Dihomo-alpha-linolenic acid (BioDeep_00000002831)

 

Secondary id: BioDeep_00001872029

human metabolite Endogenous blood metabolite


代谢物信息卡片


11,14,17-Eicosatrienoic acid, (Z,Z,Z)-isomer

化学式: C20H34O2 (306.2559)
中文名称: 11Z,14Z,17Z-二十碳三烯酸, 顺式-11,14,17-二十碳三烯酸
谱图信息: 最多检出来源 Homo sapiens(lipidomics) 34.65%

分子结构信息

SMILES: C(CCCCCCCCC/C=C\C/C=C\C/C=C\CC)(=O)O
InChI: InChI=1S/C20H34O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20(21)22/h3-4,6-7,9-10H,2,5,8,11-19H2,1H3,(H,21,22)/b4-3-,7-6-,10-9-

描述信息

Dihomolinolenic acid, also known as 11,14,17-eicosatrienoic acid or (11z,14z,17z)-eicosa-11,14,17-trienoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, dihomolinolenic acid is considered to be a fatty acid lipid molecule. Dihomolinolenic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Dihomolinolenic acid can be found in evening primrose, which makes dihomolinolenic acid a potential biomarker for the consumption of this food product. Dihomolinolenic acid can be found primarily in blood and feces.
Dihomo-alpha-linolenic acid, also known as 11,14,17-eicosatrienoic acid, is a rare polyunsaturated fatty acid of the omega-3 series. In normal humans, it represents less than 0.25\\% of serum phospholipid fatty acids. However, it is one of the most active essential fatty acids when assayed for the inhibition of fatty acid elongation/desaturation reactions which convert dietary C-18 fatty acids to C-20 eicosanoid precursors. (http://www.caymanchem.com)

同义名列表

60 个代谢物同义名

11,14,17-Eicosatrienoic acid, (Z,Z,Z)-isomer; (11Z,14Z,17Z)-Eicosa-11,14,17-trienoic acid; (11Z,14Z,17Z)-Icosa-11,14,17-trienoic acid; cis,cis,cis-11,14,17-Eicosatrienoic acid; (11Z,14Z,17Z)-Eicosa-11,14,17-trienoate; (11Z,14Z,17Z)-Icosa-11,14,17-trienoate; all-cis-Eicosa-11,14,17-trienoic acid; 11(Z),14(Z),17(Z)-Eicosatrienoic Acid; (Z,Z,Z)-11,14,17-Eicosatrienoic acid; cis,cis,cis-11,14,17-Eicosatrienoate; all-cis-11,14,17-Eicosatrienoic acid; Dihomo-α-linolenic acid (20:3(n-3)); all-cis-Eicosa-11,14,17-triensaeure; all-cis-Eicosa-11,14,17-trienoate; all-cis-11,14,17-Eicosatrienoate; Eicosa-11Z,14Z,17Z-trienoic acid; (Z,Z,Z)-11,14,17-Eicosatrienoate; cis-11,14,17-Eicosatrienoic acid; 11Z,14Z,17Z-eicosatrienoic acid; 11C,14C,17C-Eicosatrienoic acid; eicosa-11,14,17-trienoic acid; 11C,14C,17C-Eicosatriensaeure; Eicosa-11Z,14Z,17Z-trienoate; 11,14,17-eicosatrienoic acid; Bishomo-alpha-linolenic acid; Dihomo-alpha-linolenic acid; 11C,14C,17C-Eicosatrienoate; 11,14,17-Icosatrienoic acid; Homo-alpha-linolenic acid; Bishomo-alpha-linolenate; Bishomo-α-linolenic acid; 11,14,17-Eicosatrienoate; Bishomo-a-linolenic acid; 11,14,17-Icosatrienoate; Dihomo-alpha-linolenate; Dihomo-α-linolenic acid; Dihomo-a-linolenic acid; C20:3, N-3,6,9 all-cis; 20:3, N-3,6,9 all-cis; Homo-α-linolenic acid; FA(20:3(11Z,14Z,17Z)); Dihomo-linolenic acid; Dihomolinolenic acid; Bishomo-α-linolenate; Bishomo-a-linolenate; Eicosatrienoic acid; ETrE(11Z, 14Z, 17Z); Dihomo-α-linolenate; Dihomo-a-linolenate; Icosatrienoic acid; Dihomo-linolenate; Dihomolinolenate; Eicosatrienoate; C20:3n-3,6,9; FA(20:3n3); FA 20:3; ETE; ETA; 11Z,14Z,17Z-Eicosatrienoic Acid; Icosatrienoic acid



数据库引用编号

15 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

1 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(1)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 8 ACADL, ALB, ALOX5, CDH1, GLA, PLA2G12A, PTGS2, TBX20
Peripheral membrane protein 4 ACHE, ALOX5, AP1S2, PTGS2
Endoplasmic reticulum membrane 5 FADS1, FADS2, GLA, PTGS2, SCD
Nucleus 5 ACHE, ALB, CDH1, PLCZ1, TBX20
cytosol 6 ALB, ALOX5, AP1S2, CDH1, PLCZ1, PRKCQ
mitochondrial membrane 1 ACADL
trans-Golgi network 1 CDH1
centrosome 1 ALB
nucleoplasm 3 ALOX5, CDH1, PLCZ1
Cell membrane 4 ACHE, CDH1, TBXA2R, TNF
Cytoplasmic side 1 AP1S2
lamellipodium 1 CDH1
Multi-pass membrane protein 4 FADS1, FADS2, SCD, TBXA2R
Synapse 1 ACHE
cell junction 1 CDH1
cell surface 2 ACHE, TNF
glutamatergic synapse 1 CDH1
Golgi apparatus 5 ACHE, ALB, AP1S2, CDH1, GLA
Golgi membrane 2 AP1S2, INS
lysosomal membrane 1 AP1S2
neuromuscular junction 1 ACHE
neuronal cell body 1 TNF
postsynapse 1 CDH1
Cytoplasm, cytosol 1 ALOX5
Lysosome 1 GLA
acrosomal vesicle 1 TBXA2R
endosome 1 CDH1
plasma membrane 7 ACHE, CDH1, F2, FADS2, PRKCQ, TBXA2R, TNF
Membrane 6 ACHE, CDH1, FADS1, FADS2, GLA, SCD
caveola 1 PTGS2
extracellular exosome 4 ALB, CDH1, F2, GLA
endoplasmic reticulum 3 ALB, PTGS2, SCD
extracellular space 7 ACHE, ALB, ALOX5, F2, IL6, INS, TNF
lysosomal lumen 1 GLA
perinuclear region of cytoplasm 4 ACHE, ALOX5, CDH1, PLCZ1
adherens junction 1 CDH1
mitochondrion 2 ACADL, FADS1
protein-containing complex 2 ALB, PTGS2
intracellular membrane-bounded organelle 2 AP1S2, FADS1
Microsome membrane 1 PTGS2
pronucleus 1 PLCZ1
Single-pass type I membrane protein 1 CDH1
Secreted 6 ACHE, ALB, F2, IL6, INS, PLA2G12A
extracellular region 10 ACHE, ALB, ALOX5, CDH1, F2, GLA, IL6, INS, PLA2G12A, TNF
cytoplasmic side of plasma membrane 1 CDH1
Mitochondrion matrix 1 ACADL
mitochondrial matrix 1 ACADL
Extracellular side 1 ACHE
anchoring junction 1 ALB
centriolar satellite 1 PRKCQ
Nucleus membrane 1 ALOX5
nuclear membrane 2 ALOX5, CDH1
external side of plasma membrane 1 TNF
actin cytoskeleton 1 CDH1
nucleolus 2 PLCZ1, SCD
Early endosome 1 AP1S2
Membrane, clathrin-coated pit 1 AP1S2
clathrin-coated pit 1 AP1S2
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Cytoplasm, perinuclear region 2 ALOX5, PLCZ1
Membrane raft 1 TNF
Cell junction, adherens junction 1 CDH1
flotillin complex 1 CDH1
basement membrane 1 ACHE
collagen-containing extracellular matrix 1 F2
lateral plasma membrane 1 CDH1
nuclear speck 1 TBXA2R
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
neuron projection 1 PTGS2
ciliary basal body 1 ALB
chromatin 1 TBX20
phagocytic cup 1 TNF
centriole 1 ALB
Golgi apparatus, trans-Golgi network 1 CDH1
spindle pole 1 ALB
blood microparticle 2 ALB, F2
Lipid-anchor, GPI-anchor 1 ACHE
nuclear envelope 1 ALOX5
Nucleus envelope 1 ALOX5
Endomembrane system 1 AP1S2
endosome lumen 1 INS
[Isoform 1]: Endoplasmic reticulum membrane 1 FADS1
Cytoplasmic vesicle membrane 1 AP1S2
side of membrane 1 ACHE
trans-Golgi network membrane 1 AP1S2
ficolin-1-rich granule lumen 1 ALOX5
secretory granule lumen 2 ALOX5, INS
Golgi lumen 2 F2, INS
endoplasmic reticulum lumen 5 ALB, F2, IL6, INS, PTGS2
nuclear matrix 1 ALOX5
platelet alpha granule lumen 1 ALB
transport vesicle 1 INS
azurophil granule lumen 1 GLA
anaphase-promoting complex 1 CDH1
Endoplasmic reticulum-Golgi intermediate compartment membrane 2 GLA, INS
immunological synapse 1 PRKCQ
aggresome 1 PRKCQ
Nucleus matrix 1 ALOX5
nuclear envelope lumen 1 ALOX5
endoplasmic reticulum-Golgi intermediate compartment 1 GLA
[Isoform 2]: Nucleus 1 CDH1
synaptic cleft 1 ACHE
apical junction complex 1 CDH1
AP-type membrane coat adaptor complex 1 AP1S2
membrane coat 1 AP1S2
AP-1 adaptor complex 1 AP1S2
[Isoform 2]: Endoplasmic reticulum membrane 1 FADS1
Cell junction, desmosome 1 CDH1
desmosome 1 CDH1
catenin complex 1 CDH1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
sperm head 1 PLCZ1
interleukin-6 receptor complex 1 IL6
Nucleus intermembrane space 1 ALOX5
[Isoform H]: Cell membrane 1 ACHE
ciliary transition fiber 1 ALB
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics. Scientific reports. 2018 07; 8(1):10056. doi: 10.1038/s41598-018-28477-9. [PMID: 29968805]
  • Ora Msika, Annette Brand, Michael A Crawford, Ephraim Yavin. NGF blocks polyunsaturated fatty acids biosynthesis in n-3 fatty acid-supplemented PC12 cells. Biochimica et biophysica acta. 2012 Jul; 1821(7):1022-30. doi: 10.1016/j.bbalip.2012.04.007. [PMID: 22564256]
  • Jim Junhui Huang, Peter Chikeung Cheung. Enhancement of polyunsaturated fatty acids and total carotenoid production in microalgae by ultraviolet band A (UVA, 365 nm) radiation. Journal of agricultural and food chemistry. 2011 May; 59(9):4629-36. doi: 10.1021/jf200910p. [PMID: 21443261]
  • Natalia S Paulucci, Daniela B Medeot, Marta S Dardanelli, Mirta García de Lema. Growth temperature and salinity impact fatty acid composition and degree of unsaturation in peanut-nodulating rhizobia. Lipids. 2011 May; 46(5):435-41. doi: 10.1007/s11745-011-3545-1. [PMID: 21523564]
  • Tatyana P Novgorodtseva, Tatyana A Kantur, Yulia K Karaman, Marina V Antonyuk, Natalia V Zhukova. Modification of fatty acids composition in erythrocytes lipids in arterial hypertension associated with dyslipidemia. Lipids in health and disease. 2011 Jan; 10(?):18. doi: 10.1186/1476-511x-10-18. [PMID: 21255401]
  • Julia Schumann, Alexander Leichtle, Joachim Thiery, Herbert Fuhrmann. Fatty acid and peptide profiles in plasma membrane and membrane rafts of PUFA supplemented RAW264.7 macrophages. PloS one. 2011; 6(8):e24066. doi: 10.1371/journal.pone.0024066. [PMID: 21887374]
  • James R Petrie, Surinder P Singh. Expanding the docosahexaenoic acid food web for sustainable production: engineering lower plant pathways into higher plants. AoB PLANTS. 2011; 2011(?):plr011. doi: 10.1093/aobpla/plr011. [PMID: 22476481]
  • Kari Almendingen, Laila N Larsen, Olav Fausa, Jorunn Bratlie, Arne T Høstmark, Lars Aabakken. Selective COX-2 inhibition affects fatty acids, but not COX mRNA expression in patients with FAP. Familial cancer. 2010 Dec; 9(4):571-80. doi: 10.1007/s10689-010-9365-2. [PMID: 20593240]
  • Fei Gao, Dale Kiesewetter, Lisa Chang, Stanley I Rapoport, Miki Igarashi. Quantifying conversion of linoleic to arachidonic and other n-6 polyunsaturated fatty acids in unanesthetized rats. Journal of lipid research. 2010 Oct; 51(10):2940-6. doi: 10.1194/jlr.m005595. [PMID: 20622136]
  • Chahid Benammar, Aziz Hichami, Akadiri Yessoufou, Anne-Marie Simonin, Meriem Belarbi, Hocine Allali, Naim A Khan. Zizyphus lotus L. (Desf.) modulates antioxidant activity and human T-cell proliferation. BMC complementary and alternative medicine. 2010 Sep; 10(?):54. doi: 10.1186/1472-6882-10-54. [PMID: 20868496]
  • Diana M Merino, David W L Ma, David M Mutch. Genetic variation in lipid desaturases and its impact on the development of human disease. Lipids in health and disease. 2010 Jun; 9(?):63. doi: 10.1186/1476-511x-9-63. [PMID: 20565855]
  • Woo Jung Park, Kumar S D Kothapalli, Peter Lawrence, Cynthia Tyburczy, J Thomas Brenna. An alternate pathway to long-chain polyunsaturates: the FADS2 gene product Delta8-desaturates 20:2n-6 and 20:3n-3. Journal of lipid research. 2009 Jun; 50(6):1195-202. doi: 10.1194/jlr.m800630-jlr200. [PMID: 19202133]
  • N Lausada, I N T de Gómez Dumm, J C Raimondi, M J T de Alaniz. Effect of cyclosporine and sirolimus on fatty acid desaturase activities in cultured HEPG2 cells. Transplantation proceedings. 2009 Jun; 41(5):1865-70. doi: 10.1016/j.transproceed.2009.03.063. [PMID: 19545746]
  • Peng Sun, Wen Liu, Dao-Hong Lin, Peng Yue, Rowena Kemp, Lisa M Satlin, Wen-Hui Wang. Epoxyeicosatrienoic acid activates BK channels in the cortical collecting duct. Journal of the American Society of Nephrology : JASN. 2009 Mar; 20(3):513-23. doi: 10.1681/asn.2008040427. [PMID: 19073823]
  • Henar Ortega-Senovilla, Gioia Alvino, Emanuela Taricco, Irene Cetin, Emilio Herrera. Gestational diabetes mellitus upsets the proportion of fatty acids in umbilical arterial but not venous plasma. Diabetes care. 2009 Jan; 32(1):120-2. doi: 10.2337/dc08-0679. [PMID: 18852337]
  • Asim Maqbool, Joan I Schall, J Felipe Garcia-Espana, Babette S Zemel, Birgitta Strandvik, Virginia A Stallings. Serum linoleic acid status as a clinical indicator of essential fatty acid status in children with cystic fibrosis. Journal of pediatric gastroenterology and nutrition. 2008 Nov; 47(5):635-44. doi: 10.1097/mpg.0b013e31817fb76b. [PMID: 18955866]
  • Fatih Ozogul, Yesim Ozogul, A Ilkan Olgunoglu, Esmeray Kuley Boga. Comparison of fatty acid, mineral and proximate composition of body and legs of edible frog (Rana esculenta). International journal of food sciences and nutrition. 2008 Nov; 59(7-8):558-65. doi: 10.1080/09637480701403277. [PMID: 19382332]
  • Maude Fer, Laurent Corcos, Yvonne Dréano, Emmanuelle Plée-Gautier, Jean-Pierre Salaün, François Berthou, Yolande Amet. Cytochromes P450 from family 4 are the main omega hydroxylating enzymes in humans: CYP4F3B is the prominent player in PUFA metabolism. Journal of lipid research. 2008 Nov; 49(11):2379-89. doi: 10.1194/jlr.m800199-jlr200. [PMID: 18577768]
  • Schohraya Spahis, Michel Vanasse, Stacey A Bélanger, Parviz Ghadirian, Emilie Grenier, Emile Levy. Lipid profile, fatty acid composition and pro- and anti-oxidant status in pediatric patients with attention-deficit/hyperactivity disorder. Prostaglandins, leukotrienes, and essential fatty acids. 2008 Jul; 79(1-2):47-53. doi: 10.1016/j.plefa.2008.07.005. [PMID: 18757191]
  • ZhiJian Wang, Yuan Wei, John R Falck, Krishnam Raju Atcha, Wen-Hui Wang. Arachidonic acid inhibits basolateral K channels in the cortical collecting duct via cytochrome P-450 epoxygenase-dependent metabolic pathways. American journal of physiology. Renal physiology. 2008 Jun; 294(6):F1441-7. doi: 10.1152/ajprenal.00038.2008. [PMID: 18417544]
  • G Bee, S Jacot, G Guex, C Biolley. Effects of two supplementation levels of linseed combined with CLA or tallow on meat quality traits and fatty acid profile of adipose and different muscle tissues in slaughter pigs. Animal : an international journal of animal bioscience. 2008 May; 2(5):800-11. doi: 10.1017/s175173110800181x. [PMID: 22443606]
  • Jia-Qiang Li, Miao-Ying Li, Ying-Xiu Dai, Yu-Min Liu, Ji Zheng, Wen-Bin Liu. [Serum adiponectin and free fatty acid profile in essential hypertensive patients with or without metabolic syndrome]. Zhonghua xin xue guan bing za zhi. 2008 Mar; 36(3):232-5. doi: . [PMID: 19099980]
  • Thierry Charles Coste, Gladys Deumer, Gregory Reychler, Patrick Lebecque, Pierre Wallemacq, Teresinha Leal. Influence of pancreatic status and sex on polyunsaturated fatty acid profiles in cystic fibrosis. Clinical chemistry. 2008 Feb; 54(2):388-95. doi: 10.1373/clinchem.2007.094623. [PMID: 18089657]
  • Wei Zhang, Yin Wang, Chao-Wei Chen, Kuiyi Xing, S Vivekanandan, Marjorie F Lou. The positive feedback role of arachidonic acid in the platelet-derived growth factor-induced signaling in lens epithelial cells. Molecular vision. 2006 Jul; 12(?):821-31. doi: . [PMID: 16902399]
  • Christopher Beermann, Michael Möbius, Nadine Winterling, Joachim J Schmitt, Günther Boehm. sn-position determination of phospholipid-linked fatty acids derived from erythrocytes by liquid chromatography electrospray ionization ion-trap mass spectrometry. Lipids. 2005 Feb; 40(2):211-8. doi: 10.1007/s11745-005-1377-1. [PMID: 15884770]
  • Eric D Bruder, Ping C Lee, Hershel Raff. Metabolic consequences of hypoxia from birth and dexamethasone treatment in the neonatal rat: comprehensive hepatic lipid and fatty acid profiling. Endocrinology. 2004 Nov; 145(11):5364-72. doi: 10.1210/en.2004-0582. [PMID: 15271879]
  • Thomas Colin Michael Fraser, Baoxiu Qi, Salah Elhussein, Sunantha Chatrattanakunchai, Allan Keith Stobart, Colin Michael Lazarus. Expression of the Isochrysis C18-delta9 polyunsaturated fatty acid specific elongase component alters Arabidopsis glycerolipid profiles. Plant physiology. 2004 Jun; 135(2):859-66. doi: 10.1104/pp.104.038984. [PMID: 15173563]
  • V L Heyd, A R Eynard. Effects of eicosatrienoic acid (20:3 n-9, Mead's acid) on some promalignant-related properties of three human cancer cell lines. Prostaglandins & other lipid mediators. 2003 Jul; 71(3-4):177-88. doi: 10.1016/s1098-8823(03)00037-6. [PMID: 14518560]
  • C Monarque-Favard, I Garcia, H Abidi, E Bannier, J Riviere, J Drai, M Bonnefoy. Malnourished elderly people and lipid status. The journal of nutrition, health & aging. 2002; 6(6):370-4. doi: . [PMID: 12459887]
  • S Watanabe, M Doshi, K Akimoto, Y Kiso, T Hamazaki. Suppression of platelet-activating factor generation and modulation of arachidonate metabolism by dietary enrichment with (n-9) eicosatrienoic acid or docosahexaenoic acid in mouse peritoneal cells. Prostaglandins & other lipid mediators. 2001 Sep; 66(2):109-20. doi: 10.1016/s0090-6980(01)00152-6. [PMID: 11534547]
  • A Colquhoun, R I Schumacher. Modifications in mitochondrial metabolism and ultrastructure and their relationship to tumour growth inhibition by gamma-linolenic acid. Molecular and cellular biochemistry. 2001 Feb; 218(1-2):13-20. doi: 10.1023/a:1007243922393. [PMID: 11330827]
  • N Nakano, N Shirasaka, M Kurihara, M Takamatsu, T Murakami, H Yoshizumi, R Tsuboi, H Ogawa. Competitive incorporation of arachidonic acid analogs by cultured rat keratinocytes. Journal of nutritional science and vitaminology. 2001 Feb; 47(1):69-77. doi: 10.3177/jnsv.47.69. [PMID: 11349894]
  • D Wang, T J Girard, T P Kasten, R M LaChance, M A Miller-Wideman, R C Durley. Inhibitory activity of unsaturated fatty acids and anacardic acids toward soluble tissue factor-factor VIIa complex. Journal of natural products. 1998 Nov; 61(11):1352-5. doi: 10.1021/np980117p. [PMID: 9834151]
  • R M Kater, N Carulli, F L Iber. Differences in the rate of ethanol metabolism in recently drinking alcoholic and nondrinking subjects. The American journal of clinical nutrition. 1969 Dec; 22(12):1608-17. doi: 10.1093/ajcn/22.12.1608. [PMID: 5362487]