Tabersonine (BioDeep_00000000292)

   

natural product PANOMIX_OTCML-2023 Cytotoxicity


代谢物信息卡片


methyl(1R,12R,19S)-12-ethyl-8,16-diazapentacyclo[10.6.1.01,9.02,7.016,19]nonadeca-2,4,6,9,13-pentaene-10-carboxylate

化学式: C21H24N2O2 (336.1838)
中文名称: 水甘草碱, 它波宁
谱图信息: 最多检出来源 Homo sapiens(blood) 8.09%

分子结构信息

SMILES: CCC12C=CCN3CCC4(C(=C(C(=O)OC)C1)Nc1ccccc14)C32
InChI: InChI=1S/C21H24N2O2/c1-3-20-9-6-11-23-12-10-21(19(20)23)15-7-4-5-8-16(15)22-17(21)14(13-20)18(24)25-2/h4-9,19,22H,3,10-13H2,1-2H3

描述信息

Tabersonine is a monoterpenoid indole alkaloid with cytotoxic activity. It has a role as an antineoplastic agent and a metabolite. It is an alkaloid ester, a monoterpenoid indole alkaloid, a methyl ester and an organic heteropentacyclic compound. It is a conjugate base of a tabersoninium(1+).
Tabersonine is a natural product found in Voacanga schweinfurthii, Tabernaemontana citrifolia, and other organisms with data available.
A monoterpenoid indole alkaloid with cytotoxic activity.
Annotation level-1
Tabersonine is an indole alkaloid mainly isolated from Catharanthus roseus. Tabersonine disrupts Aβ(1-42) aggregation and ameliorates Aβ aggregate-induced cytotoxicity. Tabersonine has anti-inflammatory activities and acts as a potential therapeutic candidate for the treatment of ALI/ARDS[1].
Tabersonine is an indole alkaloid mainly isolated from Catharanthus roseus. Tabersonine disrupts Aβ(1-42) aggregation and ameliorates Aβ aggregate-induced cytotoxicity. Tabersonine has anti-inflammatory activities and acts as a potential therapeutic candidate for the treatment of ALI/ARDS[1].

同义名列表

19 个代谢物同义名

methyl(1R,12R,19S)-12-ethyl-8,16-diazapentacyclo[10.6.1.01,9.02,7.016,19]nonadeca-2,4,6,9,13-pentaene-10-carboxylate; Methyl (3aR,3a1S,10bR)-3a-ethyl-3a,3a1,4,6,11,12-hexahydro-1H-indolizino[8,1-cd]carbazole-5-carboxylate; Aspidospermidine-3-carboxylic acid, 2,3,6,7-tetradehydro-, methyl ester, (5.alpha.,12.beta.,19.alpha.)-; 1H-INDOLIZINO(8,1-CD)CARBAZOLE-5-CARBOXYLIC ACID, 3A-ETHYL-3A,4,6,11,12,13A-HEXAHYDRO-, METHYL ESTER; ASPIDOSPERMIDINE-3-CARBOXYLIC ACID, 2,3,6,7-TETRADEHYDRO-, METHYL ESTER, (5.ALPHA.,12R,19.ALPHA.)-; Aspidospermidine-3-carboxylic acid, 2,3,6,7-tetrahydro-, methyl ester, (5-alpha,12-beta,19-alpha)-; Aspidospermidine-3-carboxylic acid, 2,3,6,7-tetradehydro-, methyl ester, (5alpha,12beta,19alpha)-; 3a-Ethyl-3a,4,6,11,12,13a-hexahydro-1H-indolizino[8,1-cd]carbazole-5-carboxylic Acid Methyl Ester; (5alpha,12beta,19alpha)-2,3,6,7-tetradehydroaspidospermidine-3-carboxylic acid, methyl ester; methyl (5alpha,12beta,19alpha)-2,3,6,7-tetradehydroaspidospermidine-3-carboxylate; methyl 2,3,6,7-tetradehydro-5alpha,12beta,19alpha-aspidospermidine-3-carboxylate; 4-25-00-00997 (Beilstein Handbook Reference); FNGGIPWAZSFKCN-ACRUOGEOSA-N; Tabersonine, >=95\\% (HPLC); tabersonine monoacetate; (-)-Tabersonine; Tabersonine; Tabersonin; Tabersonine



数据库引用编号

34 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

82 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 14 APOE, CREBBP, HES1, MAPK14, MAPK8, NES, NFKBIA, NLRP3, NQO1, PIAS3, RUNX2, SP7, STAT3, TAB2
Peripheral membrane protein 3 CYP1B1, GBA1, TAB2
Endosome membrane 2 NOTCH1, TAB2
Endoplasmic reticulum membrane 2 CYP1B1, NOTCH1
Nucleus 13 APOE, CREBBP, HES1, MAPK14, MAPK8, NFKBIA, NLRP3, NOTCH1, NQO1, PIAS3, RUNX2, SP7, STAT3
cytosol 10 CREBBP, MAPK14, MAPK8, NFKBIA, NLRP3, NOTCH1, NQO1, RUNX2, STAT3, TAB2
dendrite 2 APOE, NQO1
nuclear body 1 CREBBP
trans-Golgi network 1 GBA1
nucleoplasm 10 CREBBP, HES1, MAPK14, MAPK8, NFKBIA, NOTCH1, PIAS3, RUNX2, STAT3, TAB2
RNA polymerase II transcription regulator complex 1 STAT3
Cell membrane 1 NOTCH1
Golgi apparatus membrane 1 NLRP3
Synapse 2 MAPK8, NQO1
cell surface 2 BMP2, NOTCH1
glutamatergic synapse 4 APOE, MAPK14, NOTCH1, PIAS3
Golgi apparatus 2 APOE, GBA1
Golgi membrane 2 NLRP3, NOTCH1
lysosomal membrane 2 GBA1, TAB2
neuronal cell body 2 APOE, NQO1
Cytoplasm, cytosol 3 NLRP3, NQO1, TAB2
Lysosome 1 GBA1
acrosomal vesicle 1 NOTCH1
plasma membrane 6 APOE, BMP2, NFKBIA, NOTCH1, STAT3, TAB2
Membrane 6 APOE, CYP1B1, NLRP3, NOTCH1, NQO1, TAB2
apical plasma membrane 1 NOTCH1
axon 1 MAPK8
extracellular exosome 2 APOE, GBA1
Lysosome membrane 2 GBA1, TAB2
Lumenal side 1 GBA1
endoplasmic reticulum 4 APOE, GBA1, NLRP3, NOTCH1
extracellular space 3 APOE, BMP2, IL6
lysosomal lumen 1 GBA1
Schaffer collateral - CA1 synapse 1 NOTCH1
adherens junction 1 NOTCH1
mitochondrion 3 CYP1B1, MAPK14, NLRP3
protein-containing complex 1 HES1
intracellular membrane-bounded organelle 2 BMP2, CYP1B1
Microsome membrane 1 CYP1B1
Single-pass type I membrane protein 1 NOTCH1
Secreted 4 APOE, BMP2, IL6, NLRP3
extracellular region 7 APOE, BMP2, DNAH9, IL6, MAPK14, NLRP3, NOTCH1
transcription regulator complex 3 CREBBP, RUNX2, STAT3
motile cilium 1 DNAH9
Endosome, multivesicular body 1 APOE
Extracellular vesicle 1 APOE
Secreted, extracellular space, extracellular matrix 1 APOE
chylomicron 1 APOE
high-density lipoprotein particle 1 APOE
low-density lipoprotein particle 1 APOE
multivesicular body 1 APOE
very-low-density lipoprotein particle 1 APOE
Early endosome 1 APOE
microtubule 1 DNAH9
extracellular matrix 1 APOE
collagen-containing extracellular matrix 1 APOE
intermediate filament 1 NES
axoneme 1 DNAH9
nuclear speck 2 MAPK14, PIAS3
Cytoplasm, cytoskeleton, microtubule organizing center 1 NLRP3
Inflammasome 1 NLRP3
interphase microtubule organizing center 1 NLRP3
NLRP3 inflammasome complex 1 NLRP3
receptor complex 1 NOTCH1
chromatin 6 CREBBP, HES1, PIAS3, RUNX2, SP7, STAT3
Late endosome membrane 1 NOTCH1
Secreted, extracellular space 1 APOE
spindle pole 1 MAPK14
blood microparticle 1 APOE
Cytoplasm, cytoskeleton, cilium axoneme 1 DNAH9
Endomembrane system 1 NLRP3
microtubule organizing center 1 NLRP3
Melanosome 1 APOE
Nucleus speckle 1 PIAS3
intermediate filament cytoskeleton 1 NES
ficolin-1-rich granule lumen 1 MAPK14
secretory granule lumen 1 MAPK14
endoplasmic reticulum lumen 2 APOE, IL6
nuclear matrix 1 HES1
postsynaptic density membrane 1 NOTCH1
9+2 motile cilium 1 DNAH9
dynein complex 1 DNAH9
clathrin-coated endocytic vesicle membrane 1 APOE
synaptic cleft 1 APOE
histone acetyltransferase complex 1 CREBBP
basal dendrite 1 MAPK8
postsynaptic cytosol 1 PIAS3
presynaptic cytosol 1 PIAS3
discoidal high-density lipoprotein particle 1 APOE
endocytic vesicle lumen 1 APOE
chylomicron remnant 1 APOE
intermediate-density lipoprotein particle 1 APOE
lipoprotein particle 1 APOE
multivesicular body, internal vesicle 1 APOE
interleukin-6 receptor complex 1 IL6
BMP receptor complex 1 BMP2
I-kappaB/NF-kappaB complex 1 NFKBIA
[Notch 1 intracellular domain]: Nucleus 1 NOTCH1
MAML1-RBP-Jkappa- ICN1 complex 1 NOTCH1
outer dynein arm 1 DNAH9
distal portion of axoneme 1 DNAH9


文献列表

  • Dagny Grzech, Benke Hong, Lorenzo Caputi, Prashant D Sonawane, Sarah E O'Connor. Engineering the Biosynthesis of Late-Stage Vinblastine Precursors Precondylocarpine Acetate, Catharanthine, Tabersonine in Nicotiana benthamiana. ACS synthetic biology. 2023 01; 12(1):27-34. doi: 10.1021/acssynbio.2c00434. [PMID: 36516122]
  • Hao-Wen Xu, Wei-Feng Li, Shan-Shan Hong, Jing-Jing Shao, Jia-Hao Chen, Nipon Chattipakorn, Di Wu, Wu Luo, Guang Liang. Tabersonine, a natural NLRP3 inhibitor, suppresses inflammasome activation in macrophages and attenuate NLRP3-driven diseases in mice. Acta pharmacologica Sinica. 2023 Jan; ?(?):. doi: 10.1038/s41401-022-01040-z. [PMID: 36627344]
  • Jiaotai Shi, Chengbo Wang, Chunyan Sang, Stanislas Nsanzamahoro, Tian Chai, Jun Wang, Aimei Yang, Junli Yang. Tabersonine Inhibits the Lipopolysaccharide-Induced Neuroinflammatory Response in BV2 Microglia Cells via the NF-κB Signaling Pathway. Molecules (Basel, Switzerland). 2022 Nov; 27(21):. doi: 10.3390/molecules27217521. [PMID: 36364344]
  • Tengfei Liu, Ying Huang, Lihong Jiang, Chang Dong, Yuanwei Gou, Jiazhang Lian. Efficient production of vindoline from tabersonine by metabolically engineered Saccharomyces cerevisiae. Communications biology. 2021 09; 4(1):1089. doi: 10.1038/s42003-021-02617-w. [PMID: 34531512]
  • Pamela Lemos Cruz, Natalja Kulagina, Grégory Guirimand, Johan-Owen De Craene, Sébastien Besseau, Arnaud Lanoue, Audrey Oudin, Nathalie Giglioli-Guivarc'h, Nicolas Papon, Marc Clastre, Vincent Courdavault. Optimization of Tabersonine Methoxylation to Increase Vindoline Precursor Synthesis in Yeast Cell Factories. Molecules (Basel, Switzerland). 2021 Jun; 26(12):. doi: 10.3390/molecules26123596. [PMID: 34208368]
  • Jian Zhang, Zhi-Wen Liu, Yong Li, Cui-Jie Wei, Jing Xie, Meng-Fei Yuan, Dong-Mei Zhang, Wen-Cai Ye, Xiao-Qi Zhang. Structurally Diverse Indole Alkaloids with Vasorelaxant Activity from Melodinus hemsleyanus. Journal of natural products. 2020 08; 83(8):2313-2319. doi: 10.1021/acs.jnatprod.9b00925. [PMID: 32683864]
  • Danielle Williams, Yang Qu, Razvan Simionescu, Vincenzo De Luca. The assembly of (+)-vincadifformine- and (-)-tabersonine-derived monoterpenoid indole alkaloids in Catharanthus roseus involves separate branch pathways. The Plant journal : for cell and molecular biology. 2019 08; 99(4):626-636. doi: 10.1111/tpj.14346. [PMID: 31009114]
  • Lorenzo Caputi, Jakob Franke, Scott C Farrow, Khoa Chung, Richard M E Payne, Trinh-Don Nguyen, Thu-Thuy T Dang, Inês Soares Teto Carqueijeiro, Konstantinos Koudounas, Thomas Dugé de Bernonville, Belinda Ameyaw, D Marc Jones, Ivo Jose Curcino Vieira, Vincent Courdavault, Sarah E O'Connor. Missing enzymes in the biosynthesis of the anticancer drug vinblastine in Madagascar periwinkle. Science (New York, N.Y.). 2018 06; 360(6394):1235-1239. doi: 10.1126/science.aat4100. [PMID: 29724909]
  • Inês Carqueijeiro, Thomas Dugé de Bernonville, Arnaud Lanoue, Thu-Thuy Dang, Christiana N Teijaro, Christian Paetz, Kevin Billet, Angela Mosquera, Audrey Oudin, Sébastien Besseau, Nicolas Papon, Gaëlle Glévarec, Lucía Atehortùa, Marc Clastre, Nathalie Giglioli-Guivarc'h, Bernd Schneider, Benoit St-Pierre, Rodrigo B Andrade, Sarah E O'Connor, Vincent Courdavault. A BAHD acyltransferase catalyzing 19-O-acetylation of tabersonine derivatives in roots of Catharanthus roseus enables combinatorial synthesis of monoterpene indole alkaloids. The Plant journal : for cell and molecular biology. 2018 05; 94(3):469-484. doi: 10.1111/tpj.13868. [PMID: 29438577]
  • Yang Qu, Michael E A M Easson, Razvan Simionescu, Josef Hajicek, Antje M K Thamm, Vonny Salim, Vincenzo De Luca. Solution of the multistep pathway for assembly of corynanthean, strychnos, iboga, and aspidosperma monoterpenoid indole alkaloids from 19E-geissoschizine. Proceedings of the National Academy of Sciences of the United States of America. 2018 03; 115(12):3180-3185. doi: 10.1073/pnas.1719979115. [PMID: 29511102]
  • Jiayi Sun, Le Zhao, Zengyi Shao, Jacqueline Shanks, Christie A M Peebles. Expression of tabersonine 16-hydroxylase and 16-hydroxytabersonine-O-methyltransferase in Catharanthus roseus hairy roots. Biotechnology and bioengineering. 2018 03; 115(3):673-683. doi: 10.1002/bit.26487. [PMID: 29105731]
  • Alison Edge, Yang Qu, Michael L A E Easson, Antje M K Thamm, Kyung Hee Kim, Vincenzo De Luca. A tabersonine 3-reductase Catharanthus roseus mutant accumulates vindoline pathway intermediates. Planta. 2018 Jan; 247(1):155-169. doi: 10.1007/s00425-017-2775-8. [PMID: 28894945]
  • Ke Ma, Jun-Song Wang, Jun Luo, Ming-Hua Yang, Lingyi Kong. Tabercarpamines A-J, apoptosis-inducing indole alkaloids from the leaves of Tabernaemontana corymbosa. Journal of natural products. 2014 May; 77(5):1156-63. doi: 10.1021/np401098y. [PMID: 24773071]
  • Sébastien Besseau, Franziska Kellner, Arnaud Lanoue, Antje M K Thamm, Vonny Salim, Bernd Schneider, Fernando Geu-Flores, René Höfer, Grégory Guirimand, Anthony Guihur, Audrey Oudin, Gaëlle Glevarec, Emilien Foureau, Nicolas Papon, Marc Clastre, Nathalie Giglioli-Guivarc'h, Benoit St-Pierre, Danièle Werck-Reichhart, Vincent Burlat, Vincenzo De Luca, Sarah E O'Connor, Vincent Courdavault. A pair of tabersonine 16-hydroxylases initiates the synthesis of vindoline in an organ-dependent manner in Catharanthus roseus. Plant physiology. 2013 Dec; 163(4):1792-803. doi: 10.1104/pp.113.222828. [PMID: 24108213]
  • Francisco Fernández-Pérez, Lorena Almagro, Maria A Pedreño, Laura V Gómez Ros. Synergistic and cytotoxic action of indole alkaloids produced from elicited cell cultures of Catharanthus roseus. Pharmaceutical biology. 2013 Mar; 51(3):304-10. doi: 10.3109/13880209.2012.722646. [PMID: 23137274]
  • Ya-Ping Liu, Yan Li, Xiang-Hai Cai, Xing-Yao Li, Ling-Mei Kong, Gui-Guang Cheng, Xiao-Dong Luo. Melodinines M-U, cytotoxic alkaloids from Melodinus suaveolens. Journal of natural products. 2012 Feb; 75(2):220-4. doi: 10.1021/np2009169. [PMID: 22260257]
  • Vincenzo De Luca, Vonny Salim, Dylan Levac, Sayaka Masada Atsumi, Fang Yu. Discovery and functional analysis of monoterpenoid indole alkaloid pathways in plants. Methods in enzymology. 2012; 515(?):207-29. doi: 10.1016/b978-0-12-394290-6.00010-0. [PMID: 22999176]
  • Lesley-Ann Giddings, David K Liscombe, John P Hamilton, Kevin L Childs, Dean DellaPenna, C Robin Buell, Sarah E O'Connor. A stereoselective hydroxylation step of alkaloid biosynthesis by a unique cytochrome P450 in Catharanthus roseus. The Journal of biological chemistry. 2011 May; 286(19):16751-7. doi: 10.1074/jbc.m111.225383. [PMID: 21454651]
  • Grégory Guirimand, Anthony Guihur, Pierre Poutrain, François Héricourt, Samira Mahroug, Benoit St-Pierre, Vincent Burlat, Vincent Courdavault. Spatial organization of the vindoline biosynthetic pathway in Catharanthus roseus. Journal of plant physiology. 2011 Apr; 168(6):549-57. doi: 10.1016/j.jplph.2010.08.018. [PMID: 21047699]
  • Weerawat Runguphan, Sarah E O'Connor. Metabolic reprogramming of periwinkle plant culture. Nature chemical biology. 2009 Mar; 5(3):151-3. doi: 10.1038/nchembio.141. [PMID: 19151732]
  • Kuan-Hon Lim, Noel F Thomas, Zanariah Abdullah, Toh-Seok Kam. Seco-tabersonine alkaloids from Tabernaemontana corymbosa. Phytochemistry. 2009 Feb; 70(3):424-9. doi: 10.1016/j.phytochem.2009.01.001. [PMID: 19217125]
  • Dylan Levac, Jun Murata, Won S Kim, Vincenzo De Luca. Application of carborundum abrasion for investigating the leaf epidermis: molecular cloning of Catharanthus roseus 16-hydroxytabersonine-16-O-methyltransferase. The Plant journal : for cell and molecular biology. 2008 Jan; 53(2):225-36. doi: 10.1111/j.1365-313x.2007.03337.x. [PMID: 18053006]
  • Mary Magnotta, Jun Murata, Jianxin Chen, Vincenzo De Luca. Expression of deacetylvindoline-4-O-acetyltransferase in Catharanthus roseus hairy roots. Phytochemistry. 2007 Jul; 68(14):1922-31. doi: 10.1016/j.phytochem.2007.04.037. [PMID: 17574634]
  • Sylvain Rodriguez, Vincent Compagnon, Nicholas P Crouch, Benoit St-Pierre, Vincenzo De Luca. Jasmonate-induced epoxidation of tabersonine by a cytochrome P-450 in hairy root cultures of Catharanthus roseus. Phytochemistry. 2003 Sep; 64(2):401-9. doi: 10.1016/s0031-9422(03)00269-3. [PMID: 12943756]
  • Cyril Tikhomiroff, Ségolène Allais, Maya Klvana, Steve Hisiger, Mario Jolicoeur. Continuous selective extraction of secondary metabolites from Catharanthus roseus hairy roots with silicon oil in a two-liquid-phase bioreactor. Biotechnology progress. 2002 Sep; 18(5):1003-9. doi: 10.1021/bp0255558. [PMID: 12363351]
  • G Schröder, E Unterbusch, M Kaltenbach, J Schmidt, D Strack, V De Luca, J Schröder. Light-induced cytochrome P450-dependent enzyme in indole alkaloid biosynthesis: tabersonine 16-hydroxylase. FEBS letters. 1999 Sep; 458(2):97-102. doi: 10.1016/s0014-5793(99)01138-2. [PMID: 10481044]
  • J A Morgan, J V Shanks. Inhibitor studies of tabersonine metabolism in C. roseus hairy roots. Phytochemistry. 1999 May; 51(1):61-8. doi: 10.1016/s0031-9422(98)00585-8. [PMID: 10349729]
  • R Bhadra, J A Morgan, J V Shanks. Transient studies of light-adapted cultures of hairy roots of Catharanthus roseus: growth and indole alkaloid accumulation. Biotechnology and bioengineering. 1998 Dec; 60(6):670-8. doi: 10.1002/(sici)1097-0290(19981220)60:6<670::aid-bit4>3.0.co;2-j. [PMID: 10099477]
  • . . . . doi: . [PMID: 25918424]