Coenzyme Q10 (BioDeep_00000003871)
Secondary id: BioDeep_00000858391
human metabolite Endogenous blood metabolite BioNovoGene_Lab2019 natural product
代谢物信息卡片
化学式: C59H90O4 (862.6839)
中文名称: 辅酶Q10
谱图信息:
最多检出来源 Homo sapiens(lipidomics) 31.47%
分子结构信息
SMILES: C1(OC)C(=O)C(C)=C(C/C=C(\C)/CC/C=C(\C)/CC/C=C(\C)/CC/C=C(\C)/CC/C=C(\C)/CC/C=C(\C)/CC/C=C(\C)/CC/C=C(\C)/CC/C=C(\C)/CC/C=C(\C)/C)C(=O)C=1OC
InChI: InChI=1S/C59H90O4/c1-44(2)24-15-25-45(3)26-16-27-46(4)28-17-29-47(5)30-18-31-48(6)32-19-33-49(7)34-20-35-50(8)36-21-37-51(9)38-22-39-52(10)40-23-41-53(11)42-43-55-54(12)56(60)58(62-13)59(63-14)57(55)61/h24,26,28,30,32,34,36,38,40,42H,15-23,25,27,29,31,33,35,37,39,41,43H2,1-14H3/b45-26+,46-28+,47-30+,48-32+,49-34+,50-36+,51-38+,52-40+,53-42+
描述信息
Coenzyme Q10 (ubiquinone) is a naturally occurring compound widely distributed in animal organisms and in humans. The primary compounds involved in the biosynthesis of ubiquinone are 4-hydroxybenzoate and the polyprenyl chain. An essential role of coenzyme Q10 is as an electron carrier in the mitochondrial respiratory chain. Moreover, coenzyme Q10 is one of the most important lipophilic antioxidants, preventing the generation of free radicals as well as oxidative modifications of proteins, lipids, and DNA, it and can also regenerate the other powerful lipophilic antioxidant, alpha-tocopherol. Antioxidant action is a property of the reduced form of coenzyme Q10, ubiquinol (CoQ10H2), and the ubisemiquinone radical (CoQ10H*). Paradoxically, independently of the known antioxidant properties of coenzyme Q10, the ubisemiquinone radical anion (CoQ10-) possesses prooxidative properties. Decreased levels of coenzyme Q10 in humans are observed in many pathologies (e.g. cardiac disorders, neurodegenerative diseases, AIDS, cancer) associated with intensive generation of free radicals and their action on cells and tissues. In these cases, treatment involves pharmaceutical supplementation or increased consumption of coenzyme Q10 with meals as well as treatment with suitable chemical compounds (i.e. folic acid or B-group vitamins) which significantly increase ubiquinone biosynthesis in the organism. Estimation of coenzyme Q10 deficiency and efficiency of its supplementation requires a determination of ubiquinone levels in the organism. Therefore, highly selective and sensitive methods must be applied, such as HPLC with UV or coulometric detection. For a number of years, coenzyme Q (CoQ10 in humans) was known for its key role in mitochondrial bioenergetics; later studies demonstrated its presence in other subcellular fractions and in plasma, and extensively investigated its antioxidant role. These two functions constitute the basis on which research supporting the clinical use of CoQ10 is founded. Also at the inner mitochondrial membrane level, coenzyme Q is recognized as an obligatory co-factor for the function of uncoupling proteins and a modulator of the transition pore. Furthermore, recent data reveal that CoQ10 affects expression of genes involved in human cell signalling, metabolism, and transport and some of the effects of exogenously administered CoQ10 may be due to this property. Coenzyme Q is the only lipid soluble antioxidant synthesized endogenously. In its reduced form, CoQH2, ubiquinol, inhibits protein and DNA oxidation but it is the effect on lipid peroxidation that has been most deeply studied. Ubiquinol inhibits the peroxidation of cell membrane lipids and also that of lipoprotein lipids present in the circulation. Dietary supplementation with CoQ10 results in increased levels of ubiquinol-10 within circulating lipoproteins and increased resistance of human low-density lipoproteins to the initiation of lipid peroxidation. Moreover, CoQ10 has a direct anti-atherogenic effect, which has been demonstrated in apolipoprotein E-deficient mice fed with a high-fat diet. (PMID: 15928598, 17914161).
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials
C - Cardiovascular system > C01 - Cardiac therapy
C26170 - Protective Agent > C275 - Antioxidant
D018977 - Micronutrients > D014815 - Vitamins
Same as: D01065
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
同义名列表
46 个代谢物同义名
2-[(2E,6E,10E,14E,18E,22E,26E,30E,34E)-3,7,11,15,19,23,27,31,35,39-decamethyltetraconta-2,6,10,14,18,22,26,30,34,38-decaen-1-yl]-5,6-dimethoxy-3-methylcyclohexa-2,5-diene-1,4-dione; 2-[(2E,6E,10E,14E,18E,22E,26E,30E,34E)-3,7,11,15,19,23,27,31,35,39-Decamethyl-2,6,10,14,18,22,26,30,34,38-tetracontadecaenyl]-5,6-dimethoxy-3-methyl- 2,5-cyclohexadiene-1,4-dione; 2-[(2E,6E,10E,14E,18E,22E,26E,30E,34E)-3,7,11,15,19,23,27,31,35,39-Decamethyltetraconta-2,6,10,14,18,22,26,30,34,38-decaen-1-yl]-5,6-dimethoxy-3-methyl-1,4-benzoquinone; (all-e)-2-(3,7,11,15,19,23,27,31,35,39-Decamethyl-2,6,10,14,18,22,26,30,34,38-tetracontadecaenyl)-5,6-dimethoxy-3-methyl-2,5-cyclohexadiene-1,4-dione; (all-e)-2,3-Dimethoxy-5-methyl-6-(3,7,11,15,19,23,27,31-octamethyl-2,6,10,14,18,22,26,30-dotriacontaoctaenyl)-2,5-cyclohexadiene-1,4-dione; 2-((all-e)-3,7,11,15,19,23,27,31,35,39-Decamethyl-2,6,10,14,18,22,26,30,34,38-tetracontadecaenyl)-5,6-dimethoxy-3-methyl-p-benzoquinone; 2-(3,7,11,15,19,23,27,31,35,39-Decamethyl-2,6,10,14,18,22,26,30,34,38-tetracontadecaenyl)-5,6-dimethoxy-3-methyl-p-benzoquinone; 2,3-Dimethoxy-5-methyl-6-decaprenylbenzoquinone; 4-Ethyl-5-fluoropyrimidine; all-trans-Ubiquinone; CoQ10;Ubiquinone-10; Unispheres Q 10; Bio-quinone Q10; Ubiquinone Q10; Ubidecarenone; CO-Enzyme Q10; Ubiquinone 50; Ubiquinone 10; Ubiquinone-10; PureSorb Q 40; Aqua Q 10l10; coenzyme Q10; coenzyme-Q10; Unbiquinone; Bio-quinon; Kaneka Q10; Neuquinone; Ubiquinone; Neuquinon; Li-Q-sorb; Q-Gel 100; Liquid-Q; Aqua Q10; Kudesan; Ensorb; Adelir; Q 10AA; CoQ 10; Q-Ter; Q-Gel; Q 199; CoQ10; CoQ; Q10; Q; Ubiquinone-10
数据库引用编号
21 个数据库交叉引用编号
- ChEBI: CHEBI:46245
- KEGG: C11378
- PubChem: 5281915
- PubChem: 1156
- HMDB: HMDB0001072
- Metlin: METLIN227
- DrugBank: DB09270
- ChEMBL: CHEMBL454801
- Wikipedia: Coenzyme_Q10
- LipidMAPS: LMPR02010001
- KNApSAcK: C00002866
- CAS: 303-98-0
- PMhub: MS000012851
- PubChem: 13552
- PDB-CCD: U10
- 3DMET: B04229
- NIKKAJI: J11.405G
- RefMet: Coenzyme Q10
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-631
- KNApSAcK: 46245
- LOTUS: LTS0103893
分类词条
相关代谢途径
Reactome(7)
BioCyc(2)
PlantCyc(0)
代谢反应
587 个相关的代谢反应过程信息。
Reactome(125)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase biosynthesis:
ATP + H2O + L-Gln + XMP ⟶ AMP + GMP + L-Glu + PPi
- Pyrimidine biosynthesis:
CAP + L-Asp ⟶ N-carbamoyl-L-aspartate + Pi
- De novo synthesis of UMP:
CAP + L-Asp ⟶ N-carbamoyl-L-aspartate + Pi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase biosynthesis:
ATP + H2O + L-Gln + XMP ⟶ AMP + GMP + L-Glu + PPi
- Pyrimidine biosynthesis:
CAP + L-Asp ⟶ N-carbamoyl-L-aspartate + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase biosynthesis:
ATP + H2O + L-Gln + XMP ⟶ AMP + GMP + L-Glu + PPi
- Pyrimidine biosynthesis:
orotidylic acid ⟶ UMP + carbon dioxide
- The citric acid (TCA) cycle and respiratory electron transport:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Respiratory electron transport:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- The citric acid (TCA) cycle and respiratory electron transport:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Respiratory electron transport:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- The citric acid (TCA) cycle and respiratory electron transport:
CoQ + ETF:FADH2 ⟶ ETF:FAD + ubiquinol
- Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Respiratory electron transport:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Respiratory electron transport:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.:
CoQ + ETF:FADH2 ⟶ ETF:FAD + ubiquinol
- Respiratory electron transport:
CoQ + ETF:FADH2 ⟶ ETF:FAD + ubiquinol
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Respiratory electron transport:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.:
H2O + oleoyl-Phe ⟶ L-Phe + oleate
- Respiratory electron transport:
CoQ + Cytochrome c (oxidised) + H+ + ubiquinol ⟶ CoQ + Cytochrome c (reduced) + H+ + ubiquinol
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Respiratory electron transport:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Respiratory electron transport:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.:
Cytochrome c-Fe2+ + H+ + Oxygen ⟶ Cytochrome c-Fe3+ + H+ + H2O
- Respiratory electron transport:
Cytochrome c-Fe2+ + H+ + Oxygen ⟶ Cytochrome c-Fe3+ + H+ + H2O
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Respiratory electron transport:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Respiratory electron transport:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.:
H2O + oleoyl-Phe ⟶ L-Phe + oleate
- Respiratory electron transport:
CoQ + Cytochrome c (oxidised) + H+ + ubiquinol ⟶ CoQ + Cytochrome c (reduced) + H+ + ubiquinol
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.:
H2O + oleoyl-Phe ⟶ L-Phe + oleate
- Respiratory electron transport:
CoQ + Cytochrome c (oxidised) + H+ + ubiquinol ⟶ CoQ + Cytochrome c (reduced) + H+ + ubiquinol
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Respiratory electron transport:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide biosynthesis:
ATP + CAIR + L-Asp ⟶ ADP + H+ + Pi + SAICAR
- Pyrimidine biosynthesis:
CAP + L-Asp ⟶ H+ + N-carb-L-Asp + Pi
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide biosynthesis:
ATP + CAIR + L-Asp ⟶ ADP + H+ + Pi + SAICAR
- Pyrimidine biosynthesis:
H+ + OMP ⟶ UMP + carbon dioxide
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Respiratory electron transport:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide biosynthesis:
GTP + IMP + L-Asp ⟶ ADS + GDP + H+ + Pi
- Pyrimidine biosynthesis:
CAP + L-Asp ⟶ H+ + N-carb-L-Asp + Pi
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide biosynthesis:
ATP + CAIR + L-Asp ⟶ ADP + H+ + Pi + SAICAR
- Pyrimidine biosynthesis:
CAP + L-Asp ⟶ H+ + N-carb-L-Asp + Pi
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide biosynthesis:
ATP + CAIR + L-Asp ⟶ ADP + H+ + Pi + SAICAR
- Pyrimidine biosynthesis:
CAP + L-Asp ⟶ H+ + N-carb-L-Asp + Pi
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide biosynthesis:
ATP + CAIR + L-Asp ⟶ ADP + H+ + Pi + SAICAR
- Pyrimidine biosynthesis:
H+ + OMP ⟶ UMP + carbon dioxide
- Metabolism:
H2O + PBG ⟶ HMBL + ammonia
- Nucleotide metabolism:
CAP + L-Asp ⟶ N-carb-L-Asp + Pi
- Pyrimidine metabolism: de novo synthesis of UMP:
CAP + L-Asp ⟶ N-carb-L-Asp + Pi
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide biosynthesis:
ATP + CAIR + L-Asp ⟶ ADP + H+ + Pi + SAICAR
- Pyrimidine biosynthesis:
CAP + L-Asp ⟶ H+ + N-carb-L-Asp + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Sulfide oxidation to sulfate:
GSH + H+ + S2O3(2-) ⟶ GSSG + H2S + sulfite
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide biosynthesis:
ATP + CAIR + L-Asp ⟶ ADP + H+ + Pi + SAICAR
- Pyrimidine biosynthesis:
CAP + L-Asp ⟶ H+ + N-carb-L-Asp + Pi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
GTP + IMP + L-Asp ⟶ ADS + GDP + H+ + Pi
- Nucleotide biosynthesis:
GTP + IMP + L-Asp ⟶ ADS + GDP + H+ + Pi
- Pyrimidine biosynthesis:
CAP + L-Asp ⟶ H+ + N-carb-L-Asp + Pi
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide biosynthesis:
ATP + CAIR + L-Asp ⟶ ADP + H+ + Pi + SAICAR
- Pyrimidine biosynthesis:
CAP + L-Asp ⟶ H+ + N-carb-L-Asp + Pi
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide biosynthesis:
GTP + IMP + L-Asp ⟶ ADS + GDP + H+ + Pi
- Pyrimidine biosynthesis:
CAP + L-Asp ⟶ H+ + N-carb-L-Asp + Pi
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide biosynthesis:
ATP + CAIR + L-Asp ⟶ ADP + H+ + Pi + SAICAR
- Pyrimidine biosynthesis:
CAP + L-Asp ⟶ H+ + N-carb-L-Asp + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.:
CoQ + H+ + NADH ⟶ H+ + NAD + ubiquinol
- Respiratory electron transport:
CoQ + H+ + NADH ⟶ H+ + NAD + ubiquinol
- Nucleotide metabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Nucleotide biosynthesis:
ATP + CAIR + L-Asp ⟶ ADP + H+ + Pi + SAICAR
- Pyrimidine biosynthesis:
CAP + L-Asp ⟶ H+ + N-carb-L-Asp + Pi
BioCyc(4)
- respiration (anaerobic)-- electron acceptors reaction list:
nitrite ⟶ ammonia
- rhodoquinone-10 biosynthesis:
H2O + ammonium + ubiquinone-10 ⟶ CO2 + rhodoquinone-10
- ubiquinone-10 biosynthesis (eukaryotic):
3-decaprenyl-4-hydroxy-5-methoxybenzoate + H+ ⟶ 2-decaprenyl-6-methoxyphenol + CO2
- ubiquinone-10 biosynthesis (prokaryotic):
3-decaprenyl-4-hydroxybenzoate + H+ ⟶ 2-decaprenylphenol + CO2
Plant Reactome(408)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
ISCIT + NAD ⟶ 2OG + H+ + NADH + carbon dioxide
- TCA cycle (plant):
ISCIT + NAD ⟶ 2OG + H+ + NADH + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
CIT ⟶ ISCIT
- TCA cycle (plant):
CIT ⟶ ISCIT
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
CIT ⟶ ISCIT
- TCA cycle (plant):
CIT ⟶ ISCIT
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Glutamate synthase cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Generation of precursor metabolites and energy:
ISCIT + NAD ⟶ 2OG + H+ + NADH + carbon dioxide
- TCA cycle (plant):
ISCIT + NAD ⟶ 2OG + H+ + NADH + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Glutamate synthase cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
CIT ⟶ ISCIT
- TCA cycle (plant):
CIT ⟶ ISCIT
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(48)
- Citric Acid Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Mitochondrial Electron Transport Chain:
Adenosine diphosphate + Hydrogen Ion ⟶ Adenosine triphosphate + Hydrogen Ion
- Congenital Lactic Acidosis:
Citric acid ⟶ Water + cis-Aconitic acid
- Fumarase Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- Mitochondrial Complex II Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- 2-Ketoglutarate Dehydrogenase Complex Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- Pyruvate Dehydrogenase Deficiency (E3):
Citric acid ⟶ Water + cis-Aconitic acid
- Pyruvate Dehydrogenase Deficiency (E2):
Citric acid ⟶ Water + cis-Aconitic acid
- Warburg Effect:
L-Glutamic acid + NAD + Water ⟶ Ammonia + NADH + Oxoglutaric acid
- The Oncogenic Action of 2-Hydroxyglutarate:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- The Oncogenic Action of Succinate:
Citric acid ⟶ Water + cis-Aconitic acid
- The Oncogenic Action of Fumarate:
Citric acid ⟶ Water + cis-Aconitic acid
- Glutaminolysis and Cancer:
L-Glutamine ⟶ Ammonia + L-Glutamic acid
- TCA Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- The Oncogenic Action of L-2-Hydroxyglutarate in Hydroxyglutaric aciduria:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- The Oncogenic Action of D-2-Hydroxyglutarate in Hydroxyglutaric aciduria:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- TCA Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Citric Acid Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Mitochondrial Electron Transport Chain:
Coenzyme Q10 + Succinic acid ⟶ Fumaric acid + Ubiquinol-8
- Congenital Lactic Acidosis:
Citric acid ⟶ Water + cis-Aconitic acid
- Fumarase Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- Mitochondrial Complex II Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- 2-Ketoglutarate Dehydrogenase Complex Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- Pyruvate Dehydrogenase Deficiency (E3):
Citric acid ⟶ Water + cis-Aconitic acid
- Pyruvate Dehydrogenase Deficiency (E2):
Citric acid ⟶ Water + cis-Aconitic acid
- Warburg Effect:
L-Glutamic acid + NAD + Water ⟶ Ammonia + NADH + Oxoglutaric acid
- Citric Acid Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Mitochondrial Electron Transport Chain:
Coenzyme Q10 + Succinic acid ⟶ Fumaric acid + Ubiquinol-8
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Citric Acid Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Mitochondrial Electron Transport Chain:
Coenzyme Q10 + Succinic acid ⟶ Fumaric acid + Ubiquinol-8
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Citric Acid Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Mitochondrial Electron Transport Chain:
Coenzyme Q10 + Succinic acid ⟶ Fumaric acid + Ubiquinol-8
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Citric Acid Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Mitochondrial Electron Transport Chain:
Coenzyme Q10 + Succinic acid ⟶ Fumaric acid + Ubiquinol-8
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- The Oncogenic Action of 2-Hydroxyglutarate:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Glutaminolysis and Cancer:
L-Glutamine ⟶ Ammonia + L-Glutamic acid
- The Oncogenic Action of 2-Hydroxyglutarate:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Glutaminolysis and Cancer:
L-Glutamine ⟶ Ammonia + L-Glutamic acid
- Congenital Lactic Acidosis:
Citric acid ⟶ Water + cis-Aconitic acid
- Fumarase Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- Mitochondrial Complex II Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- 2-Ketoglutarate Dehydrogenase Complex Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- Pyruvate Dehydrogenase Deficiency (E3):
Citric acid ⟶ Water + cis-Aconitic acid
- Pyruvate Dehydrogenase Deficiency (E2):
Citric acid ⟶ Water + cis-Aconitic acid
PharmGKB(0)
71 个相关的物种来源信息
- 3624 - Actinidia: LTS0103893
- 3625 - Actinidia chinensis: 10.1016/B978-0-12-715005-5.X5001-8
- 3625 - Actinidia chinensis: LTS0103893
- 3623 - Actinidiaceae: LTS0103893
- 23809 - Ailanthus: LTS0103893
- 23810 - Ailanthus altissima: 10.1016/B978-0-12-715005-5.X5001-8
- 4037 - Apiaceae: LTS0103893
- 4216 - Arctium: LTS0103893
- 4217 - Arctium lappa: 10.1016/B978-0-12-715005-5.X5001-8
- 4217 - Arctium lappa: LTS0103893
- 4890 - Ascomycota: LTS0103893
- 4210 - Asteraceae: LTS0103893
- 186817 - Bacillaceae: LTS0103893
- 91061 - Bacilli: LTS0103893
- 1386 - Bacillus: LTS0103893
- 2 - Bacteria: LTS0103893
- 41495 - Calendula: LTS0103893
- 41496 - Calendula officinalis: 10.1111/J.1399-3054.1985.TB02321.X
- 41496 - Calendula officinalis: LTS0103893
- 7711 - Chordata: LTS0103893
- 3833 - Cytisus: LTS0103893
- 3835 - Cytisus scoparius: 10.1016/B978-0-12-715005-5.X5001-8
- 3835 - Cytisus scoparius: LTS0103893
- 4038 - Daucus: LTS0103893
- 4039 - Daucus carota: 10.1016/B978-0-12-715005-5.X5001-8
- 4039 - Daucus carota: LTS0103893
- 2759 - Eukaryota: LTS0103893
- 3977 - Euphorbiaceae: LTS0103893
- 3803 - Fabaceae: LTS0103893
- 4751 - Fungi: LTS0103893
- 5506 - Fusarium: LTS0103893
- 5127 - Fusarium fujikuroi: 10.1021/BI00901A037
- 5127 - Fusarium fujikuroi: LTS0103893
- 3980 - Hevea: LTS0103893
- 3981 - Hevea brasiliensis: 10.1016/S0031-9422(00)85763-5
- 3981 - Hevea brasiliensis: LTS0103893
- 9604 - Hominidae: LTS0103893
- 9605 - Homo: LTS0103893
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1038/NBT.2488
- 9606 - Homo sapiens: LTS0103893
- 3398 - Magnoliopsida: LTS0103893
- 96479 - Malva: LTS0103893
- 145754 - Malva sylvestris: 10.1016/B978-0-12-715005-5.X5001-8
- 145754 - Malva sylvestris: LTS0103893
- 3629 - Malvaceae: LTS0103893
- 40674 - Mammalia: LTS0103893
- 33208 - Metazoa: LTS0103893
- 110618 - Nectriaceae: LTS0103893
- 4085 - Nicotiana: LTS0103893
- 4097 - Nicotiana tabacum: 10.1016/B978-0-12-715005-5.X5001-8
- 4097 - Nicotiana tabacum: LTS0103893
- 25443 - Psychotria: LTS0103893
- 3764 - Rosa: LTS0103893
- 74632 - Rosa gallica: 10.1016/B978-0-12-715005-5.X5001-8
- 74632 - Rosa gallica: LTS0103893
- 3745 - Rosaceae: LTS0103893
- 24966 - Rubiaceae: LTS0103893
- 114288 - Scorzonera: LTS0103893
- 114289 - Scorzonera hispanica: 10.1016/B978-0-12-715005-5.X5001-8
- 23808 - Simaroubaceae: LTS0103893
- 4070 - Solanaceae: LTS0103893
- 147550 - Sordariomycetes: LTS0103893
- 35493 - Streptophyta: LTS0103893
- 58023 - Tracheophyta: LTS0103893
- 33090 - Viridiplantae: LTS0103893
- 3602 - Vitaceae: LTS0103893
- 3603 - Vitis: LTS0103893
- 103355 - Vitis labrusca: 10.1016/B978-0-12-715005-5.X5001-8
- 103355 - Vitis labrusca: LTS0103893
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Heba Fikry, Lobna A Saleh, Faten A Mahmoud, Sara Abdel Gawad, Hadwa Ali Abd-Alkhalek. CoQ10 targeted hippocampal ferroptosis in a status epilepticus rat model.
Cell and tissue research.
2024 Jun; 396(3):371-397. doi:
10.1007/s00441-024-03880-z
. [PMID: 38499882] - Behbood Khazravi, Mahdi Khodaei-Motlagh, Reza Masoudi, Mohammad Yahyaei. Coenzyme Q10 preserves buck's sperm quality during cryopreservation process in plant-based extender.
Animal reproduction science.
2024 Jun; 265(?):107487. doi:
10.1016/j.anireprosci.2024.107487
. [PMID: 38723402] - Minjun Liao, Xueke He, Yangyang Zhou, Weiqiang Peng, Xiao-Mei Zhao, Miao Jiang. Coenzyme Q10 in atherosclerosis.
European journal of pharmacology.
2024 May; 970(?):176481. doi:
10.1016/j.ejphar.2024.176481
. [PMID: 38493916] - Mengcheng Jin, Tangbin Zou, Hairong Huang, Ming Chen, Haoqi Zou, Baoyan Chen, Chengze Lai, Huawen Li, Peiwen Zhang. The Effect of Coenzyme Q10 Supplementation on Bile Acid Metabolism: Insights from Network Pharmacology, Molecular Docking, and Experimental Validation.
Molecular nutrition & food research.
2024 May; 68(9):e2400147. doi:
10.1002/mnfr.202400147
. [PMID: 38643378] - Eman I Elgizawy, Ghada S Amer, Eman A Ali, Fatma S Alqalashy, Marwa M Ibrahim, Asmaa A Abdel Latif, Anwar M Shaban. Comparing the efficacy of concomitant treatment of resistance exercise and creatine monohydrate versus multiple individual therapies in age related sarcopenia.
Scientific reports.
2024 04; 14(1):9798. doi:
10.1038/s41598-024-59884-w
. [PMID: 38684784] - Yuan Xiao, Ranjing Wang, Shang Kong, Tingting Zhao, Yongli Situ, Hong Nie. Comparison of Protective Effect of Tri-circulator and Coenzyme Q10 on Myocardial Injury and the Mechanism Study by Zebrafish Model.
Cardiovascular toxicology.
2024 Feb; ?(?):. doi:
10.1007/s12012-024-09828-7
. [PMID: 38316695] - Meng Meng, Jiaying Wang, Changyuan Wang, Jianyu Zhao, Huihan Wang, Yukun Zhang, Huijun Sun, Mozhen Liu. Coenzyme Q10 Protects Against Hyperlipidemia-Induced Osteoporosis by Improving Mitochondrial Function via Modulating miR-130b-3p/PGC-1α Pathway.
Calcified tissue international.
2024 Feb; 114(2):182-199. doi:
10.1007/s00223-023-01161-5
. [PMID: 38055044] - Xiaochun Ye, Shaohui Zhang. Clinical Observation of Trimetazidine Combined With Coenzyme Q10 in the Treatment of Myocardial Damage Caused by COVID-19.
American journal of therapeutics.
2024 Jan; 31(1):e59-e61. doi:
10.1097/mjt.0000000000001488
. [PMID: 38231584] - Ingrid D L Souza, Vivian Saez, Claudia R E Mansur. Lipid nanoparticles containing coenzyme Q10 for topical applications: An overview of their characterization.
Colloids and surfaces. B, Biointerfaces.
2023 Oct; 230(?):113491. doi:
10.1016/j.colsurfb.2023.113491
. [PMID: 37574615] - Xiang Luo, Sha Ao, Hongze Wu, David Julian McClements, Likun Fang, Mengyu Huang, Yanyan Zhou, Xuguang Yin, Meiyang Xi, Tao Cai, Kewu Zhu. Hyaluronic Acid Poly(glyceryl)10-Stearate Derivatives: Novel Emulsifiers for Improving the Gastrointestinal Stability and Bioaccessibility of Coenzyme Q10 Nanoemulsions.
Journal of agricultural and food chemistry.
2023 Jul; 71(29):11180-11194. doi:
10.1021/acs.jafc.3c02322
. [PMID: 37436914] - Gaolong Zhong, Yuanxu Li, Feiyang Ma, Yihui Huo, Jianzhao Liao, Qingyue Han, Lianmei Hu, Zhaoxin Tang. Copper Exposure Induced Chicken Hepatotoxicity: Involvement of Ferroptosis Mediated by Lipid Peroxidation, Ferritinophagy, and Inhibition of FSP1-CoQ10 and Nrf2/SLC7A11/GPX4 Axis.
Biological trace element research.
2023 Jul; ?(?):. doi:
10.1007/s12011-023-03773-2
. [PMID: 37474886] - Fengya Zhu, Shao Yin, Bin Yang, Siyun Li, Xia Feng, Tianyu Wang, Deya Che. TEAS, DHEA, CoQ10, and GH for poor ovarian response undergoing IVF-ET: a systematic review and network meta-analysis.
Reproductive biology and endocrinology : RB&E.
2023 Jul; 21(1):64. doi:
10.1186/s12958-023-01119-0
. [PMID: 37464357] - Taher Modarressi, Arsalan Derakhshan. Letter to the Editor From Modarressi and Derakhshan: 'Effects of Coenzyme Q10 Supplementation on Lipid Profiles in Adults: A Meta-analysis of Randomized Controlled Trials'.
The Journal of clinical endocrinology and metabolism.
2023 07; 108(8):e646. doi:
10.1210/clinem/dgad117
. [PMID: 36866570] - Nicholas Angelopoulos, Rodis D Paparodis, Ioannis Androulakis, Anastasios Boniakos, Georgia Argyrakopoulou, Sarantis Livadas. Low Dose Monacolin K Combined with Coenzyme Q10, Grape Seed, and Olive Leaf Extracts Lowers LDL Cholesterol in Patients with Mild Dyslipidemia: A Multicenter, Randomized Controlled Trial.
Nutrients.
2023 Jun; 15(12):. doi:
10.3390/nu15122682
. [PMID: 37375586] - Yu Zhao, Xiaoli Zhao, Guangyin Zhang, Ruihong Ma, Qiang Geng, Bin Ouyang, Tian Xia. Efficacy of coenzyme Q10 supplementation for male infertility with high sperm DNA fragmentation index: a protocol for a systematic review and meta-analysis.
BMJ open.
2023 Jun; 13(6):e068368. doi:
10.1136/bmjopen-2022-068368
. [PMID: 37280035] - Ying Huang, Ruxiang Ge, Gege Lou, Nengzuo Jiang, Xiaoming Zhu, Yazhe Guo, Haokun Liu, Xuanyu Liu, Xinhua Chen. The influence of dietary Coenzyme Q10 on growth performance, antioxidant capacity and resistance against Aeromonas hydrophila of juvenile European eel (Anguilla anguilla).
Fish & shellfish immunology.
2023 May; 138(?):108834. doi:
10.1016/j.fsi.2023.108834
. [PMID: 37207885] - Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products.
ACS pharmacology & translational science.
2023 May; 6(5):683-701. doi:
10.1021/acsptsci.2c00194
. [PMID: 37200814] - Armin Ahmadi, Gwenaelle Begue, Ana P Valencia, Jennifer E Norman, Benjamin Lidgard, Brian J Bennett, Matthew P Van Doren, David J Marcinek, Sili Fan, David K Prince, Jorge L Gamboa, Jonathan Himmelfarb, Ian H de Boer, Bryan R Kestenbaum, Baback Roshanravan. Randomized crossover clinical trial of coenzyme Q10 and nicotinamide ribosome in chronic kidney disease.
JCI insight.
2023 May; ?(?):. doi:
10.1172/jci.insight.167274
. [PMID: 37159264] - Hoda Atapour-Mashhad, Mojgan Nejabat, Farzin Hadizadeh, Afsaneh Hoseinsalari, Shiva Golmohammadzadeh. Preparation, Characterization, and Molecular Dynamic Simulation of Novel Coenzyme Q10 Loaded Nanostructured Lipid Carriers.
Current pharmaceutical design.
2023; 29(27):2177-2190. doi:
10.2174/1381612829666230911105913
. [PMID: 37694784] - Xinyu Nie, Xinru Dong, Yuge Hu, Fangjun Xu, Cong Hu, Chang Shu. Coenzyme Q10 Stimulate Reproductive Vatality.
Drug design, development and therapy.
2023; 17(?):2623-2637. doi:
10.2147/dddt.s386974
. [PMID: 37667786] - Sihua Wen, Kai Yang, Yunfeng Bai, Yanan Wu, Ding Liu, Xu Wu, Xiaofei Zhang, Jing Sun. Investigating the Mechanism of Action of Schisandra chinensis Combined with Coenzyme Q10 in the Treatment of Heart Failure Based on PI3K-AKT Pathway.
Drug design, development and therapy.
2023; 17(?):939-957. doi:
10.2147/dddt.s393995
. [PMID: 37006723] - Ezgi Şaman, Martina Cebova, Andrej Barta, Martina Koneracka, Vlasta Zavisova, Anita Eckstein-Andicsova, Martin Danko, Jaroslav Mosnacek, Olga Pechanova. Combined Therapy with Simvastatin- and Coenzyme-Q10-Loaded Nanoparticles Upregulates the Akt-eNOS Pathway in Experimental Metabolic Syndrome.
International journal of molecular sciences.
2022 Dec; 24(1):. doi:
10.3390/ijms24010276
. [PMID: 36613727] - Zhihao Liu, Zezhong Tian, Dan Zhao, Ying Liang, Suming Dai, Meitong Liu, Shanshan Hou, Xiaoxi Dong, Zhaxinima, Yan Yang. Effects of Coenzyme Q10 Supplementation on Lipid Profiles in Adults: A Meta-analysis of Randomized Controlled Trials.
The Journal of clinical endocrinology and metabolism.
2022 12; 108(1):232-249. doi:
10.1210/clinem/dgac585
. [PMID: 36337001] - Shanqin Qi, Qi Liang, Lixia Yang, Xueyuan Zhou, Kun Chen, Ji Wen. Effect of Coenzyme Q10 and transcutaneous electrical acupoint stimulation in assisted reproductive technology: a retrospective controlled study.
Reproductive biology and endocrinology : RB&E.
2022 Dec; 20(1):167. doi:
10.1186/s12958-022-01043-9
. [PMID: 36476305] - Louisa Fadjri Kusuma Wardhani, Ivana Purnama Dewi, Kresna Nugraha Setia Putra, Andrianto Andrianto, Djoko Soemantri. The physiological insight of Coenzyme-Q10 administration in preventing the incidence of reperfusion arrhythmia among patients undergoing coronary artery bypass grafting surgery.
Journal of basic and clinical physiology and pharmacology.
2022 Nov; 33(6):695-701. doi:
10.1515/jbcpp-2021-0329
. [PMID: 35858280] - Leila Hosseini, Alireza Majdi, Saeed Sadigh-Eteghad, Fereshteh Farajdokht, Mojtaba Ziaee, Sepideh Rahigh Aghsan, Mohammad Farzipour, Javad Mahmoudi. Coenzyme Q10 ameliorates aging-induced memory deficits via modulation of apoptosis, oxidative stress, and mitophagy in aged rats.
Experimental gerontology.
2022 10; 168(?):111950. doi:
10.1016/j.exger.2022.111950
. [PMID: 36089173] - Ruijie Wang, Yiting Chen, Zezhong Tian, Meiyan Zhu, Bingying Zhang, Sijin Du, Yanzhang Li, Zhihao Liu, Shanshan Hou, Yan Yang. Coenzyme Q10 Attenuates Human Platelet Aggregation Induced by SARS-CoV-2 Spike Protein via Reducing Oxidative Stress In Vitro.
International journal of molecular sciences.
2022 Oct; 23(20):. doi:
10.3390/ijms232012345
. [PMID: 36293203] - Kumar Rajesh, M I Khan, Prasad Mahesh, Srivastav Ritesh Kumar, Srivastav Shiv Kumar. Preclinical and Clinical Role of Coenzyme Q10 Supplementation in Various Pathological States.
Drug research.
2022 Sep; 72(7):367-371. doi:
10.1055/a-1835-1738
. [PMID: 35724675] - F Martinez-Martin, E Corbella, I Sarasa, F Trias, D Petitbò, M Licerán, R M Sánchez-Hernández, D Martin, A Sánchez, C Arnás, S de Dios, M Florido, X Pintó. Effects of treatment with monacolin K, berberine and coenzyme Q10 on lipid metabolism in patients with moderate cardiovascular risk.
Semergen.
2022 Sep; 48(6):403-410. doi:
10.1016/j.semerg.2022.04.005
. [PMID: 35606250] - Jinchao Zou, Zezhong Tian, Yimin Zhao, Xiaofen Qiu, Yuheng Mao, Kongyao Li, Yilin Shi, Dan Zhao, Ying Liang, Qiuhua Ji, Wenhua Ling, Yan Yang. Coenzyme Q10 supplementation improves cholesterol efflux capacity and antiinflammatory properties of high-density lipoprotein in Chinese adults with dyslipidemia.
Nutrition (Burbank, Los Angeles County, Calif.).
2022 09; 101(?):111703. doi:
10.1016/j.nut.2022.111703
. [PMID: 35700592] - Swapnil Tripathi, Dharati Parmar, Shabrin Fathima, Samir Raval, Gyanendra Singh. Coenzyme Q10, Biochanin A and Phloretin Attenuate Cr(VI)-Induced Oxidative Stress and DNA Damage by Stimulating Nrf2/HO-1 Pathway in the Experimental Model.
Biological trace element research.
2022 Aug; ?(?):. doi:
10.1007/s12011-022-03358-5
. [PMID: 35953644] - Shankun Zhao, Weizhou Wu, Jian Liao, Xinsheng Zhang, Maolei Shen, Xin Li, Qi Lin, Chaoliang Cao. Molecular mechanisms underlying the renal protective effects of coenzyme Q10 in acute kidney injury.
Cellular & molecular biology letters.
2022 Jul; 27(1):57. doi:
10.1186/s11658-022-00361-5
. [PMID: 35869439] - Md Al Mamun, Md Mahamodun Nabi, Tomohito Sato, Shuhei Aramaki, Yusuke Takanashi, Takumi Sakamoto, Kaito Hizume, Chikako Mori, Maiha Yasue, Masataka Ozaki, Ariful Islam, Tomoaki Kahyo, Makoto Horikawa, Yutaka Takahashi, Shigetoshi Okazaki, Kentaro Ohishi, Yu Nagashima, Keiji Seno, Yoshihiro Hotta, Mitsutoshi Setou. Coenzyme Q10 in the eye isomerizes by sunlight irradiation.
Scientific reports.
2022 07; 12(1):12104. doi:
10.1038/s41598-022-16343-8
. [PMID: 35840805] - Tatiane G Hammerschmidt, Bruna Donida, Jéssica L Faverzani, Alana P Moura, Bianca G Dos Reis, Andryele Z Machado, Rejane G Kessler, Fernanda M Sebastião, Luiza S Reinhardt, Dinara J Moura, Carmen R Vargas. Cytokine profile and cholesterol levels in patients with Niemann-Pick type C disease presenting neurological symptoms: in vivo effect of miglustat and in vitro effect of N-acetylcysteine and coenzyme Q10.
Experimental cell research.
2022 07; 416(2):113175. doi:
10.1016/j.yexcr.2022.113175
. [PMID: 35487270] - Yu Ji Jiang, Jian Jin, Qi Yan Nan, Jun Ding, Sheng Cui, Mei Ying Xuan, Mei Hua Piao, Shang Guo Piao, Hai Lan Zheng, Ji Zhe Jin, Byung Ha Chung, Chul Woo Yang, Can Li. Coenzyme Q10 attenuates renal fibrosis by inhibiting RIP1-RIP3-MLKL-mediated necroinflammation via Wnt3α/β-catenin/GSK-3β signaling in unilateral ureteral obstruction.
International immunopharmacology.
2022 Jul; 108(?):108868. doi:
10.1016/j.intimp.2022.108868
. [PMID: 35636077] - Irfan Khan, Rajesh Kumar, Mahesh Prasad, Ritesh Kumar Srivastav, Vishal Kumar Vishwakarma, Juber Akhtar. Co-Adjuvancy of Solasodine & CoQ10 Against High Fat Diet-Induced Insulin Resistance Rats Via Modulating IRS-I and PPAR-γ Proteins Expression.
Drug research.
2022 Jul; 72(6):327-335. doi:
10.1055/a-1806-1366
. [PMID: 35724671] - Ana Sánchez-Cuesta, Ana Belén Cortés-Rodríguez, Ignacio Navas-Enamorado, José Antonio Lekue, Toscana Viar, Martín Axpe, Plácido Navas, Guillermo López-Lluch. High coenzyme Q10 plasma levels improve stress and damage markers in professional soccer players during competition.
International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition.
2022 Jul; 92(3-4):192-203. doi:
10.1024/0300-9831/a000659
. [PMID: 32639220] - Heba Ahmed Abdelkader, Laila Ahmed Rashed, Eman Assaad, Marwah Adly Saleh. Serum and tissue levels of coenzyme Q10 in pemphigus vulgaris.
Journal of cosmetic dermatology.
2022 Jul; 21(7):3002-3006. doi:
10.1111/jocd.14511
. [PMID: 34601804] - Bruno G Nogueira, Raiza R Pereira, Julia L Bitencourt, Bruno Milan, Willian V A Reis, Mozarth V Junior, Bianca R Acácio, Breno F B Sampaio, Maria I L Souza. Coenzyme Q10 and melatonin protect cryopreserved equine sperm against lipoperoxidation.
Animal reproduction science.
2022 Jun; 243(?):107027. doi:
10.1016/j.anireprosci.2022.107027
. [PMID: 35780743] - Cheng-Han Lee, Ming-Sheng Lee, Rei-Cheng Yang, Chien-Sheng Hsu, Tzu-Cheng Su, Po-Sheng Chang, Ping-Ting Lin, Jun-Kai Kao. Using a neonatal rat model to explore the therapeutic potential of coenzyme Q10 in prematurity under hyperoxia.
Environmental toxicology.
2022 Jun; 37(6):1472-1482. doi:
10.1002/tox.23499
. [PMID: 35212449] - Ming Yang, Michelle Grace Tsui, Jessica Kwan Wun Tsang, Rajesh Kumar Goit, Kwok-Ming Yao, Kwok-Fai So, Wai-Ching Lam, Amy Cheuk Yin Lo. Involvement of FSP1-CoQ10-NADH and GSH-GPx-4 pathways in retinal pigment epithelium ferroptosis.
Cell death & disease.
2022 05; 13(5):468. doi:
10.1038/s41419-022-04924-4
. [PMID: 35585057] - Liaisan Arslanbaeva, Giovanni Tosi, Marco Ravazzolo, Manuela Simonato, Francesco A Tucci, Salvatore Pece, Paola Cogo, Massimo M Santoro. UBIAD1 and CoQ10 protect melanoma cells from lipid peroxidation-mediated cell death.
Redox biology.
2022 05; 51(?):102272. doi:
10.1016/j.redox.2022.102272
. [PMID: 35255427] - Xiaoling He, Huibin Lu, Wenzhe Hu, Tongchu Deng, Xiaofan Gong, Xunan Yang, Da Song, Mei He, Meiying Xu. Novosphingobium percolationis sp. nov. and Novosphingobium huizhouense sp. nov., isolated from landfill leachate of a domestic waste treatment plant.
International journal of systematic and evolutionary microbiology.
2022 May; 72(5):. doi:
10.1099/ijsem.0.005394
. [PMID: 35622399] - Swapnil Tripathi, Shabrin Fhatima, Dharati Parmar, Dhirendra Pratap Singh, SukhDev Mishra, Rajeev Mishra, Gyanendra Singh. Therapeutic effects of CoenzymeQ10, Biochanin A and Phloretin against arsenic and chromium induced oxidative stress in mouse (Mus musculus) brain.
3 Biotech.
2022 May; 12(5):116. doi:
10.1007/s13205-022-03171-w
. [PMID: 35547012] - Amira M Elshamy, Ola M Salem, Mohamed A E Safa, Ramez A E Barhoma, Eman F Eltabaa, Amany M Shalaby, Mohamed A Alabiad, Heba M Arakeeb, Hoda A Mohamed. Possible protective effects of CO Q10 against vincristine-induced peripheral neuropathy: Targeting oxidative stress, inflammation, and sarmoptosis.
Journal of biochemical and molecular toxicology.
2022 Mar; 36(3):e22976. doi:
10.1002/jbt.22976
. [PMID: 34939713] - Tal Y Samuel, Tal Hasin, Israel Gotsman, Tanya Weitzman, Fanny Ben Ivgi, Ziv Dadon, Elad Asher, Offer Amir, Michael Glikson, Ronny Alcalai, David Leibowitz. Coenzyme Q10 in the Treatment of Heart Failure with Preserved Ejection Fraction: A Prospective, Randomized, Double-Blind, Placebo-Controlled Trial.
Drugs in R&D.
2022 Mar; 22(1):25-33. doi:
10.1007/s40268-021-00372-1
. [PMID: 34826125] - Yamei Qiao, Yunyan Zhao, Gui Wang, Yuanyuan Song, Zilin Wei, Min Jin, Dong Yang, Jing Yin, Junwen Li, Weili Liu. Protection from benzene-induced immune dysfunction in mice.
Toxicology.
2022 02; 468(?):153103. doi:
10.1016/j.tox.2022.153103
. [PMID: 35090963] - Radosław Motkowski, Mateusz Maciejczyk, Marta Hryniewicka, Joanna Karpińska, Bożena Mikołuć. Effect of Statin Therapy on the Plasma Concentrations of Retinol, Alpha-Tocopherol and Coenzyme Q10 in Children with Familial Hypercholesterolemia.
Cardiovascular drugs and therapy.
2022 02; 36(1):75-84. doi:
10.1007/s10557-020-07091-w
. [PMID: 33052507] - Anja Birk Kuhlman, Lise Bluhme Mikkelsen, Signe Regnersgaard, Sophie Heinrichsen, Frederikke Hyldahl Nielsen, Jacob Frandsen, Patrick Orlando, Sonia Silvestri, Steen Larsen, Jørn Wulff Helge, Flemming Dela. The effect of 8 weeks of physical training on muscle performance and maximal fat oxidation rates in patients treated with simvastatin and coenzyme Q10 supplementation.
The Journal of physiology.
2022 02; 600(3):569-581. doi:
10.1113/jp281475
. [PMID: 34891216] - Yong Wang, Shaofei Chen, Kai Huo, Bin Wang, Junguo Liu, Guoqun Zhao, Jinlong Liu. Iterative mutagenesis induced by atmospheric and room temperature plasma treatment under multiple selection pressures for the improvement of coenzyme Q10 production by Rhodobacter sphaeroides.
FEMS microbiology letters.
2022 01; 368(21-24):. doi:
10.1093/femsle/fnab154
. [PMID: 34875071] - Yuanyuan Li, Qilei Yang, Bingxue Liu, Qian Zhang, Yanjie Liu, Xiuhua Zhao, Shujun Li. Improved water dispersion and bioavailability of coenzyme Q10 by bacterial cellulose nanofibers.
Carbohydrate polymers.
2022 Jan; 276(?):118788. doi:
10.1016/j.carbpol.2021.118788
. [PMID: 34823798] - Nadia Turton, Robert A Heaton, Iain P Hargreaves. COVID-19 and the Assessment of Coenzyme Q10.
Methods in molecular biology (Clifton, N.J.).
2022; 2511(?):355-365. doi:
10.1007/978-1-0716-2395-4_27
. [PMID: 35838974] - Liuqing Yang, Heng Wang, SuJie Song, Hongbin Xu, Yun Chen, Saisai Tian, Yiqun Zhang, Qin Zhang. Systematic Understanding of Anti-Aging Effect of Coenzyme Q10 on Oocyte Through a Network Pharmacology Approach.
Frontiers in endocrinology.
2022; 13(?):813772. doi:
10.3389/fendo.2022.813772
. [PMID: 35222272] - Z Sumbalova, J Kucharska, P Palacka, Z Rausova, P H Langsjoen, A M Langsjoen, A Gvozdjakova. Platelet mitochondrial function and endogenous coenzyme Q10 levels are reduced in patients after COVID-19.
Bratislavske lekarske listy.
2022; 123(1):9-15. doi:
10.4149/bll_2022_002
. [PMID: 34967652] - Maryam Karamali, Masoumeh Gholizadeh. The effects of coenzyme Q10 supplementation on metabolic profiles and parameters of mental health in women with polycystic ovary syndrome.
Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology.
2022 Jan; 38(1):45-49. doi:
10.1080/09513590.2021.1991910
. [PMID: 34664527] - Aleksandr N Ovchinnikov, Antonio Paoli, Vladislav V Seleznev, Anna V Deryugina. Royal jelly plus coenzyme Q10 supplementation improves high-intensity interval exercise performance via changes in plasmatic and salivary biomarkers of oxidative stress and muscle damage in swimmers: a randomized, double-blind, placebo-controlled pilot trial.
Journal of the International Society of Sports Nutrition.
2022; 19(1):239-257. doi:
10.1080/15502783.2022.2086015
. [PMID: 35813842] - Sára Szuróczki, Gorkhmaz Abbaszade, Károly Bóka, Peter Schumann, Meina Neumann-Schaal, Erika Tóth. Szabonella alba gen. nov., sp. nov., a motile alkaliphilic bacterium of the family Rhodobacteraceae isolated from a soda lake.
International journal of systematic and evolutionary microbiology.
2022 Jan; 72(1):. doi:
10.1099/ijsem.0.005219
. [PMID: 35099369] - Yongxing Xu, Guolei Yang, Xiaowen Zuo, Jianjun Gao, Huaping Jia, Enhong Han, Juan Liu, Yan Wang, Hong Yan. A systematic review for the efficacy of coenzyme Q10 in patients with chronic kidney disease.
International urology and nephrology.
2022 Jan; 54(1):173-184. doi:
10.1007/s11255-021-02838-2
. [PMID: 33782820] - H Rauchová. Coenzyme Q10 effects in neurological diseases.
Physiological research.
2021 12; 70(Suppl4):S683-S714. doi:
10.33549/physiolres.934712
. [PMID: 35199552] - Francesco Pallotti, Christian Bergamini, Costanza Lamperti, Romana Fato. The Roles of Coenzyme Q in Disease: Direct and Indirect Involvement in Cellular Functions.
International journal of molecular sciences.
2021 Dec; 23(1):. doi:
10.3390/ijms23010128
. [PMID: 35008564] - Zhe Li, Wenjin Hu, Shushi Huang, Yuanlin Huang, Fei Li, Qiaozhen Wang, Zhanhua Tao, Xinli Pan. Acuticoccus mangrovi sp. nov., with an antibacterial property, isolated from mangrove sediment.
International journal of systematic and evolutionary microbiology.
2021 Dec; 71(12):. doi:
10.1099/ijsem.0.005137
. [PMID: 34874250] - Jiaqi Zhang, Chuan Xing, Han Zhao, Bing He. The effectiveness of coenzyme Q10, vitamin E, inositols, and vitamin D in improving the endocrine and metabolic profiles in women with polycystic ovary syndrome: a network Meta-analysis.
Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology.
2021 Dec; 37(12):1063-1071. doi:
10.1080/09513590.2021.1926975
. [PMID: 33988478] - Zhaohui Liu, Yan Li, Chunlei Li, Lili Yu, Yulin Chang, Min Qu. Delivery of coenzyme Q10 with mitochondria-targeted nanocarrier attenuates renal ischemia-reperfusion injury in mice.
Materials science & engineering. C, Materials for biological applications.
2021 Dec; 131(?):112536. doi:
10.1016/j.msec.2021.112536
. [PMID: 34857313] - Shih-Yao Lin, Asif Hameed, Chia-Fang Tsai, Chiu-Chung Young. Vineibacter terrae gen. nov., sp. nov., an ammonium-assimilating and nitrate-reducing bacterium isolated from vineyard soil.
International journal of systematic and evolutionary microbiology.
2021 Dec; 71(12):. doi:
10.1099/ijsem.0.005111
. [PMID: 34878378] - Yingning Wang, Fang Ma, Jixian Yang, Haijuan Guo, Delin Su. Xanthobacter dioxanivorans sp. nov., a 1,4-dioxane-degrading bacterium.
International journal of systematic and evolutionary microbiology.
2021 Dec; 71(12):. doi:
10.1099/ijsem.0.005139
. [PMID: 34882528] - Dongjun Kim, Yeonjae Yoo, Jong Seong Khim, Dongmin Yang, Duleepa Pathiraja, Byeonghyeok Park, In-Geol Choi, Jae-Jin Kim. Altererythrobacter lutimaris sp. nov., a marine bacterium isolated from a tidal flat and reclassification of Altererythrobacter deserti, Altererythrobacter estronivorus and Altererythrobacter muriae as Tsuneonella deserti comb. nov., Croceicoccus estronivorus comb. nov. and Alteripontixanthobacter muriae comb. nov.
International journal of systematic and evolutionary microbiology.
2021 Dec; 71(12):. doi:
10.1099/ijsem.0.005134
. [PMID: 34874248] - Mukadder Sunar, Gulce Naz Yazici, Renad Mammadov, Nezahat Kurt, Yusuf Kemal Arslan, Halis Süleyman. Coenzyme Q10 effect on cisplatin-induced oxidative retinal injury in rats.
Cutaneous and ocular toxicology.
2021 Dec; 40(4):312-318. doi:
10.1080/15569527.2021.1949336
. [PMID: 34325578] - J Kucharská, S Poništ, O Vančová, A Gvozdjáková, O Uličná, L Slovák, M Taghdisiesfejir, K Bauerová. Treatment with coenzyme Q10, omega-3-polyunsaturated fatty acids and their combination improved bioenergetics and levels of coenzyme Q9 and Q10 in skeletal muscle mitochondria in experimental model of arthritis.
Physiological research.
2021 11; 70(5):723-733. doi:
10.33549/physiolres.934664
. [PMID: 34505525] - Manuela R Martinefski, María F Yamasato, María B Di Carlo, Jorge R Daruich, Valeria P Tripodi. Coenzyme Q10 deficiency in patients with hereditary hemochromatosis.
Clinics and research in hepatology and gastroenterology.
2021 11; 45(6):101624. doi:
10.1016/j.clinre.2021.101624
. [PMID: 33676282] - Young-Ok Kim, Jae Koo Noh, Dong-Gyun Kim, In-Suk Park, Sooyeon Park, Jung-Hoon Yoon. Paenihalocynthiibacter styelae gen. nov., sp. nov., isolated from stalked sea squirt Styela clava.
International journal of systematic and evolutionary microbiology.
2021 Nov; 71(11):. doi:
10.1099/ijsem.0.005085
. [PMID: 34752209] - Weizhen Tan, Rannar Airik. Primary coenzyme Q10 nephropathy, a potentially treatable form of steroid-resistant nephrotic syndrome.
Pediatric nephrology (Berlin, Germany).
2021 11; 36(11):3515-3527. doi:
10.1007/s00467-020-04914-8
. [PMID: 33479824] - Nilima Pradhan, Charan Singh, Arti Singh. Coenzyme Q10 a mitochondrial restorer for various brain disorders.
Naunyn-Schmiedeberg's archives of pharmacology.
2021 11; 394(11):2197-2222. doi:
10.1007/s00210-021-02161-8
. [PMID: 34596729] - Peter Kämpfer, Hans-Jürgen Busse, Dominique Clermont, Alexis Criscuolo, Stefanie P Glaeser. Devosia equisanguinis sp. nov., isolated from horse blood.
International journal of systematic and evolutionary microbiology.
2021 Nov; 71(11):. doi:
10.1099/ijsem.0.005090
. [PMID: 34788212] - Hamid Reza Rafieian-Naeini, Mahdi Zhandi, Mostafa Sadeghi, Ali Reza Yousefi, Andrew Parks Benson. Effects of coenzyme Q10 on reproductive performance of laying Japanese quail (Coturnix japonica) under cadmium challenge.
Poultry science.
2021 Nov; 100(11):101418. doi:
10.1016/j.psj.2021.101418
. [PMID: 34600273] - Geeta Chhetri, Minchung Kang, Jiyoun Kim, Inhyup Kim, Yoonseop So, Taegun Seo. Sphingosinicella flava sp. nov., indole acetic acid producing bacteria isolated from maize field soil.
International journal of systematic and evolutionary microbiology.
2021 Oct; 71(10):. doi:
10.1099/ijsem.0.005038
. [PMID: 34605389] - Soo-Yeon Choi, Ji-Sung Oh, Dong-Hyun Roh. Parasphingopyxis marina sp. nov. isolated from coastal seawater.
International journal of systematic and evolutionary microbiology.
2021 Oct; 71(10):. doi:
10.1099/ijsem.0.005049
. [PMID: 34633920] - Farnaz Farsi, Nasser Ebrahimi-Daryani, Fereshteh Golab, Abolfazl Akbari, Leila Janani, Mohammad Yahya Karimi, Pardis Irandoost, Naimeh Mesri Alamdari, Shahram Agah, Mohammadreza Vafa. A randomized controlled trial on the coloprotective effect of coenzyme Q10 on immune-inflammatory cytokines, oxidative status, antimicrobial peptides, and microRNA-146a expression in patients with mild-to-moderate ulcerative colitis.
European journal of nutrition.
2021 Sep; 60(6):3397-3410. doi:
10.1007/s00394-021-02514-2
. [PMID: 33620550] - Zachary A Kemmerer, Kyle P Robinson, Jonathan M Schmitz, Mateusz Manicki, Brett R Paulson, Adam Jochem, Paul D Hutchins, Joshua J Coon, David J Pagliarini. UbiB proteins regulate cellular CoQ distribution in Saccharomyces cerevisiae.
Nature communications.
2021 08; 12(1):4769. doi:
10.1038/s41467-021-25084-7
. [PMID: 34362905] - Sara Gutierrez-Patricio, Jose L Gonzalez-Pimentel, Ana Zelia Miller, Bernardo Hermosin, Cesareo Saiz-Jimenez, Valme Jurado. Paracoccus onubensis sp. nov., a novel alphaproteobacterium isolated from the wall of a show cave.
International journal of systematic and evolutionary microbiology.
2021 Aug; 71(8):. doi:
10.1099/ijsem.0.004942
. [PMID: 34388083] - Xun-Ke Sun, Ya-Ning Zhang, Yu-Yao Jia, Yan-Lin Zhong, Guan-Jun Chen, Zong-Jun Du. Palleronia sediminis sp. nov. and Flavivirga algicola sp. nov., two marine bacteria isolated from offshore areas near Weihai.
International journal of systematic and evolutionary microbiology.
2021 Aug; 71(8):. doi:
10.1099/ijsem.0.004949
. [PMID: 34370661] - Ekaterina N Tikhonova, Denis S Grouzdev, Irina K Kravchenko. Xanthobacter oligotrophicus sp.nov., isolated from paper mill sewage.
International journal of systematic and evolutionary microbiology.
2021 Aug; 71(8):. doi:
10.1099/ijsem.0.004972
. [PMID: 34410902] - Christina D'Agrosa, Charles L Cai, Faisal Siddiqui, Karen Deslouches, Stephen Wadowski, Jacob V Aranda, Kay D Beharry. Comparison of coenzyme Q10 or fish oil for prevention of intermittent hypoxia-induced oxidative injury in neonatal rat lungs.
Respiratory research.
2021 Jul; 22(1):196. doi:
10.1186/s12931-021-01786-w
. [PMID: 34225702] - Masanori Kobayashi, Chie Tsuzuki, Marika Kobayashi, Hinano Tsuchiya, Yume Yamashita, Kanako Ueno, Moe Onozawa, Masato Kobayashi, Eiichi Kawakami, Tatsuya Hori. Effect of supplementation with the reduced form of coenzyme Q10 on semen quality and antioxidant status in dogs with poor semen quality: Three case studies.
The Journal of veterinary medical science.
2021 Jul; 83(7):1044-1049. doi:
10.1292/jvms.21-0174
. [PMID: 34011783] - Juan Du, Yang Liu, Tao Pei, Ming-Rong Deng, Honghui Zhu. Salipiger mangrovisoli sp. nov., isolated from mangrove soil and the proposal for the reclassification of Paraphaeobacter pallidus as Salipiger pallidus comb. nov.
International journal of systematic and evolutionary microbiology.
2021 Jul; 71(7):. doi:
10.1099/ijsem.0.004892
. [PMID: 34270400] - Fanny Fontaine, Damien Legallois, Christian Créveuil, Mohamed Chtourou, Laurent Coulbault, Paul Milliez, Amir Hodzic, Eric Saloux, Farzin Beygui, Stéphane Allouche. Is plasma concentration of coenzyme Q10 a predictive marker for left ventricular remodelling after revascularization for ST-segment elevation myocardial infarction?.
Annals of clinical biochemistry.
2021 07; 58(4):327-334. doi:
10.1177/00045632211001100
. [PMID: 33622041] - Shih-Yao Lin, Chia-Fang Tsai, Asif Hameed, Yu-Shan Tang, Chiu-Chung Young. Description of Devosia faecipullorum sp. nov., harboring antibiotic- and toxic compound-resistace genes, isolated from poultry manure.
International journal of systematic and evolutionary microbiology.
2021 Jul; 71(7):. doi:
10.1099/ijsem.0.004901
. [PMID: 34287119] - Sheng Cui, Kang Luo, Yi Quan, Sun Woo Lim, Yoo Jin Shin, Kyung Eun Lee, Hong Lim Kim, Eun Jeong Ko, Ju Hwan Kim, Sang J Chung, Soo Kyung Bae, Byung Ha Chung, Chul Woo Yang. Water-soluble coenzyme Q10 provides better protection than lipid-soluble coenzyme Q10 in a rat model of chronic tacrolimus nephropathy.
The Korean journal of internal medicine.
2021 07; 36(4):949-961. doi:
10.3904/kjim.2020.211
. [PMID: 33430574] - Amira Mohamed Mohsen, Mostafa Mohamed Younis, Abeer Salama, Asmaa Badawy Darwish. Cubosomes as a Potential Oral Drug Delivery System for Enhancing the Hepatoprotective Effect of Coenzyme Q10.
Journal of pharmaceutical sciences.
2021 07; 110(7):2677-2686. doi:
10.1016/j.xphs.2021.02.007
. [PMID: 33600809] - Shuai Li, Lei Shi, Wen-Hui Lian, Zhi-Liang Lin, Chun-Yan Lu, Lu Xu, Qi-Chuang Wei, Jing-Yi Zhang, Lei Dong, Wen-Jun Li. Arenibaculum pallidiluteum gen. nov., sp. nov., a novel bacterium in the family Azospirillaceae, isolated from desert soil, and reclassification of Skermanella xinjiangensis to a new genus Deserticella as Deserticella xinjiangensis comb. nov., and transfer of the genera Indioceanicola and Oleisolibacter from the family Rhodospirillaceae to the family Azospirillaceae.
International journal of systematic and evolutionary microbiology.
2021 Jul; 71(7):. doi:
10.1099/ijsem.0.004874
. [PMID: 34283015] - Osama Y Alshogran, Shreen D Nusair, Tamam El-Elimat, Karem H Alzoubi, Abdullah Obeidat, Maya Sweidan. Evaluation of coenzyme Q10 combined with or without N-acetyl cysteine or atorvastatin for preventing contrast-induced kidney injury in diabetic rats.
Naunyn-Schmiedeberg's archives of pharmacology.
2021 07; 394(7):1403-1410. doi:
10.1007/s00210-021-02070-w
. [PMID: 33630121] - Ni Luh Dewi Aryani, Siswandono Siswodihardjo, Widji Soeratri, Nadia Fitria Indah Sari. Development, characterization, molecular docking, and in vivo skin penetration of coenzyme Q10 nanostructured lipid carriers using tristearin and stearyl alcohol for dermal delivery.
Journal of basic and clinical physiology and pharmacology.
2021 Jun; 32(4):517-525. doi:
10.1515/jbcpp-2020-0512
. [PMID: 34214318] - Fudi Wang, Junxia Min. DHODH tangoing with GPX4 on the ferroptotic stage.
Signal transduction and targeted therapy.
2021 06; 6(1):244. doi:
10.1038/s41392-021-00656-7
. [PMID: 34145214] - Heba Serag, Lamia El Wakeel, Amira Adly. Coenzyme Q10 administration has no effect on sICAM-1 and metabolic parameters of pediatrics with type 1 diabetes mellitus.
International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition.
2021 Jun; 91(3-4):315-324. doi:
10.1024/0300-9831/a000636
. [PMID: 31942840] - Sooyeon Park, Jung-Hoon Yoon. Sulfitobacter aestuariivivens sp. nov., isolated from a tidal flat.
International journal of systematic and evolutionary microbiology.
2021 Jun; 71(6):. doi:
10.1099/ijsem.0.004827
. [PMID: 34161219] - Victor Adán Lanceta, Yolanda Romero Salas, María Luisa Justa Roldán, María Concepción García Jiménez, Gema Ariceta Iraola. Encephalopathy, kidney failure and retinopathy. CoQ10 deficiency due to COQ8B mutation.
Anales de pediatria.
2021 06; 94(6):415-417. doi:
10.1016/j.anpede.2020.05.008
. [PMID: 34090639] - Yu-Wen Wang, Wen-Ting Ren, Yuan-You Xu, Xin-Qi Zhang. Muriiphilus fusiformis gen. nov., sp. nov., a novel non-marine bacterium belonging to the Roseobacter group, and reclassification of Maritimibacter lacisalsi (Zhong et al. 2015) as Muriicola lacisalsi gen. nov., comb. nov.
International journal of systematic and evolutionary microbiology.
2021 Jun; 71(6):. doi:
10.1099/ijsem.0.004859
. [PMID: 34181513] - Soon Dong Lee, Sung-Min Kim, Hong Lim Yang, Yeong-Sik Byeon, In Seop Kim. Hongsoonwoonella zoysiae gen. nov., sp. nov., a new member of the family Stappiaceae isolated from a tidal mudflat.
Archives of microbiology.
2021 May; 203(4):1335-1343. doi:
10.1007/s00203-020-02083-8
. [PMID: 33386867] - Mingzhe Li, Baoan Ning, Tianhui Wang. The mechanism and prevention of mitochondrial injury after exercise.
Journal of physiology and biochemistry.
2021 May; 77(2):215-225. doi:
10.1007/s13105-021-00802-3
. [PMID: 33650090] - Mathias J Holmberg, Lars W Andersen, Ari Moskowitz, Katherine M Berg, Michael N Cocchi, Maureen Chase, Xiaowen Liu, Duncan M Kuhn, Anne V Grossestreuer, Anne Kirstine Hoeyer-Nielsen, Hans Kirkegaard, Michael W Donnino. Ubiquinol (reduced coenzyme Q10) as a metabolic resuscitator in post-cardiac arrest: A randomized, double-blind, placebo-controlled trial.
Resuscitation.
2021 05; 162(?):388-395. doi:
10.1016/j.resuscitation.2021.01.041
. [PMID: 33577964]