Exact Mass: 835.1414

Exact Mass Matches: 835.1414

Found 29 metabolites which its exact mass value is equals to given mass value 835.1414, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Crotonoyl-CoA

(2R)-4-({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-N-[2-({2-[(2E)-but-2-enoylsulfanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]-2-hydroxy-3,3-dimethylbutanimidic acid

C25H40N7O17P3S (835.1414)


Crotonoyl-CoA is an important component in several metabolic pathways, notably fatty acid and amino acid metabolism. It is the substrate of a group of enzymes acyl-Coenzyme A oxidases 1, 2, 3 (E.C.: 1.3.3.6) corresponding to palmitoyl, branched chain, and pristanoyl, respectively, in the peroxisomal fatty acid beta-oxidation, producing hydrogen peroxide. Abnormality of this group of enzymes is linked to coma, dehydration, diabetes, fatty liver, hyperinsulinemia, hyperlipidemia, and leukodystrophy. It is also a substrate of a group of enzymes called acyl-Coenzyme A dehydrogenase (E.C.:1.3.99-, including 1.3.99.2, 1.3.99.3) in the metabolism of fatty acids or branched chain amino acids in the mitochondria (Rozen et al., 1994). Acyl-Coenzyme A dehydrogenase (1.3.99.3) has shown to contribute to kidney-associated diseases, such as adrenogential syndrome, kidney failure, kidney tubular necrosis, homocystinuria, as well as other diseases including cretinism, encephalopathy, hypoglycemia, medium chain acyl-CoA dehydrogenase deficiency. The gene (ACADS) also plays a role in theta oscillation during sleep. In addition, crotonoyl-CoA is the substrate of enoyl coenzyme A hydratase (E.C.4.2.1.17) in the mitochondria during lysine degradation and tryptophan metabolism, benzoate degradation via CoA ligation; in contrast it is the product of this enzyme in the butanoate metabolism. Moreover, it is produced from multiple enzymes in the butanoate metabolism pathway, including 3-Hydroxybutyryl-CoA dehydratase (E.C.:4.2.1.55), glutaconyl-CoA decarboxylase (E.C.: 4.1.1.70), vinylacetyl-CoA Δ-isomerase (E.C.: 5.3.3.3), and trans-2-enoyl-CoA reductase (NAD+) (E.C.: 1.3.1.44). In lysine degradation and tryptophan metabolism, crotonoyl CoA is produced by glutaryl-Coenzyme A dehydrogenase (E.C.:1.3.99.7) lysine and tryptophan metabolic pathway. This enzyme is linked to type-1glutaric aciduria, metabolic diseases, movement disorders, myelinopathy, and nervous system diseases. [HMDB] Crotonoyl-CoA (CAS: 992-67-6) is an important component in several metabolic pathways, notably fatty acid and amino acid metabolism. It is the substrate of acyl-coenzyme A oxidases 1, 2, and 3 (EC 1.3.3.6) corresponding to palmitoyl, branched-chain, and pristanoyl, respectively. In peroxisomal fatty acid beta-oxidation, these enzymes produce hydrogen peroxide. Abnormalities in this group of enzymes are linked to coma, dehydration, diabetes, fatty liver, hyperinsulinemia, hyperlipidemia, and leukodystrophy. Crotonoyl-CoA is also a substrate of a group of enzymes called acyl-coenzyme A dehydrogenases (EC 1.3.99-, 1.3.99.2, 1.3.99.3) in the metabolism of fatty acids or branched-chain amino acids in the mitochondria (PMID: 7698750). Acyl-coenzyme A dehydrogenase has been shown to contribute to kidney-associated diseases, such as adrenogential syndrome, kidney failure, kidney tubular necrosis, homocystinuria, as well as other diseases including cretinism, encephalopathy, hypoglycemia, and medium-chain acyl-CoA dehydrogenase deficiency. The gene (ACADS) also plays a role in theta oscillation during sleep. In addition, crotonoyl-CoA is the substrate of enoyl-coenzyme A hydratase (EC 4.2.1.17) in the mitochondria during lysine degradation and tryptophan metabolism as well as benzoate degradation via CoA ligation. Crotonoyl-CoA is the product of this enzyme in butanoate metabolism. Moreover, it is produced from multiple enzymes in the butanoate metabolism pathway, including 3-hydroxybutyryl-CoA dehydratase (EC 4.2.1.55), glutaconyl-CoA decarboxylase (EC 4.1.1.70), vinylacetyl-CoA delta-isomerase (EC 5.3.3.3), and trans-2-enoyl-CoA reductase (NAD+) (EC 1.3.1.44). In lysine degradation and tryptophan metabolism, crotonoyl-CoA is produced by glutaryl-coenzyme A dehydrogenase (EC 1.3.99.7). This enzyme is linked to glutaric aciduria type I, metabolic diseases, movement disorders, myelinopathy, and nervous system diseases.

   

vinylacetyl-CoA

vinylacetyl-CoA

C25H40N7O17P3S (835.1414)


The S-vinylacetyl derivative of coenzyme A.

   

Methacrylyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-{[2-({2-[(2-methylprop-2-enoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C25H40N7O17P3S (835.1414)


Methacrylyl-CoA, also known as methacryloyl-CoA, belongs to the class of organic compounds known as organic pyrophosphates. These are organic compounds containing the pyrophosphate oxoanion, with the structure OP([O-])(=O)OP(O)([O-])=O. Thus, methacrylyl-CoA is considered to be a fatty ester lipid molecule. Methacrylyl-CoA is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Methacrylyl-CoA has been detected, but not quantified in, several different foods, such as beechnuts, hyacinth beans, devilfish, eggplants, and cupuaçus. This could make methacrylyl-CoA a potential biomarker for the consumption of these foods. Methacrylyl-CoA is a metabolite in the valine, leucine, and isoleucine degradation pathway and highly reacts with free thiol compounds (PMID: 14684172). Cirrhosis results in a significant decrease in 3-hydroxyisobutyryl-CoA hydrolase activity, a key enzyme in the valine catabolic pathway that plays an important role in the catabolism of a potentially toxic compound, methacrylyl-CoA, formed as an intermediate in the catabolism of valine and isobutyrate (PMID: 8938168). Methacrylyl-coenzyme a, also known as methylacrylyl-coa or 2-methylprop-2-enoyl-coa, is a member of the class of compounds known as acyl coas. Acyl coas are organic compounds containing a coenzyme A substructure linked to an acyl chain. Thus, methacrylyl-coenzyme a is considered to be a fatty ester lipid molecule. Methacrylyl-coenzyme a is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Methacrylyl-coenzyme a can be found in a number of food items such as tea leaf willow, mexican groundcherry, new zealand spinach, and parsnip, which makes methacrylyl-coenzyme a a potential biomarker for the consumption of these food products.

   

Cyclopropanecarboxyl-coa

Cyclopropanecarboxyl-coa

C25H40N7O17P3S (835.1414)


   

(2E)-Butenoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-N-(2-{[2-(but-2-enoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)-2-hydroxy-3,3-dimethylbutanimidic acid

C25H40N7O17P3S (835.1414)


(2E)-Butenoyl-CoA is also known as (e)-But-2-enoyl-CoA(4-). (2E)-Butenoyl-CoA is considered to be slightly soluble (in water) and acidic

   

3-Butenyl-CoA

{[5-(6-amino-9H-purin-9-yl)-2-[({[({3-[(2-{[2-(but-3-enoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C25H40N7O17P3S (835.1414)


3-butenyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a but-3-enoic acid thioester of coenzyme A. 3-butenyl-coa is an acyl-CoA with 4 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 3-butenyl-coa is therefore classified as a short chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 3-butenyl-coa, being a short chain acyl-CoA is a substrate for short chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 3-Butenyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 3-Butenyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 3-Butenyl-CoA into 3-Butenylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 3-Butenylcarnitine is converted back to 3-Butenyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 3-Butenyl-CoA occurs in four steps. First, since 3-Butenyl-CoA is a short chain acyl-CoA it is the substrate for a short chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 3-Butenyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol group to a ketone and NADH is produced from NAD+. Finally, Thiolase cleaves between the alpha carbon and ketone to release o...

   

3-hydroxypropanoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonatooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-[2-({2-[(3-hydroxypropanoyl)sulphanyl]ethyl}carboximidato)ethyl]-3,3-dimethylbutanecarboximidic acid

C24H36N7O18P3S (835.105)


3-hydroxypropanoyl-coa is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). 3-hydroxypropanoyl-coa can be found in a number of food items such as wild carrot, kale, pulses, and pecan nut, which makes 3-hydroxypropanoyl-coa a potential biomarker for the consumption of these food products.

   
   

(e)-But-2-enoyl-CoA

(2R)-4-({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-N-[2-({2-[(2E)-but-2-enoylsulfanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]-2-hydroxy-3,3-dimethylbutanimidic acid

C25H40N7O17P3S (835.1414)


   

CoA 4:1

3-phosphoadenosine 5-{3-[(3R)-3-hydroxy-2,2-dimethyl-4-{[3-({2-[(2-methylprop-2-enoyl)sulfanyl]ethyl}amino)-3-oxopropyl]amino}-4-oxobutyl] dihydrogen diphosphate}

C25H40N7O17P3S (835.1414)


   

[5-(6-Aminopurin-9-yl)-4-hydroxy-2-[[[[3-hydroxy-4-[[3-[2-(3-hydroxypropanoylsulfanyl)ethylamino]-3-oxopropyl]amino]-2,2-dimethyl-4-oxobutoxy]-oxidophosphoryl]oxy-oxidophosphoryl]oxymethyl]oxolan-3-yl] phosphate

[5-(6-Aminopurin-9-yl)-4-hydroxy-2-[[[[3-hydroxy-4-[[3-[2-(3-hydroxypropanoylsulfanyl)ethylamino]-3-oxopropyl]amino]-2,2-dimethyl-4-oxobutoxy]-oxidophosphoryl]oxy-oxidophosphoryl]oxymethyl]oxolan-3-yl] phosphate

C24H36N7O18P3S-4 (835.105)


   

3-hydroxypropanoyl-CoA(4-)

3-hydroxypropanoyl-CoA(4-)

C24H36N7O18P3S-4 (835.105)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   
   
   
   

[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-2-[[[[(3R)-4-[[3-[2-(2-azaniumylpropanoylsulfanyl)ethylamino]-3-oxopropyl]amino]-3-hydroxy-2,2-dimethyl-4-oxobutoxy]-oxidophosphoryl]oxy-oxidophosphoryl]oxymethyl]-4-hydroxyoxolan-3-yl] phosphate

[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-2-[[[[(3R)-4-[[3-[2-(2-azaniumylpropanoylsulfanyl)ethylamino]-3-oxopropyl]amino]-3-hydroxy-2,2-dimethyl-4-oxobutoxy]-oxidophosphoryl]oxy-oxidophosphoryl]oxymethyl]-4-hydroxyoxolan-3-yl] phosphate

C24H38N8O17P3S-3 (835.1288)


   
   
   

Cyclopropanecarbonyl-CoA

Cyclopropanecarbonyl-CoA

C25H40N7O17P3S (835.1414)


   

methacrylyl-CoA; (Acyl-CoA); [M+H]+

methacrylyl-CoA; (Acyl-CoA); [M+H]+

C25H40N7O17P3S (835.1414)


   

Vinylacetyl-coenzyme A; (Acyl-CoA); [M+H]+

Vinylacetyl-coenzyme A; (Acyl-CoA); [M+H]+

C25H40N7O17P3S (835.1414)


   

Methacrylyl-CoA

Methacrylyl-CoA

C25H40N7O17P3S (835.1414)


An acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of methacrylic acid.

   

Crotonoyl-CoA

Crotonoyl-CoA

C25H40N7O17P3S (835.1414)


The (E)-isomer of but-2-enoyl-CoA.

   

3-hydroxypropanoyl-CoA(4-)

3-hydroxypropanoyl-CoA(4-)

C24H36N7O18P3S (835.105)


An acyl-CoA(4-) arising from deprotonation of the phosphate and diphosphate groups of 3-hydroxypropanoyl-CoA.

   

(R)-lactoyl-CoA(4-)

(R)-lactoyl-CoA(4-)

C24H36N7O18P3S (835.105)


A lactoyl-CoA(4-) in which the lactoyl residue has (R)-configuration.

   

beta-alanyl-CoA(3-)

beta-alanyl-CoA(3-)

C24H38N8O17P3S (835.1288)


An acyl-CoA oxoanion arising from deprotonation of phosphate and diphosphate functions as well as protonation of the amino group of beta-alanyl-CoA.

   

lactoyl-CoA(4-)

lactoyl-CoA(4-)

C24H36N7O18P3S (835.105)


An acyl-CoA(4-) that is the tetraanion of lactoyl-CoA arising from deprotonation of phosphate and diphosphate functions.

   
   

(2r)-4-[({[(2r,3s,4r,5r)-5-(6-aminopurin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy(hydroxy)phosphoryl}oxy(hydroxy)phosphoryl)oxy]-n-(2-{[2-(but-3-enoylsulfanyl)ethyl]-c-hydroxycarbonimidoyl}ethyl)-2-hydroxy-3,3-dimethylbutanimidic acid

(2r)-4-[({[(2r,3s,4r,5r)-5-(6-aminopurin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy(hydroxy)phosphoryl}oxy(hydroxy)phosphoryl)oxy]-n-(2-{[2-(but-3-enoylsulfanyl)ethyl]-c-hydroxycarbonimidoyl}ethyl)-2-hydroxy-3,3-dimethylbutanimidic acid

C25H40N7O17P3S (835.1414)