, Ying Zhu, Xixuan Li, Yu Zhang, Yongning Lu. The protective effect of hypericin on postpartum depression rat model by inhibiting the NLRP3 inflammasome activation and regulating glucocorticoid metabolism. International immunopharmacology. 2022 Apr; 105(?):108560. doi: 10.1016/j.intimp.2022.108560. [PMID: 35101848]
  • Mojtaba Khaksarian, Mahmoud Bahmani, Morovat Taherikalani, Behnam Ashrafi, Mahmoud Rafieian-Kopaei, Naser Abbasi. Biosynthesis of titanium dioxide nanoparticles using Hypericum perforatum and Origanum vulgare extracts and their main components, hypericin and carvacrol as promising antibacterial agents. Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan. 2022 04; 42(2):167-175. doi: 10.19852/j.cnki.jtcm.2022.02.002. [PMID: 35473336]
  • Pietro Delcanale, Eleonora Uriati, Matteo Mariangeli, Andrea Mussini, Ana Moreno, Davide Lelli, Luigi Cavanna, Paolo Bianchini, Alberto Diaspro, Stefania Abbruzzetti, Cristiano Viappiani. The Interaction of Hypericin with SARS-CoV-2 Reveals a Multimodal Antiviral Activity. ACS applied materials & interfaces. 2022 Mar; 14(12):14025-14032. doi: 10.1021/acsami.1c22439. [PMID: 35302731]
  • Yang Sun, Chen Liang, Lihua Zheng, Lei Liu, Zhijin Li, Guang Yang, Yuxin Li. Anti-fatigue effect of hypericin in a chronic forced exercise mouse model. Journal of ethnopharmacology. 2022 Feb; 284(?):114767. doi: 10.1016/j.jep.2021.114767. [PMID: 34710555]
  • Dalong Wang, Tingting Zhao, Shan Zhao, Jing Chen, Tongyi Dou, Guangbo Ge, Changyuan Wang, Huijun Sun, Kexin Liu, Qiang Meng, Jingjing Wu. Substrate-dependent Inhibition of Hypericin on Human Carboxylesterase 2: Implications for Herb-drug Combination. Current drug metabolism. 2022; 23(1):38-44. doi: 10.2174/1389200223666220202093303. [PMID: 35114918]
  • Borivoj Adnadjevic, Biljana Koturevic, Jelena Jovanovic. Isothermal kinetics of ethanolic extraction of total hypericin from pre-extracted Hypericum perforatum flowers. Phytochemical analysis : PCA. 2021 Sep; 32(5):757-766. doi: 10.1002/pca.3021. [PMID: 33319396]
  • Oksana Sytar, Konstantia Kotta, Dimitrios Valasiadis, Anatoliy Kosyan, Marian Brestic, Venetia Koidou, Eleftheria Papadopoulou, Maria Kroustalaki, Christina Emmanouilidou, Alexandros Pashalidis, Ilias Avdikos, Zoe Hilioti. The Effects of Photosensitizing Dyes Fagopyrin and Hypericin on Planktonic Growth and Multicellular Life in Budding Yeast. Molecules (Basel, Switzerland). 2021 Aug; 26(16):. doi: 10.3390/molecules26164708. [PMID: 34443298]
  • Eleni Pitsillou, Julia Liang, Katherine Ververis, Andrew Hung, Tom C Karagiannis. Interaction of small molecules with the SARS-CoV-2 papain-like protease: In silico studies and in vitro validation of protease activity inhibition using an enzymatic inhibition assay. Journal of molecular graphics & modelling. 2021 05; 104(?):107851. doi: 10.1016/j.jmgm.2021.107851. [PMID: 33556646]
  • Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell reports. 2021 04; 35(4):109040. doi: 10.1016/j.celrep.2021.109040. [PMID: 33910017]
  • Hongyan Su, Jie Li, Sijin Chen, Ping Sun, Hua Xing, Delong Yang, Xiaona Zhang, Mengfei Li, Jianhe Wei. Physiological and Transcriptomic Analysis Provide Insight into Low Temperature Enhancing Hypericin Biosynthesis in Hypericum perforatum. Molecules (Basel, Switzerland). 2021 Apr; 26(8):. doi: 10.3390/molecules26082294. [PMID: 33921038]
  • Yue Li, Shuncong Wang, Xiao Jiang, Xiaoxiong Wang, Xiang Zhou, Liangrong Wan, Haitao Zhao, Zhaoli Zhou, LingJie Gao, Gang Huang, Yicheng Ni, Xiaoyan He. Preparation and validation of cyclodextrin-based excipients for radioiodinated hypericin applied in a targeted cancer radiotherapy. International journal of pharmaceutics. 2021 Apr; 599(?):120393. doi: 10.1016/j.ijpharm.2021.120393. [PMID: 33639227]
  • Xiaoxv Dong, Yawen Zeng, Zhiqin Zhang, Jing Fu, Longtai You, Yuanyuan He, Yang Hao, Zili Gu, Zhenfeng Yu, Changhai Qu, Xingbin Yin, Jian Ni, Luis J Cruz. Hypericin-mediated photodynamic therapy for the treatment of cancer: a review. The Journal of pharmacy and pharmacology. 2021 Mar; 73(4):425-436. doi: 10.1093/jpp/rgaa018. [PMID: 33793828]
  • Flávia Amanda Pedroso de Morais, Renato Sonchini Gonçalves, Katieli Souza Campanholi, Bruna Martins de França, Otávio Augusto Capeloto, Danielle Lazarin-Bidoia, Rodolfo Bento Balbinot, Celso Vataru Nakamura, Luis Carlos Malacarne, Wilker Caetano, Noboru Hioka. Photophysical characterization of Hypericin-loaded in micellar, liposomal and copolymer-lipid nanostructures based F127 and DPPC liposomes. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2021 Mar; 248(?):119173. doi: 10.1016/j.saa.2020.119173. [PMID: 33316657]
  • Katerina Makarova, Joanna J Sajkowska-Kozielewicz, Katarzyna Zawada, Ewa Olchowik-Grabarek, Michał Aleksander Ciach, Krzysztof Gogolewski, Natalia Dobros, Paulina Ciechowicz, Hélène Freichels, Anna Gambin. Harvest time affects antioxidant capacity, total polyphenol and flavonoid content of Polish St John's wort's (Hypericum perforatum L.) flowers. Scientific reports. 2021 02; 11(1):3989. doi: 10.1038/s41598-021-83409-4. [PMID: 33597594]
  • S Jafarirad, M Kosari-Nasab, R Mohammadpour Tavana, S Mahjouri, R Ebadollahi. Impacts of manganese bio-based nanocomposites on phytochemical classification, growth and physiological responses of Hypericum perforatum L. shoot cultures. Ecotoxicology and environmental safety. 2021 Feb; 209(?):111841. doi: 10.1016/j.ecoenv.2020.111841. [PMID: 33387772]
  • Hamid Zaferani Arani, Maedeh Olya, Asra Sadat Mirahmadi, Hossein Saleki, Hesam Adin Atashi, Hadi Zare Marzouni, Mohammad Hoseinian, Mohammad Amin Javidi, Amirhossein Zabolian. Hypericin induces apoptosis in K562 cells via downregulation of Myc and Mdm2. Journal of cancer research and therapeutics. 2021 Jan; 17(1):242-247. doi: 10.4103/jcrt.jcrt_826_19. [PMID: 33723162]
  • Paride Rizzo, Lothar Altschmied, Beena M Ravindran, Twan Rutten, John C D'Auria. The Biochemical and Genetic Basis for the Biosynthesis of Bioactive Compounds in Hypericum Perforatum L., One of the Largest Medicinal Crops in Europe. Genes. 2020 10; 11(10):. doi: 10.3390/genes11101210. [PMID: 33081197]
  • Alice Romeo, Federico Iacovelli, Mattia Falconi. Targeting the SARS-CoV-2 spike glycoprotein prefusion conformation: virtual screening and molecular dynamics simulations applied to the identification of potential fusion inhibitors. Virus research. 2020 09; 286(?):198068. doi: 10.1016/j.virusres.2020.198068. [PMID: 32565126]
  • Bharadwaj Revuru, Miroslava Bálintová, Jana Henzelyová, Eva Čellárová, Souvik Kusari. MALDI-HRMS Imaging Maps the Localization of Skyrin, the Precursor of Hypericin, and Pathway Intermediates in Leaves of Hypericum Species. Molecules (Basel, Switzerland). 2020 Aug; 25(17):. doi: 10.3390/molecules25173964. [PMID: 32878122]
  • Mária Macejová, Veronika Sačková, Petra Hradická, Rastislav Jendželovský, Vlasta Demečková, Peter Fedoročko. Combination of photoactive hypericin and Manumycin A exerts multiple anticancer effects on oxaliplatin-resistant colorectal cells. Toxicology in vitro : an international journal published in association with BIBRA. 2020 Aug; 66(?):104860. doi: 10.1016/j.tiv.2020.104860. [PMID: 32298799]
  • Farahnaz Tavakoli, Mohammad Rafieiolhossaini, Rudabeh Ravash, Morteza Ebrahimi. Subject: UV-B radiation and low temperature promoted hypericin biosynthesis in adventitious root culture of Hypericum perforatum. Plant signaling & behavior. 2020 07; 15(7):1764184. doi: 10.1080/15592324.2020.1764184. [PMID: 32419579]
  • Chen Liang, Yan Li, Miao Bai, Yanxin Huang, Hang Yang, Lei Liu, Shuyue Wang, Chunlei Yu, Zhenbo Song, Yongli Bao, Jingwen Yi, Luguo Sun, Yuxin Li. Hypericin attenuates nonalcoholic fatty liver disease and abnormal lipid metabolism via the PKA-mediated AMPK signaling pathway in vitro and in vivo. Pharmacological research. 2020 03; 153(?):104657. doi: 10.1016/j.phrs.2020.104657. [PMID: 31982488]
  • Paride Rizzo, Lothar Altschmied, Pauline Stark, Twan Rutten, André Gündel, Sarah Scharfenberg, Katrin Franke, Helmut Bäumlein, Ludger Wessjohann, Marcus Koch, Ljudmilla Borisjuk, Timothy F Sharbel. Discovery of key regulators of dark gland development and hypericin biosynthesis in St. John's Wort (Hypericum perforatum). Plant biotechnology journal. 2019 12; 17(12):2299-2312. doi: 10.1111/pbi.13141. [PMID: 31037808]
  • Huijie Chen, Rui Feng, Ishfaq Muhammad, Ghulam Abbas, Yue Zhang, Yudong Ren, Xiaodan Huang, Ruili Zhang, Lei Diao, Xiurong Wang, Guangxing Li. Protective effects of hypericin against infectious bronchitis virus induced apoptosis and reactive oxygen species in chicken embryo kidney cells. Poultry science. 2019 Dec; 98(12):6367-6377. doi: 10.3382/ps/pez465. [PMID: 31399732]
  • Nikola Plenagl, Lili Duse, Benjamin Sebastian Seitz, Nathalie Goergen, Shashank Reddy Pinnapireddy, Jarmila Jedelska, Jana Brüßler, Udo Bakowsky. Photodynamic therapy - hypericin tetraether liposome conjugates and their antitumor and antiangiogenic activity. Drug delivery. 2019 Dec; 26(1):23-33. doi: 10.1080/10717544.2018.1531954. [PMID: 30691327]
  • Ramin Tahmasebi-Boldaji, Mohammad-Sadegh Hatamipour, Morteza Khanahmadi, Pegah Sadeh, Iman Najafipour. Ultrasound-assisted packed-bed extraction of hypericin from Hypericum perforatum L. and optimization by response surface methodology. Ultrasonics sonochemistry. 2019 Oct; 57(?):89-97. doi: 10.1016/j.ultsonch.2019.05.018. [PMID: 31208622]
  • R Ebadollahi, S Jafarirad, M Kosari-Nasab, S Mahjouri. Effect of explant source, perlite nanoparticles and TiO2/perlite nanocomposites on phytochemical composition of metabolites in callus cultures of Hypericum perforatum. Scientific reports. 2019 09; 9(1):12998. doi: 10.1038/s41598-019-49504-3. [PMID: 31506546]
  • P S Pradeep, S Manisha, J Monica Amala Nayaki, D Sivaraman, R Selvaraj, S Seeni. Potential antioxidant and anti-inflammatory action of Hypericum hookerianum extracts in a liposome system evaluated with zebrafish embryos. Journal of microencapsulation. 2019 Sep; 36(6):513-522. doi: 10.1080/02652048.2019.1631400. [PMID: 31190600]
  • Ling-Hua Wei, Tian-Ran Chen, Hong-Bo Fang, Qiang Jin, Shui-Jun Zhang, Jie Hou, Yang Yu, Tong-Yi Dou, Yun-Feng Cao, Wen-Zhi Guo, Guang-Bo Ge. Natural constituents of St. John's Wort inhibit the proteolytic activity of human thrombin. International journal of biological macromolecules. 2019 Aug; 134(?):622-630. doi: 10.1016/j.ijbiomac.2019.04.181. [PMID: 31047931]
  • Yuri L Boteon, Joseph Attard, Amanda P C S Boteon, Lorraine Wallace, Gary Reynolds, Stefan Hubscher, Darius F Mirza, Hynek Mergental, Ricky H Bhogal, Simon C Afford. Manipulation of Lipid Metabolism During Normothermic Machine Perfusion: Effect of Defatting Therapies on Donor Liver Functional Recovery. Liver transplantation : official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society. 2019 07; 25(7):1007-1022. doi: 10.1002/lt.25439. [PMID: 30821045]
  • D Yonar, A Kılıç Süloğlu, G Selmanoğlu, M M Sünnetçioğlu. An Electron paramagnetic resonance (EPR) spin labeling study in HT-29 Colon adenocarcinoma cells after Hypericin-mediated photodynamic therapy. BMC molecular and cell biology. 2019 06; 20(1):16. doi: 10.1186/s12860-019-0205-4. [PMID: 31221093]
  • Yuanyuan Yao, Tianlan Kang, Ling Jin, Zihan Liu, Zhen Zhang, Hua Xing, Ping Sun, Mengfei Li. Temperature-dependent growth and hypericin biosynthesis in Hypericum perforatum. Plant physiology and biochemistry : PPB. 2019 Jun; 139(?):613-619. doi: 10.1016/j.plaphy.2019.04.012. [PMID: 31030029]
  • Paolo Bianchini, Marco Cozzolino, Michele Oneto, Luca Pesce, Francesca Pennacchietti, Massimiliano Tognolini, Carmine Giorgio, Santi Nonell, Luigi Cavanna, Pietro Delcanale, Stefania Abbruzzetti, Alberto Diaspro, Cristiano Viappiani. Hypericin-Apomyoglobin: An Enhanced Photosensitizer Complex for the Treatment of Tumor Cells. Biomacromolecules. 2019 05; 20(5):2024-2033. doi: 10.1021/acs.biomac.9b00222. [PMID: 30995399]
  • Magdy Kazzem, Yu-Ting Sun, Mitchell Low, Sai Wang Seto, Dennis Chang, Samiuela Lee, Harsha Suresh, Cheang S Khoo, Alan Bensoussan, Hosen Kiat. Chromatographic Analysis and Anti-Oxidative Property of Naoxinqing Tablet, a Proprietary Preparation of Diospyros Kaki Leaves. Molecules (Basel, Switzerland). 2019 Mar; 24(6):. doi: 10.3390/molecules24061101. [PMID: 30897753]
  • Nelli Keksel, Hendrik Bussmann, Matthias Unger, Jürgen Drewe, Georg Boonen, Hanns Häberlein, Sebastian Franken. St John's wort extract influences membrane fluidity and composition of phosphatidylcholine and phosphatidylethanolamine in rat C6 glioblastoma cells. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2019 Feb; 54(?):66-76. doi: 10.1016/j.phymed.2018.06.013. [PMID: 30668384]
  • Eldad Yechiam, Daniel Ben-Eliezer, Nathaniel J S Ashby, Mili Bar-Shaked. The acute effect of Hypericum perforatum on short-term memory in healthy adults. Psychopharmacology. 2019 Feb; 236(2):613-623. doi: 10.1007/s00213-018-5088-0. [PMID: 30382352]
  • Sheela Verjee, Olaf Kelber, Christiane Kolb, Heba Abdel-Aziz, Veronika Butterweck. Permeation characteristics of hypericin across Caco-2 monolayers in the presence of single flavonoids, defined flavonoid mixtures or Hypericum extract matrix. The Journal of pharmacy and pharmacology. 2019 Jan; 71(1):58-69. doi: 10.1111/jphp.12717. [PMID: 28294333]
  • Ahmad Sobhani Najafabadi, Morteza Khanahmadi, Mortaza Ebrahimi, Kosar Moradi, Poone Behroozi, Nafiseh Noormohammadi. Effect of different quality of light on growth and production of secondary metabolites in adventitious root cultivation of Hypericum perforatum. Plant signaling & behavior. 2019; 14(9):1640561. doi: 10.1080/15592324.2019.1640561. [PMID: 31291819]
  • Katarína Nigutová, Souvik Kusari, Selahaddin Sezgin, Linda Petijová, Jana Henzelyová, Miroslava Bálintová, Michael Spiteller, Eva Čellárová. Chemometric evaluation of hypericin and related phytochemicals in 17 in vitro cultured Hypericum species, hairy root cultures and hairy root-derived transgenic plants. The Journal of pharmacy and pharmacology. 2019 Jan; 71(1):46-57. doi: 10.1111/jphp.12782. [PMID: 28722156]
  • Mahmoud Bahmani, Morovat Taherikalani, Mojtaba Khaksarian, Setareh Soroush, Behnam Ashrafi, Rouhollah Heydari. Phytochemical Profiles and Antibacterial Activities of Hydroalcoholic Extracts of Origanum vulgare and Hypericum perforatum and Carvacrol and Hypericin as a Promising Anti-Staphylococcus aureus. Mini reviews in medicinal chemistry. 2019; 19(11):923-932. doi: 10.2174/1389557519666190121124317. [PMID: 30663566]
  • Aruna Vigneshwari, Dávid Rakk, Anikó Németh, Sándor Kocsubé, Noémi Kiss, Dezső Csupor, Tamás Papp, Biljana Škrbić, Csaba Vágvölgyi, András Szekeres. Host metabolite producing endophytic fungi isolated from Hypericum perforatum. PloS one. 2019; 14(5):e0217060. doi: 10.1371/journal.pone.0217060. [PMID: 31112560]
  • Luca Dellafiora, Gianni Galaverna, Gabriele Cruciani, Chiara Dall'Asta, Renato Bruni. On the Mechanism of Action of Anti-Inflammatory Activity of Hypericin: An In Silico Study Pointing to the Relevance of Janus Kinases Inhibition. Molecules (Basel, Switzerland). 2018 Nov; 23(12):. doi: 10.3390/molecules23123058. [PMID: 30467287]
  • Katarína Kimáková, Andrea Kimáková, Jakub Idkowiak, Maciej Stobiecki, Paweł Rodziewicz, Łukasz Marczak, Eva Čellárová. Phenotyping the genus Hypericum by secondary metabolite profiling: emodin vs. skyrin, two possible key intermediates in hypericin biosynthesis. Analytical and bioanalytical chemistry. 2018 Nov; 410(29):7689-7699. doi: 10.1007/s00216-018-1384-0. [PMID: 30291388]
  • E Abma, K Peremans, F De Vos, T Bosmans, A M Kitshoff, S Daminet, Y Ni, R Dockx, H de Rooster. Biodistribution and tolerance of intravenous iodine-131-labelled hypericin in healthy dogs. Veterinary and comparative oncology. 2018 Sep; 16(3):318-323. doi: 10.1111/vco.12381. [PMID: 29314561]
  • Jana Staničová, Valéria Verebová, Jiří Beneš. Interaction of a Potential Anticancer Agent Hypericin and its Model Compound Emodin with DNA and Bovine Serum Albumin. In vivo (Athens, Greece). 2018 Sep; 32(5):1063-1070. doi: 10.21873/invivo.11347. [PMID: 30150427]
  • Ludmila Blascakova, Denis Horvath, Dominik Belej, Georges Wagnieres, Pavol Miskovsky, Daniel Jancura, Veronika Huntosova. Hypericin can cross barriers in the chicken's chorioallantoic membrane model when delivered in low-density lipoproteins. Photodiagnosis and photodynamic therapy. 2018 Sep; 23(?):306-313. doi: 10.1016/j.pdpdt.2018.07.009. [PMID: 30030168]
  • Elena Valletta, Annamaria Rinaldi, Mario Marini, Ornella Franzese, Gianna Roscetti. Distinct Hypericum perforatum L. total extracts exert different antitumour activity on erythroleukemic K562 cells. Phytotherapy research : PTR. 2018 Sep; 32(9):1803-1811. doi: 10.1002/ptr.6114. [PMID: 29785769]
  • Zhuo-Heng Li, Yuan-Yuan Li, Min Hou, Tao Yang, Lai-Chun Lu, Xiao-Yu Xu. Topically applied hypericin exhibits skin penetrability on nude mice. Lasers in medical science. 2018 Aug; 33(6):1279-1286. doi: 10.1007/s10103-018-2479-8. [PMID: 29915976]
  • Sławomir Dresler, Jozef Kováčik, Maciej Strzemski, Ireneusz Sowa, Magdalena Wójciak-Kosior. Methodological aspects of biologically active compounds quantification in the genus Hypericum. Journal of pharmaceutical and biomedical analysis. 2018 Jun; 155(?):82-90. doi: 10.1016/j.jpba.2018.03.048. [PMID: 29621655]
  • Katarína Kimáková, Linda Petijová, Katarína Bruňáková, Eva Čellárová. Relation between hypericin content and morphometric leaf parameters in Hypericum spp.: A case of cubic degree polynomial function. Plant science : an international journal of experimental plant biology. 2018 Jun; 271(?):94-99. doi: 10.1016/j.plantsci.2018.03.019. [PMID: 29650162]
  • Fangxue Xu, Shiyuan Wang, Yujuan Li, Mengmeng Zheng, Xiaozhi Xi, Hui Cao, Xiaowei Cui, Hong Guo, Chunchao Han. Yield enhancement strategies of rare pharmaceutical metabolites from endophytes. Biotechnology letters. 2018 May; 40(5):797-807. doi: 10.1007/s10529-018-2531-6. [PMID: 29605937]
  • Tomás Herraiz, Hugo Guillén. Monoamine Oxidase-A Inhibition and Associated Antioxidant Activity in Plant Extracts with Potential Antidepressant Actions. BioMed research international. 2018; 2018(?):4810394. doi: 10.1155/2018/4810394. [PMID: 29568754]
  • Sahar Khadem Nezhad, Ali Taghavi Zenouz, Marzieh Aghazadeh, Hossein Samadi Kafil. Strong antimicrobial activity of Hypericum perforatum L. against oral isolates of Lactobacillus spp. Cellular and molecular biology (Noisy-le-Grand, France). 2017 Nov; 63(11):58-62. doi: 10.14715/cmb/2017.63.11.11. [PMID: 29208174]
  • Konstantina Zeliou, Nikos I Kontaxis, Evangelia Margianni, Christos Petrou, Fotini N Lamari. Optimized and Validated HPLC Analysis of St. John's Wort Extract and Final Products by Simultaneous Determination of Major Ingredients. Journal of chromatographic science. 2017 Sep; 55(8):805-812. doi: 10.1093/chromsci/bmx040. [PMID: 28472287]
  • Hugo Gattuso, Marco Marazzi, François Dehez, Antonio Monari. Deciphering the photosensitization mechanisms of hypericin towards biological membranes. Physical chemistry chemical physics : PCCP. 2017 Aug; 19(34):23187-23193. doi: 10.1039/c7cp03723f. [PMID: 28820528]
  • Xinghua Duan, Zhiqi Yin, Cuihua Jiang, Qiaomei Jin, Dongjian Zhang, Ziping Sun, Wencai Ye, Jian Zhang. Radioiodinated hypericin disulfonic acid sodium salts as a DNA-binding probe for early imaging of necrotic myocardium. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V. 2017 Aug; 117(?):151-159. doi: 10.1016/j.ejpb.2017.04.006. [PMID: 28414189]
  • Silvia Lazzara, Marcello Militello, Alessandra Carrubba, Edoardo Napoli, Sergio Saia. Arbuscular mycorrhizal fungi altered the hypericin, pseudohypericin, and hyperforin content in flowers of Hypericum perforatum grown under contrasting P availability in a highly organic substrate. Mycorrhiza. 2017 May; 27(4):345-354. doi: 10.1007/s00572-016-0756-6. [PMID: 27999964]
  • Matus Misuth, Jaroslava Joniova, Dominik Belej, Stanislav Hrivnak, Denis Horvath, Veronika Huntosova. Estimation of PKCδ autophosphorylation in U87 MG glioma cells: combination of experimental, conceptual and numerical approaches. Journal of biophotonics. 2017 Mar; 10(3):423-432. doi: 10.1002/jbio.201500332. [PMID: 27158772]
  • Qin Xiang Ng, Nandini Venkatanarayanan, Collin Yih Xian Ho. Clinical use of Hypericum perforatum (St John's wort) in depression: A meta-analysis. Journal of affective disorders. 2017 Mar; 210(?):211-221. doi: 10.1016/j.jad.2016.12.048. [PMID: 28064110]
  • Xuesong Li, Xin Zhang, Longbin Zheng, Jiayuan Kou, Zhaoyu Zhong, Yueqing Jiang, Wei Wang, Zengxiang Dong, Zhongni Liu, Xiaobo Han, Jing Li, Ye Tian, Yajun Zhao, Liming Yang. Hypericin-mediated sonodynamic therapy induces autophagy and decreases lipids in THP-1 macrophage by promoting ROS-dependent nuclear translocation of TFEB. Cell death & disease. 2016 12; 7(12):e2527. doi: 10.1038/cddis.2016.433. [PMID: 28005078]
  • Oksana Sytar, Jurgita Švedienė, Kristina Ložienė, Algimantas Paškevičius, Anatolij Kosyan, Natalija Taran. Antifungal properties of hypericin, hypericin tetrasulphonic acid and fagopyrin on pathogenic fungi and spoilage yeasts. Pharmaceutical biology. 2016 Dec; 54(12):3121-3125. doi: 10.1080/13880209.2016.1211716. [PMID: 27564138]
  • Long Gao, Jian Zhang, Tengchuang Ma, Nan Yao, Meng Gao, Xin Shan, Yicheng Ni, Haibo Shao, Ke Xu. Improved therapeutic outcomes of thermal ablation on rat orthotopic liver allograft sarcoma models by radioiodinated hypericin induced necrosis targeted radiotherapy. Oncotarget. 2016 Aug; 7(32):51450-51461. doi: 10.18632/oncotarget.9848. [PMID: 27285983]
  • Andrea Kucharíková, Katarína Kimáková, Christian Janfelt, Eva Čellárová. Interspecific variation in localization of hypericins and phloroglucinols in the genus Hypericum as revealed by desorption electrospray ionization mass spectrometry imaging. Physiologia plantarum. 2016 May; 157(1):2-12. doi: 10.1111/ppl.12422. [PMID: 26822391]
  • Joanna Sakowska, Małgorzata Anyzewska, Anna Łozak, Anna Kowalczuk, Renata Jabłczyńska. TESTING PHARMACEUTICAL RELEASE OF ACTIVE SUBSTANCES FROM MEDICINAL PRODUCTS CONTAINING ST. JOHN'S WORT. Acta poloniae pharmaceutica. 2016 Mar; 73(2):395-401. doi: ". [PMID: 27180432]
  • Qin Wang, Shengwei Yang, Cuihua Jiang, Jindian Li, Cong Wang, Linwei Chen, Qiaomei Jin, Shaoli Song, Yuanbo Feng, Yicheng Ni, Jian Zhang, Zhiqi Yin. Discovery of Radioiodinated Monomeric Anthraquinones as a Novel Class of Necrosis Avid Agents for Early Imaging of Necrotic Myocardium. Scientific reports. 2016 Feb; 6(?):21341. doi: 10.1038/srep21341. [PMID: 26878909]
  • Shengchao Lin, Kecheng Lei, Wenpei Du, Liyan Yang, Haiyang Shi, Yuwei Gao, Peihao Yin, Xin Liang, Jianwen Liu. Enhancement of oxaliplatin sensitivity in human colorectal cancer by hypericin mediated photodynamic therapy via ROS-related mechanism. The international journal of biochemistry & cell biology. 2016 Feb; 71(?):24-34. doi: 10.1016/j.biocel.2015.12.003. [PMID: 26673998]
  • Jindian Li, Jian Zhang, Shengwei Yang, Cuihua Jiang, DongJian Zhang, Qiaomei Jin, Qin Wang, Cong Wang, Yicheng Ni, Zhiqi Yin, Shaoli Song. Synthesis and Preclinical Evaluation of Radioiodinated Hypericin Dicarboxylic Acid as a Necrosis Avid Agent in Rat Models of Induced Hepatic, Muscular, and Myocardial Necroses. Molecular pharmaceutics. 2016 Jan; 13(1):232-40. doi: 10.1021/acs.molpharmaceut.5b00686. [PMID: 26568406]
  • Ana-Mihaela Florea, Tanța-Verona Iordache, Catherine Branger, Marius Ghiurea, Sorin Avramescu, Gheorghe Hubca, Andrei Sârbu. An innovative approach to prepare hypericin molecularly imprinted pearls using a "phyto-template". Talanta. 2016; 148(?):37-45. doi: 10.1016/j.talanta.2015.10.061. [PMID: 26653421]
  • Rupesh Kumar Singh, Weina Hou, Gregory Franklin. Construction of Hypericin Gland-Specific cDNA Library via Suppression Subtractive Hybridization. Methods in molecular biology (Clifton, N.J.). 2016; 1391(?):317-34. doi: 10.1007/978-1-4939-3332-7_22. [PMID: 27108327]
  • Katarína Bruňáková, Eva Čellárová. Shoot Tip Meristem Cryopreservation of Hypericum Species. Methods in molecular biology (Clifton, N.J.). 2016; 1391(?):31-46. doi: 10.1007/978-1-4939-3332-7_3. [PMID: 27108308]
  • Dongjian Zhang, Cuihua Jiang, Shengwei Yang, Meng Gao, Dejian Huang, Xiaoning Wang, Haibo Shao, Yuanbo Feng, Ziping Sun, Yicheng Ni, Jian Zhang, Zhiqi Yin. Effects of skeleton structure on necrosis targeting and clearance properties of radioiodinated dianthrones. Journal of drug targeting. 2016; 24(6):566-77. doi: 10.3109/1061186x.2015.1113541. [PMID: 26586010]
  • Sara M Silva, Ana Martinho, Ivo Moreno, Samuel Silvestre, Luiza Breitenfeld Granadeiro, Gilberto Alves, Ana Paula Duarte, Fernanda Domingues, Eugenia Gallardo. Effects of Hypericum perforatum extract and its main bioactive compounds on the cytotoxicity and expression of CYP1A2 and CYP2D6 in hepatic cells. Life sciences. 2016 Jan; 144(?):30-6. doi: 10.1016/j.lfs.2015.11.004. [PMID: 26612349]
  • Yue Li, Cuihua Jiang, Xiao Jiang, Ziping Sun, Marlein Miranda Cona, Wei Liu, Jian Zhang, Yicheng Ni. Biliary and duodenal drainage for reducing the radiotoxic risk of antineoplastic 131I-hypericin in rat models. Experimental biology and medicine (Maywood, N.J.). 2015 Dec; 240(12):1764-73. doi: 10.1177/1535370215584891. [PMID: 25956680]
  • Sheela Verjee, Daniela Brügger, Heba Abdel-Aziz, Veronika Butterweck. Permeation Characteristics of Hypericin across Caco-2 Monolayers in the Absence or Presence of Quercitrin - A Mass Balance Study. Planta medica. 2015 Aug; 81(12-13):1111-20. doi: 10.1055/s-0035-1546034. [PMID: 26018919]
  • Xue-jia Zhai, Fen Chen, Chen Chen, Chao-ran Zhu, Yong-ning Lu. LC-MS/MS based studies on the anti-depressant effect of hypericin in the chronic unpredictable mild stress rat model. Journal of ethnopharmacology. 2015 Jul; 169(?):363-9. doi: 10.1016/j.jep.2015.04.053. [PMID: 25957811]
  • Miriam S N Hohmann, Renato D R Cardoso, Victor Fattori, Nilton S Arakawa, José C Tomaz, Norberto P Lopes, Rubia Casagrande, Waldiceu A Verri. Hypericum perforatum Reduces Paracetamol-Induced Hepatotoxicity and Lethality in Mice by Modulating Inflammation and Oxidative Stress. Phytotherapy research : PTR. 2015 Jul; 29(7):1097-101. doi: 10.1002/ptr.5350. [PMID: 25851311]
  • Haibo Shao, Jian Zhang, Ziping Sun, Feng Chen, Xu Dai, Yaming Li, Yicheng Ni, Ke Xu. Necrosis targeted radiotherapy with iodine-131-labeled hypericin to improve anticancer efficacy of vascular disrupting treatment in rabbit VX2 tumor models. Oncotarget. 2015 Jun; 6(16):14247-59. doi: 10.18632/oncotarget.3679. [PMID: 26036625]
  • Jingwen Yi, Xiaoguang Yang, Lihua Zheng, Guang Yang, Luguo Sun, Yongli Bao, Yin Wu, Yanxin Huang, Chunlei Yu, Shao-Nian Yang, Yuxin Li. Photoactivation of hypericin decreases the viability of RINm5F insulinoma cells through reduction in JNK/ERK phosphorylation and elevation of caspase-9/caspase-3 cleavage and Bax-to-Bcl-2 ratio. Bioscience reports. 2015 Apr; 35(3):. doi: 10.1042/bsr20150028. [PMID: 26182357]