RHODANINE (BioDeep_00001868540)

Main id: BioDeep_00000006454

 


代谢物信息卡片


RHODANINE

化学式: C3H3NOS2 (132.9656)
中文名称: 罗丹宁
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1C(=O)NC(=S)S1
InChI: InChI=1S/C3H3NOS2/c5-2-1-7-3(6)4-2/h1H2,(H,4,5,6)

描述信息

同义名列表

3 个代谢物同义名

RHODANINE; Rhodanine; Rhodanine



数据库引用编号

14 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 13 AKR1B1, AXIN2, BCL2, EGFR, MAPK8, MSMP, PIM1, PPARG, PTGS2, PTP4A3, PTS, SH2D1A, TNK1
Golgi apparatus, trans-Golgi network membrane 1 ATP7A
Peripheral membrane protein 2 PTGS2, TNK1
Endosome membrane 1 EGFR
Endoplasmic reticulum membrane 3 BCL2, EGFR, PTGS2
Nucleus 7 AXIN2, BCL2, EGFR, MAPK8, PIM1, PPARG, PTP4A3
cytosol 10 AKR1A1, AKR1B1, ATP7A, AXIN2, BCL2, MAPK8, PIM1, PPARG, PTS, SH2D1A
dendrite 1 ATP7A
trans-Golgi network 1 ATP7A
centrosome 1 AXIN2
nucleoplasm 5 AKR1B1, ATP2B1, MAPK8, PIM1, PPARG
RNA polymerase II transcription regulator complex 1 PPARG
Cell membrane 4 ATP2B1, ATP7A, EGFR, PTP4A3
ruffle membrane 1 EGFR
Cell projection, axon 1 ATP7A
Early endosome membrane 2 ATP7A, EGFR
Multi-pass membrane protein 2 ATP2B1, ATP7A
Synapse 3 AKR1A1, ATP2B1, MAPK8
cell junction 1 EGFR
cell surface 1 EGFR
glutamatergic synapse 2 ATP2B1, EGFR
Golgi apparatus 1 ATP7A
Golgi membrane 1 EGFR
lysosomal membrane 2 CP, GAA
neuronal cell body 2 ATP7A, INHA
presynaptic membrane 1 ATP2B1
Cytoplasm, cytosol 1 AKR1A1
Lysosome 1 GAA
endosome 1 EGFR
plasma membrane 10 ATP2B1, ATP7A, AXIN2, BCHE, CP, EGFR, GAA, PIM1, PTP4A3, TNK1
synaptic vesicle membrane 1 ATP2B1
Membrane 6 ATP2B1, ATP7A, BCL2, EGFR, GAA, TNK1
apical plasma membrane 3 AKR1A1, ATP7A, EGFR
axon 2 ATP7A, MAPK8
basolateral plasma membrane 3 ATP2B1, ATP7A, EGFR
caveola 1 PTGS2
extracellular exosome 5 AKR1A1, AKR1B1, ATP2B1, CP, GAA
Lysosome membrane 1 GAA
endoplasmic reticulum 3 ATP7A, BCL2, PTGS2
extracellular space 7 AKR1A1, AKR1B1, BCHE, CP, EGFR, INHA, MSMP
lysosomal lumen 1 GAA
perinuclear region of cytoplasm 3 ATP7A, EGFR, PPARG
mitochondrion 3 AKR1B1, BCL2, PTS
protein-containing complex 3 BCL2, EGFR, PTGS2
intracellular membrane-bounded organelle 3 ATP2B1, GAA, PPARG
Microsome membrane 1 PTGS2
postsynaptic density 1 ATP7A
Single-pass type I membrane protein 1 EGFR
Secreted 5 BCHE, CP, GAA, INHA, MSMP
extracellular region 4 BCHE, CP, GAA, INHA
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 1 BCL2
photoreceptor inner segment 1 INHA
photoreceptor outer segment 1 INHA
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 2 BCL2, EGFR
perikaryon 1 ATP7A
beta-catenin destruction complex 1 AXIN2
nucleolus 1 PIM1
Melanosome membrane 1 ATP7A
Early endosome 1 PTP4A3
Apical cell membrane 1 AKR1A1
Membrane raft 1 EGFR
pore complex 1 BCL2
focal adhesion 1 EGFR
intracellular vesicle 1 EGFR
secretory granule 1 ATP7A
lateral plasma membrane 1 ATP2B1
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Late endosome 1 ATP7A
receptor complex 2 EGFR, PPARG
neuron projection 2 ATP7A, PTGS2
chromatin 1 PPARG
cell leading edge 1 ATP7A
cell projection 1 ATP2B1
phagocytic vesicle membrane 1 ATP7A
brush border membrane 1 ATP7A
inhibin A complex 1 INHA
blood microparticle 2 BCHE, CP
Basolateral cell membrane 1 ATP2B1
microvillus 1 ATP7A
Cell projection, dendrite 1 ATP7A
tertiary granule membrane 1 GAA
Presynaptic cell membrane 1 ATP2B1
myelin sheath 1 BCL2
basal plasma membrane 1 EGFR
synaptic membrane 1 EGFR
trans-Golgi network membrane 1 ATP7A
trans-Golgi network transport vesicle 1 ATP7A
endoplasmic reticulum lumen 3 BCHE, CP, PTGS2
azurophil granule membrane 1 GAA
immunological synapse 1 ATP2B1
nuclear envelope lumen 1 BCHE
clathrin-coated endocytic vesicle membrane 1 EGFR
ficolin-1-rich granule membrane 1 GAA
basal dendrite 1 MAPK8
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
inhibin B complex 1 INHA
inhibin-betaglycan-ActRII complex 1 INHA
[Isoform 3]: Cytoplasm, cytosol 1 ATP7A
autolysosome lumen 1 GAA
BAD-BCL-2 complex 1 BCL2
photoreceptor ribbon synapse 1 ATP2B1
[Isoform 5]: Endoplasmic reticulum 1 ATP7A


文献列表

  • Rozh Q Ameen, Zahra A Amin, Hiwa O Ahmad, Diler D Ghafur, Melodya G Toma, Nyan Sabah, Muhammad Fakhir, Gardoon Abdulla. Gastroprotective effect of rhodanine and 2,4-thiazolidinediones scaffolds in rat stomachs by contribution of anti-apoptotic (BCL-2) and tumor suppressor (P53) proteins. Scientific reports. 2024 01; 14(1):1699. doi: 10.1038/s41598-024-51446-4. [PMID: 38242960]
  • Sakthiprabha Sampath, Sangilimuthu Alagar Yadav, Manjunath Meti, Sundaram Kaveri, Ravi Subban, Rajagopal Subramanyam. Elucidation of binding mechanism of rhodanine derivative P4OC on bovine serum albumin. Journal of biomolecular structure & dynamics. 2024 Jan; 42(1):475-482. doi: 10.1080/07391102.2023.2194001. [PMID: 36974960]
  • Qing Han, Nan Wu, Jingyu Zhang, Tianyu Feng, Yunjiang Zi, Rulei Zhang, Renxuan Zou, Yaoyang Liu, Qing Yang, Hongxia Duan. Discovery of Rhodanine Inhibitors Targeting Of ChtI Based on the π-Stacking Effect and Aqueous Solubility. Journal of agricultural and food chemistry. 2023 Dec; 71(48):18685-18695. doi: 10.1021/acs.jafc.3c05287. [PMID: 38006338]
  • Qing Han, Nan Wu, Yao-Yang Liu, Jing-Yu Zhang, Ru-Lei Zhang, Hui-Lin Li, Zhi-Yang Jiang, Jia-Xing Huang, Hong-Xia Duan, Qing Yang. Piperonyl-Tethered Rhodanine Derivatives Potently Inhibit Chitinolytic Enzymes of Ostrinia furnacalis. Journal of agricultural and food chemistry. 2022 Jun; 70(24):7387-7399. doi: 10.1021/acs.jafc.2c02091. [PMID: 35687728]
  • Jing Pu, Xiaoyang He, Wei Xu, Cong Wang, Qiaoshuai Lan, Chen Hua, Kai Wang, Lu Lu, Shibo Jiang. The Analogs of Furanyl Methylidene Rhodanine Exhibit Broad-Spectrum Inhibitory and Inactivating Activities against Enveloped Viruses, including SARS-CoV-2 and Its Variants. Viruses. 2022 02; 14(3):. doi: 10.3390/v14030489. [PMID: 35336896]
  • Julianne N Richard, Jennifer E Graham, Sharon A Center, Michael M Garner, Drury R Reavill. Hepatic copper accumulates in ferrets with and without hepatobiliary disease. American journal of veterinary research. 2022 Jan; 83(4):371-380. doi: 10.2460/ajvr.21.08.0131. [PMID: 35092668]
  • Anna N Ligezka, Silvia Radenkovic, Mayank Saraswat, Kishore Garapati, Wasantha Ranatunga, Wirginia Krzysciak, Hitoshi Yanaihara, Graeme Preston, William Brucker, Renee M McGovern, Joel M Reid, David Cassiman, Karthik Muthusamy, Christin Johnsen, Saadet Mercimek-Andrews, Austin Larson, Christina Lam, Andrew C Edmondson, Bart Ghesquière, Peter Witters, Kimiyo Raymond, Devin Oglesbee, Akhilesh Pandey, Ethan O Perlstein, Tamas Kozicz, Eva Morava. Sorbitol Is a Severity Biomarker for PMM2-CDG with Therapeutic Implications. Annals of neurology. 2021 12; 90(6):887-900. doi: 10.1002/ana.26245. [PMID: 34652821]
  • Sivakumar Lingappa, Muthugounder Subramanian Shivakumar, Thamilarasan Manivasagam, Somasundaram Thirugnanasambandan Somasundaram, Palaniappan Seedevi. Neuroprotective Effect of Epalrestat on Hydrogen Peroxide-Induced Neurodegeneration in SH-SY5Y Cellular Model. Journal of microbiology and biotechnology. 2021 Jun; 31(6):867-874. doi: 10.4014/jmb.2101.01002. [PMID: 33820886]
  • Zubeyir Elmazoglu, Marta Soltesova Prnova, Milan Stefek, Asli F Ceylan, Michael Aschner, Edgar Rangel-López, Abel Santamaria, Cimen Karasu. Protective Effects of Novel Substituted Triazinoindole Inhibitors of Aldose Reductase and Epalrestat in Neuron-like PC12 Cells and BV2 Rodent Microglial Cells Exposed to Toxic Models of Oxidative Stress: Comparison with the Pyridoindole Antioxidant Stobadine. Neurotoxicity research. 2021 Jun; 39(3):588-597. doi: 10.1007/s12640-021-00349-7. [PMID: 33713301]
  • Shalki Choudhary, Manoj Kumar, Om Silakari. QM/MM analysis, synthesis and biological evaluation of epalrestat based mutual-prodrugs for diabetic neuropathy and nephropathy. Bioorganic chemistry. 2021 03; 108(?):104556. doi: 10.1016/j.bioorg.2020.104556. [PMID: 33376013]
  • Adam J Miller, Sharon A Center, John F Randolph, Cameron H Friesen, Andrew D Miller, Karen W Warner. Disparities in hepatic copper concentrations determined by atomic absorption spectroscopy, inductively coupled plasma mass spectrometry, and digital image analysis of rhodanine-stained sections in dogs. Journal of the American Veterinary Medical Association. 2021 Feb; 258(4):395-406. doi: 10.2460/javma.258.4.395. [PMID: 33539202]
  • Keisuke Sato, Ryosuke Tatsunami, Koji Wakame. Epalrestat suppresses inflammatory response in lipopolysaccharide-stimulated RAW264.7 cells. Allergologia et immunopathologia. 2021; 49(5):1-8. doi: 10.15586/aei.v49i5.102. [PMID: 34476915]
  • Zunaira Alvi, Muhammad Akhtar, Arshad Mahmood, Nisar Ur-Rahman, Imran Nazir, Hadia Sadaquat, Muhammad Ijaz, Shahzada Khurram Syed, Muhammad Khurram Waqas, Yi Wang. Enhanced Oral Bioavailability of Epalrestat SBE7-β-CD Complex Loaded Chitosan Nanoparticles: Preparation, Characterization and in-vivo Pharmacokinetic Evaluation. International journal of nanomedicine. 2021; 16(?):8353-8373. doi: 10.2147/ijn.s339857. [PMID: 35002232]
  • Yanni Zhu, Yanjuan Sheng. RETRACTED: Sustained delivery of epalrestat to the retina using PEGylated solid lipid nanoparticles laden contact lens. International journal of pharmaceutics. 2020 09; 587(?):119688. doi: 10.1016/j.ijpharm.2020.119688. [PMID: 32717281]
  • Yuki Murakami, Chiaki Murakami, Fumi Hoshino, Qiang Lu, Rino Akiyama, Atsumi Yamaki, Daisuke Takahashi, Fumio Sakane. Palmitic acid- and/or palmitoleic acid-containing phosphatidic acids are generated by diacylglycerol kinase α in starved Jurkat T cells. Biochemical and biophysical research communications. 2020 05; 525(4):1054-1060. doi: 10.1016/j.bbrc.2020.02.162. [PMID: 32184022]
  • Ryosuke Tatsunami, Yu Murao, Keisuke Sato. [Protective Effect of Epalrestat against Oxidative Stress-induced Cytotoxicity]. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan. 2020; 140(11):1381-1388. doi: 10.1248/yakushi.20-00167. [PMID: 33132274]
  • Sangeetha Iyer, Feba S Sam, Nina DiPrimio, Graeme Preston, Jan Verheijen, Kausalya Murthy, Zachary Parton, Hillary Tsang, Jessica Lao, Eva Morava, Ethan O Perlstein. Repurposing the aldose reductase inhibitor and diabetic neuropathy drug epalrestat for the congenital disorder of glycosylation PMM2-CDG. Disease models & mechanisms. 2019 11; 12(11):. doi: 10.1242/dmm.040584. [PMID: 31636082]
  • Sharon Pindar, Christina Ramirez. Predicting copper toxicosis: relationship between the ATP7A and ATP7B gene mutations and hepatic copper quantification in dogs. Human genetics. 2019 May; 138(5):541-546. doi: 10.1007/s00439-019-02010-y. [PMID: 31062085]
  • Bai-Bing Yang, Zhi-Wei Hong, Zheng Zhang, Wen Yu, Tao Song, Lei-Lei Zhu, He-Song Jiang, Guo-Tao Chen, Yun Chen, Yu-Tian Dai. Epalrestat, an Aldose Reductase Inhibitor, Restores Erectile Function in Streptozocin-induced Diabetic Rats. International journal of impotence research. 2019 Mar; 31(2):97-104. doi: 10.1038/s41443-018-0075-x. [PMID: 30214006]
  • Yun-Xing Gao, Juan Tang, Qian Zhang, Li-Li Jiang, Xian-Wei Li. [Interventional effect of epalrestat on renal interstitial fibrosis in unilateral ureteral obstruction rats and its mechanism]. Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology. 2019 Jan; 35(1):79-84. doi: 10.12047/j.cjap.5735.2019.019. [PMID: 31245958]
  • Jun He, Hao-Xue Gao, Na Yang, Xiao-Dong Zhu, Run-Bin Sun, Yuan Xie, Cai-Hong Zeng, Jing-Wei Zhang, Jian-Kun Wang, Fei Ding, Ji-Ye Aa, Guang-Ji Wang. The aldose reductase inhibitor epalrestat exerts nephritic protection on diabetic nephropathy in db/db mice through metabolic modulation. Acta pharmacologica Sinica. 2019 Jan; 40(1):86-97. doi: 10.1038/s41401-018-0043-5. [PMID: 29930278]
  • Satoshi Yamaori, Noriyuki Araki, Mio Shionoiri, Kurumi Ikehata, Shinobu Kamijo, Shigeru Ohmori, Kazuhito Watanabe. A Specific Probe Substrate for Evaluation of CYP4A11 Activity in Human Tissue Microsomes and a Highly Selective CYP4A11 Inhibitor: Luciferin-4A and Epalrestat. The Journal of pharmacology and experimental therapeutics. 2018 09; 366(3):446-457. doi: 10.1124/jpet.118.249557. [PMID: 29976573]
  • Chenge Li, Aurélien Mourton, Marie-Aude Plamont, Vanessa Rodrigues, Isabelle Aujard, Michel Volovitch, Thomas Le Saux, Franck Perez, Sophie Vriz, Ludovic Jullien, Alain Joliot, Arnaud Gautier. Fluorogenic Probing of Membrane Protein Trafficking. Bioconjugate chemistry. 2018 06; 29(6):1823-1828. doi: 10.1021/acs.bioconjchem.8b00180. [PMID: 29791141]
  • Xiaotong Wang, Haixiong Lin, Shuai Xu, Yuanlin Jin, Ren Zhang. The clinical efficacy of epalrestat combined with α-lipoic acid in diabetic peripheral neuropathy: Protocol for a systematic review and meta-analysis. Medicine. 2018 Feb; 97(6):e9828. doi: 10.1097/md.0000000000009828. [PMID: 29419686]
  • Valeria Cagno, Cristina Tintori, Andrea Civra, Roberta Cavalli, Marika Tiberi, Lorenzo Botta, Annalaura Brai, Giulio Poli, Caroline Tapparel, David Lembo, Maurizio Botta. Novel broad spectrum virucidal molecules against enveloped viruses. PloS one. 2018; 13(12):e0208333. doi: 10.1371/journal.pone.0208333. [PMID: 30532192]
  • Xiaotong Wang, Haixiong Lin, Shuai Xu, Yuanlin Jin, Ren Zhang. Alpha lipoic acid combined with epalrestat: a therapeutic option for patients with diabetic peripheral neuropathy. Drug design, development and therapy. 2018; 12(?):2827-2840. doi: 10.2147/dddt.s168878. [PMID: 30233145]
  • Cristina Tintori, Giulia Iovenitti, Elisa Rita Ceresola, Roberto Ferrarese, Claudio Zamperini, Annalaura Brai, Giulio Poli, Elena Dreassi, Valeria Cagno, David Lembo, Filippo Canducci, Maurizio Botta. Rhodanine derivatives as potent anti-HIV and anti-HSV microbicides. PloS one. 2018; 13(6):e0198478. doi: 10.1371/journal.pone.0198478. [PMID: 29870553]
  • Oliver Hachmöller, Michaela Aichler, Kristina Schwamborn, Lisa Lutz, Martin Werner, Michael Sperling, Axel Walch, Uwe Karst. Investigating the influence of standard staining procedures on the copper distribution and concentration in Wilson's disease liver samples by laser ablation-inductively coupled plasma-mass spectrometry. Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements (GMS). 2017 Dec; 44(?):71-75. doi: 10.1016/j.jtemb.2017.06.002. [PMID: 28965603]
  • Ahmad Nazaktabar, Mohammad Soleimani Lashkenari, Atefeh Araghi, Mohsen Ghorbani, Hannaneh Golshahi. In vivo evaluation of toxicity and antiviral activity of polyrhodanine nanoparticles by using the chicken embryo model. International journal of biological macromolecules. 2017 Oct; 103(?):379-384. doi: 10.1016/j.ijbiomac.2017.05.069. [PMID: 28526349]
  • Jingqiu Huang, Runbin Sun, Siqi Feng, Jun He, Fei Fei, Haoxue Gao, Yuqing Zhao, Yue Zhang, Huilin Gu, Jiye Aa, Guangji Wang. Sensitive analysis and pharmacokinetic study of epalrestat in C57BL/6J mice. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2017 Jun; 1055-1056(?):98-103. doi: 10.1016/j.jchromb.2017.03.040. [PMID: 28445852]
  • Hong Sun, Yunhai Bo, Mingjie Zhang, Xiao Wu, Mingyang Zhou, Longshan Zhao, Zhili Xiong. Simultaneous determination of epalrestat and puerarin in rat plasma by UHPLC-MS/MS: Application to their pharmacokinetic interaction study. Biomedical chromatography : BMC. 2017 Apr; 31(4):. doi: 10.1002/bmc.3855. [PMID: 27650591]
  • Zhiyong Huang, Quan Hong, Xueguang Zhang, Wenzhen Xiao, Liyuan Wang, Shaoyuan Cui, Zhe Feng, Yang Lv, Guangyan Cai, Xiangmei Chen, Di Wu. Aldose reductase mediates endothelial cell dysfunction induced by high uric acid concentrations. Cell communication and signaling : CCS. 2017 01; 15(1):3. doi: 10.1186/s12964-016-0158-6. [PMID: 28057038]
  • Marcus Pickhardt, Carmen Lawatscheck, Hans G Borner, Eckhard Mandelkow. Inhibition of Tau Protein Aggregation by Rhodanine-based Compounds Solubilized Via Specific Formulation Additives to Improve Bioavailability and Cell Viability. Current Alzheimer research. 2017; 14(7):742-752. doi: 10.2174/1567205014666170202103136. [PMID: 28155596]
  • Heba El Gamal, Ali Hussein Eid, Shankar Munusamy. Renoprotective Effects of Aldose Reductase Inhibitor Epalrestat against High Glucose-Induced Cellular Injury. BioMed research international. 2017; 2017(?):5903105. doi: 10.1155/2017/5903105. [PMID: 28386557]
  • Liudas Slepikas, Gianpaolo Chiriano, Remo Perozzo, Sébastien Tardy, Agata Kranjc, Ophélie Patthey-Vuadens, Hajer Ouertatani-Sakouhi, Sébastien Kicka, Christopher F Harrison, Tiziana Scrignari, Karl Perron, Hubert Hilbi, Thierry Soldati, Pierre Cosson, Eduardas Tarasevicius, Leonardo Scapozza. In Silico Driven Design and Synthesis of Rhodanine Derivatives as Novel Antibacterials Targeting the Enoyl Reductase InhA. Journal of medicinal chemistry. 2016 12; 59(24):10917-10928. doi: 10.1021/acs.jmedchem.5b01620. [PMID: 26730986]
  • Martin Krátký, Šárka Štěpánková, Katarína Vorčáková, Jarmila Vinšová. Synthesis and in vitro evaluation of novel rhodanine derivatives as potential cholinesterase inhibitors. Bioorganic chemistry. 2016 10; 68(?):23-9. doi: 10.1016/j.bioorg.2016.07.004. [PMID: 27428597]
  • Kaori Yama, Keisuke Sato, Yu Murao, Ryosuke Tatsunami, Yoshiko Tampo. Epalrestat Upregulates Heme Oxygenase-1, Superoxide Dismutase, and Catalase in Cells of the Nervous System. Biological & pharmaceutical bulletin. 2016 Sep; 39(9):1523-30. doi: 10.1248/bpb.b16-00332. [PMID: 27439473]
  • Ke Liu, Naoko Kunii, Megumi Sakuma, Atsumi Yamaki, Satoru Mizuno, Mayu Sato, Hiromichi Sakai, Sayaka Kado, Kazuo Kumagai, Hirotatsu Kojima, Takayoshi Okabe, Tetsuo Nagano, Yasuhito Shirai, Fumio Sakane. A novel diacylglycerol kinase α-selective inhibitor, CU-3, induces cancer cell apoptosis and enhances immune response. Journal of lipid research. 2016 Mar; 57(3):368-79. doi: 10.1194/jlr.m062794. [PMID: 26768655]
  • Doyeon Kim, Yun Gyeong Kim, Jae Hong Seo, Kye Jung Shin. Identification and characterization of potent, selective and metabolically stable IKKβ inhibitor. Bioorganic & medicinal chemistry letters. 2016 Feb; 26(4):1120-3. doi: 10.1016/j.bmcl.2016.01.065. [PMID: 26826731]
  • Ahmed AbdelKhalek, Charles R Ashby, Bhargav A Patel, Tanaji T Talele, Mohamed N Seleem. In Vitro Antibacterial Activity of Rhodanine Derivatives against Pathogenic Clinical Isolates. PloS one. 2016; 11(10):e0164227. doi: 10.1371/journal.pone.0164227. [PMID: 27711156]
  • Stella Cascioferro, Demetrio Raffa, Benedetta Maggio, Maria Valeria Raimondi, Domenico Schillaci, Giuseppe Daidone. Sortase A Inhibitors: Recent Advances and Future Perspectives. Journal of medicinal chemistry. 2015 Dec; 58(23):9108-23. doi: 10.1021/acs.jmedchem.5b00779. [PMID: 26280844]
  • Beatriz Vásquez-Soto, Nicolás Manríquez, Mirna Cruz-Amaya, Jan Zouhar, Natasha V Raikhel, Lorena Norambuena. Sortin2 enhances endocytic trafficking towards the vacuole in Saccharomyces cerevisiae. Biological research. 2015 Jul; 48(?):39. doi: 10.1186/s40659-015-0032-9. [PMID: 26209329]
  • Kaori Yama, Keisuke Sato, Natsuki Abe, Yu Murao, Ryosuke Tatsunami, Yoshiko Tampo. Epalrestat increases glutathione, thioredoxin, and heme oxygenase-1 by stimulating Nrf2 pathway in endothelial cells. Redox biology. 2015; 4(?):87-96. doi: 10.1016/j.redox.2014.12.002. [PMID: 25529839]
  • William Sinko, Yang Wang, Wei Zhu, Yonghui Zhang, Ferran Feixas, Courtney L Cox, Douglas A Mitchell, Eric Oldfield, J Andrew McCammon. Undecaprenyl diphosphate synthase inhibitors: antibacterial drug leads. Journal of medicinal chemistry. 2014 Jul; 57(13):5693-701. doi: 10.1021/jm5004649. [PMID: 24827744]
  • Axel Hollmann, Miguel A R B Castanho, Benhur Lee, Nuno C Santos. Singlet oxygen effects on lipid membranes: implications for the mechanism of action of broad-spectrum viral fusion inhibitors. The Biochemical journal. 2014 Apr; 459(1):161-70. doi: 10.1042/bj20131058. [PMID: 24456301]
  • Shi-Hong Wen, Yi-Hong Ling, Yi Li, Cai Li, Jia-Xin Liu, Yun-Sheng Li, Xi Yao, Zhi-Qiu Xia, Ke-Xuan Liu. Ischemic postconditioning during reperfusion attenuates oxidative stress and intestinal mucosal apoptosis induced by intestinal ischemia/reperfusion via aldose reductase. Surgery. 2013 Apr; 153(4):555-64. doi: 10.1016/j.surg.2012.09.017. [PMID: 23218881]
  • Ramakrishna Nirogi, Vishwottam Kandikere, Devender Reddy Ajjala, Gopinadh Bhyrapuneni, Nageswara Rao Muddana. LC-MS/MS method for the quantification of aldose reductase inhibitor-epalrestat and application to pharmacokinetic study. Journal of pharmaceutical and biomedical analysis. 2013 Feb; 74(?):227-34. doi: 10.1016/j.jpba.2012.10.020. [PMID: 23245255]
  • Keisuke Sato, Kaori Yama, Yu Murao, Ryosuke Tatsunami, Yoshiko Tampo. Epalrestat increases intracellular glutathione levels in Schwann cells through transcription regulation. Redox biology. 2013; 2(?):15-21. doi: 10.1016/j.redox.2013.11.003. [PMID: 24363998]
  • Zhen-Yu Li, Juan Gu, Jin Yan, Jun-Jie Wang, Wei-Hua Huang, Zhi-Rong Tan, Gan Zhou, Yao Chen, Hong-Hao Zhou, Dong-Sheng Ouyang. Hypertensive cardiac remodeling effects of lignan extracts from Eucommia ulmoides Oliv. bark--a famous traditional Chinese medicine. The American journal of Chinese medicine. 2013; 41(4):801-15. doi: 10.1142/s0192415x13500547. [PMID: 23895153]
  • Frederic Vigant, Jihye Lee, Axel Hollmann, Lukas B Tanner, Zeynep Akyol Ataman, Tatyana Yun, Guanghou Shui, Hector C Aguilar, Dong Zhang, David Meriwether, Gleyder Roman-Sosa, Lindsey R Robinson, Terry L Juelich, Hubert Buczkowski, Sunwen Chou, Miguel A R B Castanho, Mike C Wolf, Jennifer K Smith, Ashley Banyard, Margaret Kielian, Srinivasa Reddy, Markus R Wenk, Matthias Selke, Nuno C Santos, Alexander N Freiberg, Michael E Jung, Benhur Lee. A mechanistic paradigm for broad-spectrum antivirals that target virus-cell fusion. PLoS pathogens. 2013; 9(4):e1003297. doi: 10.1371/journal.ppat.1003297. [PMID: 23637597]
  • Guo-Yu Jiang, Wan-Hua Lei, Qian-Xiong Zhou, Yuan-Jun Hou, Xue-Song Wang. Small change in structure leads to large difference in protein photocleavage: two porphyrins bearing rhodanine-based pendants. Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology. 2012 Apr; 11(4):715-23. doi: 10.1039/c2pp05352g. [PMID: 22327540]
  • Juan Gu, Jun-Jie Wang, Jin Yan, Chang-Fu Cui, Wei-Hua Wu, Ling Li, Zhen-Shan Wang, Min Yu, Na Gao, Li Liu, Dong-Sheng Ouyang. Effects of lignans extracted from Eucommia ulmoides and aldose reductase inhibitor epalrestat on hypertensive vascular remodeling. Journal of ethnopharmacology. 2011 Jan; 133(1):6-13. doi: 10.1016/j.jep.2010.08.055. [PMID: 20817083]
  • Diane Hardej, Charles R Ashby, Nikhil S Khadtare, Shridhar S Kulkarni, Satyakam Singh, Tanaji T Talele. The synthesis of phenylalanine-derived C5-substituted rhodanines and their activity against selected methicillin-resistant Staphylococcus aureus (MRSA) strains. European journal of medicinal chemistry. 2010 Dec; 45(12):5827-32. doi: 10.1016/j.ejmech.2010.09.045. [PMID: 20947220]
  • Toshihide Kawai, Izumi Takei, Mikiya Tokui, Osamu Funae, Kazunori Miyamoto, Mitsuhisa Tabata, Takumi Hirata, Takao Saruta, Akira Shimada, Hiroshi Itoh. Effects of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy in patients with type 2 diabetes, in relation to suppression of N(ɛ)-carboxymethyl lysine. Journal of diabetes and its complications. 2010 Nov; 24(6):424-32. doi: 10.1016/j.jdiacomp.2008.10.005. [PMID: 19716319]
  • Juan Gu, Jin Yan, Weihua Wu, Qi Huang, Dongsheng Ouyang. [Research progress in aldose reductase]. Zhong nan da xue xue bao. Yi xue ban = Journal of Central South University. Medical sciences. 2010 Apr; 35(4):395-400. doi: 10.3969/j.issn.1672-7347.2010.04.021. [PMID: 20448367]
  • Mike C Wolf, Alexander N Freiberg, Tinghu Zhang, Zeynep Akyol-Ataman, Andrew Grock, Patrick W Hong, Jianrong Li, Natalya F Watson, Angela Q Fang, Hector C Aguilar, Matteo Porotto, Anna N Honko, Robert Damoiseaux, John P Miller, Sara E Woodson, Steven Chantasirivisal, Vanessa Fontanes, Oscar A Negrete, Paul Krogstad, Asim Dasgupta, Anne Moscona, Lisa E Hensley, Sean P Whelan, Kym F Faull, Michael R Holbrook, Michael E Jung, Benhur Lee. A broad-spectrum antiviral targeting entry of enveloped viruses. Proceedings of the National Academy of Sciences of the United States of America. 2010 Feb; 107(7):3157-62. doi: 10.1073/pnas.0909587107. [PMID: 20133606]
  • Chun Wang, Ruilan Yan, Dixian Luo, Kounosuke Watabe, Duan-Fang Liao, Deliang Cao. Aldo-keto reductase family 1 member B10 promotes cell survival by regulating lipid synthesis and eliminating carbonyls. The Journal of biological chemistry. 2009 Sep; 284(39):26742-8. doi: 10.1074/jbc.m109.022897. [PMID: 19643728]
  • Jinghua Yu, Bo Li, Ping Dai, Shenguang Ge. Molecular simulation of the interaction between novel type rhodanine derivative probe and bovine serum albumin. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2009 Sep; 74(1):277-81. doi: 10.1016/j.saa.2009.06.013. [PMID: 19589719]
  • Xin Chen, Qin Wei, Yanyan Cai, Yanyan Han, Yanfang Zhao, Bin Du. Determination of ultra trace amounts of protein by 4-chlorosulfo-(2'-hyaroxylphenylazo)-rhodanine-Ti(IV) complex [ClSARP-Ti(IV)] as the fluorescence spectral probe in AOT microemulsion. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2009 Jun; 72(5):1047-53. doi: 10.1016/j.saa.2008.12.041. [PMID: 19188089]
  • Chie Ohmura, Hirotaka Watada, Kosuke Azuma, Tomoaki Shimizu, Akio Kanazawa, Fuki Ikeda, Tomoaki Yoshihara, Yoshio Fujitani, Takahisa Hirose, Yasushi Tanaka, Ryuzo Kawamori. Aldose reductase inhibitor, epalrestat, reduces lipid hydroperoxides in type 2 diabetes. Endocrine journal. 2009; 56(1):149-56. doi: 10.1507/endocrj.k08e-237. [PMID: 18997444]
  • Hyun Ah Jung, Na Young Yoon, Sam Sik Kang, Yeong Sik Kim, Jae Sue Choi. Inhibitory activities of prenylated flavonoids from Sophora flavescens against aldose reductase and generation of advanced glycation endproducts. The Journal of pharmacy and pharmacology. 2008 Sep; 60(9):1227-36. doi: 10.1211/jpp.60.9.0016. [PMID: 18718128]
  • Philippe Villain-Guillot, Maxime Gualtieri, Lionel Bastide, Françoise Roquet, Jean Martinez, Muriel Amblard, Martine Pugniere, Jean-Paul Leonetti. Structure-activity relationships of phenyl-furanyl-rhodanines as inhibitors of RNA polymerase with antibacterial activity on biofilms. Journal of medicinal chemistry. 2007 Aug; 50(17):4195-204. doi: 10.1021/jm0703183. [PMID: 17665895]
  • Qin Wei, Yan Li, Wenying Dong, Bin Du. Determination of protein in milk powder using 2-sulfophenylazo-rhodanine as a probe by the enhanced resonance Rayleigh light-scattering technique. Journal of AOAC International. 2006 Sep; 89(5):1353-9. doi: NULL. [PMID: 17042187]
  • Zhigang Li, Xuemei Li, Qiufen Hu, Jiayuan Yin, Jing Chzn, Guangyu Yang. Simultaneous determination of palladium, platinum and rhodium by on-line column enrichment and HPLC with 5-(2,4-dihydroxyphenylazo)-rhodanine as pre-column derivatization reagent. Annali di chimica. 2006 May; 96(5-6):355-63. doi: 10.1002/adic.200690037. [PMID: 16856765]
  • Qiufen Hu, Xiangjun Yang, Zhangjie Huang, Jing Chen, Guangyu Yang. Simultaneous determination of palladium, platinum, rhodium and gold by on-line solid phase extraction and high performance liquid chromatography with 5-(2-hydroxy-5-nitrophenylazo)thiorhodanine as pre-column derivatization regents. Journal of chromatography. A. 2005 Nov; 1094(1-2):77-82. doi: 10.1016/j.chroma.2005.07.090. [PMID: 16257292]
  • Yasushi Kiyono, Satomi Kajiyama, Hiromi Fujiwara, Naoki Kanegawa, Hideo Saji. Influence of the polyol pathway on norepinephrine transporter reduction in diabetic cardiac sympathetic nerves: implications for heterogeneous accumulation of MIBG. European journal of nuclear medicine and molecular imaging. 2005 Apr; 32(4):438-42. doi: 10.1007/s00259-004-1694-7. [PMID: 15821963]
  • Yeon Sil Lee, Kuk Hyun Shin, Bak-Kwang Kim, Sanghyun Lee. Anti-diabetic activities of fucosterol from Pelvetia siliquosa. Archives of pharmacal research. 2004 Nov; 27(11):1120-2. doi: 10.1007/bf02975115. [PMID: 15595413]
  • Toru Tsugawa, Rikio Shinohara, Akio Nagasaka, Itsuko Nakano, Fumiko Takeda, Minoru Nagata, Naohisa Oda, Yoshikuni Sawai, Nobuki Hayakawa, Atsushi Suzuki, Mitsuyasu Itoh. Alteration of urinary sorbitol excretion in WBN-kob diabetic rats - treatment with an aldose reductase inhibitor. The Journal of endocrinology. 2004 Jun; 181(3):429-35. doi: 10.1677/joe.0.1810429. [PMID: 15171691]
  • Tomoaki Yamaguchi, Takashi Ida, Masazumi Hiraga, Kazuhiko Oishi, Masaatsu K Uchida, Hirotoshi Echizen. [Effects of angiotensin II receptor blockers, angiotensin converting enzyme inhibitors, 3-hydroxy-3-methyl glutaryl (HMG) CoA reductase inhibitors, amlodipine and epalrestat on cultured basilar artery smooth muscle cell proliferation]. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan. 2004 Mar; 124(3):159-63. doi: 10.1248/yakushi.124.159. [PMID: 15049134]
  • M Oya, M Hosokawa, H Tsukada, K Fukuda, H Nakamura, K Tsukiyama, K Nagashima, S Fujimoto, Y Yamada, Y Seino. Effects of an aldose reductase inhibitor on gastroenteropathy in streptozotocin-diabetic rats. Diabetes research and clinical practice. 2003 Nov; 62(2):69-77. doi: 10.1016/s0168-8227(03)00165-7. [PMID: 14581143]
  • Itsuko Nakano, Toru Tsugawa, Rikio Shinohara, Fumiko Watanabe, Takashi Fujita, Minoru Nagata, Taiya Kato, Yumiko Himeno, Takako Kobayashi, Kentaro Fujiwara, Mutsuko Nagata, Mitsuyasu Itoh, Akio Nagasaka. Urinary sorbitol measurement and the effect of an aldose reductase inhibitor on its concentration in the diabetic state. Journal of diabetes and its complications. 2003 Nov; 17(6):337-42. doi: 10.1016/s1056-8727(02)00169-1. [PMID: 14583178]
  • Norio Nakamura, Katsuya Yamazaki, Akira Satoh, Masaharu Urakaze, Masashi Kobayashi, Hideaki Yamabe, Hiroshi Osawa, Ken-Ichi Shirato, Toshiyuki Sugawara, Masayuki Nakamura, Michiko Tamura, Ken Okumura. Effects of eparlestat on plasma levels of advanced glycation end products in patients with type 2 diabetes. In vivo (Athens, Greece). 2003 Mar; 17(2):177-80. doi: NULL. [PMID: 12792982]
  • Tomoichiro Asano, Yasushi Saito, Masanobu Kawakami, Nobuhiro Yamada. Fidarestat (SNK-860), a potent aldose reductase inhibitor, normalizes the elevated sorbitol accumulation in erythrocytes of diabetic patients. Journal of diabetes and its complications. 2002 Mar; 16(2):133-8. doi: 10.1016/s1056-8727(01)00175-1. [PMID: 12039395]
  • K Iso, H Tada, K Kuboki, T Inokuchi. Long-term effect of epalrestat, an aldose reductase inhibitor, on the development of incipient diabetic nephropathy in Type 2 diabetic patients. Journal of diabetes and its complications. 2001 Sep; 15(5):241-4. doi: 10.1016/s1056-8727(01)00160-x. [PMID: 11522497]
  • N Ishii, H Ikenaga, Z Ogawa, Y Aoki, T Saruta, T Suga. Effects of renal sorbitol accumulation on urinary excretion of enzymes in hyperglycaemic rats. Annals of clinical biochemistry. 2001 Jul; 38(Pt 4):391-8. doi: 10.1258/0004563011900713. [PMID: 11471882]
  • H Sobajima, T Aoki, H Sassa, T Suzuki, K Taniko, M Makino, K Mizuno, T Suzuki. Pharmacological properties of fidarestat, a potent aldose reductase inhibitor, clarified by using sorbitol in human and rat erythrocytes. Pharmacology. 2001 May; 62(4):193-9. doi: 10.1159/000056094. [PMID: 11359994]
  • Y Hamada, J Nakamura, K Naruse, T Komori, K Kato, Y Kasuya, R Nagai, S Horiuchi, N Hotta. Epalrestat, an aldose reductase ihibitor, reduces the levels of Nepsilon-(carboxymethyl)lysine protein adducts and their precursors in erythrocytes from diabetic patients. Diabetes care. 2000 Oct; 23(10):1539-44. doi: 10.2337/diacare.23.10.1539. [PMID: 11023149]
  • M Inaba, M Terada, Y Nishizawa, A Shioi, E Ishimura, S Otani, H Morii. Protective effect of an aldose reductase inhibitor against bone loss in galactose-fed rats: possible involvement of the polyol pathway in bone metabolism. Metabolism: clinical and experimental. 1999 Jul; 48(7):904-9. doi: 10.1016/s0026-0495(99)90227-5. [PMID: 10421234]
  • K Kashima, N Sato, K Sato, H Shimizu, M Mori. Effect of epalrestat, an aldose reductase inhibitor, on the generation of oxygen-derived free radicals in neutrophils from streptozotocin-induced diabetic rats. Endocrinology. 1998 Aug; 139(8):3404-8. doi: 10.1210/endo.139.8.6152. [PMID: 9681489]
  • M Kawakami, K Koya, T Ukai, N Tatsuta, A Ikegawa, K Ogawa, T Shishido, L B Chen. Synthesis and evaluation of novel rhodacyanine dyes that exhibit antitumor activity. Journal of medicinal chemistry. 1997 Sep; 40(20):3151-60. doi: 10.1021/jm9702692. [PMID: 9379434]
  • N Sato, K Kashima, Y Uehara, K Ohtani, H Shimizu, M Mori. Epalrestat, an aldose reductase inhibitor, improves an impaired generation of oxygen-derived free radicals by neutrophils from poorly controlled NIDDM patients. Diabetes care. 1997 Jun; 20(6):995-8. doi: 10.2337/diacare.20.6.995. [PMID: 9167113]
  • Y Hamada, N Araki, S Horiuchi, N Hotta. Role of polyol pathway in nonenzymatic glycation. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. 1996; 11 Suppl 5(?):95-8. doi: 10.1093/ndt/11.supp5.95. [PMID: 9044317]
  • S Isogai, T Inokuchi, K Ohe. Effect of an aldose reductase inhibitor on glomerular basement membrane anionic sites in streptozotocin-induced diabetic rats. Diabetes research and clinical practice. 1995 Nov; 30(2):111-6. doi: 10.1016/0168-8227(95)01152-8. [PMID: 8833631]
  • K Uchida, T Kigoshi, S Nakano, T Ishii, M Kitazawa, S Morimoto. Effect of 24 weeks of treatment with epalrestat, an aldose reductase inhibitor, on peripheral neuropathy in patients with non-insulin-dependent diabetes mellitus. Clinical therapeutics. 1995 May; 17(3):460-6. doi: 10.1016/0149-2918(95)80111-1. [PMID: 7585850]
  • I Itagaki, K Shimizu, Y Kamanaka, K Ebata, R Kikkawa, M Haneda, Y Shigeta. The effect of an aldose reductase inhibitor (Epalrestat) on diabetic nephropathy in rats. Diabetes research and clinical practice. 1994 Oct; 25(3):147-54. doi: 10.1016/0168-8227(94)90002-7. [PMID: 7851268]
  • Y Takiguchi, K Wada, M Nakashima. Effect of aldose reductase inhibitor on the inhibition of platelet aggregation induced by diabetic rat plasma. European journal of pharmacology. 1992 May; 215(2-3):289-91. doi: 10.1016/0014-2999(92)90041-2. [PMID: 1396993]
  • M Sekiguchi, K Watanabe, M Eto, Y Iwashima, A Morikawa, M Takahashi, K Ishii, I Makino. Polyol pathway in tissues of spontaneously diabetic Chinese hamsters (Cricetulus griseus) and the effect of an aldose reductase inhibitor, ONO-2235. Comparative biochemistry and physiology. B, Comparative biochemistry. 1991; 98(4):637-40. doi: 10.1016/0305-0491(91)90268-i. [PMID: 1907900]
  • T Karakida, S Ito, S Homma. In vitro motor activity of intestinal segments of streptozotocin diabetic rats. Journal of the autonomic nervous system. 1989 Feb; 26(1):43-50. doi: 10.1016/0165-1838(89)90106-9. [PMID: 2523418]
  • K H Inoue, A E Hagerman. Determination of gallotannin with rhodanine. Analytical biochemistry. 1988 Mar; 169(2):363-9. doi: 10.1016/0003-2697(88)90296-5. [PMID: 3382009]
  • Y Kurono, A Furukawa, Y Takesue, F L Li, K Ikeda. Photo-stabilization and solubilization of an aldose reductase inhibitor, (E)-3-carboxymethyl-5-[(2E)-methyl-3-phenylpropenylidene]rhodani ne (ONO-2235), by human serum albumin. Chemical & pharmaceutical bulletin. 1987 Jul; 35(7):3045-8. doi: 10.1248/cpb.35.3045. [PMID: 3119240]
  • A Levitzki, M Willingham, I Pastan. Evidence for participation of transglutaminase in receptor-mediated endocytosis. Proceedings of the National Academy of Sciences of the United States of America. 1980 May; 77(5):2706-10. doi: 10.1073/pnas.77.5.2706. [PMID: 6156455]
  • W D Jülich, W Weuffen, H L Jenssen, H Köhler. [Relations between the macrophage electrophoretic mobility test and the rhodanide level in patients with malignant tumors, autoaggression diseases and after transplantation]. Acta biologica et medica Germanica. 1975; 34(9):1541-7. doi: NULL. [PMID: 769454]
  • W Weuffen, W D Jülich, C Bohnenstengel, R Wagner, P Weber. [Studies on the influence of electrolytes upon immunization processes. I. Immunological reactivity as a function of the rhodanide level in guinea pigs sensitized with horse serum]. Acta biologica et medica Germanica. 1974; 32(2-3):249-60. doi: NULL. [PMID: 4418884]