Tenuazonic acid (BioDeep_00000006825)

 

Secondary id: BioDeep_00001870788

human metabolite natural product


代谢物信息卡片


3-Acetyl-1,5-dihydro-4-hydroxy-5-(1-methylpropyl)-2H-pyrrol-2-one, 9ci

化学式: C10H15NO3 (197.1052)
中文名称: 细交链孢菌酮酸
谱图信息: 最多检出来源 Homo sapiens(lipidsearch) 16.53%

分子结构信息

SMILES: CCC(C)C1C(=C(C(=O)C)C(=O)N1)O
InChI: InChI=1S/C10H15NO3/c1-4-5(2)8-9(13)7(6(3)12)10(14)11-8/h5,8,13H,4H2,1-3H3,(H,11,14)

描述信息

Tenuazonic acid is produced by Aspergillus species Causes rice leaf rot Tenuazonic acid is a mycotoxin. It is a toxic secondary metabolite, produced by Alternaria (e. g. Alternaria alternata or Alternaria tenuis) and Phoma species. It inhibits the protein synthesis machinery
D000890 - Anti-Infective Agents > D000998 - Antiviral Agents
D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
Production by Aspergillus subspecies Causes rice leaf rot
D000970 - Antineoplastic Agents

同义名列表

18 个代谢物同义名

3-Acetyl-1,5-dihydro-4-hydroxy-5-(1-methylpropyl)-2H-pyrrol-2-one, 9ci; 3-acetyl-5-(butan-2-yl)-4-hydroxy-2,5-dihydro-1H-pyrrol-2-one; 3-acetyl-4-hydroxy-5-(sec-butyl)-1,5-dihydropyrrol-2-one; (5S)-3-acetyl-5-[(2S)-butan-2-yl]pyrrolidine-2,4-dione; 3-Acetyl-5-sec-butyl-4-hydroxy-L-3-pyrrolin-2-one; TENUAZONIC ACID COPPER FROM ALTERNARIA A; 3-Acetyl-5-sec-butyl-pyrrole-2,4-diol; 3-Acetyl-5-sec-butyltetramic acid; Tenuazonic acid-(Copper salt); L-Tenuazonic acid; Acid, tenuazonic; tenuazonic acid; Tenuazonate; Vivotoxin; Pyrrole-2,4-diol, 3-acetyl-5-sec-butyl-; 33061-01-7; Tenuazonic acid; Tenuazonic acid



数据库引用编号

25 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

15 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 6 CASP3, CAT, CHEK2, GAPDH, GRP, TFPT
Peripheral membrane protein 1 HK1
Endoplasmic reticulum membrane 2 HSP90B1, REEP5
Nucleus 7 ACR, CASP3, CHEK2, GAPDH, H2AX, HSP90B1, TFPT
cytosol 6 CASP3, CAT, GAPDH, GPT, HK1, HSP90B1
centrosome 1 H2AX
nucleoplasm 5 ATP2B1, CASP3, CHEK2, H2AX, TFPT
Cell membrane 4 ADGRL3, ATP2B1, CD69, TNF
Cell projection, axon 1 ADGRL3
Multi-pass membrane protein 3 ADGRL3, ATP2B1, REEP5
Synapse 1 ATP2B1
cell junction 1 ADGRL3
cell surface 1 TNF
glutamatergic synapse 3 ADGRL3, ATP2B1, CASP3
Golgi apparatus 1 CHEK2
neuronal cell body 2 CASP3, TNF
presynaptic membrane 1 ATP2B1
smooth endoplasmic reticulum 1 HSP90B1
Cytoplasm, cytosol 2 GAPDH, HK1
Lysosome 1 SGSH
plasma membrane 7 ADGRL3, ATP2B1, BCHE, CD69, GAPDH, IFNLR1, TNF
synaptic vesicle membrane 1 ATP2B1
Membrane 7 ADGRL3, ATP2B1, CAT, GAPDH, HSP90B1, IFNLR1, REEP5
axon 1 ADGRL3
basolateral plasma membrane 1 ATP2B1
extracellular exosome 8 ATP2B1, CAT, GAPDH, GPT, H2AX, HSP90B1, LYZ, SGSH
endoplasmic reticulum 2 HSP90B1, REEP5
extracellular space 4 BCHE, GRP, LYZ, TNF
lysosomal lumen 1 SGSH
perinuclear region of cytoplasm 2 GAPDH, HSP90B1
mitochondrion 2 CAT, HK1
protein-containing complex 4 ACR, CAT, CD69, HSP90B1
intracellular membrane-bounded organelle 3 ATP2B1, CAT, GAPDH
postsynaptic density 1 CASP3
Single-pass type I membrane protein 1 IFNLR1
Secreted 2 BCHE, GRP
extracellular region 7 ACR, BCHE, CAT, GRP, HSP90B1, LYZ, TNF
Mitochondrion outer membrane 1 HK1
mitochondrial outer membrane 1 HK1
mitochondrial matrix 1 CAT
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
nuclear membrane 1 GAPDH
external side of plasma membrane 2 CD69, TNF
Secreted, extracellular space, extracellular matrix 1 GRP
microtubule cytoskeleton 1 GAPDH
midbody 1 HSP90B1
cell-cell junction 1 ADGRL3
Golgi-associated vesicle 1 ACR
recycling endosome 1 TNF
Single-pass type II membrane protein 2 CD69, TNF
vesicle 1 GAPDH
Cytoplasm, perinuclear region 1 GAPDH
Membrane raft 2 HK1, TNF
Cytoplasm, cytoskeleton 1 GAPDH
focal adhesion 2 CAT, HSP90B1
extracellular matrix 1 GRP
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
PML body 1 CHEK2
collagen-containing extracellular matrix 1 HSP90B1
lateral plasma membrane 1 ATP2B1
nuclear speck 1 H2AX
Cell projection, neuron projection 1 GRP
neuron projection 1 GRP
cell projection 1 ATP2B1
phagocytic cup 1 TNF
Chromosome 1 H2AX
cytoskeleton 1 GAPDH
actin filament 1 TFPT
blood microparticle 1 BCHE
Basolateral cell membrane 1 ATP2B1
site of double-strand break 1 H2AX
Lipid droplet 1 GAPDH
Melanosome 1 HSP90B1
Presynaptic cell membrane 1 ATP2B1
replication fork 1 H2AX
sperm plasma membrane 1 HSP90B1
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 2 CAT, GRP
endoplasmic reticulum lumen 2 BCHE, HSP90B1
male germ cell nucleus 1 H2AX
specific granule lumen 1 LYZ
tertiary granule lumen 1 LYZ
XY body 1 H2AX
azurophil granule lumen 1 LYZ
Sarcoplasmic reticulum membrane 1 REEP5
immunological synapse 1 ATP2B1
neuronal dense core vesicle 1 GRP
nuclear envelope lumen 1 BCHE
condensed nuclear chromosome 1 H2AX
Sarcoplasmic reticulum lumen 1 HSP90B1
ribonucleoprotein complex 1 GAPDH
death-inducing signaling complex 1 CASP3
nucleosome 1 H2AX
GAIT complex 1 GAPDH
site of DNA damage 1 H2AX
Ino80 complex 1 TFPT
endocytic vesicle lumen 1 HSP90B1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
Cytoplasmic vesicle, secretory vesicle lumen 1 GRP
endoplasmic reticulum chaperone complex 1 HSP90B1
acrosomal matrix 1 ACR
photoreceptor ribbon synapse 1 ATP2B1
endoplasmic reticulum tubular network 1 REEP5
interleukin-28 receptor complex 1 IFNLR1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Nanna Weise Havshøi, John Nielsen, Anja Thoe Fuglsang. The mechanism behind tenuazonic acid-mediated inhibition of plant plasma membrane H+-ATPase and plant growth. The Journal of biological chemistry. 2024 Apr; 300(4):107167. doi: 10.1016/j.jbc.2024.107167. [PMID: 38490436]
  • Jiale Shi, He Wang, Mengping Li, Liru Mi, Yazhi Gao, Sheng Qiang, Yu Zhang, Dan Chen, Xinbin Dai, Hongyu Ma, Huan Lu, Chanhong Kim, Shiguo Chen. Alternaria TeA toxin activates a chloroplast retrograde signaling pathway to facilitate JA-dependent pathogenicity. Plant communications. 2023 Dec; ?(?):100775. doi: 10.1016/j.xplc.2023.100775. [PMID: 38050356]
  • Mengna Zhang, Na Liu, Fengshou Dong, Liping Wang, Jun Xu, Xiaohu Wu, Yongquan Zheng, Xinglu Pan. The fate of mycotoxins in oranges during storage and processing. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment. 2023 Dec; 40(12):1614-1624. doi: 10.1080/19440049.2023.2282555. [PMID: 38011597]
  • Vadim Kryukov, Elena Kosman, Oksana Tomilova, Olga Polenogova, Ulyana Rotskaya, Olga Yaroslavtseva, Dilara Salimova, Natalia Kryukova, Alexander Berestetskiy. Tenuazonic acid alters immune and physiological reactions and susceptibility to pathogens in Galleria mellonella larvae. Mycotoxin research. 2023 Apr; ?(?):. doi: 10.1007/s12550-023-00479-1. [PMID: 37071305]
  • Yanli You, Qinghua Hu, Nan Liu, Cuiju Xu, Sunan Lu, Tongcheng Xu, Xin Mao. Metabolite Analysis of Alternaria Mycotoxins by LC-MS/MS and Multiple Tools. Molecules (Basel, Switzerland). 2023 Apr; 28(7):. doi: 10.3390/molecules28073258. [PMID: 37050021]
  • Asmaa Mahana, Hala M Hammoda, Mona M G Saad, Mohamed M Radwan, Mahmoud A ElSohly, Doaa A Ghareeb, Fathallah M Harraz, Eman Shawky. Bio-guided isolation of potential anti-inflammatory constituents of some endophytes isolated from the leaves of ground cherry (Physalis pruinosa L.) via ex-vivo and in-silico studies. BMC complementary medicine and therapies. 2023 Apr; 23(1):103. doi: 10.1186/s12906-023-03934-9. [PMID: 37013553]
  • D R Salimova, D S Kochura, S V Sokornova, A S Orina, F B Gannibal, A O Berestetskiy. Identification and Toxicological Characterization of Alternaria japonica Strains. Doklady biological sciences : proceedings of the Academy of Sciences of the USSR, Biological sciences sections. 2022 Dec; 507(1):402-415. doi: 10.1134/s0012496622060175. [PMID: 36781536]
  • María Agustina Pavicich, Kristian Fog Nielsen, Andrea Patriarca. Morphological and chemical characterization of Alternaria populations from apple fruit. International journal of food microbiology. 2022 Oct; 379(?):109842. doi: 10.1016/j.ijfoodmicro.2022.109842. [PMID: 35878437]
  • Huimin Li, Yang Zhang, Congcong Gao, Qi Gao, Yudou Cheng, Min Zhao, Junfeng Guan. Mycotoxin Production and the Relationship between Microbial Diversity and Mycotoxins in Pyrus bretschneideri Rehd cv. Huangguan Pear. Toxins. 2022 Oct; 14(10):. doi: 10.3390/toxins14100699. [PMID: 36287968]
  • He Wang, Qin Yao, Yanjing Guo, Qian Zhang, Zhongchang Wang, Reto Jörg Strasser, Bernal E Valverde, Shiguo Chen, Sheng Qiang, Hazem M Kalaji. Structure-based ligand design and discovery of novel tenuazonic acid derivatives with high herbicidal activity. Journal of advanced research. 2022 09; 40(?):29-44. doi: 10.1016/j.jare.2021.12.001. [PMID: 36100332]
  • Fan Sun, Xueqiang Cao, Dianzhen Yu, Dongqiang Hu, Zheng Yan, Yingying Fan, Cheng Wang, Aibo Wu. AaTAS1 and AaMFS1 Genes for Biosynthesis or Efflux Transport of Tenuazonic Acid and Pathogenicity of Alternaria alternata. Molecular plant-microbe interactions : MPMI. 2022 May; 35(5):416-427. doi: 10.1094/mpmi-12-21-0300-r. [PMID: 35175146]
  • Ankita Kumari, Karuna Singh. Evaluation of prophylactic efficacy of cinnamaldehyde in murine model against Paradendryphiella arenariae mycotoxin tenuazonic acid-induced oxidative stress and organ toxicity. Scientific reports. 2021 09; 11(1):19420. doi: 10.1038/s41598-021-98319-8. [PMID: 34593834]
  • Bernhard Kienesberger, Beate Obermüller, Georg Singer, Barbara Mittl, Reingard Grabherr, Sigrid Mayrhofer, Stefan Heinl, Vanessa Stadlbauer, Angela Horvath, Wolfram Miekisch, Patricia Fuchs, Ingeborg Klymiuk, Holger Till, Christoph Castellani. (S)-Reutericyclin: Susceptibility Testing and In Vivo Effect on Murine Fecal Microbiome and Volatile Organic Compounds. International journal of molecular sciences. 2021 Jun; 22(12):. doi: 10.3390/ijms22126424. [PMID: 34203988]
  • Dongmei Jiang, Dizhe Wei, Hongtao Li, Liuqing Wang, Nan Jiang, Yunchao Li, Meng Wang. Natural occurrence of Alternaria mycotoxins in wheat and potential of reducing associated risks using magnolol. Journal of the science of food and agriculture. 2021 May; 101(7):3071-3077. doi: 10.1002/jsfa.10901. [PMID: 33124688]
  • Jiale Shi, Min Zhang, Liwen Gao, Qian Yang, Hazem M Kalaji, Sheng Qiang, Reto Jörg Strasser, Shiguo Chen. Tenuazonic Acid-Triggered Cell Death Is the Essential Prerequisite for Alternaria alternata (Fr.) Keissler to Infect Successfully Host Ageratina adenophora. Cells. 2021 04; 10(5):. doi: 10.3390/cells10051010. [PMID: 33922952]
  • Yanjing Guo, Yuping Lu, Vasilij Goltsev, Reto Jörg Strasser, Hazem M Kalaji, He Wang, Xiaoxiong Wang, Shiguo Chen, Sheng Qiang. Comparative effect of tenuazonic acid, diuron, bentazone, dibromothymoquinone and methyl viologen on the kinetics of Chl a fluorescence rise OJIP and the MR820 signal. Plant physiology and biochemistry : PPB. 2020 Nov; 156(?):39-48. doi: 10.1016/j.plaphy.2020.08.044. [PMID: 32906020]
  • Peter K Bjørk, Silas A Rasmussen, Sisse K Gjetting, Nanna W Havshøi, Thomas Isbrandt Petersen, Johan Ø Ipsen, Thomas O Larsen, Anja T Fuglsang. Tenuazonic acid from Stemphylium loti inhibits the plant plasma membrane H+ -ATPase by a mechanism involving the C-terminal regulatory domain. The New phytologist. 2020 05; 226(3):770-784. doi: 10.1111/nph.16398. [PMID: 31880817]
  • Xiaoting Qiao, Jing Zhang, Yunjia Yang, Jie Yin, Hong Li, Yang Xing, Bing Shao. Development of a simple and rapid LC-MS/MS method for the simultaneous quantification of five Alternaria mycotoxins in human urine. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2020 May; 1144(?):122096. doi: 10.1016/j.jchromb.2020.122096. [PMID: 32251989]
  • Bing Zhou, He Wang, Bin Meng, Ran Wei, Ling Wang, Chuanfu An, Shiguo Chen, Chunlong Yang, Sheng Qiang. An evaluation of tenuazonic acid, a potential biobased herbicide in cotton. Pest management science. 2019 Sep; 75(9):2482-2489. doi: 10.1002/ps.5402. [PMID: 30843361]
  • Hedda Schrey, Jana Backenköhler, Herbert Kogler, Markus Plaumann, Peter Spiteller. Aminotenuazonic Acid: Isolation, Structure Elucidation, Total Synthesis and Herbicidal Activity of a New Tetramic Acid from Fruiting Bodies of Laccaria Species. Chemistry (Weinheim an der Bergstrasse, Germany). 2019 Aug; 25(44):10333-10341. doi: 10.1002/chem.201901405. [PMID: 31187904]
  • Hannes Puntscher, Svenja Hankele, Katharina Tillmann, Eva Attakpah, Dominik Braun, Mary-Liis Kütt, Giorgia Del Favero, Georg Aichinger, Gudrun Pahlke, Harald Höger, Doris Marko, Benedikt Warth. First insights into Alternaria multi-toxin in vivo metabolism. Toxicology letters. 2019 Feb; 301(?):168-178. doi: 10.1016/j.toxlet.2018.10.006. [PMID: 30321595]
  • Shiguo Chen, Sheng Qiang. Recent advances in tenuazonic acid as a potential herbicide. Pesticide biochemistry and physiology. 2017 Nov; 143(?):252-257. doi: 10.1016/j.pestbp.2017.01.003. [PMID: 29183600]
  • Choong-Soo Yun, Takayuki Motoyama, Hiroyuki Osada. Regulatory Mechanism of Mycotoxin Tenuazonic Acid Production in Pyricularia oryzae. ACS chemical biology. 2017 09; 12(9):2270-2274. doi: 10.1021/acschembio.7b00353. [PMID: 28820236]
  • Ye Kang, Hongwei Feng, Jingxu Zhang, Shiguo Chen, Bernal E Valverde, Sheng Qiang. TeA is a key virulence factor for Alternaria alternata (Fr.) Keissler infection of its host. Plant physiology and biochemistry : PPB. 2017 Jun; 115(?):73-82. doi: 10.1016/j.plaphy.2017.03.002. [PMID: 28324684]
  • Yannick Hövelmann, Sebastian Hickert, Benedikt Cramer, Hans-Ulrich Humpf. Determination of Exposure to the Alternaria Mycotoxin Tenuazonic Acid and Its Isomer allo-Tenuazonic Acid in a German Population by Stable Isotope Dilution HPLC-MS(3). Journal of agricultural and food chemistry. 2016 Aug; 64(34):6641-7. doi: 10.1021/acs.jafc.6b02735. [PMID: 27452834]
  • Choong-Soo Yun, Takayuki Motoyama, Hiroyuki Osada. Biosynthesis of the mycotoxin tenuazonic acid by a fungal NRPS-PKS hybrid enzyme. Nature communications. 2015 Oct; 6(?):8758. doi: 10.1038/ncomms9758. [PMID: 26503170]
  • Sophie Fraeyman, Mathias Devreese, Nathan Broekaert, Thomas De Mil, Gunther Antonissen, Siegrid De Baere, Patrick De Backer, Michael Rychlik, Siska Croubels. Quantitative Determination of Tenuazonic Acid in Pig and Broiler Chicken Plasma by LC-MS/MS and Its Comparative Toxicokinetics. Journal of agricultural and food chemistry. 2015 Sep; 63(38):8560-7. doi: 10.1021/acs.jafc.5b02828. [PMID: 26371380]
  • Shiguo Chen, Chanhong Kim, Je Min Lee, Hyun-Ah Lee, Zhangjun Fei, Liangsheng Wang, Klaus Apel. Blocking the QB-binding site of photosystem II by tenuazonic acid, a non-host-specific toxin of Alternaria alternata, activates singlet oxygen-mediated and EXECUTER-dependent signalling in Arabidopsis. Plant, cell & environment. 2015 Jun; 38(6):1069-80. doi: 10.1111/pce.12462. [PMID: 25292361]
  • Fa-zhong Yang, Bin Yang, Bei-bei Li, Chun Xiao. Alternaria toxin-induced resistance in rose plants against rose aphid (Macrosiphum rosivorum): effect of tenuazonic acid. Journal of Zhejiang University. Science. B. 2015 Apr; 16(4):264-74. doi: 10.1631/jzus.b1400151. [PMID: 25845360]
  • Ilenia Siciliano, Giuseppe Ortu, Giovanna Gilardi, Maria Lodovica Gullino, Angelo Garibaldi. Mycotoxin production in liquid culture and on plants infected with Alternaria spp. isolated from rocket and cabbage. Toxins. 2015 Mar; 7(3):743-54. doi: 10.3390/toxins7030743. [PMID: 25751147]
  • Shiguo Chen, Reto Jörg Strasser, Sheng Qiang. In vivo assessment of effect of phytotoxin tenuazonic acid on PSII reaction centers. Plant physiology and biochemistry : PPB. 2014 Nov; 84(?):10-21. doi: 10.1016/j.plaphy.2014.09.004. [PMID: 25240106]
  • Stefan Asam, Katharina Habler, Michael Rychlik. Determination of tenuazonic acid in human urine by means of a stable isotope dilution assay. Analytical and bioanalytical chemistry. 2013 May; 405(12):4149-58. doi: 10.1007/s00216-013-6793-5. [PMID: 23397093]
  • Shiguo Chen, Chunyan Yin, Reto Jörg Strasser, Govindjee, Chunlong Yang, Sheng Qiang. Reactive oxygen species from chloroplasts contribute to 3-acetyl-5-isopropyltetramic acid-induced leaf necrosis of Arabidopsis thaliana. Plant physiology and biochemistry : PPB. 2012 Mar; 52(?):38-51. doi: 10.1016/j.plaphy.2011.11.004. [PMID: 22305066]
  • Jing Zhao, Lihua Guo, Hongmei Zeng, Xiufen Yang, Jingjing Yuan, Huaixing Shi, Yehui Xiong, Mingjia Chen, Lei Han, Dewen Qiu. Purification and characterization of a novel antimicrobial peptide from Brevibacillus laterosporus strain A60. Peptides. 2012 Feb; 33(2):206-11. doi: 10.1016/j.peptides.2012.01.001. [PMID: 22244810]
  • Stefania Somma, Graciela Pose, Alejandro Pardo, Giuseppina Mulè, Virginia Fernandez Pinto, Antonio Moretti, Antonio Francesco Logrieco. AFLP variability, toxin production, and pathogenicity of Alternaria species from Argentinean tomato fruits and puree. International journal of food microbiology. 2011 Feb; 145(2-3):414-9. doi: 10.1016/j.ijfoodmicro.2011.01.006. [PMID: 21303723]
  • Shiguo Chen, Chunyan Yin, Sheng Qiang, Fenyan Zhou, Xinbin Dai. Chloroplastic oxidative burst induced by tenuazonic acid, a natural photosynthesis inhibitor, triggers cell necrosis in Eupatorium adenophorum Spreng. Biochimica et biophysica acta. 2010 Mar; 1797(3):391-405. doi: 10.1016/j.bbabio.2009.12.007. [PMID: 20026008]
  • Jian-Chun Qin, Ya-Mei Zhang, Ling Hu, Ya-Tuan Ma, Jin-Ming Gao. Cytotoxic metabolites produced by Alternaria no.28, an endophytic fungus isolated from Ginkgo biloba. Natural product communications. 2009 Nov; 4(11):1473-6. doi: . [PMID: 19967976]
  • M S Oviedo, M L Ramirez, G G Barros, S N Chulze. Effect of environmental factors on tenuazonic acid production by Alternaria alternata on soybean-based media. Journal of applied microbiology. 2009 Oct; 107(4):1186-92. doi: 10.1111/j.1365-2672.2009.04301.x. [PMID: 19486420]
  • Birgitte Andersen, Jørn Smedsgaard, Ida Jørring, Pernille Skouboe, Lars Hagsholm Pedersen. Real-time PCR quantification of the AM-toxin gene and HPLC qualification of toxigenic metabolites from Alternaria species from apples. International journal of food microbiology. 2006 Sep; 111(2):105-11. doi: 10.1016/j.ijfoodmicro.2006.04.021. [PMID: 16890318]
  • Eufrocinio C Marfori, Shin' ichiro Kajiyama, Ei-ichiro Fukusaki, Akio Kobayashi. Phytotoxicity of the tetramic acid metabolite trichosetin. Phytochemistry. 2003 Mar; 62(5):715-21. doi: 10.1016/s0031-9422(02)00629-5. [PMID: 12620323]
  • R T Riley, D E Goeger, H Yoo, J L Showker. Comparison of three tetramic acids and their ability to alter membrane function in cultured skeletal muscle cells and sarcoplasmic reticulum vesicles. Toxicology and applied pharmacology. 1992 Jun; 114(2):261-7. doi: 10.1016/0041-008x(92)90076-5. [PMID: 1609418]
  • N Magan, G R Cayley, J Lacey. Effect of water activity and temperature on mycotoxin production by Alternaria alternata in culture and on wheat grain. Applied and environmental microbiology. 1984 May; 47(5):1113-7. doi: 10.1128/aem.47.5.1113-1117.1984. [PMID: 6540067]