Cytidine (BioDeep_00000000364)

 

Secondary id: BioDeep_00000398587

natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite


代谢物信息卡片


4-amino-1-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one

化学式: C9H13N3O5 (243.0855168)
中文名称: 胞苷, 胞嘧啶核苷
谱图信息: 最多检出来源 Macaca mulatta(otcml) 0.01%

Reviewed

Last reviewed on 2024-07-01.

Cite this Page

Cytidine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/cytidine (retrieved 2024-09-17) (BioDeep RN: BioDeep_00000000364). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C1=CN(C(=O)N=C1N)C2C(C(C(O2)CO)O)O
InChI: InChI=1S/C9H13N3O5/c10-5-1-2-12(9(16)11-5)8-7(15)6(14)4(3-13)17-8/h1-2,4,6-8,13-15H,3H2,(H2,10,11,16)/t4-,6-,7-,8-/m1/s1

描述信息

Cytidine is a nucleoside that is composed of the base cytosine linked to the five-carbon sugar D-ribose. Cytidine is a pyrimidine that besides being incorporated into nucleic acids, can serve as a substrate for the salvage pathway of pyrimidine nucleotide synthesis. It is a precursor of cytidine triphosphate (CTP) needed in the phosphatidylcholine (PC) and phosphatidylethanolamine (PE) biosynthetic pathways. These variations probably reflect the species differences in cytidine deaminase, the enzyme that converts cytidine to uridine in the body. The transport of cytidine into the brains extracellular fluid, and then into neurons and glia, are essential prerequisites for cytidine to be utilized in the brain. An efficient mechanism mediating the brain uptake of circulating cytidine has not yet been demonstrated. The biosynthesis of PC, the most abundant phosphatide in the brain, via the Kennedy pathway requires phosphocholine and cytidine triphosphate (CTP), a cytidine nucleotide involved in the rate-limiting step. The enzyme that converts CTP to endogenous CDP-choline (CTP:phosphocholine cytidylyltransferase) is unsaturated at physiological brain CTP levels. APOBEC is a family of enzymes that has been discovered with the ability to deaminate cytidines on RNA or DNA. The human apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G protein (APOBEC3G, or hA3G), provides cells with an intracellular antiretroviral activity that is associated with the hypermutation of viral DNA through cytidine deamination. Indeed, hA3G belongs to a family of vertebrate proteins that contains one or two copies of a signature sequence motif unique to cytidine deaminases (CTDAs) (PMID: 16769123, 15780864, 16720547).
Cytidine is a nucleoside that is composed of the base cytosine linked to the five-carbon sugar D-ribose. Cytidine is a pyrimidine that besides being incorporated into nucleic acids, can serve as substrate for the salvage pathway of pyrimidine nucleotide synthesis; as precursor of the cytidine triphosphate (CTP) needed in the phosphatidylcholine (PC) and phosphatidylethanolamine (PE) biosynthetic pathway. These variations probably reflect the species differences in cytidine deaminase, the enzyme that converts cytidine to uridine in the body. The transports of cytidine into the brains extracellular fluid, and then into neurons and glia, are essential prerequisites for cytidine to be utilized in brain. An efficient mechanism mediating the brain uptake of circulating cytidine has not yet been demonstrated. The biosynthesis of PC, the most abundant phosphatide in the brain, via the Kennedy pathway requires phosphocholine and cytidine triphosphate (CTP), a cytidine nucleotide, which is involved in the rate-limiting step. The enzyme that converts CTP to endogenous CDP-choline (CTP: phosphocholine cytidylyltransferase) is unsaturated at physiological brain CTP levels.
Cytidine is a white crystalline powder. (NTP, 1992)
Cytidine is a pyrimidine nucleoside in which cytosine is attached to ribofuranose via a beta-N(1)-glycosidic bond. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is functionally related to a cytosine.
Cytidine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Cytidine is a natural product found in Fritillaria thunbergii, Castanopsis fissa, and other organisms with data available.
Cytidine is a pyrimidine nucleoside comprised of a cytosine bound to ribose via a beta-N1-glycosidic bond. Cytidine is a precursor for uridine. Both cytidine and uridine are utilized in RNA synthesis.
Cytidine is a metabolite found in or produced by Saccharomyces cerevisiae.
A pyrimidine nucleoside that is composed of the base CYTOSINE linked to the five-carbon sugar D-RIBOSE.
A pyrimidine nucleoside in which cytosine is attached to ribofuranose via a beta-N(1)-glycosidic bond.
[Spectral] Cytidine (exact mass = 243.08552) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) and NAD+ (exact mass = 663.10912) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions.
[Spectral] Cytidine (exact mass = 243.08552) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions.
[Spectral] Cytidine (exact mass = 243.08552) and S-Adenosyl-L-homocysteine (exact mass = 384.12159) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions.

Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3].
Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3].
Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3].

同义名列表

87 个代谢物同义名

4-amino-1-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one; 4-amino-1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,2-dihydropyrimidin-2-one; 4-amino-1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl]pyrimidin-2-one; 4-amino-1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]pyrimidin-2-one; 1-(b-delta-Ribofuranosyl)-2-oxo-4-amino-1,2-dihydro-1,3-diazine; Cytidine, BioReagent, suitable for cell culture, powder, >=99\\%; 1-(beta-D-Ribofuranosyl)-2-oxo-4-amino-1,2-dihydro-1,3-diazine; 1-(b-D-Ribofuranosyl)-2-oxo-4-amino-1,2-dihydro-1,3-diazine; 1-(Β-D-ribofuranosyl)-2-oxo-4-amino-1,2-dihydro-1,3-diazine; 2(1H)-Pyrimidinone, 4-amino-1-.beta.-D-ribofuranosyl-; 4-Amino-1-beta-delta-ribofuranosyl-2(1H)-pyrimidinone; 4-Amino-1-.beta.-D-ribofuranosyl-2-(1H)-pyrimidinone; 2(1H)-Pyrimidinone, 4-amino-1-beta-D-ribofuranosyl-; 2(1H)-Pyrimidinone, 4-amino-1beta-D-ribofuranosyl-; 4-Amino-1.beta.-D-ribofuranosyl-2(1H)-pyrimidinone; Cytosine -D-riboside;Cytosine-1--D-ribofuranoside; 4-Amino-1-beta-D-ribofuranosyl-2(1H)-pyrimidinone; 4-amino-1-beta-D-ribofuranosylpyrimidin-2(1H)-one; 4-Amino-1beta-D-ribofuranosyl-2(1H)-pyrimidinone; 1-(beta-D-ribofuranosyl)-4-aminopyrimidin-2-one; 4-Amino-1-β-D-ribofuranosylpyrimidin-2(1H)-one; 4-Amino-1-b-D-ribofuranosylpyrimidin-2(1H)-one; 4-AMINO-1-β-D-ribofuranosyl-2(1H)-pyrimidinone; 4-Amino-1-b-D-ribofuranosyl-2(1H)-pyrimidinone; 4-Amino-1β-D-ribofuranosyl-2(1H)-pyrimidinone; 4-Amino-1b-D-ribofuranosyl-2(1H)-pyrimidinone; 6D2DC474-DD76-4081-8B34-10605C218F49; cytosine-1beta-delta-Ribofuranoside; 1-beta-delta-ribofuranosyl-Cytosine; .beta.-D-Ribofuranoside, cytosine-1; Cytosine, 1-.beta.-D-ribofuranosyl-; 1-beta-delta-Ribofuranosylcytosine; beta-D-Ribofuranoside, cytosine-1; Cytosine, 1-beta-D-ribofuranosyl-; 1beta-2-Ribofuranosylcytosine, d-; 1beta-delta-Ribofuranosylcytosine; cytosine-1b-delta-Ribofuranoside; cytosine-1beta-D-Ribofuranoside; Cytidine; Cytarabine Impurity E; 1.beta.-D-Ribofuranosylcytosine; 1-beta-D-ribofuranosyl-Cytosine; 1-beta-D-Ribofuranosylcytosine; 1-beta-delta-ribosyl-Cytosine; 1.beta.-Ribofuranosylcytosine; Cytosine-1-b-D-ribofuranoside; beta-D-ribofuranosyl-cytidine; 1beta-D-Ribofuranosylcytosine; Cytosine-1β-D-ribofuranoside; cytosine-1b-D-Ribofuranoside; 1-beta-Ribofuranosylcytosine; 1-b-D-Ribofuranosylcytosine; 1-Β-D-ribofuranosylcytosine; 1beta-Ribofuranosylcytosine; 1Β-D-ribofuranosylcytosine; 1b-D-Ribofuranosylcytosine; Cytidine, >=99.0\\% (HPLC); Ribonucleoside, Cytosine; Cytosine-beta-D-riboside; 1-beta-D-ribosyl- (6CI); Cytosine Ribonucleoside; 1-b-D-ribosyl-Cytosine; Cytosine b-D-riboside; Riboside, Cytosine; Cytosine riboside; CYTIDINE [WHO-DD]; CYTIDINE [MART.]; CYTIDINE [INCI]; UNII-5CSZ8459RP; beta.-D-Ribo-C; Cytidine, 99\\%; beta-cytidine; Posilent (TN); CYTIDINE [MI]; 3h-cytidine; 5CSZ8459RP; C9H13N3O5; Cytidine; Posilent; Cytidin; Zytidin; CP-C; CTN; Cyd; Cytidine,cell culture tested; Cytidine; Cytosine β-D-riboside; Cytosine-1-β-D-ribofuranoside



数据库引用编号

47 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(14)

PlantCyc(4)

代谢反应

611 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(106)

WikiPathways(2)

Plant Reactome(0)

INOH(1)

PlantCyc(480)

COVID-19 Disease Map(2)

PathBank(20)

PharmGKB(0)

45 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Jie Ding, Yang Su, Yinglu Ruan, Nan Li, Qianchao Meng, Jiabang Yang, Li Chen, Chi Liu. Clinical features and outcomes of patients with acute myeloid leukemia: the single-center experience of 668 patients in China. Hematology (Amsterdam, Netherlands). 2024 Dec; 29(1):2310960. doi: 10.1080/16078454.2024.2310960. [PMID: 38323781]
  • David Calderón Guzmán, Norma Osnaya Brizuela, Maribel Ortíz Herrera, Hugo Juárez Olguín, Armando Valenzuela Peraza, Norma Labra Ruíz, Gerardo Barragán Mejía. Intake of oligoelements with cytarabine or etoposide alters dopamine levels and oxidative damage in rat brain. Scientific reports. 2024 05; 14(1):10835. doi: 10.1038/s41598-024-61766-0. [PMID: 38736022]
  • Yan Jia, Xiyu Li, Lulu Chen, Ling Li, Suzhen Zhang, Wenhui Huang, Hao Zhang. AHR signaling pathway mediates mitochondrial oxidative phosphorylation which leads to cytarabine resistance. Acta biochimica et biophysica Sinica. 2024 04; 56(4):597-606. doi: 10.3724/abbs.2024022. [PMID: 38404179]
  • Bei Zheng, Qinqin Zhao, Wenjuan Yang, Pinpin Feng, Chuanwei Xin, Yin Ying, Bo Yang, Bing Han, Jun Zhu, Meiling Zhang, Gonghua Li. Small-molecule antiviral treatments for COVID-19: A systematic review and network meta-analysis. International journal of antimicrobial agents. 2024 Mar; 63(3):107096. doi: 10.1016/j.ijantimicag.2024.107096. [PMID: 38244811]
  • Monika Jamioł, Magdalena Sozoniuk, Jacek Wawrzykowski, Marta Kankofer. Changes in plasma PLAC-1 concentration and its expression during early-mid pregnancy in bovine placental tissues - a pilot study. BMC veterinary research. 2024 Feb; 20(1):59. doi: 10.1186/s12917-024-03898-z. [PMID: 38378537]
  • Nagi M El-Shafai, Yasser S Mostafa, Mohamed S Ramadan, Ibrahim M El-Mehasseb. Enhancement efficiency delivery of antiviral Molnupiravir-drug via the loading with self-assembly nanoparticles of pycnogenol and cellulose which are decorated by zinc oxide nanoparticles for COVID-19 therapy. Bioorganic chemistry. 2024 Feb; 143(?):107028. doi: 10.1016/j.bioorg.2023.107028. [PMID: 38086240]
  • Cody Aplin, Richard A Cerione. Probing the mechanism by which the retinal G protein transducin activates its biological effector PDE6. The Journal of biological chemistry. 2023 Dec; 300(2):105608. doi: 10.1016/j.jbc.2023.105608. [PMID: 38159849]
  • Elena Lesch, Maike Simone Stempel, Vanessa Dressnandt, Bastian Oldenkott, Volker Knoop, Mareike Schallenberg-Rüdinger. Conservation of the moss RNA editing factor PPR78 despite the loss of its known C-to-U editing sites is explained by a hidden extra target. The Plant cell. 2023 Nov; ?(?):. doi: 10.1093/plcell/koad292. [PMID: 38000897]
  • Yihan Zhao, Shiqing Jiang, Yujun Tang, Lin Zhao. Venetoclax with CAG regimen for early T-cell precursor acute lymphoblastic leukemia: a case report and literature review. International journal of hematology. 2023 Oct; 118(4):483-488. doi: 10.1007/s12185-023-03623-w. [PMID: 37269505]
  • Chen Wang, Guangming Ma, Shanqi Zhang, Kunhong Zhao, Xiangyang Li. Study on the binding of ningnanmycin to the helicase of Tobamovirus virus. Pesticide biochemistry and physiology. 2023 Aug; 194(?):105494. doi: 10.1016/j.pestbp.2023.105494. [PMID: 37532353]
  • Wenlei Wang, Huijie Liu, Feifei Wang, Xiaoye Liu, Yu Sun, Jie Zhao, Changhua Zhu, Lijun Gan, Jinping Yu, Claus-Peter Witte, Mingjia Chen. N4-acetylation of cytidine in (m)RNA plays essential roles in plants. The Plant cell. 2023 Jun; ?(?):. doi: 10.1093/plcell/koad189. [PMID: 37367221]
  • Bin Li, Donghao Li, Linjun Cai, Qiting Zhou, Cong Liu, Jianzhong Lin, Yixing Li, Xiaoying Zhao, Li Li, Xuanming Liu, Chongsheng He. Transcriptome-wide profiling of RNA N4-cytidine acetylation in Arabidopsis thaliana and Oryza sativa. Molecular plant. 2023 06; 16(6):1082-1098. doi: 10.1016/j.molp.2023.04.009. [PMID: 37073130]
  • Han Yao, Cheng Zhang, Xu Tan, Jieping Li, Xiaolin Yin, Xiaojuan Deng, Ting Chen, Jun Rao, Lei Gao, Peiyan Kong, Xi Zhang. Efficacy and toxicity of CLAG combined with pegylated liposomal doxorubicin in the treatment of refractory or relapsed acute myeloid leukemia. Cancer medicine. 2023 06; 12(11):12377-12387. doi: 10.1002/cam4.5938. [PMID: 37161845]
  • Mi-Rae Park, Hye-Jin Lee, Hye-Min Jang, Nam Hoon Kim, Jun-Seok Lee, Yong Taek Jeong, Inho Kim, Sang-Hyun Choi, Kwan Sik Seo, Dong-Hoon Kim. Cytarabine induces cachexia with lipid malabsorption via zippering the junctions of lacteal in murine small intestine. Journal of lipid research. 2023 06; 64(6):100387. doi: 10.1016/j.jlr.2023.100387. [PMID: 37201659]
  • Zhixin Ma, Wenle Ye, Jinghan Wang, Xin Huang, Jiansong Huang, Xia Li, Chao Hu, Chenying Li, Yile Zhou, Xiangjie Lin, Wenwen Wei, Yu Qian, Yutong Zhou, Shihui Mao, Xiufeng Yin, Bo Zhu, Jie Jin. Glutamate dehydrogenase 1: A novel metabolic target in inhibiting acute myeloid leukaemia progression. British journal of haematology. 2023 May; ?(?):. doi: 10.1111/bjh.18884. [PMID: 37231991]
  • Wei Chu, Ya-Ling Li, Jun-Jie Li, Jia Lin, Mi Li, Jiao Wang, Jian-Zheng He, Yue-Mei Zhang, Juan Yao, Xiao-Jie Jin, Hui Cai, Yong-Qi Liu. Guiqi Baizhu prescription ameliorates cytarabine-induced intestinal mucositis by targeting JAK2 to inhibit M1 macrophage polarization. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 May; 164(?):114902. doi: 10.1016/j.biopha.2023.114902. [PMID: 37209628]
  • Keith Woodley, Laura S Dillingh, George Giotopoulos, Pedro Madrigal, Kevin M Rattigan, Céline Philippe, Vilma Dembitz, Aoife M S Magee, Ryan Asby, Louie N van de Lagemaat, Christopher Mapperley, Sophie C James, Jochen H M Prehn, Konstantinos Tzelepis, Kevin Rouault-Pierre, George S Vassiliou, Kamil R Kranc, G Vignir Helgason, Brian J P Huntly, Paolo Gallipoli. Mannose metabolism inhibition sensitizes acute myeloid leukaemia cells to therapy by driving ferroptotic cell death. Nature communications. 2023 04; 14(1):2132. doi: 10.1038/s41467-023-37652-0. [PMID: 37059720]
  • Shuzhen Han, Minghui Xiu, Shuang Li, Yan Shi, Xiaoqian Wang, Xingyao Lin, Hui Cai, Yongqi Liu, Jianzheng He. Exposure to cytarabine causes side effects on adult development and physiology and induces intestinal damage via apoptosis in Drosophila. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 Mar; 159(?):114265. doi: 10.1016/j.biopha.2023.114265. [PMID: 36652735]
  • Kaixia Niu, Pengpeng Bai, Junyang Zhang, Xinchi Feng, Feng Qiu. Cytidine Alleviates Dyslipidemia and Modulates the Gut Microbiota Composition in ob/ob Mice. Nutrients. 2023 Feb; 15(5):. doi: 10.3390/nu15051147. [PMID: 36904146]
  • Junjie Yue, Caiting Sun, Jinyuan Tang, Qiyuan Zhang, Mengjie Lou, Hongwen Sun, Lianying Zhang. Downregulation of miRNA-155-5p contributes to the adipogenic activity of 2-ethylhexyl diphenyl phosphate in 3T3-L1 preadipocytes. Toxicology. 2023 Feb; 487(?):153452. doi: 10.1016/j.tox.2023.153452. [PMID: 36764644]
  • Lei Li, Hailong Tian, Zhe Zhang, Ning Ding, Kai He, Shuaijun Lu, Ruolan Liu, Peijie Wu, Yu Wang, Bo He, Maochao Luo, Peilan Peng, Mao Yang, Edouard C Nice, Canhua Huang, Na Xie, Dong Wang, Wei Gao. Carrier-Free Nanoplatform via Evoking Pyroptosis and Immune Response against Breast Cancer. ACS applied materials & interfaces. 2023 Jan; 15(1):452-468. doi: 10.1021/acsami.2c17579. [PMID: 36538368]
  • Ting Li, Jiesen Yu, Mengyuan Hou, Sijie Zha, Qingqing Cheng, Qingshan Zheng, Lujin Li. Quantitative evaluation of therapy options for relapsed/refractory diffuse large B-cell lymphoma: A model-based meta-analysis. Pharmacological research. 2023 01; 187(?):106592. doi: 10.1016/j.phrs.2022.106592. [PMID: 36470547]
  • Wen Wen, Chen Chen, Jiake Tang, Chunyi Wang, Mengyun Zhou, Yongran Cheng, Xiang Zhou, Qi Wu, Xingwei Zhang, Zhanhui Feng, Mingwei Wang, Qin Mao. Efficacy and safety of three new oral antiviral treatment (molnupiravir, fluvoxamine and Paxlovid) for COVID-19:a meta-analysis. Annals of medicine. 2022 12; 54(1):516-523. doi: 10.1080/07853890.2022.2034936. [PMID: 35118917]
  • Muhammad Jawad Akbar Awan, Komal Pervaiz, Awais Rasheed, Imran Amin, Nasir A Saeed, Kanwarpal S Dhugga, Shahid Mansoor. Genome edited wheat- current advances for the second green revolution. Biotechnology advances. 2022 11; 60(?):108006. doi: 10.1016/j.biotechadv.2022.108006. [PMID: 35732256]
  • Husheem Michael, Vishal Srivastava, Loic Deblais, Joshua O Amimo, Juliet Chepngeno, Linda J Saif, Gireesh Rajashekara, Anastasia N Vlasova. The Combined Escherichia coli Nissle 1917 and Tryptophan Treatment Modulates Immune and Metabolome Responses to Human Rotavirus Infection in a Human Infant Fecal Microbiota-Transplanted Malnourished Gnotobiotic Pig Model. mSphere. 2022 Oct; 7(5):e0027022. doi: 10.1128/msphere.00270-22. [PMID: 36073800]
  • Ya-Ling Li, Wei Chu, Jun-Jie Li, Juan-Juan Dong, Gao-Qin Li, Xiao-Jie Jin, Juan Yao, Yong-Qi Liu. [Animal Model Establishment and Its Mechanism of Cytarabine-Iduced Myelosuppression]. Zhongguo shi yan xue ye xue za zhi. 2022 Oct; 30(5):1376-1383. doi: 10.19746/j.cnki.issn.1009-2137.2022.05.012. [PMID: 36208238]
  • Toshio Kaneda, Farida Ifadotunnikmah, Alfarius Eko Nugroho, Sae Koshikawa, Sasaki Tadahiro, Yusuke Hirasawa, Hiroshi Morita. Calofolic Acid-A from Calophyllum scriblitifolium Bark Has Vasorelaxant Activity via Indirect PKA Activation Caused by PI-3 Kinase Inhibition in Rat Vascular Smooth Muscle Cells. Journal of natural products. 2022 09; 85(9):2192-2198. doi: 10.1021/acs.jnatprod.2c00502. [PMID: 35983865]
  • Elena Lesch, Maximilian T Schilling, Sarah Brenner, Yingying Yang, Oliver J Gruss, Volker Knoop, Mareike Schallenberg-Rüdinger. Plant mitochondrial RNA editing factors can perform targeted C-to-U editing of nuclear transcripts in human cells. Nucleic acids research. 2022 09; 50(17):9966-9983. doi: 10.1093/nar/gkac752. [PMID: 36107771]
  • Mizuho Ichinose, Masuyo Kawabata, Yumi Akaiwa, Yasuka Shimajiri, Izumi Nakamura, Takayuki Tamai, Takahiro Nakamura, Yusuke Yagi, Bernard Gutmann. U-to-C RNA editing by synthetic PPR-DYW proteins in bacteria and human culture cells. Communications biology. 2022 09; 5(1):968. doi: 10.1038/s42003-022-03927-3. [PMID: 36109586]
  • Mahmood Hassan Dalhat, Mohammed Razeeth Shait Mohammed, Hind Ali Alkhatabi, Mohd Rehan, Aamir Ahmad, Hani Choudhry, Mohammad Imran Khan. NAT10: An RNA cytidine transferase regulates fatty acid metabolism in cancer cells. Clinical and translational medicine. 2022 09; 12(9):e1045. doi: 10.1002/ctm2.1045. [PMID: 36149760]
  • Yong Pu, Elvis Ticiani, Anita A Waye, Kunzhe Dong, Huanmin Zhang, Almudena Veiga-Lopez. Sex-specific extracellular matrix remodeling during early adipogenic differentiation by gestational bisphenol A exposure. Chemosphere. 2022 Sep; 302(?):134806. doi: 10.1016/j.chemosphere.2022.134806. [PMID: 35504463]
  • Pal Maliga. Engineering the plastid and mitochondrial genomes of flowering plants. Nature plants. 2022 09; 8(9):996-1006. doi: 10.1038/s41477-022-01227-6. [PMID: 36038655]
  • Ayako Maeda, Sachi Takenaka, Tenghua Wang, Brody Frink, Toshiharu Shikanai, Mizuki Takenaka. DYW deaminase domain has a distinct preference for neighboring nucleotides of the target RNA editing sites. The Plant journal : for cell and molecular biology. 2022 08; 111(3):756-767. doi: 10.1111/tpj.15850. [PMID: 35652245]
  • Junhua Kong, Virginie Garcia, Enric Zehraoui, Linda Stammitti, Ghislaine Hilbert, Christel Renaud, Stéphane Maury, Alain Delaunay, Stéphanie Cluzet, Fatma Lecourieux, David Lecourieux, Emeline Teyssier, Philippe Gallusci. Zebularine, a DNA Methylation Inhibitor, Activates Anthocyanin Accumulation in Grapevine Cells. Genes. 2022 07; 13(7):. doi: 10.3390/genes13071256. [PMID: 35886036]
  • Kyle Rosenke, Atsushi Okumura, Matthew C Lewis, Friederike Feldmann, Kimberly Meade-White, W Forrest Bohler, Amanda Griffin, Rebecca Rosenke, Carl Shaia, Michael A Jarvis, Heinz Feldmann. Molnupiravir inhibits SARS-CoV-2 variants including Omicron in the hamster model. JCI insight. 2022 Jul; 7(13):. doi: 10.1172/jci.insight.160108. [PMID: 35579953]
  • Ryuta Uraki, Maki Kiso, Shun Iida, Masaki Imai, Emi Takashita, Makoto Kuroda, Peter J Halfmann, Samantha Loeber, Tadashi Maemura, Seiya Yamayoshi, Seiichiro Fujisaki, Zhongde Wang, Mutsumi Ito, Michiko Ujie, Kiyoko Iwatsuki-Horimoto, Yuri Furusawa, Ryan Wright, Zhenlu Chong, Seiya Ozono, Atsuhiro Yasuhara, Hiroshi Ueki, Yuko Sakai-Tagawa, Rong Li, Yanan Liu, Deanna Larson, Michiko Koga, Takeya Tsutsumi, Eisuke Adachi, Makoto Saito, Shinya Yamamoto, Masao Hagihara, Keiko Mitamura, Tetsuro Sato, Masayuki Hojo, Shin-Ichiro Hattori, Kenji Maeda, Riccardo Valdez, Moe Okuda, Jurika Murakami, Calvin Duong, Sucheta Godbole, Daniel C Douek, Ken Maeda, Shinji Watanabe, Aubree Gordon, Norio Ohmagari, Hiroshi Yotsuyanagi, Michael S Diamond, Hideki Hasegawa, Hiroaki Mitsuya, Tadaki Suzuki, Yoshihiro Kawaoka. Characterization and antiviral susceptibility of SARS-CoV-2 Omicron BA.2. Nature. 2022 07; 607(7917):119-127. doi: 10.1038/s41586-022-04856-1. [PMID: 35576972]
  • Hardik Goswami, Adnan Alsumali, Yiling Jiang, Matthias Schindler, Elizabeth R Duke, Joshua Cohen, Andrew Briggs, Amy Puenpatom. Cost-Effectiveness Analysis of Molnupiravir Versus Best Supportive Care for the Treatment of Outpatient COVID-19 in Adults in the US. PharmacoEconomics. 2022 Jul; 40(7):699-714. doi: 10.1007/s40273-022-01168-0. [PMID: 35779197]
  • Prajakta Kulkarni, Sriram Padmanabhan. A novel property of hexokinase inhibition by Favipiravir and proposed advantages over Molnupiravir and 2 Deoxy D glucose in treating COVID-19. Biotechnology letters. 2022 Jul; 44(7):831-843. doi: 10.1007/s10529-022-03259-6. [PMID: 35608787]
  • Sri Masyeni, Muhammad Iqhrammullah, Andri Frediansyah, Firzan Nainu, Trina Tallei, Talha Bin Emran, Youdiil Ophinni, Kuldeep Dhama, Harapan Harapan. Molnupiravir: A lethal mutagenic drug against rapidly mutating severe acute respiratory syndrome coronavirus 2-A narrative review. Journal of medical virology. 2022 Jul; 94(7):3006-3016. doi: 10.1002/jmv.27730. [PMID: 35315098]
  • Reinaldo Dal Bello, Justine Pasanisi, Romane Joudinaud, Matthieu Duchmann, Bryann Pardieu, Paolo Ayaka, Giuseppe Di Feo, Gaetano Sodaro, Clémentine Chauvel, Rathana Kim, Loic Vasseur, Laureen Chat, Frank Ling, Kim Pacchiardi, Camille Vaganay, Jeannig Berrou, Chaima Benaksas, Nicolas Boissel, Thorsten Braun, Claude Preudhomme, Hervé Dombret, Emmanuel Raffoux, Nina Fenouille, Emmanuelle Clappier, Lionel Adès, Alexandre Puissant, Raphael Itzykson. A multiparametric niche-like drug screening platform in acute myeloid leukemia. Blood cancer journal. 2022 06; 12(6):95. doi: 10.1038/s41408-022-00689-3. [PMID: 35750691]
  • Ashley Jia Wen Yip, Zheng Yao Low, Vincent T K Chow, Sunil K Lal. Repurposing Molnupiravir for COVID-19: The Mechanisms of Antiviral Activity. Viruses. 2022 06; 14(6):. doi: 10.3390/v14061345. [PMID: 35746815]
  • Emmanuel Gyan, Arnaud Pigneux, Mathilde Hunault, Pierre Peterlin, Martin Carré, Jacques-Olivier Bay, Caroline Bonmati, Maria-Pilar Gallego-Hernanz, Bruno Lioure, Philippe Bertrand, Nicolas Vallet, David Ternant, François Darrouzain, Frédéric Picou, Marie-Christine Béné, Christian Récher, Olivier Hérault. Adjunction of a fish oil emulsion to cytarabine and daunorubicin induction chemotherapy in high-risk AML. Scientific reports. 2022 06; 12(1):9748. doi: 10.1038/s41598-022-13626-y. [PMID: 35697729]
  • Yanjie Zhang, Hezhou Guo, Zhaoli Zhang, Wei Lu, Jiang Zhu, Jun Shi. IL-6 promotes chemoresistance via upregulating CD36 mediated fatty acids uptake in acute myeloid leukemia. Experimental cell research. 2022 06; 415(1):113112. doi: 10.1016/j.yexcr.2022.113112. [PMID: 35346671]
  • Anmar Al-Taie, Fatma Rana Denkdemir, Zaineb Sharief, Ayse Seyma Buyuk, Semra Şardaş. The Long View on COVID-19 Theranostics and Oral Antivirals: Living with Endemic Disease and Lessons from Molnupiravir. Omics : a journal of integrative biology. 2022 Jun; 26(6):324-328. doi: 10.1089/omi.2022.0045. [PMID: 35580151]
  • Fatima Kayali, Marco Shiu Tsun Leung, Wilson Wong, Kara Pittendrigh Morgan, Amer Harky. What impact can molnupiravir have on the treatment of SARS-CoV-2 infection?. Expert opinion on pharmacotherapy. 2022 06; 23(8):865-868. doi: 10.1080/14656566.2022.2057795. [PMID: 35341442]
  • Sha Li, Shi Zeng, Bo-Ping Wei, Qiang Wu, Chang Liu, Pei-Ying Song. Determination of free and encapsulated cytarabine and daunorubicin in rat plasma after intravenous administration of liposomal formulation using ultra-high performance liquid chromatography tandem mass spectrometry. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2022 Jun; 1200(?):123275. doi: 10.1016/j.jchromb.2022.123275. [PMID: 35551041]
  • Hulda R Jonsdottir, Denise Siegrist, Thomas Julien, Blandine Padey, Mendy Bouveret, Olivier Terrier, Andres Pizzorno, Song Huang, Kirandeep Samby, Timothy N C Wells, Bernadett Boda, Manuel Rosa-Calatrava, Olivier B Engler, Samuel Constant. Molnupiravir combined with different repurposed drugs further inhibits SARS-CoV-2 infection in human nasal epithelium in vitro. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022 Jun; 150(?):113058. doi: 10.1016/j.biopha.2022.113058. [PMID: 35658229]
  • Tuba Reçber, Selin Seda Timur, Sevilay Erdoğan Kablan, Fatma Yalçın, Tutku Ceren Karabulut, R Neslihan Gürsoy, Hakan Eroğlu, Sedef Kır, Emirhan Nemutlu. A stability indicating RP-HPLC method for determination of the COVID-19 drug molnupiravir applied using nanoformulations in permeability studies. Journal of pharmaceutical and biomedical analysis. 2022 May; 214(?):114693. doi: 10.1016/j.jpba.2022.114693. [PMID: 35276385]
  • Wendong Jia, Chengzhen Hu, Yuqin Wang, Panke Zhang, Hong-Yuan Chen, Shuo Huang. A Nanopore Based Molnupiravir Sensor. ACS sensors. 2022 05; 7(5):1564-1571. doi: 10.1021/acssensors.2c00447. [PMID: 35427117]
  • Yuexiang Li, Miaomiao Liu, Yunzheng Yan, Zhuang Wang, Qingsong Dai, Xiaotong Yang, Xiaojia Guo, Wei Li, Xingjuan Chen, Ruiyuan Cao, Wu Zhong. Molnupiravir and Its Active Form, EIDD-1931, Show Potent Antiviral Activity against Enterovirus Infections In Vitro and In Vivo. Viruses. 2022 05; 14(6):. doi: 10.3390/v14061142. [PMID: 35746614]
  • Rim Rakez, Wiem Boufrikha, Sana Lakhal, Amel Boughammoura, Mohamed Adnene Laatiri. The diagnostic dilemma of idiopathic intracranial hypertension in a child with acute lymphoblastic leukemia: COVID-19 or cytosine arabinoside?. BMC neurology. 2022 May; 22(1):163. doi: 10.1186/s12883-022-02689-z. [PMID: 35501718]
  • Andrea Svoradová, Andrej Baláži, Peter Chrenek. Effect of selected natural and synthetic substances on rabbit reproduction-A mini review. Journal of animal physiology and animal nutrition. 2022 May; 106(3):622-629. doi: 10.1111/jpn.13641. [PMID: 34542913]
  • K B Wallace, J A Bjork. Molnupiravir; molecular and functional descriptors of mitochondrial safety. Toxicology and applied pharmacology. 2022 05; 442(?):116003. doi: 10.1016/j.taap.2022.116003. [PMID: 35358570]
  • Andy Extance. Covid-19: What is the evidence for the antiviral molnupiravir?. BMJ (Clinical research ed.). 2022 04; 377(?):o926. doi: 10.1136/bmj.o926. [PMID: 35418477]
  • Yuan Bai, Mingwang Shen, Lei Zhang. Antiviral Efficacy of Molnupiravir for COVID-19 Treatment. Viruses. 2022 04; 14(4):. doi: 10.3390/v14040763. [PMID: 35458493]
  • Yasmine Ahmed Sharaf, Sami El Deeb, Adel Ehab Ibrahim, Ahmed Al-Harrasi, Rania Adel Sayed. Two Green Micellar HPLC and Mathematically Assisted UV Spectroscopic Methods for the Simultaneous Determination of Molnupiravir and Favipiravir as a Novel Combined COVID-19 Antiviral Regimen. Molecules (Basel, Switzerland). 2022 Apr; 27(7):. doi: 10.3390/molecules27072330. [PMID: 35408729]
  • Zhen Xing Gao, Ze Long Cui, Min Ran Zhou, Yue Fu, Fen Liu, Lu Zhang, Sai Ma, Chun Yan Chen. The new mitochondrial uncoupler BAM15 induces ROS production for treatment of acute myeloid leukemia. Biochemical pharmacology. 2022 04; 198(?):114948. doi: 10.1016/j.bcp.2022.114948. [PMID: 35192847]
  • Ismail Celik, Trina E Tallei. A computational comparative analysis of the binding mechanism of molnupiravir's active metabolite to RNA-dependent RNA polymerase of wild-type and Delta subvariant AY.4 of SARS-CoV-2. Journal of cellular biochemistry. 2022 04; 123(4):807-818. doi: 10.1002/jcb.30226. [PMID: 35132671]
  • Jiang-Zhao Zhang, Min Liu, Zhi-Ping Huang. [Influence of Serum TGF-β1 and EGFR Levels on the Therapeutic Effect of High-Dose AraC in Patients with Acute Myeloid Leukemia Based on the Decision Curve]. Zhongguo shi yan xue ye xue za zhi. 2022 Apr; 30(2):407-412. doi: 10.19746/j.cnki.issn.1009-2137.2022.02.014. [PMID: 35395971]
  • Jiang-Zhao Zhang, Min Liu, Zhi-Ping Huang. [Influence of Serum TGF-β1 and EGFR Levels on the Therapeutic Effect of High-Dose AraC in Patients with Acute Myeloid Leukemia Based on the Decision Curve]. Zhongguo shi yan xue ye xue za zhi. 2022 Apr; 30(2):. doi: 10.19746/j.cnki.issn.1009-2137.2022.02.014. [PMID: 35400362]
  • David C Schultz, Robert M Johnson, Kasirajan Ayyanathan, Jesse Miller, Kanupriya Whig, Brinda Kamalia, Mark Dittmar, Stuart Weston, Holly L Hammond, Carly Dillen, Jeremy Ardanuy, Louis Taylor, Jae Seung Lee, Minghua Li, Emily Lee, Clarissa Shoffler, Christopher Petucci, Samuel Constant, Marc Ferrer, Christoph A Thaiss, Matthew B Frieman, Sara Cherry. Pyrimidine inhibitors synergize with nucleoside analogues to block SARS-CoV-2. Nature. 2022 04; 604(7904):134-140. doi: 10.1038/s41586-022-04482-x. [PMID: 35130559]
  • Henry S Sacks. In nonhospitalized, unvaccinated adults with COVID-19, molnupiravir reduced hospitalization or death at 29 d. Annals of internal medicine. 2022 04; 175(4):JC40. doi: 10.7326/j22-0017. [PMID: 35377719]
  • Kristian Thorlund, Kyle Sheldrick, Edward Mills. Molnupiravir for Covid-19 in Nonhospitalized Patients. The New England journal of medicine. 2022 03; 386(13):e32. doi: 10.1056/nejmc2201612. [PMID: 35294804]
  • Carisa De Anda, Matthew G Johnson, Alison Pedley. Molnupiravir for Covid-19 in Nonhospitalized Patients. Reply. The New England journal of medicine. 2022 03; 386(13):e32. doi: 10.1056/nejmc2201612. [PMID: 35294808]
  • Pablo Selvi-Sabater, Juan Abellon-Ruiz. Molnupiravir for Covid-19 in Nonhospitalized Patients. The New England journal of medicine. 2022 03; 386(13):e32. doi: 10.1056/nejmc2201612. [PMID: 35294805]
  • Susan Levenstein. Molnupiravir for Covid-19 in Nonhospitalized Patients. The New England journal of medicine. 2022 03; 386(13):e32. doi: 10.1056/nejmc2201612. [PMID: 35294806]
  • Dominique Roberfroid, Vicky Jespers, Frank Hulstaert. Molnupiravir for Covid-19 in Nonhospitalized Patients. The New England journal of medicine. 2022 03; 386(13):e32. doi: 10.1056/nejmc2201612. [PMID: 35294807]
  • Ravi Mehta, Elena Chekmeneva, Heather Jackson, Caroline Sands, Ewurabena Mills, Dominique Arancon, Ho Kwong Li, Paul Arkell, Timothy M Rawson, Robert Hammond, Maisarah Amran, Anna Haber, Graham S Cooke, Mahdad Noursadeghi, Myrsini Kaforou, Matthew R Lewis, Zoltan Takats, Shiranee Sriskandan. Antiviral metabolite 3'-deoxy-3',4'-didehydro-cytidine is detectable in serum and identifies acute viral infections including COVID-19. Med (New York, N.Y.). 2022 Mar; 3(3):204-215.e6. doi: 10.1016/j.medj.2022.01.009. [PMID: 35128501]
  • Ashleigh J Burke, William R Birmingham, Ying Zhuo, Thomas W Thorpe, Bruna Zucoloto da Costa, Rebecca Crawshaw, Ian Rowles, James D Finnigan, Carl Young, Gregory M Holgate, Mark P Muldowney, Simon J Charnock, Sarah L Lovelock, Nicholas J Turner, Anthony P Green. An Engineered Cytidine Deaminase for Biocatalytic Production of a Key Intermediate of the Covid-19 Antiviral Molnupiravir. Journal of the American Chemical Society. 2022 03; 144(9):3761-3765. doi: 10.1021/jacs.1c11048. [PMID: 35224970]
  • James M Brophy. Molnupiravir's authorisation was premature. BMJ (Clinical research ed.). 2022 03; 376(?):o443. doi: 10.1136/bmj.o443. [PMID: 35241455]
  • Heidi Ledford. Hundreds of COVID trials could provide a deluge of new drugs. Nature. 2022 03; 603(7899):25-27. doi: 10.1038/d41586-022-00562-0. [PMID: 35233098]
  • Sajad Khiali, Elnaz Khani, Samineh B Rouy, Taher Entezari-Maleki. Comprehensive review on molnupiravir in COVID-19: a novel promising antiviral to combat the pandemic. Future microbiology. 2022 03; 17(?):377-391. doi: 10.2217/fmb-2021-0252. [PMID: 35199608]
  • NULL. Molnupiravir in unvaccinated patients with COVID-19. Drug and therapeutics bulletin. 2022 Mar; 60(3):35. doi: 10.1136/dtb.2022.000002. [PMID: 35101888]
  • Yahiya Y Syed. Molnupiravir: First Approval. Drugs. 2022 Mar; 82(4):455-460. doi: 10.1007/s40265-022-01684-5. [PMID: 35184266]
  • Pengfei Li, Yining Wang, Marla Lavrijsen, Mart M Lamers, Annemarie C de Vries, Robbert J Rottier, Marco J Bruno, Maikel P Peppelenbosch, Bart L Haagmans, Qiuwei Pan. SARS-CoV-2 Omicron variant is highly sensitive to molnupiravir, nirmatrelvir, and the combination. Cell research. 2022 03; 32(3):322-324. doi: 10.1038/s41422-022-00618-w. [PMID: 35058606]
  • Rajesh T Gandhi, Preeti N Malani, Carlos Del Rio. COVID-19 Therapeutics for Nonhospitalized Patients. JAMA. 2022 02; 327(7):617-618. doi: 10.1001/jama.2022.0335. [PMID: 35029659]
  • Zeltzin Ceja-Galicia, Diana Calderón-DuPont, Alberto Daniel, Luz María Chiu, Andrea Díaz-Villaseñor. Leptin and adiponectin synthesis and secretion in mature 3T3-L1 adipocytes are differentially down-regulated by arsenic and palmitic acid exposure throughout different stages of adipogenesis. Life sciences. 2022 Feb; 291(?):120262. doi: 10.1016/j.lfs.2021.120262. [PMID: 34968464]
  • Richard Whitley. Molnupiravir - A Step toward Orally Bioavailable Therapies for Covid-19. The New England journal of medicine. 2022 02; 386(6):592-593. doi: 10.1056/nejme2117814. [PMID: 34914869]
  • Angélica Jayk Bernal, Monica M Gomes da Silva, Dany B Musungaie, Evgeniy Kovalchuk, Antonio Gonzalez, Virginia Delos Reyes, Alejandro Martín-Quirós, Yoseph Caraco, Angela Williams-Diaz, Michelle L Brown, Jiejun Du, Alison Pedley, Christopher Assaid, Julie Strizki, Jay A Grobler, Hala H Shamsuddin, Robert Tipping, Hong Wan, Amanda Paschke, Joan R Butterton, Matthew G Johnson, Carisa De Anda. Molnupiravir for Oral Treatment of Covid-19 in Nonhospitalized Patients. The New England journal of medicine. 2022 02; 386(6):509-520. doi: 10.1056/nejmoa2116044. [PMID: 34914868]
  • NULL. Treatment of COVID-19 in high-risk outpatients. The Medical letter on drugs and therapeutics. 2022 Feb; 64(1643):e1. doi: NULL. [PMID: 35134051]
  • Ronald Swanstrom, Raymond F Schinazi. Lethal mutagenesis as an antiviral strategy. Science (New York, N.Y.). 2022 Feb; 375(6580):497-498. doi: 10.1126/science.abn0048. [PMID: 35113690]
  • Hyejin Ko, Seungchan An, Sungjin Ahn, In Guk Park, Junpyo Gong, Seok Young Hwang, Soyeon Oh, Min Won Ki, Sun Hee Jin, Won Jun Choi, Minsoo Noh. Sunscreen filter octocrylene is a potential obesogen by acting as a PPARγ partial agonist. Toxicology letters. 2022 Feb; 355(?):141-149. doi: 10.1016/j.toxlet.2021.12.001. [PMID: 34864131]
  • Laura Vangeel, Winston Chiu, Steven De Jonghe, Piet Maes, Bram Slechten, Joren Raymenants, Emmanuel André, Pieter Leyssen, Johan Neyts, Dirk Jochmans. Remdesivir, Molnupiravir and Nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern. Antiviral research. 2022 02; 198(?):105252. doi: 10.1016/j.antiviral.2022.105252. [PMID: 35085683]
  • Bei Zhang, Zhixin Pei, Hongxia Wang, Huimin Wu, Junjie Wang, Junjun Bai, Qinglin Song. Chidamide and Decitabine in Combination with a HAG Priming Regimen for Acute Myeloid Leukemia with TP53 Mutation. Acta medica Okayama. 2022 Feb; 76(1):63-70. doi: 10.18926/amo/63213. [PMID: 35237000]
  • Eric K Johnson. A Comment on 'Remdesivir and EIDD-1931 Interact with Human Equilibrative Nucleoside Transporters 1 and 2: Implications for Reaching SARS-CoV-2 Viral Sanctuary Sites'. Molecular pharmacology. 2022 02; 101(2):120. doi: 10.1124/molpharm.121.000425. [PMID: 35105678]
  • Siennah R Miller, Meghan E McGrath, Kimberley M Zorn, Sean Ekins, Stephen H Wright, Nathan J Cherrington. Response to Comments on 'Remdesivir and EIDD-1931 Interact with Human Equilibrative Nucleoside Transporters 1 and 2: Implications for Reaching SARS-CoV-2 Viral Sanctuary Sites'. Molecular pharmacology. 2022 02; 101(2):121-122. doi: 10.1124/molpharm.121.000448. [PMID: 35105679]
  • Seyed Mohammad Reza Hashemian, Mohammad Hossein Pourhanifeh, Michael R Hamblin, Mohammad Karim Shahrzad, Hamed Mirzaei. RdRp inhibitors and COVID-19: Is molnupiravir a good option?. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022 Feb; 146(?):112517. doi: 10.1016/j.biopha.2021.112517. [PMID: 34902743]
  • Fariba Pourkarim, Samira Pourtaghi-Anvarian, Haleh Rezaee. Molnupiravir: A new candidate for COVID-19 treatment. Pharmacology research & perspectives. 2022 02; 10(1):e00909. doi: 10.1002/prp2.909. [PMID: 34968008]
  • Simar Singh Bajaj, Fatima Cody Stanford. COVID-19: LMICs need antivirals as well as vaccines. Nature. 2022 02; 602(7895):33. doi: 10.1038/d41586-022-00220-5. [PMID: 35105995]
  • Awadhesh Kumar Singh, Akriti Singh, Ritu Singh, Anoop Misra. An updated practical guideline on use of molnupiravir and comparison with agents having emergency use authorization for treatment of COVID-19. Diabetes & metabolic syndrome. 2022 Feb; 16(2):102396. doi: 10.1016/j.dsx.2022.102396. [PMID: 35051686]
  • Jacek Mrukowicz, Bram Rochwerg, Roman Jaeschke. Will molnupiravir be a game changer in our efforts to safe COVID-19 outpatients?. Polish archives of internal medicine. 2022 01; 132(1):. doi: 10.20452/pamw.16183. [PMID: 34978394]
  • Artem V Sharov, Tatyana M Burkhanova, Tugba Taskın Tok, Maria G Babashkina, Damir A Safin. Computational Analysis of Molnupiravir. International journal of molecular sciences. 2022 Jan; 23(3):. doi: 10.3390/ijms23031508. [PMID: 35163429]
  • NULL. Molnupiravir for treatment of COVID-19. The Medical letter on drugs and therapeutics. 2022 Jan; 64(1642):10-11. doi: NULL. [PMID: 35134041]
  • William A Fischer, Joseph J Eron, Wayne Holman, Myron S Cohen, Lei Fang, Laura J Szewczyk, Timothy P Sheahan, Ralph Baric, Katie R Mollan, Cameron R Wolfe, Elizabeth R Duke, Masoud M Azizad, Katyna Borroto-Esoda, David A Wohl, Robert W Coombs, Amy James Loftis, Paul Alabanza, Felicia Lipansky, Wendy P Painter. A phase 2a clinical trial of molnupiravir in patients with COVID-19 shows accelerated SARS-CoV-2 RNA clearance and elimination of infectious virus. Science translational medicine. 2022 Jan; 14(628):eabl7430. doi: 10.1126/scitranslmed.abl7430. [PMID: 34941423]
  • Luciana L Borio, Rick A Bright, Ezekiel J Emanuel. A National Strategy for COVID-19 Medical Countermeasures: Vaccines and Therapeutics. JAMA. 2022 Jan; 327(3):215-216. doi: 10.1001/jama.2021.24165. [PMID: 34989782]
  • Sraa Abu-Melha, Mastoura Mohamed Edrees, Musa A Said, Sayed M Riyadh, Nadia S Al-Kaff, Sobhi M Gomha. Potential COVID-19 Drug Candidates Based on Diazinyl-Thiazol-Imine Moieties: Synthesis and Greener Pastures Biological Study. Molecules (Basel, Switzerland). 2022 Jan; 27(2):. doi: 10.3390/molecules27020488. [PMID: 35056802]
  • Klara Prochazkova, Andreas Finke, Eva Dvořák Tomaštíková, Jaroslav Filo, Heinrich Bente, Petr Dvořák, Miroslav Ovečka, Jozef Šamaj, Ales Pecinka. Zebularine induces enzymatic DNA-protein crosslinks in 45S rDNA heterochromatin of Arabidopsis nuclei. Nucleic acids research. 2022 01; 50(1):244-258. doi: 10.1093/nar/gkab1218. [PMID: 34904670]
  • Nada A Ashour, Ayman Abo Elmaaty, Amany A Sarhan, Eslam B Elkaeed, Ahmed M Moussa, Ibrahim Ali Erfan, Ahmed A Al-Karmalawy. A Systematic Review of the Global Intervention for SARS-CoV-2 Combating: From Drugs Repurposing to Molnupiravir Approval. Drug design, development and therapy. 2022; 16(?):685-715. doi: 10.2147/dddt.s354841. [PMID: 35321497]
  • Zhentian Ni, Xiaoli Nie, Hairong Zhang, Lingquan Wang, Zixiang Geng, Xiling Du, Haiyang Qian, Wentao Liu, Te Liu. Atranorin driven by nano materials SPION lead to ferroptosis of gastric cancer stem cells by weakening the mRNA 5-hydroxymethylcytidine modification of the Xc-/GPX4 axis and its expression. International journal of medical sciences. 2022; 19(11):1680-1694. doi: 10.7150/ijms.73701. [PMID: 36237989]