Ferulaldehyde (BioDeep_00000861087)

Main id: BioDeep_00000000189

 

PANOMIX_OTCML-2023


代谢物信息卡片


InChI=1\C10H10O3\c1-13-10-7-8(3-2-6-11)4-5-9(10)12\h2-7,12H,1H3\b3-2

化学式: C10H10O3 (178.063)
中文名称: 4-羟基-3-甲氧基肉桂醛, 松柏醛
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: COC1=C(C=CC(=C1)C=CC=O)O
InChI: InChI=1S/C10H10O3/c1-13-10-7-8(3-2-6-11)4-5-9(10)12/h2-7,12H,1H3/b3-2+

描述信息

Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1].
Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1].

同义名列表

20 个代谢物同义名

InChI=1\C10H10O3\c1-13-10-7-8(3-2-6-11)4-5-9(10)12\h2-7,12H,1H3\b3-2; 2-Propenal, 3-(4-hydroxy-3-methoxyphenyl), (E)-; (E)-3-(4-hydroxy-3-methoxy-phenyl)prop-2-enal; (E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enal; (E)-3-(4-hydroxy-3-methoxy-phenyl)acrolein; 3-(4-hydroxy-3-methoxy-phenyl)prop-2-enal; 3-(4-Hydroxy-3-methoxyphenyl)prop-2-enal; 3-(4-hydroxy-3-methoxy-phenyl)acrolein; 4-Hydroxy-3-methoxycinnamaldehyde; coniferyl aldehyde; coniferaldehyde; 382051_ALDRICH; Ferulaldehyde; CHEBI:16547; AIDS-097066; AIDS097066; 458-36-6; C02666; Coniferyl aldehyde; Coniferyl aldehyde



数据库引用编号

13 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(2)

PlantCyc(2)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

107 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 CCR1, HSF1, JAK2, MAPK14, MAPK8, MMP3, NFE2L2, STAT1, YAP1
Peripheral membrane protein 2 HSD17B6, JAK2
Endoplasmic reticulum membrane 2 HMOX1, HSP90B1
Nucleus 11 HMOX1, HSF1, HSP90B1, JAK2, MAPK14, MAPK8, MMP3, NFE2L2, PARP1, STAT1, YAP1
cytosol 12 HMOX1, HSF1, HSP90B1, JAK2, MAPK14, MAPK8, MMP3, NFE2L2, PARP1, PRKCQ, STAT1, YAP1
dendrite 1 STAT1
nuclear body 1 PARP1
centrosome 2 HSF1, NFE2L2
nucleoplasm 10 HMOX1, HSF1, JAK2, MAPK14, MAPK8, MRPL58, NFE2L2, PARP1, STAT1, YAP1
RNA polymerase II transcription regulator complex 2 NFE2L2, STAT1
Cell membrane 3 CCR1, TNF, YAP1
Cytoplasmic side 1 HMOX1
Early endosome membrane 1 HSD17B6
Multi-pass membrane protein 1 CCR1
Synapse 1 MAPK8
cell junction 1 YAP1
cell surface 1 TNF
glutamatergic synapse 2 JAK2, MAPK14
Golgi apparatus 1 NFE2L2
lysosomal membrane 1 GAA
mitochondrial inner membrane 1 MRPL58
neuronal cell body 1 TNF
postsynapse 1 JAK2
smooth endoplasmic reticulum 1 HSP90B1
Cytoplasm, cytosol 2 NFE2L2, PARP1
Lysosome 1 GAA
plasma membrane 8 CCR1, GAA, IFNLR1, JAK2, MRPL58, NFE2L2, PRKCQ, TNF
Membrane 7 GAA, HMOX1, HSP90B1, IFNLR1, JAK2, PARP1, YAP1
axon 3 CCK, MAPK8, STAT1
caveola 1 JAK2
extracellular exosome 2 GAA, HSP90B1
Lysosome membrane 1 GAA
Lumenal side 1 HSD17B6
endoplasmic reticulum 3 HMOX1, HSD17B6, HSP90B1
extracellular space 5 CCK, HMOX1, IL10, MMP3, TNF
lysosomal lumen 1 GAA
perinuclear region of cytoplasm 4 HMOX1, HSF1, HSP90B1, STAT1
Cell junction, tight junction 1 YAP1
bicellular tight junction 1 YAP1
mitochondrion 4 MAPK14, MMP3, MRPL58, PARP1
protein-containing complex 3 HSP90B1, PARP1, STAT1
intracellular membrane-bounded organelle 2 GAA, HSD17B6
Microsome membrane 1 HSD17B6
Single-pass type I membrane protein 1 IFNLR1
Secreted 4 CCK, GAA, IL10, MMP3
extracellular region 7 CCK, GAA, HSP90B1, IL10, MAPK14, MMP3, TNF
cytoplasmic side of plasma membrane 1 JAK2
mitochondrial outer membrane 1 HMOX1
mitochondrial matrix 1 MRPL58
transcription regulator complex 1 PARP1
centriolar satellite 1 PRKCQ
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 HSF1
external side of plasma membrane 2 CCR1, TNF
nucleolus 2 PARP1, STAT1
midbody 1 HSP90B1
cell-cell junction 1 YAP1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Cytoplasm, perinuclear region 1 HSF1
heterochromatin 1 HSF1
Membrane raft 2 JAK2, TNF
focal adhesion 2 HSP90B1, JAK2
extracellular matrix 1 MMP3
PML body 1 HSF1
collagen-containing extracellular matrix 1 HSP90B1
nuclear speck 1 MAPK14
chromatin 4 HSF1, NFE2L2, PARP1, STAT1
mediator complex 1 NFE2L2
phagocytic cup 1 TNF
Chromosome 1 PARP1
cytoskeleton 1 JAK2
Nucleus, nucleolus 1 PARP1
spindle pole 1 MAPK14
nuclear replication fork 1 PARP1
chromosome, telomeric region 1 PARP1
site of double-strand break 1 PARP1
Cytoplasm, cytoskeleton, spindle pole 1 HSF1
nuclear envelope 1 PARP1
Endomembrane system 1 JAK2
endosome lumen 1 JAK2
Chromosome, centromere, kinetochore 1 HSF1
female germ cell nucleus 1 YAP1
Nucleus, nucleoplasm 1 HSF1
tertiary granule membrane 1 GAA
Melanosome 1 HSP90B1
euchromatin 2 HSF1, JAK2
sperm plasma membrane 1 HSP90B1
ficolin-1-rich granule lumen 1 MAPK14
secretory granule lumen 1 MAPK14
endoplasmic reticulum lumen 1 HSP90B1
kinetochore 1 HSF1
mitotic spindle pole 1 HSF1
azurophil granule membrane 1 GAA
immunological synapse 1 PRKCQ
aggresome 1 PRKCQ
Single-pass type IV membrane protein 1 HMOX1
Sarcoplasmic reticulum lumen 1 HSP90B1
ribonucleoprotein complex 1 HSF1
extrinsic component of cytoplasmic side of plasma membrane 1 JAK2
protein folding chaperone complex 1 HSF1
protein-DNA complex 2 NFE2L2, PARP1
ficolin-1-rich granule membrane 1 GAA
basal dendrite 1 MAPK8
extrinsic component of plasma membrane 1 JAK2
granulocyte macrophage colony-stimulating factor receptor complex 1 JAK2
interleukin-12 receptor complex 1 JAK2
interleukin-23 receptor complex 1 JAK2
site of DNA damage 1 PARP1
endocytic vesicle lumen 1 HSP90B1
ribosome 1 MRPL58
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
endoplasmic reticulum chaperone complex 1 HSP90B1
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
autolysosome lumen 1 GAA
TEAD-YAP complex 1 YAP1
nuclear stress granule 1 HSF1
ISGF3 complex 1 STAT1
mitochondrial large ribosomal subunit 1 MRPL58
interleukin-28 receptor complex 1 IFNLR1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Edouard Pesquet, Leonard Blaschek, Junko Takahashi, Masanobu Yamamoto, Antoine Champagne, Nuoendagula, Elena Subbotina, Charilaos Dimotakis, Zoltan Bascik, Shinya Kajita. Bulk and In Situ Quantification of Coniferaldehyde Residues in Lignin. Methods in molecular biology (Clifton, N.J.). 2024; 2722(?):201-226. doi: 10.1007/978-1-0716-3477-6_14. [PMID: 37897609]
  • Koichi Yoshioka, Hoon Kim, Fachuang Lu, Nette De Ridder, Ruben Vanholme, Shinya Kajita, Wout Boerjan, John Ralph. Hydroxycinnamaldehyde-derived benzofuran components in lignins. Plant physiology. 2023 Sep; ?(?):. doi: 10.1093/plphys/kiad514. [PMID: 37773018]
  • Hend Dawood, Ismail Celik, Reham S Ibrahim. Computational biology and in vitro studies for anticipating cancer-related molecular targets of sweet wormwood (Artemisia annua). BMC complementary medicine and therapies. 2023 Sep; 23(1):312. doi: 10.1186/s12906-023-04135-0. [PMID: 37684586]
  • Danni Feng, Zhongxiang Fang, Pangzhen Zhang. The melanin inhibitory effect of plants and phytochemicals: A systematic review. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2022 Dec; 107(?):154449. doi: 10.1016/j.phymed.2022.154449. [PMID: 36126406]
  • S Pramod, Thakurdas Saha, K Rekha, P B Kavi Kishor. Hevea brasiliensis coniferaldehyde-5-hydroxylase (HbCAld5H) regulates xylogenesis, structure and lignin chemistry of xylem cell wall in Nicotiana tabacum. Plant cell reports. 2021 Jan; 40(1):127-142. doi: 10.1007/s00299-020-02619-8. [PMID: 33068174]
  • Thae Thae San, Yue-Hu Wang, Dong-Bao Hu, Jun Yang, Dong-Dong Zhang, Meng-Yuan Xia, Xue-Fei Yang, Yong-Ping Yang. A new sesquineolignan and four new neolignans isolated from the leaves of Piper betle, a traditional medicinal plant in Myanmar. Bioorganic & medicinal chemistry letters. 2021 01; 31(?):127682. doi: 10.1016/j.bmcl.2020.127682. [PMID: 33207281]
  • Hongyu Gai, Fang Zhou, Yuxin Zhang, Jingya Ai, Jicheng Zhan, Yilin You, Weidong Huang. Coniferaldehyde ameliorates the lipid and glucose metabolism in palmitic acid-induced HepG2 cells via the LKB1/AMPK signaling pathway. Journal of food science. 2020 Nov; 85(11):4050-4060. doi: 10.1111/1750-3841.15482. [PMID: 33037652]
  • Eugene Fletcher, Kai Gao, Kevin Mercurio, Mariam Ali, Kristin Baetz. Yeast chemogenomic screen identifies distinct metabolic pathways required to tolerate exposure to phenolic fermentation inhibitors ferulic acid, 4-hydroxybenzoic acid and coniferyl aldehyde. Metabolic engineering. 2019 03; 52(?):98-109. doi: 10.1016/j.ymben.2018.11.010. [PMID: 30471359]
  • Yuri Takeda, Shiro Suzuki, Yuki Tobimatsu, Keishi Osakabe, Yuriko Osakabe, Safendrri K Ragamustari, Masahiro Sakamoto, Toshiaki Umezawa. Lignin characterization of rice CONIFERALDEHYDE 5-HYDROXYLASE loss-of-function mutants generated with the CRISPR/Cas9 system. The Plant journal : for cell and molecular biology. 2019 02; 97(3):543-554. doi: 10.1111/tpj.14141. [PMID: 30375064]
  • Yuri Takeda, Taichi Koshiba, Yuki Tobimatsu, Shiro Suzuki, Shinya Murakami, Masaomi Yamamura, Md Mahabubur Rahman, Toshiyuki Takano, Takefumi Hattori, Masahiro Sakamoto, Toshiaki Umezawa. Regulation of CONIFERALDEHYDE 5-HYDROXYLASE expression to modulate cell wall lignin structure in rice. Planta. 2017 Aug; 246(2):337-349. doi: 10.1007/s00425-017-2692-x. [PMID: 28421330]
  • Vijay P Sonar, Angela Corona, Simona Distinto, Elias Maccioni, Rita Meleddu, Benedetta Fois, Costantino Floris, Nilesh V Malpure, Stefano Alcaro, Enzo Tramontano, Filippo Cottiglia. Natural product-inspired esters and amides of ferulic and caffeic acid as dual inhibitors of HIV-1 reverse transcriptase. European journal of medicinal chemistry. 2017 Apr; 130(?):248-260. doi: 10.1016/j.ejmech.2017.02.054. [PMID: 28254698]
  • Magdalena Karamać, Lidiya Koleva, Vessela D Kancheva, Ryszard Amarowicz. The Structure-Antioxidant Activity Relationship of Ferulates. Molecules (Basel, Switzerland). 2017 Mar; 22(4):. doi: 10.3390/molecules22040527. [PMID: 28346342]
  • Ahmed Mohammed AlJabr, Abid Hussain, Muhammad Rizwan-Ul-Haq, Hassan Al-Ayedh. Toxicity of Plant Secondary Metabolites Modulating Detoxification Genes Expression for Natural Red Palm Weevil Pesticide Development. Molecules (Basel, Switzerland). 2017 Jan; 22(1):. doi: 10.3390/molecules22010169. [PMID: 28117698]
  • Najmeh Ahmadian Chashmi, Mohsen Sharifi, Mehrdad Behmanesh. Lignan enhancement in hairy root cultures of Linum album using coniferaldehyde and methylenedioxycinnamic acid. Preparative biochemistry & biotechnology. 2016 Jul; 46(5):454-60. doi: 10.1080/10826068.2015.1068802. [PMID: 26444150]
  • José Renán García, Nickolas Anderson, Regis Le-Feuvre, Carolina Iturra, Juan Elissetche, Clint Chapple, Sofía Valenzuela. Rescue of syringyl lignin and sinapate ester biosynthesis in Arabidopsis thaliana by a coniferaldehyde 5-hydroxylase from Eucalyptus globulus. Plant cell reports. 2014 Aug; 33(8):1263-74. doi: 10.1007/s00299-014-1614-7. [PMID: 24737414]
  • Yi Sun, Yifeng Wu, Yu Zhao, Xiaojuan Han, Hongxiang Lou, Aixia Cheng. Molecular cloning and biochemical characterization of two cinnamyl alcohol dehydrogenases from a liverwort Plagiochasma appendiculatum. Plant physiology and biochemistry : PPB. 2013 Sep; 70(?):133-41. doi: 10.1016/j.plaphy.2013.05.027. [PMID: 23774375]
  • Qiao Zhao, Yuki Tobimatsu, Rui Zhou, Sivakumar Pattathil, Lina Gallego-Giraldo, Chunxiang Fu, Lisa A Jackson, Michael G Hahn, Hoon Kim, Fang Chen, John Ralph, Richard A Dixon. Loss of function of cinnamyl alcohol dehydrogenase 1 leads to unconventional lignin and a temperature-sensitive growth defect in Medicago truncatula. Proceedings of the National Academy of Sciences of the United States of America. 2013 Aug; 110(33):13660-5. doi: 10.1073/pnas.1312234110. [PMID: 23901113]
  • Sheikh Shreaz, Rimple Bhatia, Neelofar Khan, Sumathi Muralidhar, Nikhat Manzoor, Luqman Ahmad Khan. Influences of cinnamic aldehydes on H⁺ extrusion activity and ultrastructure of Candida. Journal of medical microbiology. 2013 Feb; 62(Pt 2):232-240. doi: 10.1099/jmm.0.036145-0. [PMID: 22034160]
  • Jianfeng Ma, Zhe Ji, Xia Zhou, Zhiheng Zhang, Feng Xu. Transmission electron microscopy, fluorescence microscopy, and confocal raman microscopic analysis of ultrastructural and compositional heterogeneity of Cornus alba L. wood cell wall. Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada. 2013 Feb; 19(1):243-53. doi: 10.1017/s1431927612013906. [PMID: 23380008]
  • Zhiheng Zhang, Jianfeng Ma, Zhe Ji, Feng Xu. Comparison of anatomy and composition distribution between normal and compression wood of Pinus bungeana Zucc. revealed by microscopic imaging techniques. Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada. 2012 Dec; 18(6):1459-66. doi: 10.1017/s1431927612013451. [PMID: 23237521]
  • Gang Ren, Zhang-Ping Luo, Hui-Lian Huang, Feng Shao, Gong-Hui Li, Chang-Xin Zhou, Rong-Hua Liu. [Study on the chemical constituents of the roots of Dendropanax chevalieri]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2012 Jan; 35(1):62-4. doi: . [PMID: 22734412]
  • Marcelo F de Araújo, Ivo J Curcino Vieira, Raimundo Braz-Filho, Mário G de Carvalho. Simiranes A and B: erythroxylanes diterpenes and other compounds from Simira eliezeriana (Rubiaceae). Natural product research. 2011 Oct; 25(18):1713-9. doi: 10.1080/14786419.2011.560575. [PMID: 21936665]
  • Huan-Kai Yao, Jing-Yu Duan, Yan Li, Jian-Hui Wang, Xiao-Xing Yin, Hong-Quan Duan. [Studies on the chemical constituents from the roots of Kalopanax septemlobus]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2011 May; 34(5):716-8. doi: . [PMID: 21954557]
  • Glen Meades, Rachel L Henken, Grover L Waldrop, Md Mukhlesur Rahman, S Douglass Gilman, Guy P P Kamatou, Alvaro M Viljoen, Simon Gibbons. Constituents of cinnamon inhibit bacterial acetyl CoA carboxylase. Planta medica. 2010 Oct; 76(14):1570-5. doi: 10.1055/s-0030-1249778. [PMID: 20379951]
  • Souichi Nakashima, Hisashi Matsuda, Yoshimi Oda, Seikou Nakamura, Fengming Xu, Masayuki Yoshikawa. Melanogenesis inhibitors from the desert plant Anastatica hierochuntica in B16 melanoma cells. Bioorganic & medicinal chemistry. 2010 Mar; 18(6):2337-2345. doi: 10.1016/j.bmc.2010.01.046. [PMID: 20189399]
  • Elisabetta Aracri, Josep F Colom, Teresa Vidal. Application of laccase-natural mediator systems to sisal pulp: an effective approach to biobleaching or functionalizing pulp fibres?. Bioresource technology. 2009 Dec; 100(23):5911-6. doi: 10.1016/j.biortech.2009.06.016. [PMID: 19574042]
  • Tran Minh Ngoc, IkSoo Lee, Do Thi Ha, Hongjin Kim, ByungSun Min, KiHwan Bae. Tyrosinase-inhibitory constituents from the twigs of Cinnamomum cassia. Journal of natural products. 2009 Jun; 72(6):1205-8. doi: 10.1021/np900031q. [PMID: 19555125]
  • Shuang Liang, Yun-Heng Shen, Jun-Mian Tian, Zhi-Jun Wu, Hui-Zi Jin, Wei-Dong Zhang, Shi-Kai Yan. Phenylpropanoids from Daphne feddei and their inhibitory activities against NO production. Journal of natural products. 2008 Nov; 71(11):1902-5. doi: 10.1021/np8004166. [PMID: 18986199]
  • Jih-Jung Chen, Chang-Syun Yang, Chien-Fang Peng, Ih-Sheng Chen, Chang-Ling Miaw. Dihydroagarofuranoid sesquiterpenes, a lignan derivative, a benzenoid, and antitubercular constituents from the stem of Microtropis japonica. Journal of natural products. 2008 Jun; 71(6):1016-21. doi: 10.1021/np800097t. [PMID: 18471021]
  • Umesh P Agarwal. Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta. 2006 Oct; 224(5):1141-53. doi: 10.1007/s00425-006-0295-z. [PMID: 16761135]
  • W D dos Santos, Maria de Lourdes Lucio Ferrarese, O Ferrarese-Filho. High performance liquid chromatography method for the determination of cinnamyl alcohol dehydrogenase activity in soybean roots. Plant physiology and biochemistry : PPB. 2006 Jul; 44(7-9):511-5. doi: 10.1016/j.plaphy.2006.08.004. [PMID: 17023167]
  • Young Jin Kim, Dong Gwan Kim, Sun Hi Lee, Incheol Lee. Wound-induced expression of the ferulate 5-hydroxylase gene in Camptotheca acuminata. Biochimica et biophysica acta. 2006 Feb; 1760(2):182-90. doi: 10.1016/j.bbagen.2005.08.015. [PMID: 16332414]
  • Ramesh B Nair, Kristen L Bastress, Max O Ruegger, Jeff W Denault, Clint Chapple. The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis. The Plant cell. 2004 Feb; 16(2):544-54. doi: 10.1105/tpc.017509. [PMID: 14729911]
  • Rong Tsao, Raymond Yang, J Christopher Young. Antioxidant isoflavones in Osage orange, Maclura pomifera (Raf.) Schneid. Journal of agricultural and food chemistry. 2003 Oct; 51(22):6445-51. doi: 10.1021/jf0342369. [PMID: 14558760]
  • María C Carpinella, Laura M Giorda, Carlos G Ferrayoli, Sara M Palacios. Antifungal effects of different organic extracts from Melia azedarach L. on phytopathogenic fungi and their isolated active components. Journal of agricultural and food chemistry. 2003 Apr; 51(9):2506-11. doi: 10.1021/jf026083f. [PMID: 12696928]
  • Hans Onnerud, Liming Zhang, Göran Gellerstedt, Gunnar Henriksson. Polymerization of monolignols by redox shuttle-mediated enzymatic oxidation: a new model in lignin biosynthesis I. The Plant cell. 2002 Aug; 14(8):1953-62. doi: 10.1105/tpc.001487. [PMID: 12172033]
  • L Li, X F Cheng, J Leshkevich, T Umezawa, S A Harding, V L Chiang. The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. The Plant cell. 2001 Jul; 13(7):1567-86. doi: 10.1105/tpc.010111. [PMID: 11449052]
  • R B Nair, R W Joy, E Kurylo, X Shi, J Schnaider, R S Datla, W A Keller, G Selvaraj. Identification of a CYP84 family of cytochrome P450-dependent mono-oxygenase genes in Brassica napus and perturbation of their expression for engineering sinapine reduction in the seeds. Plant physiology. 2000 Aug; 123(4):1623-34. doi: 10.1104/pp.123.4.1623. [PMID: 10938378]
  • S Valcic, G Montenegro, A M Mujica, G Avila, S Franzblau, M P Singh, W M Maiese, B N Timmermann. Phytochemical, morphological, and biological investigations of propolis from Central Chile. Zeitschrift fur Naturforschung. C, Journal of biosciences. 1999 May; 54(5-6):406-16. doi: 10.1515/znc-1999-5-617. [PMID: 10431392]