Dihydrosanguinarine (BioDeep_00000000410)

   

PANOMIX_OTCML-2023 Antitumor activity Cytotoxicity natural product


代谢物信息卡片


24-methyl-5,7,18,20-tetraoxa-24-azahexacyclo[11.11.0.0^{2,10.0^{4,8.0^{14,22.0^{17,21]tetracosa-1(13),2,4(8),9,11,14(22),15,17(21)-octaene

化学式: C20H15NO4 (333.1001)
中文名称: 二氢血红碱, 二氢血根碱
谱图信息: 最多检出来源 Viridiplantae(plant) 14.02%

分子结构信息

SMILES: c1cc2c(c3c1c1c(N(C3)C)c3c(cc1)cc1c(c3)OCO1)OCO2
InChI: InChI=1S/C20H15NO4/c1-21-8-15-12(4-5-16-20(15)25-10-22-16)13-3-2-11-6-17-18(24-9-23-17)7-14(11)19(13)21/h2-7H,8-10H2,1H3

描述信息

Dihydrosanguinarine is a benzophenanthridine alkaloid obtained by selective hydrogenation of the 13,14-position of sanguinarine. It has a role as a metabolite and an antifungal agent. It derives from a hydride of a sanguinarine.
Dihydrosanguinarine is a natural product found in Sarcocapnos baetica, Sarcocapnos saetabensis, and other organisms with data available.
A benzophenanthridine alkaloid obtained by selective hydrogenation of the 13,14-position of sanguinarine.
Dihydrosanguinarine is a natural compound isolated from the leaves of Macleaya microcarpa; has antifungal and anticancer activity. IC50 value: Target: in vitro: Dihydrosanguinarine showed much less cytotoxicity than sanguinarine: at the highest concentration tested (20 microM) and 24h exposure, dihydrosanguinarine decreased viability only to 52\\% [1]. Dihydrosanguinarine showed the highest antifungal activity against B. cinerea Pers, with 95.16\\% mycelial growth inhibition at 50 μg/ml [2]. dihydrosanguinarine showed the most potent leishmanicidal activities (IC(50) value: 0.014 microg/ml, respectively) [4]. in vivo: Repeated dosing of DHSG for 90 days at up to 500 ppm in the diet (i.e. approximately 58 mg/kg/day) showed no evidence of toxicity in contrast to results published in the literature [3].
Dihydrosanguinarine is a natural compound isolated from the leaves of Macleaya microcarpa; has antifungal and anticancer activity. IC50 value: Target: in vitro: Dihydrosanguinarine showed much less cytotoxicity than sanguinarine: at the highest concentration tested (20 microM) and 24h exposure, dihydrosanguinarine decreased viability only to 52\% [1]. Dihydrosanguinarine showed the highest antifungal activity against B. cinerea Pers, with 95.16\% mycelial growth inhibition at 50 μg/ml [2]. dihydrosanguinarine showed the most potent leishmanicidal activities (IC(50) value: 0.014 microg/ml, respectively) [4]. in vivo: Repeated dosing of DHSG for 90 days at up to 500 ppm in the diet (i.e. approximately 58 mg/kg/day) showed no evidence of toxicity in contrast to results published in the literature [3].

同义名列表

20 个代谢物同义名

24-methyl-5,7,18,20-tetraoxa-24-azahexacyclo[11.11.0.0^{2,10.0^{4,8.0^{14,22.0^{17,21]tetracosa-1(13),2,4(8),9,11,14(22),15,17(21)-octaene; 24-methyl-5,7,18,20-tetraoxa-24-azahexacyclo[11.11.0.02,10.04,8.014,22.017,21]tetracosa-1(13),2,4(8),9,11,14(22),15,17(21)-octaene; 13-methyl-13,14-dihydro-2H,10H-[1,3]dioxolo[4,5-i][1,3]dioxolo[4,5:4,5]benzo[1,2-c]phenanthridine; 13, 14-dihydro-13-methyl-[1, 3]benzodioxolo[5, 6-c]-1, 3-dioxolo[4, 5-i]phenanthridine; (1,3)Benzodioxolo(5,6-c)-1,3-dioxolo(4,5-i)phenanthridine, 13,14-dihydro-13-methyl-; 13,14-Dihydro-13-methyl-[1,3]benzodioxolo[5,6-c]-1,3-dioxolo[4,5-i]phenanthridine; 13,14-Dihydro-13-methyl[1,3]benzodioxolo[5,6-c]-1,3-dioxolo[4,5-i]phenanthridin; 13,14-Dihydrosanguinarine; Dihydro Sanguinarine; dihydro-sanguinarine; Dihydrosanguinarine; Hydrosanguinarine; UNII-3H1ZKG80F7; dihydroavicine; 3H1ZKG80F7; 3as0; 3lle; 3arv; 13,14-Dihydro-13-methyl-[1,3]benzodioxolo[5,6-c]-1,3-dioxolo[4,5- i]phenanthridine; Dihydrosanguinarine



数据库引用编号

22 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(1)

代谢反应

27 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(2)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(25)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

199 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 7 AKT3, ANXA5, CYP1A1, PIK3CA, PPARG, RAF1, TRAF3IP2
Peripheral membrane protein 4 AKT3, ANXA5, CYP1A1, CYP1B1
Endoplasmic reticulum membrane 2 CYP1A1, CYP1B1
Nucleus 5 AKT3, CREB5, PPARG, RAF1, TRAF3IP2
cytosol 4 ANXA5, PIK3CA, PPARG, RAF1
nucleoplasm 3 AKT3, ATP2B1, PPARG
RNA polymerase II transcription regulator complex 1 PPARG
Cell membrane 3 ATP2B1, RAF1, TNF
lamellipodium 1 PIK3CA
Multi-pass membrane protein 1 ATP2B1
Synapse 1 ATP2B1
cell surface 1 TNF
glutamatergic synapse 1 ATP2B1
Golgi apparatus 1 RAF1
mitochondrial inner membrane 1 CYP1A1
neuronal cell body 1 TNF
presynaptic membrane 1 ATP2B1
sarcolemma 1 ANXA5
plasma membrane 5 ATP2B1, IL17RA, PIK3CA, RAF1, TNF
synaptic vesicle membrane 1 ATP2B1
Membrane 6 AKT3, ANXA5, ATP2B1, CYP1B1, IL17RA, TRAF3IP2
axon 1 CCK
basolateral plasma membrane 1 ATP2B1
extracellular exosome 3 ANXA5, ATP2B1, CREB5
extracellular space 8 CCK, CCL2, CXCL1, CXCL2, CXCL3, IL17A, IL6, TNF
perinuclear region of cytoplasm 2 PIK3CA, PPARG
intercalated disc 1 PIK3CA
mitochondrion 3 CYP1A1, CYP1B1, RAF1
intracellular membrane-bounded organelle 4 ATP2B1, CYP1A1, CYP1B1, PPARG
Microsome membrane 2 CYP1A1, CYP1B1
Single-pass type I membrane protein 1 IL17RA
Secreted 5 CCK, CCL2, IL17A, IL6, MDK
extracellular region 11 ANXA5, CCK, CCL2, CXCL1, CXCL2, CXCL3, IL17A, IL17RA, IL6, MDK, TNF
mitochondrial outer membrane 1 RAF1
[Isoform 2]: Secreted 1 IL17RA
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
external side of plasma membrane 3 ANXA5, IL17A, TNF
cytoplasmic vesicle 1 TRAF3IP2
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Mitochondrion inner membrane 1 CYP1A1
Membrane raft 1 TNF
focal adhesion 1 ANXA5
collagen-containing extracellular matrix 1 ANXA5
lateral plasma membrane 1 ATP2B1
receptor complex 1 PPARG
Zymogen granule membrane 1 ANXA5
chromatin 2 CREB5, PPARG
cell projection 1 ATP2B1
phagocytic cup 1 TNF
Basolateral cell membrane 1 ATP2B1
Presynaptic cell membrane 1 ATP2B1
pseudopodium 1 RAF1
endoplasmic reticulum lumen 1 IL6
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
specific granule lumen 1 CXCL1
tertiary granule lumen 1 CXCL1
immunological synapse 1 ATP2B1
vesicle membrane 1 ANXA5
extrinsic component of cytoplasmic side of plasma membrane 1 TRAF3IP2
[Isoform 1]: Cell membrane 1 IL17RA
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
interleukin-6 receptor complex 1 IL6
endothelial microparticle 1 ANXA5
photoreceptor ribbon synapse 1 ATP2B1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Emmanuel Gaona-Tovar, Samuel Estrada-Soto, María Eva González-Trujano, David Martínez-Vargas, Alberto Hernandez-Leon, Fernando Narváez-González, Rafael Villalobos-Molina, Julio C Almanza-Pérez. Antinociceptive and gastroprotective activities of Bocconia arborea S. Watson and its bioactive metabolite dihydrosanguinarine in murine models. Journal of ethnopharmacology. 2022 Oct; 296(?):115492. doi: 10.1016/j.jep.2022.115492. [PMID: 35724746]
  • Yan Xiang, Hao Zhang, Zheng Xu Zhang, Xiao Yang Qu, Fen Xia Zhu. Dihydrosanguinarine based RNA-seq approach couple with network pharmacology attenuates LPS-induced inflammation through TNF/IL-17/PI3K/AKT pathways in mice liver. International immunopharmacology. 2022 Aug; 109(?):108779. doi: 10.1016/j.intimp.2022.108779. [PMID: 35490666]
  • Yong Wu, Na-Jiao Zhao, Yan Cao, Zhuo Sun, Qin Wang, Zhao-Ying Liu, Zhi-Liang Sun. Sanguinarine metabolism and pharmacokinetics study in vitro and in vivo. Journal of veterinary pharmacology and therapeutics. 2020 Mar; 43(2):208-214. doi: 10.1111/jvp.12835. [PMID: 31943246]
  • Liang Jiang, Xiaolu Wang, Yuting Wang, Fang Xu, Zhang Zhang, Ke Ding, Xiaoyun Lu. The synthesis and biological evaluation of sanguinarine derivatives as anti-non-small cell lung cancer agents. RSC medicinal chemistry. 2020 Feb; 11(2):293-296. doi: 10.1039/c9md00494g. [PMID: 33479636]
  • Jie Jiang, Haoran Ma, Song Hu, Lu Cheng, Fuqian Wang, Geng Zhang. Benzophenanthridine alkaloids from the roots of Thalictrum microgynum Lecoy.ex Oliv. Natural product research. 2019 Oct; 33(20):2964-2969. doi: 10.1080/14786419.2018.1512991. [PMID: 30306799]
  • Lan Gao, Hans-Joachim Schmitz, Karl-Heinz Merz, Dieter Schrenk. Characterization of the cytotoxicity of selected Chelidonium alkaloids in rat hepatocytes. Toxicology letters. 2019 Sep; 311(?):91-97. doi: 10.1016/j.toxlet.2019.04.031. [PMID: 31054355]
  • Zhong-Min Zhao, Xiao-Fei Shang, Raymond Kobla Lawoe, Ying-Qian Liu, Rui Zhou, Yu Sun, Yin-Fang Yan, Jun-Cai Li, Guan-Zhou Yang, Cheng-Jie Yang. Anti-phytopathogenic activity and the possible mechanisms of action of isoquinoline alkaloid sanguinarine. Pesticide biochemistry and physiology. 2019 Sep; 159(?):51-58. doi: 10.1016/j.pestbp.2019.05.015. [PMID: 31400784]
  • Si-Zhi Wu, Hua-Chong Xu, Xian-Lin Wu, Pei Liu, Yu-Cong Shi, Peng Pang, Li Deng, Guang-Xiong Zhou, Xiao-Yin Chen. Dihydrosanguinarine suppresses pancreatic cancer cells via regulation of mut-p53/WT-p53 and the Ras/Raf/Mek/Erk pathway. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2019 Jun; 59(?):152895. doi: 10.1016/j.phymed.2019.152895. [PMID: 30913453]
  • Nan-Xi Hu, Mei Chen, Yi-Song Liu, Qi Shi, Bo Yang, Huan-Cheng Zhang, Pi Cheng, Qi Tang, Zhao-Ying Liu, Jian-Guo Zeng. Pharmacokinetics of sanguinarine, chelerythrine, and their metabolites in broiler chickens following oral and intravenous administration. Journal of veterinary pharmacology and therapeutics. 2019 Mar; 42(2):197-206. doi: 10.1111/jvp.12729. [PMID: 30350369]
  • Yang Liu, An-Jun Deng, Lin Ma, Hai-Jing Zhang, Zhi-Hui Zhang, Lian-Qiu Wu, Zhu-Fang Shen, Wen-Jie Wang, Hai-Lin Qin. [Chemical constituents of the roots of Macleaya microcarpa and activation efficacy of benzophenanthridine alkaloids for the transcription of xbp1 gene]. Yao xue xue bao = Acta pharmaceutica Sinica. 2015 Feb; 50(2):207-10. doi: . [PMID: 25975030]
  • Elena Fossati, Andrew Ekins, Lauren Narcross, Yun Zhu, Jean-Pierre Falgueyret, Guillaume A W Beaudoin, Peter J Facchini, Vincent J J Martin. Reconstitution of a 10-gene pathway for synthesis of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisiae. Nature communications. 2014; 5(?):3283. doi: 10.1038/ncomms4283. [PMID: 24513861]
  • Phurpa Wangchuk, Wangchuk Phurpa, Paul A Keller, Stephen G Pyne, Wilford Lie, Anthony C Willis, Roonglawan Rattanajak, Sumalee Kamchonwongpaisan. A new protoberberine alkaloid from Meconopsis simplicifolia (D. Don) Walpers with potent antimalarial activity against a multidrug resistant Plasmodium falciparum strain. Journal of ethnopharmacology. 2013 Dec; 150(3):953-9. doi: 10.1016/j.jep.2013.09.052. [PMID: 24120516]
  • A D Bozhadze, V Iu Vachnadze, M S Dzhokhadze, D T Berashvili, A Dzh Bakuridze. [Study on the separation process of pharmacological active total alkaloids from Chelidonium majus L. growing in Georgia]. Georgian medical news. 2013 Apr; ?(217):61-5. doi: . [PMID: 23676491]
  • H S Chae, O H Kang, J H Keum, S B Kim, S H Mun, Y S Seo, M R Kim, J G Choi, D W Shin, Y C Oh, J Y Ma, D Y Kwon. Anti-inflammatory effects of Hylomecon hylomeconoides in RAW 264.7 cells. European review for medical and pharmacological sciences. 2012 Jul; 16 Suppl 3(?):121-5. doi: . [PMID: 22957426]
  • Jia-yun Yao, Zhi-ming Zhou, Xi-lian Li, Wen-lin Yin, Hong-shun Ru, Xiao-yi Pan, Gui-jie Hao, Yang Xu, Jin-yu Shen. Antiparasitic efficacy of dihydrosanguinarine and dihydrochelerythrine from Macleaya microcarpa against Ichthyophthirius multifiliis in richadsin (Squaliobarbus curriculus). Veterinary parasitology. 2011 Dec; 183(1-2):8-13. doi: 10.1016/j.vetpar.2011.07.021. [PMID: 21813242]
  • Dong-Ung Lee, Jong Hee Park, Ludger Wessjohann, Jürgen Schmidt. Alkaloids from Papaver coreanum. Natural product communications. 2011 Nov; 6(11):1593-4. doi: . [PMID: 22224268]
  • Gang Feng, Jing Zhang, Ying-Qian Liu. Inhibitory activity of dihydrosanguinarine and dihydrochelerythrine against phytopathogenic fungi. Natural product research. 2011 Jul; 25(11):1082-9. doi: 10.1080/14786419.2010.487187. [PMID: 21500094]
  • Pavel Kosina, Jana Gregorova, Jiri Gruz, Jan Vacek, Milan Kolar, Mathias Vogel, Werner Roos, Kathrin Naumann, Vilim Simanek, Jitka Ulrichova. Phytochemical and antimicrobial characterization of Macleaya cordata herb. Fitoterapia. 2010 Dec; 81(8):1006-12. doi: 10.1016/j.fitote.2010.06.020. [PMID: 20600683]
  • Isabel Desgagné-Penix, Morgan F Khan, David C Schriemer, Dustin Cram, Jacek Nowak, Peter J Facchini. Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures. BMC plant biology. 2010 Nov; 10(?):252. doi: 10.1186/1471-2229-10-252. [PMID: 21083930]
  • Hiroyuki Fuchino, Marii Kawano, Kanami Mori-Yasumoto, Setsuko Sekita, Motoyoshi Satake, Tsutomu Ishikawa, Fumiyuki Kiuchi, Nobuo Kawahara. In vitro leishmanicidal activity of benzophenanthridine alkaloids from Bocconia pearcei and related compounds. Chemical & pharmaceutical bulletin. 2010 Aug; 58(8):1047-50. doi: 10.1248/cpb.58.1047. [PMID: 20686258]
  • Jang-Gi Choi, Ok-Hwa Kang, Hee-Sung Chae, Brice Obiang-Obounou, Young-Seob Lee, You-Chang Oh, Min-San Kim, Dong-Won Shin, Jeong-Ah Kim, Young-Ho Kim, Dong-Yeul Kwon. Antibacterial activity of Hylomecon hylomeconoides against methicillin-resistant Staphylococcus aureus. Applied biochemistry and biotechnology. 2010 Apr; 160(8):2467-74. doi: 10.1007/s12010-009-8698-5. [PMID: 19578993]
  • Fanyan Meng, Guoying Zuo, Xiaoyan Hao, Genchun Wang, Haitao Xiao, Jiquan Zhang, Guili Xu. Antifungal activity of the benzo[c]phenanthridine alkaloids from Chelidonium majus Linn against resistant clinical yeast isolates. Journal of ethnopharmacology. 2009 Sep; 125(3):494-6. doi: 10.1016/j.jep.2009.07.029. [PMID: 19647059]
  • Jirí Vrba, Petr Dolezel, Jaroslav Vicar, Jitka Ulrichová. Cytotoxic activity of sanguinarine and dihydrosanguinarine in human promyelocytic leukemia HL-60 cells. Toxicology in vitro : an international journal published in association with BIBRA. 2009 Jun; 23(4):580-8. doi: 10.1016/j.tiv.2009.01.016. [PMID: 19346183]
  • Ying-Zhuang Chen, Guo-Zhu Liu, Yao Shen, Bo Chen, Jian-Guo Zeng. Analysis of alkaloids in Macleaya cordata (Willd.) R. Br. using high-performance liquid chromatography with diode array detection and electrospray ionization mass spectrometry. Journal of chromatography. A. 2009 Mar; 1216(11):2104-10. doi: 10.1016/j.chroma.2008.08.066. [PMID: 18774138]
  • Eva Vrublova, Jitka Vostalova, Rostislav Vecera, Borivoj Klejdus, David Stejskal, Pavel Kosina, Adela Zdarilova, Alena Svobodova, Vaclav Lichnovsky, Pavel Anzenbacher, Zdenek Dvorak, Jaroslav Vicar, Vilim Simanek, Jitka Ulrichova. The toxicity and pharmacokinetics of dihydrosanguinarine in rat: a pilot study. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2008 Jul; 46(7):2546-53. doi: 10.1016/j.fct.2008.04.013. [PMID: 18495316]
  • Hwa-Young Cho, Seok Young Son, Hong Soon Rhee, Sung-Yong H Yoon, Carolyn W T Lee-Parsons, Jong Moon Park. Synergistic effects of sequential treatment with methyl jasmonate, salicylic acid and yeast extract on benzophenanthridine alkaloid accumulation and protein expression in Eschscholtzia californica suspension cultures. Journal of biotechnology. 2008 May; 135(1):117-22. doi: 10.1016/j.jbiotec.2008.02.020. [PMID: 18420297]
  • Hwa-Young Cho, Hong Soon Rhee, Sung-Yong H Yoon, Jong Moon Park. Differential induction of protein expression and benzophenanthridine alkaloid accumulation in Eschscholtzia californica suspension cultures by methyl jasmonate and yeast extract. Journal of microbiology and biotechnology. 2008 Feb; 18(2):255-62. doi: . [PMID: 18309269]
  • Katherine G Zulak, Aalim M Weljie, Hans J Vogel, Peter J Facchini. Quantitative 1H NMR metabolomics reveals extensive metabolic reprogramming of primary and secondary metabolism in elicitor-treated opium poppy cell cultures. BMC plant biology. 2008 Jan; 8(?):5. doi: 10.1186/1471-2229-8-5. [PMID: 18211706]
  • Jun-yu Liang, Ji Zhang, A-ping Liu, Ming-zhong Chen, Tian-shui Niu. [Alkaloid constituents of Corydalis adunca]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2007 Nov; 30(11):1386-7. doi: ". [PMID: 18323203]
  • R Vecera, B Klejdus, P Kosina, J Orolin, M Stiborová, S Smrcek, J Vicar, Z Dvorák, J Ulrichová, V Kubán, P Anzenbacher, V Simánek. Disposition of sanguinarine in the rat. Xenobiotica; the fate of foreign compounds in biological systems. 2007 May; 37(5):549-58. doi: 10.1080/00498250701230542. [PMID: 17523056]
  • Katherine G Zulak, Anthony Cornish, Timothy E Daskalchuk, Michael K Deyholos, Dayan B Goodenowe, Paul M K Gordon, Darren Klassen, Lawrence E Pelcher, Christoph W Sensen, Peter J Facchini. Gene transcript and metabolite profiling of elicitor-induced opium poppy cell cultures reveals the coordinate regulation of primary and secondary metabolism. Planta. 2007 Apr; 225(5):1085-106. doi: 10.1007/s00425-006-0419-5. [PMID: 17077972]
  • Dagmar Weiss, Alfred Baumert, Matthias Vogel, Werner Roos. Sanguinarine reductase, a key enzyme of benzophenanthridine detoxification. Plant, cell & environment. 2006 Feb; 29(2):291-302. doi: 10.1111/j.1365-3040.2005.01421.x. [PMID: 17080644]
  • Jitka Psotová, Borivoj Klejdus, Rostislav Vecera, Pavel Kosina, Vlastimil Kubán, Jaroslav Vicar, Vilím Simánek, Jitka Ulrichová. A liquid chromatographic-mass spectrometric evidence of dihydrosanguinarine as a first metabolite of sanguinarine transformation in rat. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2006 Jan; 830(1):165-72. doi: 10.1016/j.jchromb.2005.10.030. [PMID: 16280262]
  • Jong Seong Kang, Pham Hoai Long, Hwan Mi Lim, Young Ho Kim, Gottfried Blaschke. Achiral and chiral determination of benzophenanthridine alkaloids from methanol extracts of Hylomecon species by high performance liquid chromatography. Archives of pharmacal research. 2003 Feb; 26(2):114-9. doi: 10.1007/bf02976654. [PMID: 12643585]
  • Indranil Mukhopadhyay, D K Saxena, V K Bajpai, D Kar Chowdhuri. Argemone oil induced cellular damage in the reproductive tissues of transgenic Drosophila melanogaster: protective role of 70 kDa heat shock protein. Journal of biochemical and molecular toxicology. 2003; 17(4):223-34. doi: 10.1002/jbt.10082. [PMID: 12898646]
  • R Suau, B Cabezudo, R Rico, F Nájera, J M López-Romero. Direct determination of alkaloid contents in Fumaria species by GC-MS. Phytochemical analysis : PCA. 2002 Nov; 13(6):363-7. doi: 10.1002/pca.669. [PMID: 12494757]
  • R M Perez Gutierrez, R Vargas Solis, G Diaz Gutierrez, F J Martinez-Martinez. Identification of benzophenanthridine alkaloids from Bocconia arborea by gas chromatography-mass spectrometry. Phytochemical analysis : PCA. 2002 May; 13(3):177-80. doi: 10.1002/pca.612. [PMID: 12099109]
  • V Navarro, G Delgado. Two antimicrobial alkaloids from Bocconia arborea. Journal of ethnopharmacology. 1999 Aug; 66(2):223-6. doi: 10.1016/s0378-8741(98)00182-2. [PMID: 10433482]
  • S M SARKAR. Isolation from argemone oil of dihydrosanguinarine and sanguinarine; toxicity of sanguinarine. Nature. 1948 Aug; 162(4111):265. doi: 10.1038/162265a0. [PMID: 18877104]