Uridine triphosphate (BioDeep_00000004350)
Secondary id: BioDeep_00000415808
human metabolite PANOMIX_OTCML-2023 Endogenous BioNovoGene_Lab2019
代谢物信息卡片
化学式: C9H15N2O15P3 (483.9685)
中文名称: 尿苷5'-三磷酸, 尿苷-5'-三磷酸酯 三羟甲基氨基甲烷盐, 尿苷-5-三磷酸
谱图信息:
最多检出来源 Homo sapiens(otcml) 9.81%
分子结构信息
SMILES: C1=CN(C(=O)NC1=O)C2C(C(C(O2)COP(=O)(O)OP(=O)(O)OP(=O)(O)O)O)O
InChI: InChI=1S/C9H15N2O15P3/c12-5-1-2-11(9(15)10-5)8-7(14)6(13)4(24-8)3-23-28(19,20)26-29(21,22)25-27(16,17)18/h1-2,4,6-8,13-14H,3H2,(H,19,20)(H,21,22)(H,10,12,15)(H2,16,17,18)/t4-,6-,7-,8-/m1/s1
描述信息
Uridine 5-triphosphate, also known as utp or uridine triphosphoric acid, is a member of the class of compounds known as pyrimidine ribonucleoside triphosphates. Pyrimidine ribonucleoside triphosphates are pyrimidine ribobucleotides with triphosphate group linked to the ribose moiety. Uridine 5-triphosphate is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Uridine 5-triphosphate can be found in a number of food items such as persian lime, nectarine, chinese water chestnut, and soft-necked garlic, which makes uridine 5-triphosphate a potential biomarker for the consumption of these food products. Uridine 5-triphosphate can be found primarily in saliva. Uridine 5-triphosphate exists in all living species, ranging from bacteria to humans. In humans, uridine 5-triphosphate is involved in several metabolic pathways, some of which include josamycin action pathway, clomocycline action pathway, chloramphenicol action pathway, and amikacin action pathway. Uridine 5-triphosphate is also involved in several metabolic disorders, some of which include GLUT-1 deficiency syndrome, glycogenosis, type VI. hers disease, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and galactosemia II (GALK). Uridine-5-triphosphate (UTP) is a pyrimidine nucleoside triphosphate, consisting of the organic base uracil linked to the 1 carbon of the ribose sugar, and esterified with tri-phosphoric acid at the 5 position. Its main role is as substrate for the synthesis of RNA during transcription .
Uridine triphosphate, also known as 5-UTP or UTP, belongs to the class of organic compounds known as pyrimidine ribonucleoside triphosphates. These are pyrimidine ribobucleotides with triphosphate group linked to the ribose moiety. More specifically, UTP is a pyrimidine nucleoside triphosphate, consisting of the organic base uracil linked to the 1′ carbon of the ribose sugar, and esterified with tri-phosphoric acid at the 5′ position. Uridine triphosphate exists in all living species, ranging from bacteria to plants to humans. The main role of UTP is as substrate for the synthesis of RNA during transcription. UTP is the precursor for the production of CTP via the enzyme known as CTP Synthetase. UTP can be biosynthesized from UDP by the enzyme known as nucleoside diphosphate kinase by using phosphate group from ATP. UTP also has the role of a source of energy or an activator of substrates in a variety of metabolic reactions. For instance UTP can be used to activate Glucose-1-phosphate, leading to the formation of UDP-glucose and inorganic phosphate. The resulting UDP-glucose can be used in the synthesis of glycogen. UTP is also used in the metabolism of galactose, where the activated form of galactose, called UDP-galactose can be converted to UDP-glucose. UDP-glucuronate, another product of UTP reacting with glucuronic acid, is a sugar used in the creation of polysaccharides and is an intermediate in the biosynthesis of ascorbic acid (except in primates and guinea pigs).
COVID info from COVID-19 Disease Map
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
同义名列表
21 个代谢物同义名
({[({[(2R,3S,4R,5R)-5-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphonic acid; Uridine mono(tetrahydrogen triphosphate); Triphosphate, magnesium uridine; Magnesium uridine triphosphate; Uridine 5-triphosphoric acid; Uridine triphosphoric acid; Uridine triphosphate (UTP); Uridine, trisodium salt; Uridine 5-triphosphate; Triphosphate, uridine; Uridine triphosphate; UTP, Magnesium; Magnesium UTP; Uteplex; MG-UTP; MG UTP; H4UTP; 5-UTP; UTP; UTP; Uridine 5'-triphosphate(UTP)
数据库引用编号
22 个数据库交叉引用编号
- ChEBI: CHEBI:15713
- KEGG: C00075
- PubChem: 1181
- PubChem: 6133
- HMDB: HMDB0000285
- Metlin: METLIN3579
- DrugBank: DB04005
- ChEMBL: CHEMBL336296
- Wikipedia: Uridine triphosphate
- MeSH: Uridine Triphosphate
- MetaCyc: UTP
- foodb: FDB031251
- chemspider: 5903
- CAS: 63-39-8
- PMhub: MS000016668
- PubChem: 3375
- PDB-CCD: UTP
- 3DMET: B01149
- NIKKAJI: J4.827E
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-201
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-288
- KNApSAcK: 15713
分类词条
相关代谢途径
Reactome(0)
BioCyc(2)
PlantCyc(0)
代谢反应
535 个相关的代谢反应过程信息。
Reactome(59)
- Signaling Pathways:
AMP + p-AMPK heterotrimer ⟶ p-AMPK heterotrimer:AMP
- Signaling by GPCR:
H2O + cAMP ⟶ AMP
- GPCR downstream signalling:
H2O + cAMP ⟶ AMP
- G alpha (i) signalling events:
H2O + cAMP ⟶ AMP
- Gene expression (Transcription):
p-AMPK heterotrimer:AMP ⟶ SESN1,2,3:p-AMPK heterotrimer:AMP
- RNA Polymerase II Transcription:
p-AMPK heterotrimer:AMP ⟶ SESN1,2,3:p-AMPK heterotrimer:AMP
- RNA polymerase II transcribes snRNA genes:
ATP + RNA polymerase II (unphosphorylated):Initiation factors at promoter of snRNA gene ⟶ ADP + RNA polymerase II (phosphoserine-5,7):Initiation factors:CDK7:snRNA gene
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycogen metabolism:
AMP + PGYM dimer, b form ⟶ PGYM b dimer:AMP
- Glycogen synthesis:
G1P + UTP ⟶ PPi + UDP-Glc
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Glucuronidation:
G1P + UTP ⟶ PPi + UDP-Glc
- Formation of the active cofactor, UDP-glucuronate:
G1P + UTP ⟶ PPi + UDP-Glc
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycogen metabolism:
AMP + PGYM dimer, b form ⟶ PGYM b dimer:AMP
- Glycogen synthesis:
G1P + UTP ⟶ PPi + UDP-Glc
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Glucuronidation:
G1P + UTP ⟶ PPi + UDP-Glc
- Formation of the active cofactor, UDP-glucuronate:
G1P + UTP ⟶ PPi + UDP-Glc
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycogen metabolism:
ATP + PGYL dimer b form ⟶ ADP + PGYL dimer a form
- Glycogen synthesis:
G1P + UTP ⟶ PPi + UDP-Glc
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glucuronidation:
BIL + UDP-GlcA ⟶ BMG + UDP
- Formation of the active cofactor, UDP-glucuronate:
G1P + UTP ⟶ PPi + UDP-Glc
- Metabolism of proteins:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational protein modification:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
Fru(6)P + L-Gln ⟶ GlcN6P + L-Glu
- Synthesis of UDP-N-acetyl-glucosamine:
Fru(6)P + L-Gln ⟶ GlcN6P + L-Glu
- Metabolism of proteins:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational protein modification:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
Fru(6)P + L-Gln ⟶ GlcN6P + L-Glu
- Synthesis of UDP-N-acetyl-glucosamine:
Fru(6)P + L-Gln ⟶ GlcN6P + L-Glu
- Metabolism of proteins:
EIF5A2 + NAD + SPM ⟶ 1,3-diaminopropane + H+ + H0ZKZ7 + NADH
- Post-translational protein modification:
EIF5A2 + NAD + SPM ⟶ 1,3-diaminopropane + H+ + H0ZKZ7 + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
Fru(6)P + L-Gln ⟶ GlcN6P + L-Glu
- Synthesis of UDP-N-acetyl-glucosamine:
Fru(6)P + L-Gln ⟶ GlcN6P + L-Glu
- GPCR ligand binding:
Ade-Rib + H0YT13 ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
Ade-Rib + H0YT13 ⟶ ADORA1,3:Ade-Rib
- Nucleotide-like (purinergic) receptors:
Ade-Rib + H0YT13 ⟶ ADORA1,3:Ade-Rib
- P2Y receptors:
ATP + P2RY11 ⟶ P2RY11 :ATP
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Interconversion of nucleotide di- and triphosphates:
AMP + ATP ⟶ ADP
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Interconversion of nucleotide di- and triphosphates:
AMP + ATP ⟶ ADP
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Interconversion of nucleotide di- and triphosphates:
AMP + ATP ⟶ ADP
BioCyc(18)
- superpathway of histidine, purine and pyrimidine biosynthesis:
ATP + D-ribose 5-phosphate ⟶ 5-phosphoribosyl 1-pyrophosphate + AMP
- pyrimidine ribonucleotides de novo biosynthesis:
O2 + dihydroorotate ⟶ H2O2 + orotate
- UDP-N-acetyl-D-glucosamine biosynthesis I:
N-acetyl-glucosamine-1-phosphate + H+ + UTP ⟶ UDP-α-N-acetyl-D-glucosamine + diphosphate
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- galactose degradation III:
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
N-acetyl-glucosamine-1-phosphate + H+ + UTP ⟶ UDP-α-N-acetyl-D-glucosamine + diphosphate
- pyrimidine ribonucleotides interconversion:
ATP + UDP ⟶ ADP + H+ + UTP
- pyrimidine ribonucleotides de novo biosynthesis:
ATP + UDP ⟶ ADP + H+ + UTP
- colanic acid building blocks biosynthesis:
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
N-acetyl-glucosamine-1-phosphate + H+ + UTP ⟶ UDP-α-N-acetyl-D-glucosamine + diphosphate
- pyrimidine ribonucleotides de novo biosynthesis:
ATP + H2O + bicarbonate + gln ⟶ ADP + H+ + carbamoyl-phosphate + glt + phosphate
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- pyrimidine ribonucleotides interconversion:
ATP + CDP ⟶ ADP + CTP + H+
- UDP-N-acetylglucosamine biosynthesis:
N-acetyl-glucosamine-1-phosphate + UTP ⟶ UDP-N-acetyl-D-glucosamine + pyrophosphate
- sucrose degradation:
α-D-glucose + ATP ⟶ α-D-glucose-6-phosphate + ADP
- UDP-glucose conversion:
α-D-glucose 1-phosphate + UTP ⟶ UDP-D-glucose + pyrophosphate
- N-acetylglucosamine , N-acetylmannosamine and N-acetylneuraminic acid dissimilation:
N-acetyl-D-glucosamine 6-phosphate + H2O ⟶ D-glucosamine 6-phosphate + acetate
- galactose degradation:
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP
Plant Reactome(331)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- UDP-D-GlcA biosynthesis:
ATP + GlcA ⟶ ADP + D-glucuronate 1-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
ATP + GlcA ⟶ ADP + D-glucuronate 1-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
ATP + beta-D-glucose ⟶ ADP + H+ + beta-D-glucose-6-phosphate
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
ATP + GlcA ⟶ ADP + D-glucuronate 1-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
ATP + GlcA ⟶ ADP + D-glucuronate 1-phosphate
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- UDP-D-GlcA biosynthesis:
ATP + GlcA ⟶ ADP + D-glucuronate 1-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
ATP + GlcA ⟶ ADP + D-glucuronate 1-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
ATP + beta-D-glucose ⟶ ADP + H+ + beta-D-glucose-6-phosphate
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
ATP + GlcA ⟶ ADP + D-glucuronate 1-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- UDP-D-GlcA biosynthesis:
Ins + Oxygen ⟶ GlcA + H2O
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
G1P + UTP ⟶ PPi + UDP-Glc
- Galactose degradation II:
ATP + Gal ⟶ ADP + Gal1P
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Sucrose biosynthesis:
G1P + UTP ⟶ PPi + UDP-Glc
- Galactose degradation II:
PPi + UDP-Glc ⟶ G1P + UTP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Sucrose biosynthesis:
G1P + UTP ⟶ PPi + UDP-Glc
- Galactose degradation II:
PPi + UDP-Glc ⟶ G1P + UTP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
PPi + UDP-Glc ⟶ G1P + UTP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Sucrose biosynthesis:
G1P + UTP ⟶ PPi + UDP-Glc
- Galactose degradation II:
PPi + UDP-Glc ⟶ G1P + UTP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Sucrose biosynthesis:
Fru(6)P + UDP-Glc ⟶ UDP + sucrose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- UDP-L-arabinose biosynthesis (salvage pathway):
ATP + L-arabinose ⟶ ADP + beta-L-arabinose 1-phosphate
INOH(7)
- Pyrimidine Nucleotides and Nucleosides metabolism ( Pyrimidine Nucleotides and Nucleosides metabolism ):
Deoxy-cytidine + H2O ⟶ Deoxy-uridine + NH3
- Galactose metabolism ( Galactose metabolism ):
D-Glucose + UDP-D-galactose ⟶ Lactose + UDP
- UTP + D-Glucose 1-phosphate = Pyrophosphate + UDP-D-glucose ( Glycolysis and Gluconeogenesis ):
Pyrophosphate + UDP-D-glucose ⟶ D-Glucose 1-phosphate + UTP
- UTP + AMP = UDP + ADP ( Pyrimidine Nucleotides and Nucleosides metabolism ):
ADP + UDP ⟶ AMP + UTP
- ATP + UDP = ADP + UTP ( Pyrimidine Nucleotides and Nucleosides metabolism ):
ADP + UTP ⟶ ATP + UDP
- Aminosugars metabolism ( Aminosugars metabolism ):
D-Fructose 6-phosphate + NH3 ⟶ D-Glucosamine 6-phosphate + H2O
- UTP + N-Acetyl-D-glucosamine 1-phosphate = Pyrophosphate + UDP-N-acetyl-D-glucosamine ( Aminosugars metabolism ):
Pyrophosphate + UDP-N-acetyl-D-glucosamine ⟶ N-Acetyl-D-glucosamine 1-phosphate + UTP
PlantCyc(0)
COVID-19 Disease Map(2)
- @COVID-19 Disease
Map["name"]:
Adenosine + Pi ⟶ Adenine + _alpha_-D-Ribose 1-phosphate
- @COVID-19 Disease
Map["name"]:
cytidine ⟶ uridine
PathBank(117)
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Ureidopropionase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- UMP Synthase Deficiency (Orotic Aciduria):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Dihydropyrimidinase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- MNGIE (Mitochondrial Neurogastrointestinal Encephalopathy):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Ureidopropionase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Dihydropyrimidinase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- UMP Synthase Deficiency (Orotic Aciduria):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- MNGIE (Mitochondrial Neurogastrointestinal Encephalopathy):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Ureidopropionase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Dihydropyrimidinase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- UMP Synthase Deficiency (Orotic Aciduria):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- MNGIE (Mitochondrial Neurogastrointestinal Encephalopathy):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Hydrogen Ion + N-carbamoyl-L-aspartate ⟶ 4,5-Dihydroorotic acid + Water
- Pyrimidine Metabolism:
Hydrogen Ion + N-carbamoyl-L-aspartate ⟶ 4,5-Dihydroorotic acid + Water
- Pyrimidine Metabolism:
Hydrogen Ion + N-carbamoyl-L-aspartate ⟶ 4,5-Dihydroorotic acid + Water
- Lamivudine Metabolism Pathway:
Lamivudine + Oxygen + Water ⟶ Hydrogen peroxide + Lamivudine sulfoxide
- Lactose Synthesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Congenital Disorder of Glycosylation CDG-IId:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- GLUT-1 Deficiency Syndrome:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Lactose Synthesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Congenital Disorder of Glycosylation CDG-IId:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- GLUT-1 Deficiency Syndrome:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Lactose Synthesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Lactose Synthesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Lactose Synthesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Lactose Synthesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Congenital Disorder of Glycosylation CDG-IId:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- GLUT-1 Deficiency Syndrome:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Galactose Metabolism:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Nucleotide Sugars Metabolism:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Starch and Sucrose Metabolism:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Galactosemia:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Galactosemia II (GALK):
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Galactosemia III:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Glycogen Synthetase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type III. Cori Disease, Debrancher Glycogenosis:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type IV. Amylopectinosis, Anderson Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type VI. Hers Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Mucopolysaccharidosis VII. Sly Syndrome:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Sucrase-Isomaltase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Galactose Degradation/Leloir Pathway:
-D-Glucose + Phosphocarrier protein HPr ⟶ -D-Glucose 6-phosphate + Phosphocarrier protein HPr
- Leloir Pathway:
-D-Galactose ⟶ D-Galactose
- Amino Sugar and Nucleotide Sugar Metabolism:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Starch and Sucrose Metabolism:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Galactose Metabolism:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Nucleotide Sugars Metabolism:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Starch and Sucrose Metabolism:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Galactosemia:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Galactosemia II (GALK):
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Galactosemia III:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Glycogen Synthetase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type III. Cori Disease, Debrancher Glycogenosis:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type IV. Amylopectinosis, Anderson Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type VI. Hers Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Mucopolysaccharidosis VII. Sly Syndrome:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Sucrase-Isomaltase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Nucleotide Sugars Metabolism:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Galactose Metabolism:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Starch and Sucrose Metabolism:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Nucleotide Sugars Metabolism:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Galactose Metabolism:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Starch and Sucrose Metabolism:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Nucleotide Sugars Metabolism:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Nucleotide Sugars Metabolism:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Galactosemia:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Galactosemia II (GALK):
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Galactosemia III:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Glycogen Synthetase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type III. Cori Disease, Debrancher Glycogenosis:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type IV. Amylopectinosis, Anderson Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type VI. Hers Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Mucopolysaccharidosis VII. Sly Syndrome:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Sucrase-Isomaltase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Amino Sugar Metabolism:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Sialuria or French Type Sialuria:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Salla Disease/Infantile Sialic Acid Storage Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- G(M2)-Gangliosidosis: Variant B, Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Lipopolysaccharide Biosynthesis:
UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetyl- -D-glucosamine + Water ⟶ Acetic acid + UDP-3-O-(3-hydroxymyristoyl)- -D-glucosamine
- Amino Sugar and Nucleotide Sugar Metabolism I:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Peptidoglycan Biosynthesis I:
Adenosine triphosphate + L-Alanine + UDP-N-acetyl- -D-muramate ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + UDP-N-acetylmuramoyl-L-alanine
- Lipopolysaccharide Biosynthesis II:
UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetyl- -D-glucosamine + Water ⟶ Acetic acid + UDP-3-O-(3-hydroxymyristoyl)- -D-glucosamine
- Lipopolysaccharide Biosynthesis III:
UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetyl- -D-glucosamine + Water ⟶ Acetic acid + UDP-3-O-(3-hydroxymyristoyl)- -D-glucosamine
- Peptidoglycan Biosynthesis II:
Adenosine triphosphate + L-Alanine + UDP-N-acetyl- -D-muramate ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + UDP-N-Acetylmuramyl-L-Ala
- 1,6-Anhydro-N-acetylmuramic Acid Recycling:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + D-glucosamine 6-phosphate
- O-Antigen Building Blocks Biosynthesis:
-D-fructofuranose 6-phosphate + L-Glutamine ⟶ D-glucosamine 6-phosphate + L-Glutamic acid
- Amino Sugar Metabolism:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Sialuria or French Type Sialuria:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Salla Disease/Infantile Sialic Acid Storage Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- G(M2)-Gangliosidosis: Variant B, Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Amino Sugar Metabolism:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Amino Sugar Metabolism:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Amino Sugar Metabolism:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Chitin Biosynthesis:
Fructose 6-phosphate + L-Glutamine ⟶ Glucosamine 6-phosphate + L-Glutamic acid
- Sialuria or French Type Sialuria:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Salla Disease/Infantile Sialic Acid Storage Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- G(M2)-Gangliosidosis: Variant B, Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Lipopolysaccharide Biosynthesis:
UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetyl- -D-glucosamine + Water ⟶ Acetic acid + UDP-3-O-(3-hydroxymyristoyl)- -D-glucosamine
- Amino Sugar and Nucleotide Sugar Metabolism I:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Peptidoglycan Biosynthesis I:
Adenosine triphosphate + L-Alanine + UDP-N-acetyl- -D-muramate ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + UDP-N-acetylmuramoyl-L-alanine
- Lipopolysaccharide Biosynthesis II:
UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetyl- -D-glucosamine + Water ⟶ Acetic acid + UDP-3-O-(3-hydroxymyristoyl)- -D-glucosamine
- Lipopolysaccharide Biosynthesis III:
UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetyl- -D-glucosamine + Water ⟶ Acetic acid + UDP-3-O-(3-hydroxymyristoyl)- -D-glucosamine
- Peptidoglycan Biosynthesis II:
Adenosine triphosphate + L-Alanine + UDP-N-acetyl- -D-muramate ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + UDP-N-Acetylmuramyl-L-Ala
- 1,6-Anhydro-N-acetylmuramic Acid Recycling:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + D-glucosamine 6-phosphate
- O-Antigen Building Blocks Biosynthesis:
-D-fructofuranose 6-phosphate + L-Glutamine ⟶ D-glucosamine 6-phosphate + L-Glutamic acid
- Galactose Metabolism:
-D-Glucose + Phosphocarrier protein HPr ⟶ -D-Glucose 6-phosphate + Phosphocarrier protein HPr
- Amino Sugar and Nucleotide Sugar Metabolism III:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Colanic Acid Building Blocks Biosynthesis:
-D-Glucose + Phosphocarrier protein HPr ⟶ -D-Glucose 6-phosphate + Phosphocarrier protein HPr
- Amino Sugar and Nucleotide Sugar Metabolism III:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
PharmGKB(0)
4 个相关的物种来源信息
- 7461 - Apis cerana: 10.1371/JOURNAL.PONE.0175573
- 4233 - Helianthus tuberosus: 10.1080/00021369.1967.10858790
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Qiaoli Hua, Xusheng Liu, Yang Luo, Yujie Lin, Kairong Zheng, Ai Xia, Qianchun Yang. The Chinese patent medicine Tongfengding capsule for gout in adults: a systematic review of safety and effectiveness.
Advances in rheumatology (London, England).
2023 Jul; 63(1):32. doi:
10.1186/s42358-023-00310-6
. [PMID: 37464372] - Jie Zhao, Jun Ai, Chao Mo, Wei Shi, LiFeng Meng. Comparative efficacy of seven Chinese patent medicines for early diabetic kidney disease: A Bayesian network meta-analysis.
Complementary therapies in medicine.
2022 Aug; 67(?):102831. doi:
10.1016/j.ctim.2022.102831
. [PMID: 35398481] - Jintong Pan, Huihui Li, Junhua Shi. Clinical Application of the Classical Theory of Traditional Chinese Medicine in Diabetic Nephropathy.
Computational and mathematical methods in medicine.
2022; 2022(?):4066385. doi:
10.1155/2022/4066385
. [PMID: 35495881] - Irina B Krylova, Elena N Selina, Valentina V Bulion, Olga M Rodionova, Natalia R Evdokimova, Natalia V Belosludtseva, Maria I Shigaeva, Galina D Mironova. Uridine treatment prevents myocardial injury in rat models of acute ischemia and ischemia/reperfusion by activating the mitochondrial ATP-dependent potassium channel.
Scientific reports.
2021 08; 11(1):16999. doi:
10.1038/s41598-021-96562-7
. [PMID: 34417540] - Yiyi Gong, Panpan Zhang, Zheng Liu, Jieqiong Li, Hui Lu, Yujie Wang, Bintao Qiu, Mu Wang, Yunyun Fei, Hua Chen, Linyi Peng, Jing Li, Jiaxin Zhou, Qun Shi, Xuan Zhang, Min Shen, Xiaofeng Zeng, Fengchun Zhang, Wen Zhang. UPLC-MS based plasma metabolomics and lipidomics reveal alterations associated with IgG4-related disease.
Rheumatology (Oxford, England).
2021 07; 60(7):3252-3261. doi:
10.1093/rheumatology/keaa775
. [PMID: 33341881] - Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
Cell reports.
2021 04; 35(4):109040. doi:
10.1016/j.celrep.2021.109040
. [PMID: 33910017] - Toshihiro Kishikawa, Yuichi Maeda, Takuro Nii, Noriko Arase, Jun Hirata, Ken Suzuki, Kenichi Yamamoto, Tatsuo Masuda, Kotaro Ogawa, Shigeyoshi Tsuji, Masato Matsushita, Hidetoshi Matsuoka, Maiko Yoshimura, Shinichiro Tsunoda, Shiro Ohshima, Masashi Narazaki, Atsushi Ogata, Yukihiko Saeki, Hidenori Inohara, Atsushi Kumanogoh, Kiyoshi Takeda, Yukinori Okada. Increased levels of plasma nucleotides in patients with rheumatoid arthritis.
International immunology.
2021 01; 33(2):119-124. doi:
10.1093/intimm/dxaa059
. [PMID: 32866240] - Juan Carlos Gil-Redondo, Jagoba Iturri, Felipe Ortega, Raquel Pérez-Sen, Andreas Weber, María Teresa Miras-Portugal, José Luis Toca-Herrera, Esmerilda G Delicado. Nucleotides-Induced Changes in the Mechanical Properties of Living Endothelial Cells and Astrocytes, Analyzed by Atomic Force Microscopy.
International journal of molecular sciences.
2021 Jan; 22(2):. doi:
10.3390/ijms22020624
. [PMID: 33435130] - Julie M Janssen, Bart A W Jacobs, Jeroen Roosendaal, Ellen J B Derissen, Serena Marchetti, Jos H Beijnen, Alwin D R Huitema, Thomas P C Dorlo. Population Pharmacokinetics of Intracellular 5-Fluorouridine 5'-Triphosphate and its Relationship with Hand-and-Foot Syndrome in Patients Treated with Capecitabine.
The AAPS journal.
2021 01; 23(1):23. doi:
10.1208/s12248-020-00533-1
. [PMID: 33417061] - Jeroen Roosendaal, Bart A W Jacobs, Dick Pluim, Hilde Rosing, Niels de Vries, Erik van Werkhoven, Bastiaan Nuijen, Jos H Beijnen, Alwin D R Huitema, Jan H M Schellens, Serena Marchetti. Phase I pharmacological study of continuous chronomodulated capecitabine treatment.
Pharmaceutical research.
2020 May; 37(5):89. doi:
10.1007/s11095-020-02828-6
. [PMID: 32382808] - Abdo A Elfiky. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19.
Life sciences.
2020 May; 248(?):117477. doi:
10.1016/j.lfs.2020.117477
. [PMID: 32119961] - Justyna Róg, Aleksandra Oksiejuk, Maxime R F Gosselin, Wojciech Brutkowski, Dorota Dymkowska, Natalia Nowak, Samuel Robson, Dariusz C Górecki, Krzysztof Zabłocki. Dystrophic mdx mouse myoblasts exhibit elevated ATP/UTP-evoked metabotropic purinergic responses and alterations in calcium signalling.
Biochimica et biophysica acta. Molecular basis of disease.
2019 06; 1865(6):1138-1151. doi:
10.1016/j.bbadis.2019.01.002
. [PMID: 30684640] - Natiele Carla da Silva Ferreira, Rômulo José Soares-Bezerra, Rebeca Ferreira Couto da Silveira, Clayton Menezes da Silva, Carla Santos de Oliveira, Andrea Surrage Calheiros, Tânia Maria Alves, Carlos Leomar Zani, Luiz Anastacio Alves. New Insights in Purinergic Therapy: Novel Antagonists for Uridine 5'-Triphosphate-Activated P2Y Receptors from Brazilian Flora.
Journal of medicinal food.
2019 Feb; 22(2):211-224. doi:
10.1089/jmf.2018.0087
. [PMID: 30526214] - Tetsuto Nakagawa, Chihiro Takahashi, Hitomi Matsuzaki, Yoshiyuki Kuroda, Hideyoshi Higashi. Regulation of membrane raft recruitment of the bradykinin B2 receptor by close association with the ATP/UTP receptor P2Y2.
Biochemical and biophysical research communications.
2018 10; 505(1):36-39. doi:
10.1016/j.bbrc.2018.09.072
. [PMID: 30236981] - Ellen J B Derissen, Alwin D R Huitema, Hilde Rosing, Jan H M Schellens, Jos H Beijnen. Intracellular pharmacokinetics of gemcitabine, its deaminated metabolite 2',2'-difluorodeoxyuridine and their nucleotides.
British journal of clinical pharmacology.
2018 06; 84(6):1279-1289. doi:
10.1111/bcp.13557
. [PMID: 29451684] - Nicholas Kindon, Andrew Davis, Iain Dougall, John Dixon, Timothy Johnson, Iain Walters, Steve Thom, Kenneth McKechnie, Premji Meghani, Michael J Stocks. From UTP to AR-C118925, the discovery of a potent non nucleotide antagonist of the P2Y2 receptor.
Bioorganic & medicinal chemistry letters.
2017 11; 27(21):4849-4853. doi:
10.1016/j.bmcl.2017.09.043
. [PMID: 28958619] - Stefano Benini, Mirco Toccafondi, Martin Rejzek, Francesco Musiani, Ben A Wagstaff, Jochen Wuerges, Michele Cianci, Robert A Field. Glucose-1-phosphate uridylyltransferase from Erwinia amylovora: Activity, structure and substrate specificity.
Biochimica et biophysica acta. Proteins and proteomics.
2017 Nov; 1865(11 Pt A):1348-1357. doi:
10.1016/j.bbapap.2017.08.015
. [PMID: 28844747] - Isabel R Orriss, Dilek Guneri, Mark O R Hajjawi, Kristy Shaw, Jessal J Patel, Timothy R Arnett. Activation of the P2Y2 receptor regulates bone cell function by enhancing ATP release.
The Journal of endocrinology.
2017 06; 233(3):341-356. doi:
10.1530/joe-17-0042
. [PMID: 28420708] - Tiina Jokela, Riikka Kärnä, Leena Rauhala, Genevieve Bart, Sanna Pasonen-Seppänen, Sanna Oikari, Markku I Tammi, Raija H Tammi. Human Keratinocytes Respond to Extracellular UTP by Induction of Hyaluronan Synthase 2 Expression and Increased Hyaluronan Synthesis.
The Journal of biological chemistry.
2017 03; 292(12):4861-4872. doi:
10.1074/jbc.m116.760322
. [PMID: 28188289] - Anne Lemaire, Marion Vanorlé, Michael Horckmans, Larissa di Pietrantonio, Sophie Clouet, Bernard Robaye, Jean-Marie Boeynaems, Didier Communi. Mouse P2Y4 Nucleotide Receptor Is a Negative Regulator of Cardiac Adipose-Derived Stem Cell Differentiation and Cardiac Fat Formation.
Stem cells and development.
2017 03; 26(5):363-373. doi:
10.1089/scd.2016.0166
. [PMID: 27855539] - Dursun Gündüz, Christian Tanislav, Daniel Sedding, Mariana Parahuleva, Sentot Santoso, Christian Troidl, Christian W Hamm, Muhammad Aslam. Uridine Triphosphate Thio Analogues Inhibit Platelet P2Y12 Receptor and Aggregation.
International journal of molecular sciences.
2017 Jan; 18(2):. doi:
10.3390/ijms18020269
. [PMID: 28146050] - Zen-Kong Dai, Chang-Ling Kao, Su-Ling Hsieh, Ing-Jun Chen, Bin-Nan Wu. Restoration of uridine 5'-triphosphate-suppressed delayed rectifying K+ currents by an NO activator KMUP-1 involves RhoA/Rho kinase signaling in pulmonary artery smooth muscle cells.
The Kaohsiung journal of medical sciences.
2016 Dec; 32(12):607-613. doi:
10.1016/j.kjms.2016.09.008
. [PMID: 27914611] - Wendy R Kam, Yang Liu, Juan Ding, David A Sullivan. Do Cyclosporine A, an IL-1 Receptor Antagonist, Uridine Triphosphate, Rebamipide, and/or Bimatoprost Regulate Human Meibomian Gland Epithelial Cells?.
Investigative ophthalmology & visual science.
2016 08; 57(10):4287-94. doi:
10.1167/iovs.16-19937
. [PMID: 27552406] - Eman Y Gohar, Joshua S Speed, Malgorzata Kasztan, Chunhua Jin, David M Pollock. Activation of purinergic receptors (P2) in the renal medulla promotes endothelin-dependent natriuresis in male rats.
American journal of physiology. Renal physiology.
2016 08; 311(2):F260-7. doi:
10.1152/ajprenal.00090.2016
. [PMID: 27226106] - Yunlei Zhou, Huanshun Yin, Jie Li, Bingchen Li, Xue Li, Shiyun Ai, Xiansheng Zhang. Electrochemical biosensor for microRNA detection based on poly(U) polymerase mediated isothermal signal amplification.
Biosensors & bioelectronics.
2016 May; 79(?):79-85. doi:
10.1016/j.bios.2015.12.009
. [PMID: 26700579] - Ellen J B Derissen, Bart A W Jacobs, Alwin D R Huitema, Hilde Rosing, Jan H M Schellens, Jos H Beijnen. Exploring the intracellular pharmacokinetics of the 5-fluorouracil nucleotides during capecitabine treatment.
British journal of clinical pharmacology.
2016 May; 81(5):949-57. doi:
10.1111/bcp.12877
. [PMID: 26718616] - P Gailly, M Szutkowska, E Olinger, H Debaix, F Seghers, S Janas, V Vallon, O Devuyst. P2Y2 receptor activation inhibits the expression of the sodium-chloride cotransporter NCC in distal convoluted tubule cells.
Pflugers Archiv : European journal of physiology.
2014 Nov; 466(11):2035-47. doi:
10.1007/s00424-013-1438-2
. [PMID: 24463702] - B Brugos, L Sebestyen, T Tarr, Z Vincze. Use of cyclophosphamide and other immunosuppressive drugs in the treatment of patients with lupus nephritis.
Die Pharmazie.
2014 Jun; 69(6):442-4. doi:
NULL
. [PMID: 24974578] - P Suresh Jayasekara, Matthew O Barrett, Christopher B Ball, Kyle A Brown, Eva Hammes, Ramachandran Balasubramanian, T Kendall Harden, Kenneth A Jacobson. 4-Alkyloxyimino derivatives of uridine-5'-triphosphate: distal modification of potent agonists as a strategy for molecular probes of P2Y2, P2Y4, and P2Y6 receptors.
Journal of medicinal chemistry.
2014 May; 57(9):3874-83. doi:
10.1021/jm500367e
. [PMID: 24712832] - Yoshimi Iwaki, Yusuke Sakai, Kenji Ochiai, Takashi Umemura, Yuji Sunden. Enhancement of antibody production against rabies virus by uridine 5'-triphosphate in mice.
Microbes and infection.
2014 Mar; 16(3):196-202. doi:
10.1016/j.micinf.2013.11.012
. [PMID: 24309427] - Muhammad Aslam, Daniel Sedding, Ahmed Koshty, Santot Santoso, Rainer Schulz, Christian Hamm, Dursun Gündüz. Nucleoside triphosphates inhibit ADP, collagen, and epinephrine-induced platelet aggregation: role of P2Y₁ and P2Y₁₂ receptors.
Thrombosis research.
2013 Nov; 132(5):548-57. doi:
10.1016/j.thromres.2013.08.021
. [PMID: 24071464] - Hidehiro Sangawa, Takashi Komeno, Hiroshi Nishikawa, Atsushi Yoshida, Kazumi Takahashi, Nobuhiko Nomura, Yousuke Furuta. Mechanism of action of T-705 ribosyl triphosphate against influenza virus RNA polymerase.
Antimicrobial agents and chemotherapy.
2013 Nov; 57(11):5202-8. doi:
10.1128/aac.00649-13
. [PMID: 23917318] - Liam E Browne, R Alan North. P2X receptor intermediate activation states have altered nucleotide selectivity.
The Journal of neuroscience : the official journal of the Society for Neuroscience.
2013 Sep; 33(37):14801-8. doi:
10.1523/jneurosci.2022-13.2013
. [PMID: 24027280] - Ruhul Amin, Sapna Sharma, Sireesha Ratakonda, Hatim A Hassan. Extracellular nucleotides inhibit oxalate transport by human intestinal Caco-2-BBe cells through PKC-δ activation.
American journal of physiology. Cell physiology.
2013 Jul; 305(1):C78-89. doi:
10.1152/ajpcell.00339.2012
. [PMID: 23596171] - A F Makarchikov. [Purification and properties of a catalytically active fragment of soluble nucleoside triphosphatase from bovine kidney].
Ukrains'kyi biokhimichnyi zhurnal (1999 ).
2013 May; 85(3):31-7. doi:
10.15407/ubj85.03.031
. [PMID: 23937046] - Valeriya Krylova, Igor M Andreev, Rozaliya Zartdinova, Stanislav F Izmailov. Biochemical characteristics of the Ca2+ pumping ATPase in the peribacteroid membrane from broad bean root nodules.
Protoplasma.
2013 Apr; 250(2):531-8. doi:
10.1007/s00709-012-0436-0
. [PMID: 22872095] - Jürgen van Baal, John de Widt, Nullin Divecha, Wim J van Blitterswijk. Diacylglycerol kinase θ counteracts protein kinase C-mediated inactivation of the EGF receptor.
The international journal of biochemistry & cell biology.
2012 Nov; 44(11):1791-9. doi:
10.1016/j.biocel.2012.06.021
. [PMID: 22732145] - Elena Hecht, Kristin Thompson, Manfred Frick, Oliver H Wittekindt, Paul Dietl, Boris Mizaikoff, Christine Kranz. Combined atomic force microscopy-fluorescence microscopy: analyzing exocytosis in alveolar type II cells.
Analytical chemistry.
2012 Jul; 84(13):5716-22. doi:
10.1021/ac300775j
. [PMID: 22694258] - Zhilin Xiao, Mei Yang, Li Fang, Qingshan Lv, Qing He, Minjie Deng, Xueting Liu, Xiaobin Chen, Meifang Chen, Xiumei Xie, Jinyue Hu. Extracellular nucleotide inhibits cell proliferation and negatively regulates Toll-like receptor 4 signalling in human progenitor endothelial cells.
Cell biology international.
2012 Jul; 36(7):625-33. doi:
10.1042/cbi20110111
. [PMID: 22299633] - Daniel Decker, Meng Meng, Agnieszka Gornicka, Anders Hofer, Malgorzata Wilczynska, Leszek A Kleczkowski. Substrate kinetics and substrate effects on the quaternary structure of barley UDP-glucose pyrophosphorylase.
Phytochemistry.
2012 Jul; 79(?):39-45. doi:
10.1016/j.phytochem.2012.04.002
. [PMID: 22552276] - Xiaodan Zeng, Xiaoling Zhang, Wen Yang, Hongying Jia, Yamin Li. Fluorescence detection of adenosine triphosphate through an aptamer-molecular beacon multiple probe.
Analytical biochemistry.
2012 May; 424(1):8-11. doi:
10.1016/j.ab.2012.01.021
. [PMID: 22369893] - Volker Vallon, Timo Rieg. Regulation of renal NaCl and water transport by the ATP/UTP/P2Y2 receptor system.
American journal of physiology. Renal physiology.
2011 Sep; 301(3):F463-75. doi:
10.1152/ajprenal.00236.2011
. [PMID: 21715471] - Svetlana V Koltsova, Alexandra Platonova, Georgy V Maksimov, Alexander A Mongin, Ryszard Grygorczyk, Sergei N Orlov. Activation of P2Y receptors causes strong and persistent shrinkage of C11-MDCK renal epithelial cells.
American journal of physiology. Cell physiology.
2011 Aug; 301(2):C403-12. doi:
10.1152/ajpcell.00018.2011
. [PMID: 21562307] - Timo Rieg, Maria Gerasimova, José L Boyer, Paul A Insel, Volker Vallon. P2Y₂ receptor activation decreases blood pressure and increases renal Na⁺ excretion.
American journal of physiology. Regulatory, integrative and comparative physiology.
2011 Aug; 301(2):R510-8. doi:
10.1152/ajpregu.00148.2011
. [PMID: 21613580] - C Crawford, T M Kennedy-Lydon, H Callaghan, C Sprott, R L Simmons, L Sawbridge, H M Syme, R J Unwin, S S P Wildman, C M Peppiatt-Wildman. Extracellular nucleotides affect pericyte-mediated regulation of rat in situ vasa recta diameter.
Acta physiologica (Oxford, England).
2011 Jul; 202(3):241-51. doi:
10.1111/j.1748-1716.2011.02310.x
. [PMID: 21624094] - Megumi Sugihara, Hiromitsu Morita, Miho Matsuda, Hisanori Umebayashi, Shunichi Kajioka, Shinichi Ito, Motohiro Nishida, Ryosuke Inoue, Toshiko Futatsuki, Jun Yamazaki, Yasuo Mori, Ryuji Inoue, Yushi Ito, Kihachiro Abe, Masato Hirata. Dual signaling pathways of arterial constriction by extracellular uridine 5'-triphosphate in the rat.
Journal of pharmacological sciences.
2011; 115(3):293-308. doi:
10.1254/jphs.10281fp
. [PMID: 21350312] - Faraaz B Chekeni, Michael R Elliott, Joanna K Sandilos, Scott F Walk, Jason M Kinchen, Eduardo R Lazarowski, Allison J Armstrong, Silvia Penuela, Dale W Laird, Guy S Salvesen, Brant E Isakson, Douglas A Bayliss, Kodi S Ravichandran. Pannexin 1 channels mediate 'find-me' signal release and membrane permeability during apoptosis.
Nature.
2010 Oct; 467(7317):863-7. doi:
10.1038/nature09413
. [PMID: 20944749] - Koji Ando, Yutaro Obara, Jun Sugama, Atsushi Kotani, Nobuyuki Koike, Satoko Ohkubo, Norimichi Nakahata. P2Y2 receptor-Gq/11 signaling at lipid rafts is required for UTP-induced cell migration in NG 108-15 cells.
The Journal of pharmacology and experimental therapeutics.
2010 Sep; 334(3):809-19. doi:
10.1124/jpet.110.167528
. [PMID: 20511347] - Ya-dong Gao, Peter J Hanley, Susanne Rinné, Marylou Zuzarte, Jurgen Daut. Calcium-activated K(+) channel (K(Ca)3.1) activity during Ca(2+) store depletion and store-operated Ca(2+) entry in human macrophages.
Cell calcium.
2010 Jul; 48(1):19-27. doi:
10.1016/j.ceca.2010.06.002
. [PMID: 20630587] - Hiroshi Maruoka, Matthew O Barrett, Hyojin Ko, Dilip K Tosh, Artem Melman, Lauren E Burianek, Ramachandran Balasubramanian, Barkin Berk, Stefano Costanzi, T Kendall Harden, Kenneth A Jacobson. Pyrimidine ribonucleotides with enhanced selectivity as P2Y(6) receptor agonists: novel 4-alkyloxyimino, (S)-methanocarba, and 5'-triphosphate gamma-ester modifications.
Journal of medicinal chemistry.
2010 Jun; 53(11):4488-501. doi:
10.1021/jm100287t
. [PMID: 20446735] - Oleh Pochynyuk, Timo Rieg, Vladislav Bugaj, Jana Schroth, Alla Fridman, Gerry R Boss, Paul A Insel, James D Stockand, Volker Vallon. Dietary Na+ inhibits the open probability of the epithelial sodium channel in the kidney by enhancing apical P2Y2-receptor tone.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2010 Jun; 24(6):2056-65. doi:
10.1096/fj.09-151506
. [PMID: 20097874] - Hui Wang, Donna H Wang, James J Galligan. P2Y2 receptors mediate ATP-induced resensitization of TRPV1 expressed by kidney projecting sensory neurons.
American journal of physiology. Regulatory, integrative and comparative physiology.
2010 Jun; 298(6):R1634-41. doi:
10.1152/ajpregu.00235.2009
. [PMID: 20335377] - Salma Taboubi, Françoise Garrouste, Fabrice Parat, Gilbert Pommier, Emilie Faure, Sylvie Monferran, Hervé Kovacic, Maxime Lehmann. Gq-coupled purinergic receptors inhibit insulin-like growth factor-I/phosphoinositide 3-kinase pathway-dependent keratinocyte migration.
Molecular biology of the cell.
2010 Mar; 21(6):946-55. doi:
10.1091/mbc.e09-06-0497
. [PMID: 20089844] - Chang-Hee Kim, Hye-Young Kim, Ho Sun Lee, Sun O Chang, Seung-Ha Oh, Jun Ho Lee. P2Y4-mediated regulation of Na+ absorption in the Reissner's membrane of the cochlea.
The Journal of neuroscience : the official journal of the Society for Neuroscience.
2010 Mar; 30(10):3762-9. doi:
10.1523/jneurosci.3300-09.2010
. [PMID: 20220010] - Yue Zhang, Donald E Kohan, Raoul D Nelson, Noel G Carlson, Bellamkonda K Kishore. Potential involvement of P2Y2 receptor in diuresis of postobstructive uropathy in rats.
American journal of physiology. Renal physiology.
2010 Mar; 298(3):F634-42. doi:
10.1152/ajprenal.00382.2009
. [PMID: 20007349] - Andrés Norambuena, Francisco Palma, M Inés Poblete, M Verónica Donoso, Evelyn Pardo, Alfonso González, J Pablo Huidobro-Toro. UTP controls cell surface distribution and vasomotor activity of the human P2Y2 receptor through an epidermal growth factor receptor-transregulated mechanism.
The Journal of biological chemistry.
2010 Jan; 285(5):2940-50. doi:
10.1074/jbc.m109.081166
. [PMID: 19996104] - Sebastian Damerow, Anne-Christin Lamerz, Thomas Haselhorst, Jana Führing, Patricia Zarnovican, Mark von Itzstein, Françoise H Routier. Leishmania UDP-sugar pyrophosphorylase: the missing link in galactose salvage?.
The Journal of biological chemistry.
2010 Jan; 285(2):878-87. doi:
10.1074/jbc.m109.067223
. [PMID: 19906649] - Akiko Shitara, Akihiko Tanimura, Atsuko Sato, Yosuke Tojyo. Spontaneous oscillations in intracellular Ca(2+) concentration via purinergic receptors elicit transient cell swelling in rat parotid ducts.
American journal of physiology. Gastrointestinal and liver physiology.
2009 Dec; 297(6):G1198-205. doi:
10.1152/ajpgi.00168.2009
. [PMID: 19779019] - Thuy T B Vo, Eui-Man Jung, Vu Hoang Dang, Yeong-Min Yoo, Kyung-Chul Choi, Frank H Yu, Eui-Bae Jeung. Di-(2 ethylhexyl) phthalate and flutamide alter gene expression in the testis of immature male rats.
Reproductive biology and endocrinology : RB&E.
2009 Sep; 7(?):104. doi:
10.1186/1477-7827-7-104
. [PMID: 19781091] - Elvin Odgaard, Helle A Praetorius, Jens Leipziger. AVP-stimulated nucleotide secretion in perfused mouse medullary thick ascending limb and cortical collecting duct.
American journal of physiology. Renal physiology.
2009 Aug; 297(2):F341-9. doi:
10.1152/ajprenal.00190.2009
. [PMID: 19515810] - Georg Lamprecht, Chih-Jen Hsieh, Simone Lissner, Lilia Nold, Andreas Heil, Veronika Gaco, Julia Schäfer, Jerrold R Turner, Michael Gregor. Intestinal anion exchanger down-regulated in adenoma (DRA) is inhibited by intracellular calcium.
The Journal of biological chemistry.
2009 Jul; 284(29):19744-53. doi:
10.1074/jbc.m109.004127
. [PMID: 19447883] - A K Lawrance, L Deng, R Rozen. Methylenetetrahydrofolate reductase deficiency and low dietary folate reduce tumorigenesis in Apc min/+ mice.
Gut.
2009 Jun; 58(6):805-11. doi:
10.1136/gut.2007.143107
. [PMID: 19174418] - Ciara Leydon, Kimberly V Fisher, Danielle Lodewyck-Falciglia. The cystic fibrosis transmembrane conductance regulator and chloride-dependent ion fluxes of ovine vocal fold epithelium.
Journal of speech, language, and hearing research : JSLHR.
2009 Jun; 52(3):745-54. doi:
10.1044/1092-4388(2008/07-0192)
. [PMID: 18806217] - János Fodor, Csaba Matta, Tamás Juhász, Tamás Oláh, Mónika Gönczi, Zsolt Szíjgyártó, Pál Gergely, László Csernoch, Róza Zákány. Ionotropic purinergic receptor P2X4 is involved in the regulation of chondrogenesis in chicken micromass cell cultures.
Cell calcium.
2009 May; 45(5):421-30. doi:
10.1016/j.ceca.2009.02.004
. [PMID: 19297018] - Seung-Ryoung Jung, Mean-Hwan Kim, Bertil Hille, Duk-Su Koh. Control of granule mobility and exocytosis by Ca2+ -dependent formation of F-actin in pancreatic duct epithelial cells.
Traffic (Copenhagen, Denmark).
2009 Apr; 10(4):392-410. doi:
10.1111/j.1600-0854.2009.00884.x
. [PMID: 19192247] - Shigeki Kiyonaka, Kenta Kato, Motohiro Nishida, Kazuhiro Mio, Takuro Numaga, Yuichi Sawaguchi, Takashi Yoshida, Minoru Wakamori, Emiko Mori, Tomohiro Numata, Masakazu Ishii, Hiroki Takemoto, Akio Ojida, Kenta Watanabe, Aya Uemura, Hitoshi Kurose, Takashi Morii, Tsutomu Kobayashi, Yoji Sato, Chikara Sato, Itaru Hamachi, Yasuo Mori. Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound.
Proceedings of the National Academy of Sciences of the United States of America.
2009 Mar; 106(13):5400-5. doi:
10.1073/pnas.0808793106
. [PMID: 19289841] - H T Syyong, H H C Yang, G Trinh, C Cheung, K H Kuo, C van Breemen. Mechanism of asynchronous Ca(2+) waves underlying agonist-induced contraction in the rat basilar artery.
British journal of pharmacology.
2009 Feb; 156(4):587-600. doi:
10.1111/j.1476-5381.2008.00063.x
. [PMID: 19154440] - Weihong Ma, Hui Hui, Pablo Pelegrin, Annmarie Surprenant. Pharmacological characterization of pannexin-1 currents expressed in mammalian cells.
The Journal of pharmacology and experimental therapeutics.
2009 Feb; 328(2):409-18. doi:
10.1124/jpet.108.146365
. [PMID: 19023039] - M A Ostuni, P Egido, G Peranzi, G L Alonso, J-J Lacapere, D A Gonzalez. Characterization of a functional NTPDase in the endoplasmic reticulum of rat submandibular salivary gland.
Physiological research.
2009; 58(6):843-854. doi:
10.33549/physiolres.931682
. [PMID: 19093741] - Guiling Zhao, Adebowale Adebiyi, Eva Blaskova, Qi Xi, Jonathan H Jaggar. Type 1 inositol 1,4,5-trisphosphate receptors mediate UTP-induced cation currents, Ca2+ signals, and vasoconstriction in cerebral arteries.
American journal of physiology. Cell physiology.
2008 Nov; 295(5):C1376-84. doi:
10.1152/ajpcell.00362.2008
. [PMID: 18799650] - V F Sivuk, I M Rusina, A F Makarchikov. Purification and characteristics of functional properties of soluble nucleoside triphosphatase (apyrase) from bovine brain.
Biochemistry. Biokhimiia.
2008 Sep; 73(9):1047-52. doi:
10.1134/s0006297908090137
. [PMID: 18976223] - Jan K Hennigs, Nicole Burhenne, Frauke Stähler, Marcel Winnig, Bettina Walter, Wolfgang Meyerhof, Hartwig Schmale. Sweet taste receptor interacting protein CIB1 is a general inhibitor of InsP3-dependent Ca2+ release in vivo.
Journal of neurochemistry.
2008 Sep; 106(5):2249-62. doi:
10.1111/j.1471-4159.2008.05563.x
. [PMID: 18627437] - N Kochanowski, F Blanchard, R Cacan, F Chirat, E Guedon, A Marc, J-L Goergen. Influence of intracellular nucleotide and nucleotide sugar contents on recombinant interferon-gamma glycosylation during batch and fed-batch cultures of CHO cells.
Biotechnology and bioengineering.
2008 Jul; 100(4):721-33. doi:
10.1002/bit.21816
. [PMID: 18496872] - Erin Knock, Liyuan Deng, Qing Wu, Andrea K Lawrance, Xiao-ling Wang, Rima Rozen. Strain differences in mice highlight the role of DNA damage in neoplasia induced by low dietary folate.
The Journal of nutrition.
2008 Apr; 138(4):653-8. doi:
10.1093/jn/138.4.653
. [PMID: 18356316] - Miho Oyasu, Mineko Fujimiya, Kaori Kashiwagi, Shiho Ohmori, Hirotsugu Imaeda, Naoaki Saito. Immunogold electron microscopic demonstration of distinct submembranous localization of the activated gammaPKC depending on the stimulation.
The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.
2008 Mar; 56(3):253-65. doi:
10.1369/jhc.7a7291.2007
. [PMID: 18040079] - Joost J B Keurentjes, Ronan Sulpice, Yves Gibon, Marie-Caroline Steinhauser, Jingyuan Fu, Maarten Koornneef, Mark Stitt, Dick Vreugdenhil. Integrative analyses of genetic variation in enzyme activities of primary carbohydrate metabolism reveal distinct modes of regulation in Arabidopsis thaliana.
Genome biology.
2008; 9(8):R129. doi:
10.1186/gb-2008-9-8-r129
. [PMID: 18710526] - K Ross, G Parker, M Whitaker, N J Reynolds. Inhibition of calcium-independent phospholipase A impairs agonist-induced calcium entry in keratinocytes.
The British journal of dermatology.
2008 Jan; 158(1):31-7. doi:
10.1111/j.1365-2133.2007.08298.x
. [PMID: 18028502] - Agnes B Renner, Kathrin Rieger, Detlef Grunow, Martin Zimmermann-Kordmann, Martin Gohlke, Werner Reutter. Liver-specific increase of UTP and UDP-sugar concentrations in rats induced by dietary vitamin B6-deficiency and its relation to complex N-glycan structures of liver membrane-proteins.
Glycoconjugate journal.
2007 Dec; 24(9):531-41. doi:
10.1007/s10719-007-9048-x
. [PMID: 17577663] - Kehinde Ross, Michael Whitaker, Nick J Reynolds. Agonist-induced calcium entry correlates with STIM1 translocation.
Journal of cellular physiology.
2007 Jun; 211(3):569-76. doi:
10.1002/jcp.20993
. [PMID: 17299780] - Yo Sugawara, Hiroko Nishii, Tomoko Takahashi, Junji Yamauchi, Norikazu Mizuno, Kenji Tago, Hiroshi Itoh. The lipid raft proteins flotillins/reggies interact with Galphaq and are involved in Gq-mediated p38 mitogen-activated protein kinase activation through tyrosine kinase.
Cellular signalling.
2007 Jun; 19(6):1301-8. doi:
10.1016/j.cellsig.2007.01.012
. [PMID: 17307333] - Anna Solini, Eleonora Santini, Daniele Chimenti, Paola Chiozzi, Federico Pratesi, Sabina Cuccato, Simonetta Falzoni, Roberto Lupi, Ele Ferrannini, Giuseppe Pugliese, Francesco Di Virgilio. Multiple P2X receptors are involved in the modulation of apoptosis in human mesangial cells: evidence for a role of P2X4.
American journal of physiology. Renal physiology.
2007 May; 292(5):F1537-47. doi:
10.1152/ajprenal.00440.2006
. [PMID: 17264311] - Kohsuke Sekine, Makoto Fujiwara, Masato Nakayama, Toshifumi Takao, Toshiharu Hase, Naoki Sato. DNA binding and partial nucleoid localization of the chloroplast stromal enzyme ferredoxin:sulfite reductase.
The FEBS journal.
2007 Apr; 274(8):2054-69. doi:
10.1111/j.1742-4658.2007.05748.x
. [PMID: 17371503] - Andrei A Ivanov, Hyojin Ko, Liesbet Cosyn, Savitri Maddileti, Pedro Besada, Ingrid Fricks, Stefano Costanzi, T Kendall Harden, Serge Van Calenbergh, Kenneth A Jacobson. Molecular modeling of the human P2Y2 receptor and design of a selective agonist, 2'-amino-2'-deoxy-2-thiouridine 5'-triphosphate.
Journal of medicinal chemistry.
2007 Mar; 50(6):1166-76. doi:
10.1021/jm060903o
. [PMID: 17302398] - Hongxia Zhou, Björn H Falkenburger, Jörg B Schulz, Kim Tieu, Zuoshang Xu, Xu Gang Xia. Silencing of the Pink1 gene expression by conditional RNAi does not induce dopaminergic neuron death in mice.
International journal of biological sciences.
2007 Mar; 3(4):242-50. doi:
10.7150/ijbs.3.242
. [PMID: 17389931] - S Klawitter, L P Hofmann, J Pfeilschifter, A Huwiler. Extracellular nucleotides induce migration of renal mesangial cells by upregulating sphingosine kinase-1 expression and activity.
British journal of pharmacology.
2007 Feb; 150(3):271-80. doi:
10.1038/sj.bjp.0706983
. [PMID: 17200676] - Yuanyuan Zhang, Wei Li, Mary Vore. Translational regulation of rat multidrug resistance-associated protein 2 expression is mediated by upstream open reading frames in the 5' untranslated region.
Molecular pharmacology.
2007 Jan; 71(1):377-83. doi:
10.1124/mol.106.029793
. [PMID: 17065236] - Srdjan M Vlajkovic, Carol J H Wang, Christian Soeller, Herbert Zimmermann, Peter R Thorne, Gary D Housley. Activation-dependent trafficking of NTPDase2 in Chinese hamster ovary cells.
The international journal of biochemistry & cell biology.
2007; 39(4):810-7. doi:
10.1016/j.biocel.2007.01.003
. [PMID: 17307380] - Jyothi Bhat, Rajendra Rane, Suresh M Solapure, Dhiman Sarkar, Umender Sharma, M N Harish, Sarah Lamb, Darren Plant, Peter Alcock, Steve Peters, Shubhada Barde, Raman K Roy. High-throughput screening of RNA polymerase inhibitors using a fluorescent UTP analog.
Journal of biomolecular screening.
2006 Dec; 11(8):968-76. doi:
10.1177/1087057106291978
. [PMID: 17021309] - Seung-Ryoung Jung, Kyungjin Kim, Bertil Hille, Toan D Nguyen, Duk-Su Koh. Pattern of Ca2+ increase determines the type of secretory mechanism activated in dog pancreatic duct epithelial cells.
The Journal of physiology.
2006 Oct; 576(Pt 1):163-78. doi:
10.1113/jphysiol.2006.114876
. [PMID: 16857709] - Luca Ulianich, Maria Giovanna Elia, Antonella Sonia Treglia, Antonella Muscella, Bruno Di Jeso, Carlo Storelli, Santo Marsigliante. The sarcoplasmic-endoplasmic reticulum Ca2+ ATPase 2b regulates the Ca2+ transients elicited by P2Y2 activation in PC Cl3 thyroid cells.
The Journal of endocrinology.
2006 Sep; 190(3):641-9. doi:
10.1677/joe.1.06455
. [PMID: 17003265] - I M Rusina, A F Makarchikov, E A Makar, V L Kubyshin. [Nucleoside-5'-triphosphate hydrolysis in the liver and kidney of rats with chronic alloxan diabetes].
Biomeditsinskaia khimiia.
2006 Jul; 52(4):364-9. doi:
NULL
. [PMID: 17044594] - Hideki Aizaki, Keum S Choi, Minyi Liu, Yi-jia Li, Michael M C Lai. Polypyrimidine-tract-binding protein is a component of the HCV RNA replication complex and necessary for RNA synthesis.
Journal of biomedical science.
2006 Jul; 13(4):469-80. doi:
10.1007/s11373-006-9088-4
. [PMID: 16691359] - Yuting Tang, Lubing Zhou, Joseph W Gunnet, Pamela G Wines, Ellen V Cryan, Keith T Demarest. Enhancement of arachidonic acid signaling pathway by nicotinic acid receptor HM74A.
Biochemical and biophysical research communications.
2006 Jun; 345(1):29-37. doi:
10.1016/j.bbrc.2006.04.051
. [PMID: 16674924] - Sonia Dorion, Daniel P Matton, Jean Rivoal. Characterization of a cytosolic nucleoside diphosphate kinase associated with cell division and growth in potato.
Planta.
2006 Jun; 224(1):108-24. doi:
10.1007/s00425-005-0199-3
. [PMID: 16395585] - Anna-Karin Wihlborg, Johanna Balogh, Lingwei Wang, Catharina Borna, Ying Dou, Bhalchandra V Joshi, Eduardo Lazarowski, Kenneth A Jacobson, Anders Arner, David Erlinge. Positive inotropic effects by uridine triphosphate (UTP) and uridine diphosphate (UDP) via P2Y2 and P2Y6 receptors on cardiomyocytes and release of UTP in man during myocardial infarction.
Circulation research.
2006 Apr; 98(7):970-6. doi:
10.1161/01.res.0000217402.73402.cd
. [PMID: 16543499] - Kenneth A Jacobson, Stefano Costanzi, Andrei A Ivanov, Susanna Tchilibon, Pedro Besada, Zhan-Guo Gao, Savitri Maddileti, T Kendall Harden. Structure activity and molecular modeling analyses of ribose- and base-modified uridine 5'-triphosphate analogues at the human P2Y2 and P2Y4 receptors.
Biochemical pharmacology.
2006 Feb; 71(4):540-9. doi:
10.1016/j.bcp.2005.11.010
. [PMID: 16359641] - You-Tzung Chen, Akio Kobayashi, Kin Ming Kwan, Randy L Johnson, Richard R Behringer. Gene expression profiles in developing nephrons using Lim1 metanephric mesenchyme-specific conditional mutant mice.
BMC nephrology.
2006 Feb; 7(?):1. doi:
10.1186/1471-2369-7-1
. [PMID: 16464245] - Mercedes Montiel, Enrique Pérez de la Blanca, Eugenio Jiménez. P2Y receptors activate MAPK/ERK through a pathway involving PI3K/PDK1/PKC-zeta in human vein endothelial cells.
Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology.
2006; 18(1-3):123-34. doi:
10.1159/000095180
. [PMID: 16914897] - Liaman Mamedova, Valérie Capra, Maria Rosa Accomazzo, Zhan-Guo Gao, Silvia Ferrario, Marta Fumagalli, Maria P Abbracchio, G Enrico Rovati, Kenneth A Jacobson. CysLT1 leukotriene receptor antagonists inhibit the effects of nucleotides acting at P2Y receptors.
Biochemical pharmacology.
2005 Dec; 71(1-2):115-25. doi:
10.1016/j.bcp.2005.10.003
. [PMID: 16280122]