(R)-Higenamine (BioDeep_00000000235)

 

Secondary id: BioDeep_00000403137, BioDeep_00000618197, BioDeep_00001869609

human metabolite PANOMIX_OTCML-2023


代谢物信息卡片


6,7-Isoquinolinediol, 1,2,3,4-tetrahydro-1-((4-hydroxyphenyl)methyl)-, (+-)-

化学式: C16H17NO3 (271.1208)
中文名称: 去甲乌药碱
谱图信息: 最多检出来源 Homo sapiens(otcml) 31.1%

分子结构信息

SMILES: C1CNC(C2=CC(=C(C=C21)O)O)CC3=CC=C(C=C3)O
InChI: InChI=1S/C16H17NO3/c18-12-3-1-10(2-4-12)7-14-13-9-16(20)15(19)8-11(13)5-6-17-14/h1-4,8-9,14,17-20H,5-7H2

描述信息

(RS)-norcoclaurine is a norcoclaurine. It is a conjugate base of a (RS)-norcoclaurinium.
Higenamine is under investigation in clinical trial NCT01451229 (Pharmacokinetics and Pharmacodynamics of Higenamine in Chinese Healthy Subjects).
Higenamine is a natural product found in Delphinium caeruleum, Aconitum triphyllum, and other organisms with data available.
(R)-Higenamine is found in coffee and coffee products. (R)-Higenamine is an alkaloid from the seed embryo of Nelumbo nucifera (East India lotus).
D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents
D002491 - Central Nervous System Agents > D000700 - Analgesics
D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents
D020011 - Protective Agents > D002316 - Cardiotonic Agents
D000893 - Anti-Inflammatory Agents
D050299 - Fibrin Modulating Agents
D002317 - Cardiovascular Agents
D018501 - Antirheumatic Agents

同义名列表

43 个代谢物同义名

6,7-Isoquinolinediol, 1,2,3,4-tetrahydro-1-((4-hydroxyphenyl)methyl)-, (+-)-; 6,7-Dihydroxy-1-[(4-hydroxyphenyl)methyl]-1,2,3,4-tetrahydroisoquinoline; (+-)-1,2,3,4-Tetrahydro-1-((4-hydroxyphenyl)methyl)-6,7-isoquinolinediol; 6,7-ISOQUINOLINEDIOL, 1,2,3,4-TETRAHYDRO-1-((4-HYDROXYPHENYL)METHYL)-; 1-[(4-hydroxyphenyl)methyl]-1,2,3,4-tetrahydroisoquinoline-6,7-diol; 6,7-dihydroxy-1-(4-hydroxybenzyl)-1,2,3,4-tetrahydroisoquinoline; 1-(p-hydroxybenzyl)-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline; Isoquinolin-6,7-diol, 1,2,3,4-tetrahydro-1-[4-hydroxybenzyl]-; 1-(4-Hydroxybenzyl)-1,2,3,4-tetrahydro-6,7-isoquinolinediol #; 1-(4-hydroxybenzyl)-1,2,3,4-tetrahydroisoquinoline-6,7-diol; 1,2,3,4-tetrahydro-1-(4-hydroxybenzyl)isoquinoline-6,7-diol; higenamine, tartrate (1:1), R-(R*,R*)-(+-)-isomer; higenamine oxalate (1:1), (+-)-isomer; higenamine hydrobromide, (+-)-isomer; higenamine hydrochloride, (S)-isomer; Norcoclaurine;Demethyl-Coclaurine; Coclaurine, O-demethyl-, (+-)-; (+/-)-Higenamine - synthetic; WZRCQWQRFZITDX-UHFFFAOYSA-N; (+-)-O-Demethylcoclaurine; (+/-)-DEMETHYLCOCLAURINE; (+-)-Demethylcoclaurine; (+)-Demethylcoclaurine; DL-DEMETHYLCOCLAURINE; O-demethylcoclaurine; HIGENAMINE [WHO-DD]; (R,S)-Norcoclaurine; Demethyl-Coclaurine; (+-)-Norcoclaurine; 1(S)-norcoclaurine; (RS)-norcoclaurine; (R)-Norcoclaurine; UNII:TBV5O16GAP; UNII-TBV5O16GAP; (R)-Higenamine; norcoclaurine; Higenamine; TBV5O16GAP; 6,7-Dihydroxy-(1S)-[(4-hydroxyphenyl)methyl]-1,2,3,4- tetrahydroisoquinoline; (S)-Norcoclaurine; (R,S)-Norcoclaurine; (S)-Norcoclaurine; (R)-Norcoclaurine



数据库引用编号

35 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

27 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 12 AKT1, BCL2, CASP3, EGFR, HMGB1, MAPK3, NFE2L2, NOS2, PHB1, PIK3CA, PTGS2, SIRT1
Peripheral membrane protein 3 ACHE, HMGB1, PTGS2
Endosome membrane 3 ADRB2, CD14, EGFR
Endoplasmic reticulum membrane 4 BCL2, EGFR, HMOX1, PTGS2
Nucleus 13 ACHE, ADRB2, AKT1, BCL2, CASP3, EGFR, HMGB1, HMOX1, MAPK3, NFE2L2, NOS2, PHB1, SIRT1
cytosol 9 AKT1, BCL2, CASP3, HMOX1, MAPK3, NFE2L2, NOS2, PIK3CA, SIRT1
centrosome 1 NFE2L2
nucleoplasm 9 AKT1, CASP3, HMGB1, HMOX1, MAPK3, NFE2L2, NOS2, PHB1, SIRT1
RNA polymerase II transcription regulator complex 1 NFE2L2
Cell membrane 8 ACHE, ADRB2, ADRB3, AKT1, CD14, EGFR, HMGB1, PHB1
Cytoplasmic side 1 HMOX1
lamellipodium 2 AKT1, PIK3CA
ruffle membrane 1 EGFR
Early endosome membrane 1 EGFR
Multi-pass membrane protein 2 ADRB2, ADRB3
Synapse 1 ACHE
cell cortex 1 AKT1
cell junction 1 EGFR
cell surface 4 ACHE, EGFR, HMGB1, PHB1
glutamatergic synapse 4 AKT1, CASP3, EGFR, MAPK3
Golgi apparatus 5 ACHE, ADRB2, CD14, MAPK3, NFE2L2
Golgi membrane 1 EGFR
mitochondrial inner membrane 1 PHB1
neuromuscular junction 1 ACHE
neuronal cell body 1 CASP3
postsynapse 1 AKT1
Cytoplasm, cytosol 2 NFE2L2, NOS2
Lysosome 1 ADRB2
endosome 3 ADRB2, EGFR, HMGB1
plasma membrane 13 ACHE, ADRB2, ADRB3, AKT1, CD14, EGFR, HMGB1, MAPK3, MUC5AC, NFE2L2, NOS2, PHB1, PIK3CA
Membrane 7 ACHE, ADRB2, AKT1, BCL2, EGFR, HMOX1, PHB1
apical plasma membrane 2 ADRB2, EGFR
basolateral plasma membrane 1 EGFR
caveola 2 MAPK3, PTGS2
extracellular exosome 3 CD14, MUC5AC, PHB1
endoplasmic reticulum 4 BCL2, HMGB1, HMOX1, PTGS2
extracellular space 8 ACHE, CD14, EGFR, HMGB1, HMOX1, IL10, IL6, MUC5AC
perinuclear region of cytoplasm 5 ACHE, EGFR, HMOX1, NOS2, PIK3CA
intercalated disc 1 PIK3CA
mitochondrion 4 BCL2, MAPK3, PHB1, SIRT1
protein-containing complex 4 AKT1, BCL2, EGFR, PTGS2
Microsome membrane 1 PTGS2
postsynaptic density 1 CASP3
chromatin silencing complex 1 SIRT1
Single-pass type I membrane protein 1 EGFR
Secreted 6 ACHE, CD14, HMGB1, IL10, IL6, MUC5AC
extracellular region 6 ACHE, CD14, HMGB1, IL10, IL6, MUC5AC
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 2 BCL2, HMOX1
Extracellular side 2 ACHE, HMGB1
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 2 BCL2, EGFR
external side of plasma membrane 1 CD14
microtubule cytoskeleton 1 AKT1
nucleolus 1 SIRT1
Cytoplasm, P-body 1 NOS2
P-body 1 NOS2
Early endosome 3 ADRB2, MAPK3, PHB1
cell-cell junction 1 AKT1
vesicle 1 AKT1
Cytoplasm, perinuclear region 1 NOS2
Mitochondrion inner membrane 1 PHB1
heterochromatin 1 SIRT1
Membrane raft 2 CD14, EGFR
pore complex 1 BCL2
Cell junction, focal adhesion 1 MAPK3
focal adhesion 2 EGFR, MAPK3
spindle 1 AKT1
extracellular matrix 1 MUC5AC
Peroxisome 1 NOS2
basement membrane 1 ACHE
intracellular vesicle 1 EGFR
peroxisomal matrix 1 NOS2
Nucleus, PML body 1 SIRT1
PML body 1 SIRT1
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 2 PTGS2, SIRT1
nuclear outer membrane 1 PTGS2
Late endosome 1 MAPK3
receptor complex 3 ADRB2, ADRB3, EGFR
neuron projection 1 PTGS2
ciliary basal body 1 AKT1
chromatin 2 NFE2L2, SIRT1
mediator complex 1 NFE2L2
Chromosome 1 HMGB1
cytoskeleton 1 MAPK3
Lipid-anchor, GPI-anchor 2 ACHE, CD14
fibrillar center 1 SIRT1
nuclear envelope 2 MAPK3, SIRT1
Membrane, caveola 1 MAPK3
euchromatin 1 SIRT1
side of membrane 2 ACHE, CD14
myelin sheath 1 BCL2
pseudopodium 1 MAPK3
basal plasma membrane 1 EGFR
synaptic membrane 1 EGFR
lipopolysaccharide receptor complex 1 CD14
ficolin-1-rich granule lumen 1 HMGB1
secretory granule lumen 1 HMGB1
secretory granule membrane 1 CD14
Golgi lumen 1 MUC5AC
endoplasmic reticulum lumen 3 IL6, MAPK3, PTGS2
transcription repressor complex 1 HMGB1
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
neuronal dense core vesicle 1 ADRB2
Single-pass type IV membrane protein 1 HMOX1
clathrin-coated endocytic vesicle membrane 2 ADRB2, EGFR
endoplasmic reticulum-Golgi intermediate compartment 1 HMGB1
synaptic cleft 1 ACHE
protein-DNA complex 1 NFE2L2
death-inducing signaling complex 1 CASP3
eNoSc complex 1 SIRT1
rDNA heterochromatin 1 SIRT1
condensed chromosome 1 HMGB1
mucus layer 1 MUC5AC
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
cortical cytoskeleton 1 NOS2
alphav-beta3 integrin-HMGB1 complex 1 HMGB1
interleukin-6 receptor complex 1 IL6
BAD-BCL-2 complex 1 BCL2
[Isoform H]: Cell membrane 1 ACHE
mitochondrial prohibitin complex 1 PHB1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[SirtT1 75 kDa fragment]: Cytoplasm 1 SIRT1


文献列表

  • Jiao Yao, Cong Chen, Yang Sun, Yuting Lin, Zhifeng Tian, Xinya Liu, Huiqin Wang, Junpeng Long, Qian Yan, Meiyu Lin, Qidi Ai, Yan Gao, Naihong Chen, Yantao Yang, Songwei Yang. Higenamine exerts antidepressant effect by improving the astrocytic gap junctions and inflammatory response. Journal of affective disorders. 2024 Mar; 348(?):107-115. doi: 10.1016/j.jad.2023.12.020. [PMID: 38101523]
  • L Jiang, M Piribauer, T Kostov, S Steidel, D A Bizjak, J M Steinacker, M Parr, P Diel. Testing anabolic activity, potency and mechanisms of action of the phyto-derived beta 2 agonist higenamine. Toxicology letters. 2023 Aug; ?(?):. doi: 10.1016/j.toxlet.2023.08.007. [PMID: 37598871]
  • Amy E Leaney, Jenna Heath, Emma Midforth, Paul Beck, Paul Brown, Deborah H Mawson. Presence of higenamine in beetroot containing 'foodstuffs' and the implication for WADA-relevant anti-doping testing. Drug testing and analysis. 2023 Feb; 15(2):173-180. doi: 10.1002/dta.3383. [PMID: 36218291]
  • Chengjun Guo, Ning Zhang, Xiaoli Zhang, Mingfeng Chi, Dongren Liu, Jing Zhang. Use of liquid chromatography-tandem mass spectrometry for determination of higenamine in urine following oral administration of traditional Chinese medicine. Drug testing and analysis. 2022 Aug; 14(8):1547-1552. doi: 10.1002/dta.3278. [PMID: 35478272]
  • Xuxiao Zhao, Yuling Yuan, Huan Wei, Qiaoling Fei, Zhaoqian Luan, Xinzhai Wang, Youxuan Xu, Jianghai Lu. Identification and characterization of higenamine metabolites in human urine by quadrupole-orbitrap LC-MS/MS for doping control. Journal of pharmaceutical and biomedical analysis. 2022 May; 214(?):114732. doi: 10.1016/j.jpba.2022.114732. [PMID: 35325800]
  • William Chih-Wei Chang, Ching-Chi Yen, Wan-Yi Liu, Yun-Shan Hsieh, Mei-Chich Hsu, Yu-Tse Wu. Blood-to-muscle distribution and urinary excretion of higenamine in rats. Drug testing and analysis. 2021 Oct; 13(10):1776-1782. doi: 10.1002/dta.3132. [PMID: 34309209]
  • Jin-Xing Zhu, Wang Ling, Chao Xue, Zhen Zhou, Yi-Shuai Zhang, Chen Yan, Mei-Ping Wu. Higenamine attenuates cardiac fibroblast abstract and fibrosis via inhibition of TGF-β1/Smad signaling. European journal of pharmacology. 2021 Jun; 900(?):174013. doi: 10.1016/j.ejphar.2021.174013. [PMID: 33766620]
  • Xiaohan Wei, Baoping Zhang, Xiao Liang, Changshun Liu, Ting Xia, Yingjie Xie, Xue Deng, Xiaomei Tan. Higenamine alleviates allergic rhinitis by activating AKT1 and suppressing the EGFR/JAK2/c-JUN signaling. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2021 Jun; 86(?):153565. doi: 10.1016/j.phymed.2021.153565. [PMID: 33945919]
  • Poomraphie Nuntawong, Akihiro Ochi, Jiranan Chaingam, Hiroyuki Tanaka, Seiichi Sakamoto, Satoshi Morimoto. The colloidal gold nanoparticle-based lateral flow immunoassay for fast and simple detection of plant-derived doping agent, higenamine. Drug testing and analysis. 2021 Apr; 13(4):762-769. doi: 10.1002/dta.2981. [PMID: 33217196]
  • Yu-Feng Huang, Fan He, Can-Jian Wang, Ying Xie, Yan-Yu Zhang, Zhen Sang, Ping Qiu, Pei Luo, Sheng-Yuan Xiao, Jing Li, Fei-Ci Wu, Liang Liu, Hua Zhou. Discovery of chemical markers for improving the quality and safety control of Sinomenium acutum stem by the simultaneous determination of multiple alkaloids using UHPLC-QQQ-MS/MS. Scientific reports. 2020 08; 10(1):14182. doi: 10.1038/s41598-020-71133-4. [PMID: 32843671]
  • Songwei Yang, Shifeng Chu, Qidi Ai, Zhao Zhang, Yan Gao, Meiyu Lin, Yingjiao Liu, Yaomei Hu, Xun Li, Ye Peng, Yawen Pan, Qinghui He, Naihong Chen. Anti-inflammatory effects of higenamine (Hig) on LPS-activated mouse microglia (BV2) through NF-κB and Nrf2/HO-1 signaling pathways. International immunopharmacology. 2020 Aug; 85(?):106629. doi: 10.1016/j.intimp.2020.106629. [PMID: 32535536]
  • Poomraphie Nuntawong, Hiroyuki Tanaka, Seiichi Sakamoto, Satoshi Morimoto. ELISA for the Detection of the Prohibited Doping Agent Higenamine. Planta medica. 2020 Jul; 86(11):760-766. doi: 10.1055/a-1181-2084. [PMID: 32512615]
  • Ting Deng, Zhenming Wei, Akindavyi Gael, Xiaofang Deng, Yunfeng Liu, Jun Lai, Liwei Hang, Quanneng Yan, Qiang Fu, Zhiliang Li. Higenamine Improves Cardiac and Renal Fibrosis in Rats With Cardiorenal Syndrome via ASK1 Signaling Pathway. Journal of cardiovascular pharmacology. 2020 06; 75(6):535-544. doi: 10.1097/fjc.0000000000000822. [PMID: 32168151]
  • Rui Wang, Xiaoping Xiong, Ming Yang, Sirui He, Xiaoping Xu. A pharmacokinetics study of orally administered higenamine in rats using LC-MS/MS for doping control analysis. Drug testing and analysis. 2020 Apr; 12(4):485-495. doi: 10.1002/dta.2756. [PMID: 31881121]
  • Jianxia Wen, Lu Zhang, Jian Wang, Jiabo Wang, Lifu Wang, Ruilin Wang, Ruisheng Li, Honghong Liu, Shizhang Wei, Haotian Li, Wenjun Zou, Yanling Zhao. Therapeutic effects of higenamine combined with [6]-gingerol on chronic heart failure induced by doxorubicin via ameliorating mitochondrial function. Journal of cellular and molecular medicine. 2020 04; 24(7):4036-4050. doi: 10.1111/jcmm.15041. [PMID: 32073745]
  • Ching-Chi Yen, Chun-Wei Tung, Chih-Wei Chang, Chin-Chuan Tsai, Mei-Chich Hsu, Yu-Tse Wu. Potential Risk of Higenamine Misuse in Sports: Evaluation of Lotus Plumule Extract Products and a Human Study. Nutrients. 2020 Jan; 12(2):. doi: 10.3390/nu12020285. [PMID: 31973198]
  • Yan-Ru Feng, Bo Wang, Guo-Jun Li, Wei-Jun Kang, Kao-Qi Lian, Xin-Li Lu. Determination of higenamine in multi-matrix by gas chromatography-mass spectrometry combined with derivatization technology. Journal of food and drug analysis. 2020 01; 28(1):124-131. doi: 10.1016/j.jfda.2019.09.002. [PMID: 31883600]
  • Kuan Yan, Xinzhai Wang, Zhanliang Wang, Yunfei Wang, Zhaoqian Luan, Xi Gao, Ruiqi Wang. The risk of higenamine adverse analytical findings following oral administration of plumula nelumbinis capsules. Drug testing and analysis. 2019 Nov; 11(11-12):1731-1736. doi: 10.1002/dta.2701. [PMID: 31680485]
  • Arjen Lommen, Abdurzag Elaradi, Ariadni Vonaparti, Marco Blokland, Michel W Nielen, Khadija Ali Saad, Wadha Masoud Abushreeda, Peter Horvatovich, Amal Essa Al-Muraikhi, Mohammed Al-Maadheed, Costas Georgakopoulos. Ultra-fast retroactive processing of liquid chromatography high-resolution full-scan Orbitrap mass spectrometry data in anti-doping screening of human urine. Rapid communications in mass spectrometry : RCM. 2019 Oct; 33(20):1578-1588. doi: 10.1002/rcm.8507. [PMID: 31240795]
  • Yanmin Chen, Bujing Guo, Hongda Zhang, Lihong Hu, Jue Wang. Higenamine, a Dual Agonist for β 1- and β 2-Adrenergic Receptors Identified by Screening a Traditional Chinese Medicine Library. Planta medica. 2019 Jul; 85(9-10):738-744. doi: 10.1055/a-0942-4502. [PMID: 31185502]
  • Jianxia Wen, Jian Wang, Pengyan Li, Ruilin Wang, Jiabo Wang, Xuelin Zhou, Lu Zhang, Haotian Li, Shizhang Wei, Huadan Cai, Yanling Zhao. Protective effects of higenamine combined with [6]-gingerol against doxorubicin-induced mitochondrial dysfunction and toxicity in H9c2 cells and potential mechanisms. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2019 Jul; 115(?):108881. doi: 10.1016/j.biopha.2019.108881. [PMID: 31028997]
  • Xiaoliang Bai, Wenyuan Ding, Sidong Yang, Xiaohui Guo. Higenamine inhibits IL-1β-induced inflammation in human nucleus pulposus cells. Bioscience reports. 2019 06; 39(6):. doi: 10.1042/bsr20190857. [PMID: 31213577]
  • Yi Zhang, Jingjing Zhang, Chuntao Wu, Sheng Guo, Jing Su, Wendong Zhao, Hongxia Xing. Higenamine protects neuronal cells from oxygen-glucose deprivation/reoxygenation-induced injury. Journal of cellular biochemistry. 2019 03; 120(3):3757-3764. doi: 10.1002/jcb.27656. [PMID: 30270549]
  • Krzysztof Grucza, Dorota Kwiatkowska, Katarzyna Kowalczyk, Mariola Wicka, Mirosław Szutowski, Piotr Chołbiński. Analysis for higenamine in urine by means of ultra-high-performance liquid chromatography-tandem mass spectrometry: Interpretation of results. Drug testing and analysis. 2018 Jun; 10(6):1017-1024. doi: 10.1002/dta.2331. [PMID: 29084416]
  • Eisuke Kato, Shunsuke Kimura, Jun Kawabata. Ability of higenamine and related compounds to enhance glucose uptake in L6 cells. Bioorganic & medicinal chemistry. 2017 12; 25(24):6412-6416. doi: 10.1016/j.bmc.2017.10.011. [PMID: 29066136]
  • Francesca Ghirga, Alessandra Bonamore, Lorenzo Calisti, Ilaria D'Acquarica, Mattia Mori, Bruno Botta, Alberto Boffi, Alberto Macone. Green Routes for the Production of Enantiopure Benzylisoquinoline Alkaloids. International journal of molecular sciences. 2017 Nov; 18(11):. doi: 10.3390/ijms18112464. [PMID: 29156609]
  • Xiaoxia An, Chunli Long, Xiaomin Deng, Aihua Tang, Junyan Xie, Li Chen, Zhengang Wang. Higenamine inhibits apoptosis and maintains survival of gastric smooth muscle cells in diabetic gastroparesis rat model via activating the β2-AR/PI3K/AKT pathway. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2017 Nov; 95(?):1710-1717. doi: 10.1016/j.biopha.2017.08.112. [PMID: 28958133]
  • Masato Okano, Mitsuhiko Sato, Shinji Kageyama. Determination of higenamine and coclaurine levels in human urine after the administration of a throat lozenge containing Nandina domestica fruit. Drug testing and analysis. 2017 Nov; 9(11-12):1788-1793. doi: 10.1002/dta.2258. [PMID: 28801989]
  • Nana Zhang, Zeqin Lian, Xueying Peng, Zijian Li, Haibo Zhu. Applications of Higenamine in pharmacology and medicine. Journal of ethnopharmacology. 2017 Jan; 196(?):242-252. doi: 10.1016/j.jep.2016.12.033. [PMID: 28007527]
  • Mei-ping Wu, Yi-shuai Zhang, Qian-mei Zhou, Jian Xiong, Yao-rong Dong, Chen Yan. Higenamine protects ischemia/reperfusion induced cardiac injury and myocyte apoptosis through activation of β2-AR/PI3K/AKT signaling pathway. Pharmacological research. 2016 Feb; 104(?):115-23. doi: 10.1016/j.phrs.2015.12.032. [PMID: 26746354]
  • R J Bloomer, J M Schriefer, T A Gunnels. Clinical safety assessment of oral higenamine supplementation in healthy, young men. Human & experimental toxicology. 2015 Oct; 34(10):935-45. doi: 10.1177/0960327114565490. [PMID: 25591969]
  • Eisuke Kato, Yosuke Inagaki, Jun Kawabata. Higenamine 4'-O-β-d-glucoside in the lotus plumule induces glucose uptake of L6 cells through β2-adrenergic receptor. Bioorganic & medicinal chemistry. 2015 Jul; 23(13):3317-21. doi: 10.1016/j.bmc.2015.04.054. [PMID: 25943853]
  • Zongtao Lin, Ruinan Yang, Zheng Guan, Ailiang Chen, Wei Li. Ultra-performance LC separation and quadrupole time-of-flight MS identification of major alkaloids in Plumula Nelumbinis. Phytochemical analysis : PCA. 2014 Nov; 25(6):485-94. doi: 10.1002/pca.2517. [PMID: 24733684]
  • Sang-Rok Lee, Johnhenry M Schriefer, Trint A Gunnels, Innocence C Harvey, Richard J Bloomer. Acute oral intake of a higenamine-based dietary supplement increases circulating free fatty acids and energy expenditure in human subjects. Lipids in health and disease. 2013 Oct; 12(?):148. doi: 10.1186/1476-511x-12-148. [PMID: 24139127]
  • Akpevwe Onoyovwe, Jillian M Hagel, Xue Chen, Morgan F Khan, David C Schriemer, Peter J Facchini. Morphine biosynthesis in opium poppy involves two cell types: sieve elements and laticifers. The Plant cell. 2013 Oct; 25(10):4110-22. doi: 10.1105/tpc.113.115113. [PMID: 24104569]
  • Sheng Feng, Ji Jiang, Pei Hu, Jian-yan Zhang, Tao Liu, Qian Zhao, Bi-lu Li. A phase I study on pharmacokinetics and pharmacodynamics of higenamine in healthy Chinese subjects. Acta pharmacologica Sinica. 2012 Nov; 33(11):1353-8. doi: 10.1038/aps.2012.114. [PMID: 23085737]
  • Isabel Desgagné-Penix, Peter J Facchini. Systematic silencing of benzylisoquinoline alkaloid biosynthetic genes reveals the major route to papaverine in opium poppy. The Plant journal : for cell and molecular biology. 2012 Oct; 72(2):331-44. doi: 10.1111/j.1365-313x.2012.05084.x. [PMID: 22725256]
  • Siwaporn Praman, Michael J Mulvany, David E Williams, Raymond J Andersen, Chaweewan Jansakul. Hypotensive and cardio-chronotropic constituents of Tinospora crispa and mechanisms of action on the cardiovascular system in anesthetized rats. Journal of ethnopharmacology. 2012 Mar; 140(1):166-78. doi: 10.1016/j.jep.2012.01.006. [PMID: 22265931]
  • Cheng-Ping Hu, Jun-Tao Zou, Ye-Qiang Zou, Xiao-Zhao Li, Jun-Tao Feng. Kidney-tonifying recipe can repair alterations in adrenal medullary chromaffin cells in asthmatic rats. Evidence-based complementary and alternative medicine : eCAM. 2012; 2012(?):542621. doi: 10.1155/2012/542621. [PMID: 22474509]
  • Takuro Ueki, Tatsuhiro Akaishi, Hidenobu Okumura, Kazuho Abe. Extract from Nandina domestica inhibits lipopolysaccharide-induced cyclooxygenase-2 expression in human pulmonary epithelial A549 cells. Biological & pharmaceutical bulletin. 2012; 35(7):1041-7. doi: 10.1248/bpb.b110709. [PMID: 22791150]
  • Song Wen-Ting, Cheng Fa-Feng, Xu Li, Lin Cheng-Ren, Liu Jian-Xun. Chinese medicine shenfu injection for heart failure: a systematic review and meta-analysis. Evidence-based complementary and alternative medicine : eCAM. 2012; 2012(?):713149. doi: 10.1155/2012/713149. [PMID: 22611430]
  • Sheng Feng, Pei Hu, Ji Jiang. Determination of higenamine in human plasma and urine using liquid chromatography coupled to positive electrospray ionization tandem mass spectrometry. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2011 Apr; 879(11-12):763-8. doi: 10.1016/j.jchromb.2011.02.019. [PMID: 21393074]
  • Jae-Hwan Park, In-Chang Hwang, Nina Ha, Sera Lee, Jung Min Kim, Sung Sook Lee, Hosung Yu, In-Taek Lim, Jun-A You, Dal-hyun Kim. Effects of the anti-sepsis drug, (S)-1-(α-naphthylmethyl)-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (CKD-712), on mortality, inflammation, and organ injuries in rodent sepsis models. Archives of pharmacal research. 2011 Mar; 34(3):485-94. doi: 10.1007/s12272-011-0318-6. [PMID: 21547682]
  • Akira Nakagawa, Hiromichi Minami, Ju-Sung Kim, Takashi Koyanagi, Takane Katayama, Fumihiko Sato, Hidehiko Kumagai. A bacterial platform for fermentative production of plant alkaloids. Nature communications. 2011; 2(?):326. doi: 10.1038/ncomms1327. [PMID: 21610729]
  • Isabel Desgagné-Penix, Morgan F Khan, David C Schriemer, Dustin Cram, Jacek Nowak, Peter J Facchini. Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures. BMC plant biology. 2010 Nov; 10(?):252. doi: 10.1186/1471-2229-10-252. [PMID: 21083930]
  • Jillian M Hagel, Peter J Facchini. Biochemistry and occurrence of o-demethylation in plant metabolism. Frontiers in physiology. 2010; 1(?):14. doi: 10.3389/fphys.2010.00014. [PMID: 21423357]
  • Silke Pienkny, Wolfgang Brandt, Jürgen Schmidt, Robert Kramell, Jörg Ziegler. Functional characterization of a novel benzylisoquinoline O-methyltransferase suggests its involvement in papaverine biosynthesis in opium poppy (Papaver somniferum L). The Plant journal : for cell and molecular biology. 2009 Oct; 60(1):56-67. doi: 10.1111/j.1365-313x.2009.03937.x. [PMID: 19500305]
  • Muneo Tsukiyama, Takuro Ueki, Yoichi Yasuda, Hiroko Kikuchi, Tatsuhiro Akaishi, Hidenobu Okumura, Kazuho Abe. Beta2-adrenoceptor-mediated tracheal relaxation induced by higenamine from Nandina domestica Thunberg. Planta medica. 2009 Oct; 75(13):1393-9. doi: 10.1055/s-0029-1185743. [PMID: 19468973]
  • Hiromichi Minami, Emilyn Dubouzet, Kinuko Iwasa, Fumihiko Sato. Functional analysis of norcoclaurine synthase in Coptis japonica. The Journal of biological chemistry. 2007 Mar; 282(9):6274-82. doi: 10.1074/jbc.m608933200. [PMID: 17204481]
  • Takayuki Inui, Ken-Ichi Tamura, Nanae Fujii, Takashi Morishige, Fumihiko Sato. Overexpression of Coptis japonica norcoclaurine 6-O-methyltransferase overcomes the rate-limiting step in Benzylisoquinoline alkaloid biosynthesis in cultured Eschscholzia californica. Plant & cell physiology. 2007 Feb; 48(2):252-62. doi: 10.1093/pcp/pcl062. [PMID: 17189286]
  • Yoshiki Kashiwada, Akihiro Aoshima, Yasumasa Ikeshiro, Yuh-Pan Chen, Hiroshi Furukawa, Masataka Itoigawa, Toshihiro Fujioka, Kunihide Mihashi, L Mark Cosentino, Susan L Morris-Natschke, Kuo-Hsiung Lee. Anti-HIV benzylisoquinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera, and structure-activity correlations with related alkaloids. Bioorganic & medicinal chemistry. 2005 Jan; 13(2):443-8. doi: 10.1016/j.bmc.2004.10.020. [PMID: 15598565]
  • Jürgen Schmidt, Klaus Raith, Chotima Boettcher, Meinhart H Zenk. Analysis of benzylisoquinoline-type alkaloids by electrospray tandem mass spectrometry and atmospheric pressure photoionization. European journal of mass spectrometry (Chichester, England). 2005; 11(3):325-33. doi: 10.1255/ejms.745. [PMID: 16107747]
  • Su-juan Zhou, Gui-you Du. [Effects of higenamine on the cardio-circulatory system]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2003 Oct; 28(10):910-3. doi: . [PMID: 15620176]
  • Hye Sook Yun-Choi, Mi Kyung Pyo, Ki Churl Chang, Duck Hyung Lee. The effects of higenamine on LPS-induced experimental disseminated intravascular coagulation (DIC) in rats. Planta medica. 2002 Apr; 68(4):326-9. doi: 10.1055/s-2002-26741. [PMID: 11988856]
  • H S Yun-Choi, M K Pyo, K M Park, K C Chang, D H Lee. Anti-thrombotic effects of higenamine. Planta medica. 2001 Oct; 67(7):619-22. doi: 10.1055/s-2001-17361. [PMID: 11582538]
  • N Samanani, P J Facchini. Isolation and partial characterization of norcoclaurine synthase, the first committed step in benzylisoquinoline alkaloid biosynthesis, from opium poppy. Planta. 2001 Oct; 213(6):898-906. doi: 10.1007/s004250100581. [PMID: 11722126]
  • H Nojima, M Okazaki, I Kimura. Counter effects of higenamine and coryneine, components of aconite root, on acetylcholine release from motor nerve terminal in mice. Journal of Asian natural products research. 2000; 2(3):195-203. doi: 10.1080/10286020008039911. [PMID: 11256693]
  • Y J Kang, Y S Lee, G W Lee, D H Lee, J C Ryu, H S Yun-Choi, K C Chang. Inhibition of activation of nuclear factor kappaB is responsible for inhibition of inducible nitric oxide synthase expression by higenamine, an active component of aconite root. The Journal of pharmacology and experimental therapeutics. 1999 Oct; 291(1):314-20. doi: . [PMID: 10490919]
  • C F Lo, C M Chen. Pharmacokinetics of higenamine in rabbits. Biopharmaceutics & drug disposition. 1996 Dec; 17(9):791-803. doi: 10.1002/(sici)1099-081x(199612)17:9<791::aid-bdd993>3.0.co;2-t. [PMID: 8968531]
  • C F Lo, C M Chen. Determination of higenamine in plasma and urine by high-performance liquid chromatography with electrochemical detection. Journal of chromatography. B, Biomedical applications. 1994 Apr; 655(1):33-9. doi: 10.1016/0378-4347(94)00023-9. [PMID: 8061831]
  • I Kimura, L H Chui, K Fujitani, T Kikuchi, M Kimura. Inotropic effects of (+/-)-higenamine and its chemically related components, (+)-R-coclaurine and (+)-S-reticuline, contained in the traditional sino-Japanese medicines "bushi" and "shin-i" in isolated guinea pig papillary muscle. Japanese journal of pharmacology. 1989 May; 50(1):75-8. doi: 10.1254/jjp.50.75. [PMID: 2724702]
  • J J Zhang, W W Chen. [Protection of the synovial fluid by higenamine]. Yao xue xue bao = Acta pharmaceutica Sinica. 1985 Jun; 20(6):423-6. doi: ". [PMID: 4096230]
  • G R Yu, S Y Qiao, D S Zheng, M X Huang, Y T Bian. Effect of higenamine on action potential of Purkinje's cells and ventricular myocardial cells in dogs. Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan. 1984 Jun; 4(2):133-40. doi: ". [PMID: 6567726]
  • F H Chen. [Clinical electrophysiological studies of higenamine in sick sinus syndrome]. Zhong xi yi jie he za zhi = Chinese journal of modern developments in traditional medicine. 1984 Jan; 4(1):30-1. doi: . [PMID: 6233037]
  • Y P Feng, Y Zhang, H S Zhan, G Y Zeng. [Effect of dl-demethylcoclaurine on plasma cAMP in mice (author's transl)]. Zhongguo yao li xue bao = Acta pharmacologica Sinica. 1981 Jun; 2(2):114-7. doi: NULL. [PMID: 6278831]