Thapsigargin (BioDeep_00000000710)

   

PANOMIX_OTCML-2023 Chemicals and Drugs natural product


代谢物信息卡片


[(3S,3aR,4S,6S,6aR,7S,8S,9bS)-6-acetyloxy-4-butanoyloxy-3,3a-dihydroxy-3,6,9-trimethyl-8-[(Z)-2-methylbut-2-enoyl]oxy-2-oxo-4,5,6a,7,8,9b-hexahydroazuleno[4,5-b]furan-7-yl] octanoate

化学式: C34H50O12 (650.3302)
中文名称: 毒胡萝卜素, 毒胡萝卜内酯
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 27.08%

Reviewed

Last reviewed on 2024-11-06.

Cite this Page

Thapsigargin. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/thapsigargin (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000000710). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C/C=C(/C)C(=O)O[C@H]1C(C)=C2[C@@H]3OC(=O)[C@@](C)(O)[C@@]3(O)[C@@H](OC(=O)CCC)C[C@](C)(OC(C)=O)[C@H]2[C@@H]1OC(=O)CCCCCCC
InChI: InChI=1S/C34H50O12/c1-9-12-13-14-15-17-24(37)43-28-26-25(20(5)27(28)44-30(38)19(4)11-3)29-34(41,33(8,40)31(39)45-29)22(42-23(36)16-10-2)18-32(26,7)46-21(6)35/h11,22,26-29,40-41H,9-10,12-18H2,1-8H3/b19-11-/t22-,26+,27-,28-,29-,32-,33+,34+/m0/s1

描述信息

Thapsigargin is an organic heterotricyclic compound that is a hexa-oxygenated 6,7-guaianolide isolated fron the roots of Thapsia garganica L., Apiaceae. A potent skin irritant, it is used in traditional medicine as a counter-irritant. Thapsigargin inhibits Ca(2+)-transporting ATPase mediated uptake of calcium ions into sarcoplasmic reticulum and is used in experimentation examining the impacts of increasing cytosolic calcium concentrations. It has a role as an EC 3.6.3.8 (Ca(2+)-transporting ATPase) inhibitor and a calcium channel blocker. It is a sesquiterpene lactone, an organic heterotricyclic compound and a butyrate ester.
Thapsigargin is a natural product found in Thapsia gymnesica, Thapsia villosa, and Thapsia garganica with data available.
A sesquiterpene lactone found in roots of THAPSIA. It inhibits SARCOPLASMIC RETICULUM CALCIUM-TRANSPORTING ATPASES.
C1907 - Drug, Natural Product > C28269 - Phytochemical > C93252 - Sesquiterpene Lactone
D004791 - Enzyme Inhibitors

(-)-Thapsigargin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=67526-95-8 (retrieved 2024-11-06) (CAS RN: 67526-95-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

同义名列表

35 个代谢物同义名

OCTANOIC ACID [3S-[3ALPHA, 3ABETA, 4ALPHA, 6BETA, 6ABETA, 7BETA, 8ALPHA(Z), 9BALPHA]]-6-(ACETYLOXY)-2,3,-3A,4,5,6,6A,7,8,9B-DECAHYDRO-3,3A-DIHYDROXY-3,6,9-TRIMETHYL-8-[(2-METHYL-1-OXO-2-BUTENYL)OX Y]-2-OXO-4-(1-OXOBUTOXY)-AZULENO[4,5-B]FURAN-7-YL ESTER; OCTANOIC ACID [3S-[3ALPHA, 3ABETA, 4ALPHA, 6BETA, 6ABETA, 7BETA, 8ALPHA(Z), 9BALPHA]]-6-(ACETYLOXY)-2,3,-3A,4,5,6,6A,7,8,9B-DECAHYDRO-3,3A-DIHYDROXY-3,6,9-TRIMETHYL-8-[(2-METHYL-1-OXO-2-BUTENYL)OXY]-2-OXO-4-(1-OXOBUTOXY)-AZULENO[4,5-B]FURAN-7-YL ESTER; Octanoic Acid [3s-[3alpha, 3abeta, 4alpha,6beta, 6abeta, 7beta, 8alpha(Z), 9balpha]]-6-(Acetyloxy)-2,3,-3a,4,5,6,6a,7,8,9b-Decahydro-3,3a-Dihydroxy-3,6,9-Trimethyl-8-[(2-Methyl-1-Oxo-2-Butenyl)oxy]-2-Oxo-4-(1-Oxobutoxy)-Azuleno[4,5-B]furan-7-Yl Ester; Octanoic Acid [3s-[3alpha, 3abeta, 4alpha, 6beta,6abeta, 7beta, 8alpha(Z), 9balpha]]-6-(Acetyloxy)-2,3,-3a,4,5,6,6a,7,8,9b-Decahydro-3,3a-Dihydroxy-3,6,9-Trimethyl-8-[(2-Methyl-1-Oxo-2-Butenyl)oxy]-2-Oxo-4-(1-Oxobutoxy)-Azuleno[4,5-B]furan-7-Yl Ester; Octanoic acid, 6-(acetyloxy)-2,3,3a,4,5,6,6a,7,8,9b-decahydro-3,3a-dihydroxy-3,6,9-trimethyl-8-((2-methyl-1-oxo-2-butenyl)oxy)-2-oxo-4-(1-oxobutoxy)azuleno(4,5-b)furan-7-yl ester, (3S-(3alpha,3abeta,4alpha,6beta,6abeta,7beta,8alpha(Z),9balpha))-; octanoic acid {3S-[3alpha,3abeta,4alpha,6beta,6abeta,7beta,8alpha(Z),9balpha]}-6-(acetoxy)-2,3,3a,4,5,6,6a,7,8,9b-decahydro-3,3a-dihydroxy-3,6,9-trimethyl-8-[(2-methyl-1-oxo-2-butenyl)oxy]-2-oxo-4-(1-oxobutoxy)-azuleno[4,5-b]furan-7-yl ester; OCTANOIC ACID, (3S,3AR,4S,6S,6AR,7S,8S,9BS)-6-(ACETYLOXY)-2,3,3A,4,5,6,6A,7,8,9B-DECAHYDRO-3,3A-DIHYDROXY-3,6,9-TRIMETHYL-8-(((2Z)-2-METHYL-1-OXO-2-BUTEN-1-YL)OXY)-2-OXO-4-(1-OXOBUTOXY)AZULENO(4,5-B)FURAN-7-YL ESTER; (3S,3aR,4S,6S,6AR,7S,8S,9bS)-6-(Acetyloxy)-2,3,3a,4,5,6,6a,7,8,9b- decahydro-3,3a-dihydroxy-3,6,9-trimethyl-8-[[(2Z)-2-methyl-1-oxo-2-butenyl]oxy]-2-oxo-4-(1-oxobutoxy)azuleno[4,5-b]furan-7-yl octanoate; (3S,3aR,4S,6S,6aR,7S,8S,9bS)-6-(acetyloxy)-2,3,3a,4,5,6,6a,7,8,9b-decahydro-3,3a-dihydroxy-3,6,9-trimethyl-8-[[(2Z)-2-methyl-1-oxo-2-buten-1-yl]oxy]-2-oxo-4-(1-oxobutoxy)azuleno[4,5-b]f uran-7-yl ester; (3S,3aR,4S,6S,6AR,7S,8S,9bS)-6-(Acetyloxy)-2,3,3a,4,5,6,6a,7,8,9b-decahydro-3,3a-dihydroxy-3,6,9-trimethyl-8-[[(2Z)-2-methyl-1-oxo-2-butenyl]oxy]-2-oxo-4-(1-oxobutoxy)azuleno[4,5-b]furan-7-yl octanoate; Octanoic acid, (3S,3aR,4S,6S,6aR,7S,8S,9bS)-6-(acetyloxy)-2,3,3a,4,5,6,6a,7,8,9b-decahydro-3,3a-dihydroxy-3,6,9-trimethyl-8-[[(2Z)-2-methyl-1-oxo-2-butenyl]oxy]-2-oxo-4-(1-oxobutoxy)azuleno[4,5-b]fura; Octanoic acid, 6-(acetyloxy)-2,3,3a,4,5,6,6a,7,8,9b-decahydro-3,3a-dihydroxy-3,6,9-trimethyl-8-[(2-methyl-1-oxo-2-butenyl)oxy]-2-oxo-4-(1-oxobutoxy)azuleno[4,5-b]furan-7-yl ester, [3S-[3alpha,3abeta,4; octanoic acid, (3S,3aR,4S,6S,6aR,7S,8S,9bS)-6-(acetyloxy)-2,3,3a,4,5,6,6a,7,8,9b-decahydro-3,3a-dihydroxy-3,6,9-trimethyl-8-[[(2Z)-2-methyl-1-oxo-2-butenyl]oxy]-2-oxo-4-(-oxobutoxy)azuleno[4,5-b]furan; (3S,3aR,4S,6S,6aR,7S,8S,9bS)-6-(acetyloxy)-4-(butanoyloxy)-3,3a-dihydroxy-3,6,9-trimethyl-8-{[(2Z)-2-methylbut-2-enoyl]oxy}-2-oxo-2H,3H,3aH,4H,5H,6H,6aH,7H,8H,9bH-azuleno[4,5-b]furan-7-yl octanoate; (3S,3aR,4S,6S,6aR,7S,8S,9bS)-6-(acetyloxy)-4-(butanoyloxy)-3,3a-dihydroxy-3,6,9-trimethyl-8-{[(2Z)-2-methylbut-2-enoyl]oxy}-2-oxo-2,3,3a,4,5,6,6a,7,8,9b-decahydroazuleno[4,5-b]furan-7-yl octanoate; 9BALPHA]]-6-(ACETYLOXY)-2,3,-3A,4,5,6,6A,7,8,9B-DECAHYDRO-3,3A-DIHYDROXY-3,6,9-TRIMETHYL-8-[(2-METHYL-1-OXO-2-BUTENYL)OX; OCTANOIC ACID [3S-[3ALPHA, 3ABETA, 4ALPHA, 6BETA, 6ABETA, 7BETA, 8ALPHA(Z),; Y]-2-OXO-4-(1-OXOBUTOXY)-AZULENO[4,5-B]FURAN-7-YL ESTER; alpha,6beta,6abeta,7beta,8alpha(Z),9balpha]]-; Azuleno[4,5-b]furan, octanoic acid deriv.; Thapsigargin, >=98\\% (HPLC), solid film; n-7-yl ester (9CI); THAPSIGARGIN [MI]; (-)-Thapsigargin; UNII-Z96BQ26RZD; Lopac0_001262; Tox21_501262; Thapsigargin; IDI1_033971; -7-yl ester; Z96BQ26RZD; C34H50O12; TG1; octanoic acid [6-acetyloxy-3,3a-dihydroxy-3,6,9-trimethyl-8-(2-methyl-1-oxobut-2-enoxy)-2-oxo-4-(1-oxobutoxy)-4,5,6a,7,8,9b-hexahydroazuleno[4,5-b]furan-7-yl] ester; Thapsigargin



数据库引用编号

21 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

19 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 6 AKT1, ANXA5, ITPR3, MAPK14, PRKX, TNK1
Peripheral membrane protein 2 ANXA5, TNK1
Endoplasmic reticulum membrane 5 ATF6, ATP2A2, HSP90B1, ITPR3, STIM1
Nucleus 7 AKT1, ATF6, HSP90B1, JUN, MAPK14, PLCZ1, PRKX
cytosol 7 AKT1, ANXA5, ATF6, HSP90B1, MAPK14, PLCZ1, PRKCQ
nucleoplasm 8 AKT1, ATF6, ATP2B1, ITPR3, JUN, MAPK14, PLCZ1, PRKX
RNA polymerase II transcription regulator complex 2 ATF6, JUN
Cell membrane 2 AKT1, ATP2B1
lamellipodium 1 AKT1
Multi-pass membrane protein 5 ATP2A2, ATP2B1, CACNA1I, CATSPER3, ITPR3
Golgi apparatus membrane 1 ATF6
Synapse 1 ATP2B1
cell cortex 1 AKT1
glutamatergic synapse 3 AKT1, ATP2B1, MAPK14
Golgi apparatus 1 ATF6
Golgi membrane 1 ATF6
lysosomal membrane 1 EGF
neuronal cell body 1 ITPR3
postsynapse 1 AKT1
presynaptic membrane 1 ATP2B1
sarcolemma 1 ANXA5
smooth endoplasmic reticulum 1 HSP90B1
acrosomal vesicle 1 CATSPER3
plasma membrane 12 AKT1, ATP2A2, ATP2B1, CACNA1I, CATSPER3, EGF, F2, ITPR3, KNG1, PRKCQ, STIM1, TNK1
synaptic vesicle membrane 1 ATP2B1
Membrane 11 AKT1, ANXA5, ATF6, ATP2A2, ATP2B1, CACNA1I, EGF, HSP90B1, ITPR3, STIM1, TNK1
basolateral plasma membrane 1 ATP2B1
brush border 1 ITPR3
extracellular exosome 6 ANXA5, ATP2B1, EGF, F2, HSP90B1, KNG1
endoplasmic reticulum 6 ATF6, ATP2A2, CATSPER3, HSP90B1, ITPR3, STIM1
extracellular space 4 EGF, F2, IL6, KNG1
perinuclear region of cytoplasm 2 HSP90B1, PLCZ1
mitochondrion 1 MAPK14
protein-containing complex 2 AKT1, HSP90B1
intracellular membrane-bounded organelle 1 ATP2B1
pronucleus 1 PLCZ1
Single-pass type I membrane protein 1 STIM1
Secreted 2 F2, IL6
extracellular region 7 ANXA5, EGF, F2, HSP90B1, IL6, KNG1, MAPK14
transcription regulator complex 1 JUN
centriolar satellite 1 PRKCQ
motile cilium 1 CATSPER3
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
external side of plasma membrane 1 ANXA5
microtubule cytoskeleton 1 AKT1
nucleolus 2 ITPR3, PLCZ1
midbody 1 HSP90B1
apical part of cell 1 ITPR3
cell-cell junction 1 AKT1
Single-pass type II membrane protein 1 ATF6
vesicle 1 AKT1
Cytoplasm, perinuclear region 1 PLCZ1
Cytoplasm, cytoskeleton 1 STIM1
focal adhesion 2 ANXA5, HSP90B1
microtubule 1 STIM1
spindle 1 AKT1
sarcoplasmic reticulum 3 ATP2A2, ITPR3, STIM1
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
collagen-containing extracellular matrix 4 ANXA5, F2, HSP90B1, KNG1
lateral plasma membrane 1 ATP2B1
nuclear speck 1 MAPK14
nuclear outer membrane 1 ITPR3
receptor complex 1 ITPR3
Zymogen granule membrane 1 ANXA5
ciliary basal body 1 AKT1
chromatin 2 ATF6, JUN
cell projection 1 ATP2B1
Secreted, extracellular space 1 KNG1
spindle pole 1 MAPK14
nuclear chromosome 1 JUN
blood microparticle 2 F2, KNG1
Basolateral cell membrane 1 ATP2B1
nuclear envelope 1 ATF6
Cell projection, cilium, flagellum membrane 1 CATSPER3
Melanosome 1 HSP90B1
euchromatin 1 JUN
Presynaptic cell membrane 1 ATP2B1
sperm plasma membrane 1 HSP90B1
plasma membrane raft 1 STIM1
ficolin-1-rich granule lumen 1 MAPK14
secretory granule lumen 1 MAPK14
secretory granule membrane 1 ITPR3
Golgi lumen 1 F2
endoplasmic reticulum lumen 4 F2, HSP90B1, IL6, KNG1
platelet alpha granule lumen 2 EGF, KNG1
voltage-gated calcium channel complex 1 CACNA1I
Sarcoplasmic reticulum membrane 2 ATP2A2, STIM1
cortical endoplasmic reticulum 1 STIM1
immunological synapse 2 ATP2B1, PRKCQ
aggresome 1 PRKCQ
vesicle membrane 1 ANXA5
clathrin-coated endocytic vesicle membrane 1 EGF
Sarcoplasmic reticulum lumen 1 HSP90B1
platelet dense tubular network membrane 2 ATP2A2, ITPR3
Cytoplasmic vesicle, secretory vesicle membrane 1 ITPR3
ribbon synapse 1 ATP2A2
endocytic vesicle lumen 1 HSP90B1
transcription factor AP-1 complex 1 JUN
transport vesicle membrane 1 ITPR3
sperm head 1 PLCZ1
interleukin-6 receptor complex 1 IL6
endoplasmic reticulum chaperone complex 1 HSP90B1
endothelial microparticle 1 ANXA5
photoreceptor ribbon synapse 1 ATP2B1
calcium ion-transporting ATPase complex 1 ATP2A2
longitudinal sarcoplasmic reticulum 1 ATP2A2
cytoplasmic side of endoplasmic reticulum membrane 1 ITPR3
[Processed cyclic AMP-dependent transcription factor ATF-6 alpha]: Nucleus 1 ATF6
CatSper complex 1 CATSPER3


文献列表

  • Abeer Al Otaibi, Sindiyan Al Shaikh Mubarak, Fatimah Al Hejji, Abdulrahman Almasaud, Haya Al Jami, Jahangir Iqbal, Ali Al Qarni, Naif Khalaf Al Harbi, Ahmed Bakillah. Thapsigargin and Tunicamycin Block SARS-CoV-2 Entry into Host Cells via Differential Modulation of Unfolded Protein Response (UPR), AKT Signaling, and Apoptosis. Cells. 2024 Apr; 13(9):. doi: 10.3390/cells13090769. [PMID: 38727305]
  • Huan Zhang, Chao Yang, Songjiao Wang, Aohong Xu, Qian Zhang, Xiuqun Duan, Guofu Gong, Yuxue Wang. Overexpression of salusin‑α upregulates AdipoR2 and activates the PPARα/ApoA5/SREBP‑1c pathway to inhibit lipid synthesis in HepG2 cells. International journal of molecular medicine. 2023 May; 51(5):. doi: 10.3892/ijmm.2023.5244. [PMID: 37026514]
  • Maria H Jäntti, Shelley N Jackson, Jeffrey Kuhn, Ilmari Parkkinen, Sreesha Sree, Joshua J Hinkle, Eija Jokitalo, Leesa J Deterding, Brandon K Harvey. Palmitate and thapsigargin have contrasting effects on ER membrane lipid composition and ER proteostasis in neuronal cells. Biochimica et biophysica acta. Molecular and cell biology of lipids. 2022 11; 1867(11):159219. doi: 10.1016/j.bbalip.2022.159219. [PMID: 35981704]
  • Mohammed Samer Shaban, Christin Mayr-Buro, Johanna Meier-Soelch, Benadict Vincent Albert, M Lienhard Schmitz, John Ziebuhr, Michael Kracht. Thapsigargin: key to new host-directed coronavirus antivirals?. Trends in pharmacological sciences. 2022 Jul; 43(7):557-568. doi: 10.1016/j.tips.2022.04.004. [PMID: 35534355]
  • Hassan O J Morad, Suaib Luqman, Larissa Garcia Pinto, Kevin P Cunningham, Bruno Vilar, Georgia Clayton, Manu Shankar-Hari, Peter A McNaughton. Artemisinin inhibits neutrophil and macrophage chemotaxis, cytokine production and NET release. Scientific reports. 2022 06; 12(1):11078. doi: 10.1038/s41598-022-15214-6. [PMID: 35773325]
  • Atousa Khalatbari, Zahra Aghazadeh, Cheng Ji. Adverse Effects of Anti-Covid-19 Drug Candidates and Alcohol on Cellular Stress Responses of Hepatocytes. Hepatology communications. 2022 06; 6(6):1262-1277. doi: 10.1002/hep4.1887. [PMID: 34910385]
  • Duygu Elif Yilmaz, Karin Kirschner, Hasan Demirci, Nina Himmerkus, Sebastian Bachmann, Kerim Mutig. Immunosuppressive calcineurin inhibitor cyclosporine A induces proapoptotic endoplasmic reticulum stress in renal tubular cells. The Journal of biological chemistry. 2022 03; 298(3):101589. doi: 10.1016/j.jbc.2022.101589. [PMID: 35033536]
  • Eric D Deihl, Luke T Jesikiewicz, Logan J Newman, Peng Liu, Kay M Brummond. Rh(I)-Catalyzed Allenic Pauson-Khand Reaction to Access the Thapsigargin Core: Influence of Furan and Allenyl Chloroacetate Groups on Enantioselectivity. Organic letters. 2022 02; 24(4):995-999. doi: 10.1021/acs.orglett.1c03951. [PMID: 35081313]
  • Wing-Kee Lee, Michelle Maaß, Amy Quach, Nataliya Poscic, Holly Prangley, Erin-Claire Pallott, Jiyoon L Kim, Jason S Pierce, Besim Ogretmen, Anthony H Futerman, Frank Thévenod. Dependence of ABCB1 transporter expression and function on distinct sphingolipids generated by ceramide synthases-2 and -6 in chemoresistant renal cancer. The Journal of biological chemistry. 2022 02; 298(2):101492. doi: 10.1016/j.jbc.2021.101492. [PMID: 34915026]
  • Min Yao, Gan Li, Long-Yun Zhou, Zhong Zheng, Yue-Li Sun, Shu-Fen Liu, Yong-Jun Wang, Xue-Jun Cui. Shikonin inhibits neuronal apoptosis via regulating endoplasmic reticulum stress in the rat model of double-level chronic cervical cord compression. Cell biology and toxicology. 2022 Jan; ?(?):. doi: 10.1007/s10565-021-09648-3. [PMID: 35028790]
  • Sarah Al-Beltagi, Leah V Goulding, Daniel K E Chang, Kenneth H Mellits, Christopher J Hayes, Pavel Gershkovich, Christopher M Coleman, Kin-Chow Chang. Emergent SARS-CoV-2 variants: comparative replication dynamics and high sensitivity to thapsigargin. Virulence. 2021 12; 12(1):2946-2956. doi: 10.1080/21505594.2021.2006960. [PMID: 34793280]
  • Kazuhiro Ogi, Tetsuji Takabayashi, Kaori Tomita, Masafumi Sakashita, Taiyo Morikawa, Takahiro Ninomiya, Masayuki Okamoto, Norihiko Narita, Shigeharu Fujieda. ORMDL3 overexpression facilitates FcεRI-mediated transcription of proinflammatory cytokines and thapsigargin-mediated PERK phosphorylation in RBL-2H3 cells. Immunity, inflammation and disease. 2021 12; 9(4):1394-1405. doi: 10.1002/iid3.489. [PMID: 34288557]
  • Anqi Kong, Yao Zhang, Bo Ning, Kongdong Li, Zhen Ren, Shuya Dai, Dongfeng Chen, Yang Zhou, Jie Gu, Haifeng Shi. Cadmium induces triglyceride levels via microsomal triglyceride transfer protein (MTTP) accumulation caused by lysosomal deacidification regulated by endoplasmic reticulum (ER) Ca2+ homeostasis. Chemico-biological interactions. 2021 Oct; 348(?):109649. doi: 10.1016/j.cbi.2021.109649. [PMID: 34516972]
  • Mohammed Samer Shaban, Christin Müller, Christin Mayr-Buro, Hendrik Weiser, Johanna Meier-Soelch, Benadict Vincent Albert, Axel Weber, Uwe Linne, Torsten Hain, Ilya Babayev, Nadja Karl, Nina Hofmann, Stephan Becker, Susanne Herold, M Lienhard Schmitz, John Ziebuhr, Michael Kracht. Multi-level inhibition of coronavirus replication by chemical ER stress. Nature communications. 2021 09; 12(1):5536. doi: 10.1038/s41467-021-25551-1. [PMID: 34545074]
  • Simon Ngao Mule, Vinícius De Morais Gomes, Rosangela A M Wailemann, Janaina Macedo-da-Silva, Livia Rosa-Fernandes, Martin R Larsen, Letícia Labriola, Giuseppe Palmisano. HSPB1 influences mitochondrial respiration in ER-stressed beta cells. Biochimica et biophysica acta. Proteins and proteomics. 2021 09; 1869(9):140680. doi: 10.1016/j.bbapap.2021.140680. [PMID: 34051341]
  • Nanami Goto, Shusaku Shibutani, Noboru Miura, Rie Watanabe, Hiroyuki Iwata. Thapsigargin suppresses alpha 1-acid glycoprotein secretion independently of N-glycosylation and ER stress. Biochemical and biophysical research communications. 2021 05; 552(?):30-36. doi: 10.1016/j.bbrc.2021.03.017. [PMID: 33740662]
  • Chinmayee Das, Manoj K Rout, Willem C Wildering, Mathilakath M Vijayan. Cortisol modulates calcium release-activated calcium channel gating in fish hepatocytes. Scientific reports. 2021 05; 11(1):9621. doi: 10.1038/s41598-021-88957-3. [PMID: 33953236]
  • Jung Woo Han, Woon Heo, Donghyuk Lee, Choeun Kang, Hye-Yeon Kim, Ikhyun Jun, Insuk So, Hyuk Hur, Min Goo Lee, Minkyu Jung, Joo Young Kim. Plasma Membrane Localized GCaMP-MS4A12 by Orai1 Co-Expression Shows Thapsigargin- and Ca2+-Dependent Fluorescence Increases. Molecules and cells. 2021 Apr; 44(4):223-232. doi: 10.14348/molcells.2021.2031. [PMID: 33935043]
  • Pavla Taborska, Dmitry Stakheev, Jirina Bartunkova, Daniel Smrz. Thapsigargin-Stimulated LAD2 Human Mast Cell Line Is a Potent Cellular Adjuvant for the Maturation of Monocyte-Derived Dendritic Cells for Adoptive Cellular Immunotherapy. International journal of molecular sciences. 2021 Apr; 22(8):. doi: 10.3390/ijms22083978. [PMID: 33921475]
  • Julien Allard, Simon Bucher, Julie Massart, Pierre-Jean Ferron, Dounia Le Guillou, Roxane Loyant, Yoann Daniel, Youenn Launay, Nelly Buron, Karima Begriche, Annie Borgne-Sanchez, Bernard Fromenty. Drug-induced hepatic steatosis in absence of severe mitochondrial dysfunction in HepaRG cells: proof of multiple mechanism-based toxicity. Cell biology and toxicology. 2021 04; 37(2):151-175. doi: 10.1007/s10565-020-09537-1. [PMID: 32535746]
  • Sarah Al-Beltagi, Cristian Alexandru Preda, Leah V Goulding, Joe James, Juan Pu, Paul Skinner, Zhimin Jiang, Belinda Lei Wang, Jiayun Yang, Ashley C Banyard, Kenneth H Mellits, Pavel Gershkovich, Christopher J Hayes, Jonathan Nguyen-Van-Tam, Ian H Brown, Jinhua Liu, Kin-Chow Chang. Thapsigargin Is a Broad-Spectrum Inhibitor of Major Human Respiratory Viruses: Coronavirus, Respiratory Syncytial Virus and Influenza A Virus. Viruses. 2021 02; 13(2):. doi: 10.3390/v13020234. [PMID: 33546185]
  • Søren Brøgger Christensen, Henrik Toft Simonsen, Nikolai Engedal, Poul Nissen, Jesper Vuust Møller, Samuel R Denmeade, John T Isaacs. From Plant to Patient: Thapsigargin, a Tool for Understanding Natural Product Chemistry, Total Syntheses, Biosynthesis, Taxonomy, ATPases, Cell Death, and Drug Development. Progress in the chemistry of organic natural products. 2021; 115(?):59-114. doi: 10.1007/978-3-030-64853-4_2. [PMID: 33797641]
  • Noemi Esteras, Franziska Kundel, Giuseppe F Amodeo, Evgeny V Pavlov, David Klenerman, Andrey Y Abramov. Insoluble tau aggregates induce neuronal death through modification of membrane ion conductance, activation of voltage-gated calcium channels and NADPH oxidase. The FEBS journal. 2021 01; 288(1):127-141. doi: 10.1111/febs.15340. [PMID: 32338825]
  • Yulin Ren, A Douglas Kinghorn. Development of Potential Antitumor Agents from the Scaffolds of Plant-Derived Terpenoid Lactones. Journal of medicinal chemistry. 2020 12; 63(24):15410-15448. doi: 10.1021/acs.jmedchem.0c01449. [PMID: 33289552]
  • Tomáš Zimmermann, Pavel Drašar, Silvie Rimpelová, Søren Brøgger Christensen, Vladimir A Khripach, Michal Jurášek. Large Scale Conversion of Trilobolide into the Payload of Mipsagargin: 8-O-(12-Aminododecanoyl)-8-O-Debutanoylthapsigargin. Biomolecules. 2020 12; 10(12):. doi: 10.3390/biom10121640. [PMID: 33291419]
  • A G Gomes Coutinho, E Pinheiro, R Fernandez. The calcium sensing receptor modulates H+-ATPase activity in intercalated cells. Journal of physiology and pharmacology : an official journal of the Polish Physiological Society. 2020 Dec; 71(6):. doi: 10.26402/jpp.2020.6.09. [PMID: 33901996]
  • Yohan Bignon, Virginie Poindessous, Luca Rampoldi, Violette Haldys, Nicolas Pallet. Chemically based transmissible ER stress protocols are unsuitable to study cell-to-cell UPR transmission. The Biochemical journal. 2020 10; 477(20):4037-4051. doi: 10.1042/bcj20200699. [PMID: 33016323]
  • Taiding Wu, Nina Yin, Xiaoyun Chen, Hao Huang, Yanhong Liao. Functional coupling between BKCa and SOC channels. Tissue & cell. 2020 Oct; 66(?):101394. doi: 10.1016/j.tice.2020.101394. [PMID: 32933717]
  • Kyung Hwan Jegal, Eun Ok Kim, Jae Kwang Kim, Sang Mi Park, Dae Hwa Jung, Gum Hwa Lee, Sung Hwan Ki, Sung Hui Byun, Sae Kwang Ku, Il Je Cho, Sang Chan Kim. Luteolin prevents liver from tunicamycin-induced endoplasmic reticulum stress via nuclear factor erythroid 2-related factor 2-dependent sestrin 2 induction. Toxicology and applied pharmacology. 2020 07; 399(?):115036. doi: 10.1016/j.taap.2020.115036. [PMID: 32407927]
  • Eduard Sarró, Mónica Durán, Ana Rico, Diana Bou-Teen, Vanesa Fernández-Majada, Anthony J Croatt, Karl A Nath, Maria Teresa Salcedo, Justin H Gundelach, Daniel Batlle, Richard J Bram, Anna Meseguer. Cyclophilins A and B oppositely regulate renal tubular epithelial cell phenotype. Journal of molecular cell biology. 2020 07; 12(7):499-514. doi: 10.1093/jmcb/mjaa005. [PMID: 32162654]
  • Rodrigo Aguayo-Ortiz, L Michel Espinoza-Fonseca. Linking Biochemical and Structural States of SERCA: Achievements, Challenges, and New Opportunities. International journal of molecular sciences. 2020 Jun; 21(11):. doi: 10.3390/ijms21114146. [PMID: 32532023]
  • Hong-Ting Lu, Ren-Qian Feng, Jia-Kun Tang, Jing-Jun Zhou, Feng Gao, Jun Ren. CaMKII/calpain interaction mediates ischemia/reperfusion injury in isolated rat hearts. Cell death & disease. 2020 05; 11(5):388. doi: 10.1038/s41419-020-2605-y. [PMID: 32439852]
  • Larissa Bendiks, Fabienne Geiger, Thomas Gudermann, Stefan Feske, Alexander Dietrich. Store-operated Ca2+ entry in primary murine lung fibroblasts is independent of classical transient receptor potential (TRPC) channels and contributes to cell migration. Scientific reports. 2020 04; 10(1):6812. doi: 10.1038/s41598-020-63677-2. [PMID: 32321939]
  • Tyler J Bechtel, Chun Li, Eleni A Kisty, Aaron J Maurais, Eranthie Weerapana. Profiling Cysteine Reactivity and Oxidation in the Endoplasmic Reticulum. ACS chemical biology. 2020 02; 15(2):543-553. doi: 10.1021/acschembio.9b01014. [PMID: 31899610]
  • Aykut Deveci, Jessy Hasna, Alexandre Bouron. Inhibition of store-operated calcium channels by N-arachidonoyl glycine (NAGly): no evidence for the involvement of lipid-sensing G protein coupled receptors. Scientific reports. 2020 02; 10(1):2649. doi: 10.1038/s41598-020-59565-4. [PMID: 32060392]
  • Yongjie Xiong, Qirun Yin, Erhui Jin, Huatao Chen, Shaojun He. Selenium Attenuates Chronic Heat Stress-Induced Apoptosis via the Inhibition of Endoplasmic Reticulum Stress in Mouse Granulosa Cells. Molecules (Basel, Switzerland). 2020 Jan; 25(3):. doi: 10.3390/molecules25030557. [PMID: 32012916]
  • Joanna Gruszczynska-Biegala, Klaudia Strucinska, Filip Maciag, Lukasz Majewski, Maria Sladowska, Jacek Kuznicki. STIM Protein-NMDA2 Receptor Interaction Decreases NMDA-Dependent Calcium Levels in Cortical Neurons. Cells. 2020 01; 9(1):. doi: 10.3390/cells9010160. [PMID: 31936514]
  • Muna Ibrahim, Erin M MacFarlane, Geronimo Matteo, Myriam P Hoyeck, Kayleigh R C Rick, Salar Farokhi, Catherine M Copley, Shannon O'Dwyer, Jennifer E Bruin. Functional cytochrome P450 1A enzymes are induced in mouse and human islets following pollutant exposure. Diabetologia. 2020 01; 63(1):162-178. doi: 10.1007/s00125-019-05035-0. [PMID: 31776611]
  • Wenyu Wu, Shijun He, Yuli Shen, Jiawen Zhang, Yihong Wan, Xiaodong Tang, Shuwen Liu, Xingang Yao. Natural Product Luteolin Rescues THAP-Induced Pancreatic β-Cell Dysfunction through HNF4α Pathway. The American journal of Chinese medicine. 2020; 48(6):1435-1454. doi: 10.1142/s0192415x20500706. [PMID: 32907363]
  • Peter Verwilst, Kyutae Kim, Kyoung Sunwoo, Hye-Ri Kim, Chulhun Kang, Jong Seung Kim. Revealing Protein Aggregates under Thapsigargin-Induced ER Stress Using an ER-Targeted Thioflavin. ACS sensors. 2019 11; 4(11):2858-2863. doi: 10.1021/acssensors.9b00568. [PMID: 31617349]
  • Melissa Bedard, Dilip Shrestha, David A Priestman, Yuting Wang, Falk Schneider, Juan D Matute, Shankar S Iyer, Uzi Gileadi, Gennaro Prota, Matheswaran Kandasamy, Natacha Veerapen, Gurdyal Besra, Marco Fritzsche, Sebastian Zeissig, Andrej Shevchenko, John C Christianson, Frances M Platt, Christian Eggeling, Richard S Blumberg, Mariolina Salio, Vincenzo Cerundolo. Sterile activation of invariant natural killer T cells by ER-stressed antigen-presenting cells. Proceedings of the National Academy of Sciences of the United States of America. 2019 11; 116(47):23671-23681. doi: 10.1073/pnas.1910097116. [PMID: 31690657]
  • Fong-Yu Cheng, Yu-Hsuan Lee, Yung-Ho Hsu, I-Jen Chiu, Yu-Jhe Chiu, Yuh-Feng Lin, Hui-Wen Chiu. Promising therapeutic effect of thapsigargin nanoparticles on chronic kidney disease through the activation of Nrf2 and FoxO1. Aging. 2019 11; 11(21):9875-9892. doi: 10.18632/aging.102437. [PMID: 31714893]
  • Matthew E Bergman, Benjamin Davis, Michael A Phillips. Medically Useful Plant Terpenoids: Biosynthesis, Occurrence, and Mechanism of Action. Molecules (Basel, Switzerland). 2019 Nov; 24(21):. doi: 10.3390/molecules24213961. [PMID: 31683764]
  • Noureldin Saleh, Yong Wang, Poul Nissen, Kresten Lindorff-Larsen. Allosteric modulation of the sarcoplasmic reticulum Ca2+ ATPase by thapsigargin via decoupling of functional motions. Physical chemistry chemical physics : PCCP. 2019 Oct; 21(39):21991-21995. doi: 10.1039/c9cp04736k. [PMID: 31552962]
  • Geoffrey Denwood, Andrei Tarasov, Albert Salehi, Elisa Vergari, Reshma Ramracheya, Harumi Takahashi, Viacheslav O Nikolaev, Susumo Seino, Fiona Gribble, Frank Reimann, Patrik Rorsman, Quan Zhang. Glucose stimulates somatostatin secretion in pancreatic δ-cells by cAMP-dependent intracellular Ca2+ release. The Journal of general physiology. 2019 09; 151(9):1094-1115. doi: 10.1085/jgp.201912351. [PMID: 31358556]
  • Mustafa Nazıroğlu, Bilal Çiğ, Yener Yazğan, Gerburg K Schwaerzer, Franziska Theilig, László Pecze. Albumin evokes Ca2+-induced cell oxidative stress and apoptosis through TRPM2 channel in renal collecting duct cells reduced by curcumin. Scientific reports. 2019 08; 9(1):12403. doi: 10.1038/s41598-019-48716-x. [PMID: 31455864]
  • Raphael Molinaro, Tapas Mukherjee, Robert Flick, Dana J Philpott, Stephen E Girardin. Trace levels of peptidoglycan in serum underlie the NOD-dependent cytokine response to endoplasmic reticulum stress. The Journal of biological chemistry. 2019 05; 294(22):9007-9015. doi: 10.1074/jbc.ra119.007997. [PMID: 30996003]
  • Ken Takahashi, Shogo Hayashi, Mari Miyajima, Marei Omori, Jing Wang, Keiko Kaihara, Masatoshi Morimatsu, Chen Wang, Jian Chen, Gentaro Iribe, Keiji Naruse, Masahiro Sokabe. L-type calcium channel modulates mechanosensitivity of the cardiomyocyte cell line H9c2. Cell calcium. 2019 05; 79(?):68-74. doi: 10.1016/j.ceca.2019.02.008. [PMID: 30836292]
  • Xin Chou, Fan Ding, Xiaoyan Zhang, Xiaoqiang Ding, Hui Gao, Qing Wu. Sirtuin-1 ameliorates cadmium-induced endoplasmic reticulum stress and pyroptosis through XBP-1s deacetylation in human renal tubular epithelial cells. Archives of toxicology. 2019 04; 93(4):965-986. doi: 10.1007/s00204-019-02415-8. [PMID: 30796460]
  • Chi Teng Vong, Hisa Hui Ling Tseng, Yiu Wa Kwan, Simon Ming-Yuen Lee, Maggie Pui Man Hoi. Novel protective effect of O-1602 and abnormal cannabidiol, GPR55 agonists, on ER stress-induced apoptosis in pancreatic β-cells. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2019 Mar; 111(?):1176-1186. doi: 10.1016/j.biopha.2018.12.126. [PMID: 30841431]
  • Marine Houdou, Elodie Lebredonchel, Anne Garat, Sandrine Duvet, Dominique Legrand, Valérie Decool, André Klein, Mohamed Ouzzine, Bruno Gasnier, Sven Potelle, François Foulquier. Involvement of thapsigargin- and cyclopiazonic acid-sensitive pumps in the rescue of TMEM165-associated glycosylation defects by Mn2. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2019 02; 33(2):2669-2679. doi: 10.1096/fj.201800387r. [PMID: 30307768]
  • Lili Wu, Xuemei Huang, Yaqi Kuang, Zengmiao Xing, Xiujun Deng, Zuojie Luo. Thapsigargin induces apoptosis in adrenocortical carcinoma by activating endoplasmic reticulum stress and the JNK signaling pathway: an in vitro and in vivo study. Drug design, development and therapy. 2019; 13(?):2787-2798. doi: 10.2147/dddt.s209947. [PMID: 31496655]
  • Murali K Yanda, Qiangni Liu, Valeriu Cebotaru, William B Guggino, Liudmila Cebotaru. Role of calcium in adult onset polycystic kidney disease. Cellular signalling. 2019 01; 53(?):140-150. doi: 10.1016/j.cellsig.2018.10.003. [PMID: 30296477]
  • Kathleen A Trychta, Susanne Bäck, Mark J Henderson, Brandon K Harvey. KDEL Receptors Are Differentially Regulated to Maintain the ER Proteome under Calcium Deficiency. Cell reports. 2018 11; 25(7):1829-1840.e6. doi: 10.1016/j.celrep.2018.10.055. [PMID: 30428351]
  • Kuan-Ting Liu, I-Jeng Yeh, Shih-Kai Chou, Meng-Chi Yen, Po-Lin Kuo. Regulatory mechanism of fatty acid‑CoA metabolic enzymes under endoplasmic reticulum stress in lung cancer. Oncology reports. 2018 Nov; 40(5):2674-2682. doi: 10.3892/or.2018.6664. [PMID: 30132556]
  • Maddalena Parafati, R Jason Kirby, Sepideh Khorasanizadeh, Fraydoon Rastinejad, Siobhan Malany. A nonalcoholic fatty liver disease model in human induced pluripotent stem cell-derived hepatocytes, created by endoplasmic reticulum stress-induced steatosis. Disease models & mechanisms. 2018 09; 11(9):. doi: 10.1242/dmm.033530. [PMID: 30254132]
  • Mingjuan Yan, Shaoqun Shu, Chunyuan Guo, Chengyuan Tang, Zheng Dong. Endoplasmic reticulum stress in ischemic and nephrotoxic acute kidney injury. Annals of medicine. 2018 08; 50(5):381-390. doi: 10.1080/07853890.2018.1489142. [PMID: 29895209]
  • Tae Woo Jung, Hyoung-Chun Kim, A M Abd El-Aty, Ji Hoon Jeong. Maresin 1 attenuates NAFLD by suppression of endoplasmic reticulum stress via AMPK-SERCA2b pathway. The Journal of biological chemistry. 2018 03; 293(11):3981-3988. doi: 10.1074/jbc.ra117.000885. [PMID: 29414781]
  • Feixue Li, Huihui Ma, Jing Liu. Pyrethroid Insecticide Cypermethrin Modulates Gonadotropin Synthesis via Calcium Homeostasis and ERK1/2 Signaling in LβT2 Mouse Pituitary Cells. Toxicological sciences : an official journal of the Society of Toxicology. 2018 03; 162(1):43-52. doi: 10.1093/toxsci/kfx248. [PMID: 29149324]
  • Jonas Sieber, Nicolas Wieder, Abbe Clark, Manuel Reitberger, Sofia Matan, Jeannine Schoenfelder, Jianming Zhang, Anna Mandinova, Joshua Adam Bittker, Juan Gutierrez, Ozan Aygün, Namrata Udeshi, Steven Carr, Peter Mundel, Andreas Werner Jehle, Anna Greka. GDC-0879, a BRAFV600E Inhibitor, Protects Kidney Podocytes from Death. Cell chemical biology. 2018 02; 25(2):175-184.e4. doi: 10.1016/j.chembiol.2017.11.006. [PMID: 29249695]
  • Stefania Martucciello, Gaetana Paolella, Tamara Muzashvili, Alexandre Skhirtladze, Cosimo Pizza, Ivana Caputo, Sonia Piacente. Steroids from Helleborus caucasicus reduce cancer cell viability inducing apoptosis and GRP78 down-regulation. Chemico-biological interactions. 2018 Jan; 279(?):43-50. doi: 10.1016/j.cbi.2017.11.002. [PMID: 29126784]
  • Giovanni Roti, Jun Qi, Samuel Kitara, Marta Sanchez-Martin, Amy Saur Conway, Anthony C Varca, Angela Su, Lei Wu, Andrew L Kung, Adolfo A Ferrando, James E Bradner, Kimberly Stegmaier. Leukemia-specific delivery of mutant NOTCH1 targeted therapy. The Journal of experimental medicine. 2018 01; 215(1):197-216. doi: 10.1084/jem.20151778. [PMID: 29158376]
  • Nopporn Thangthaeng, Shibu M Poulose, Derek R Fisher, Barbara Shukitt-Hale. Walnut extract modulates activation of microglia through alteration in intracellular calcium concentration. Nutrition research (New York, N.Y.). 2018 01; 49(?):88-95. doi: 10.1016/j.nutres.2017.10.016. [PMID: 29420996]
  • Basma Sukkar, Stefan Hauser, Lisann Pelzl, Zohreh Hosseinzadeh, Itishri Sahu, Tamer Al-Maghout, Abdulla Al Mamun Bhuyan, Nefeli Zacharopoulou, Christos Stournaras, Ludger Schöls, Florian Lang. Inhibition of Lithium Sensitive Orai1/ STIM1 Expression and Store Operated Ca2+ Entry in Chorea-Acanthocytosis Neurons by NF-κB Inhibitor Wogonin. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2018; 51(1):278-289. doi: 10.1159/000495229. [PMID: 30453283]
  • Keimin Lee, Yoon-Jung Kim, Yoon Young Cho, Sungkwon Chung, Su-Hyun Jo, Se-Young Choi. Polychlorinated biphenyl 19 blocks the most common form of store-operated Ca2+ entry through Orai. Naunyn-Schmiedeberg's archives of pharmacology. 2017 Dec; 390(12):1221-1228. doi: 10.1007/s00210-017-1420-1. [PMID: 28865055]
  • Murali K Yanda, Qiangni Liu, Valeriu Cebotaru, William B Guggino, Liudmila Cebotaru. Histone deacetylase 6 inhibition reduces cysts by decreasing cAMP and Ca2+ in knock-out mouse models of polycystic kidney disease. The Journal of biological chemistry. 2017 10; 292(43):17897-17908. doi: 10.1074/jbc.m117.803775. [PMID: 28887310]
  • Nilanjan Dey, Asfa Ali, Santosh Podder, Shamik Majumdar, Dipankar Nandi, Santanu Bhattacharya. Dual-Mode Optical Sensing of Histamine at Nanomolar Concentrations in Complex Biological Fluids and Living Cells. Chemistry (Weinheim an der Bergstrasse, Germany). 2017 Sep; 23(49):11891-11897. doi: 10.1002/chem.201702208. [PMID: 28618014]
  • Hyun Jung Kim, Guem San Lee, Hyungwoo Kim, Byung Joo Kim. Hwangryunhaedok-tang induces the depolarization of pacemaker potentials through 5-HT3 and 5-HT4 receptors in cultured murine small intestine interstitial cells of Cajal. World journal of gastroenterology. 2017 Aug; 23(29):5313-5323. doi: 10.3748/wjg.v23.i29.5313. [PMID: 28839431]
  • E Chiappisi, R Ringseis, K Eder, D K Gessner. Effect of endoplasmic reticulum stress on metabolic and stress signaling and kidney-specific functions in Madin-Darby bovine kidney cells. Journal of dairy science. 2017 Aug; 100(8):6689-6706. doi: 10.3168/jds.2016-12406. [PMID: 28624282]
  • Fei Liu, Xin-Yu Wang, Xu-Ping Zhou, Zong-Ping Liu, Xiang-Bin Song, Zhen-Yong Wang, Lin Wang. Cadmium disrupts autophagic flux by inhibiting cytosolic Ca2+-dependent autophagosome-lysosome fusion in primary rat proximal tubular cells. Toxicology. 2017 05; 383(?):13-23. doi: 10.1016/j.tox.2017.03.016. [PMID: 28347754]
  • Zijun Ouyang, Wanshuai Li, Qianqian Meng, Qi Zhang, Xingqi Wang, Ahmed Elgehama, Xudong Wu, Yan Shen, Yang Sun, Xuefeng Wu, Qiang Xu. A natural compound jaceosidin ameliorates endoplasmic reticulum stress and insulin resistance via upregulation of SERCA2b. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2017 May; 89(?):1286-1296. doi: 10.1016/j.biopha.2017.03.023. [PMID: 28320096]
  • Tara P Chambers, Luis Santiesteban, David Gomez, Jeremy W Chambers. Sab mediates mitochondrial dysfunction involved in imatinib mesylate-induced cardiotoxicity. Toxicology. 2017 05; 382(?):24-35. doi: 10.1016/j.tox.2017.03.006. [PMID: 28315715]
  • Peter V Minorsky. On the Inside. Plant physiology. 2017 May; 174(1):1-2. doi: 10.1104/pp.17.00492. [PMID: 28461397]
  • Trine Bundgaard Andersen, Karen Agatha Martinez-Swatson, Silas Anselm Rasmussen, Berin Alain Boughton, Kirsten Jørgensen, Johan Andersen-Ranberg, Nils Nyberg, Søren Brøgger Christensen, Henrik Toft Simonsen. Localization and in-Vivo Characterization of Thapsia garganica CYP76AE2 Indicates a Role in Thapsigargin Biosynthesis. Plant physiology. 2017 May; 174(1):56-72. doi: 10.1104/pp.16.00055. [PMID: 28275147]
  • Chandak Upagupta, Rachel E Carlisle, Jeffrey G Dickhout. Analysis of the potency of various low molecular weight chemical chaperones to prevent protein aggregation. Biochemical and biophysical research communications. 2017 04; 486(1):163-170. doi: 10.1016/j.bbrc.2017.03.019. [PMID: 28285140]
  • Jérémie A Doiron, Luc M Leblanc, Martin J G Hébert, Natalie A Levesque, Aurélie F Paré, Jacques Jean-François, Marc Cormier, Marc E Surette, Mohamed Touaibia. Structure-activity relationship of caffeic acid phenethyl ester analogs as new 5-lipoxygenase inhibitors. Chemical biology & drug design. 2017 04; 89(4):514-528. doi: 10.1111/cbdd.12874. [PMID: 27717142]
  • Sarah E Kobylewski, Kimberly A Henderson, Kristin E Yamada, Curtis D Eckhert. Activation of the EIF2α/ATF4 and ATF6 Pathways in DU-145 Cells by Boric Acid at the Concentration Reported in Men at the US Mean Boron Intake. Biological trace element research. 2017 Apr; 176(2):278-293. doi: 10.1007/s12011-016-0824-y. [PMID: 27587023]
  • Lingaku Lee, Tetsuhide Ito, Taichi Nakamura, Robert T Jensen, Hisato Igarashi, Ryoichi Takayanagi. Antifibrotic Effect of Saturated Fatty Acids via Endoplasmic Reticulum Stress Response in Rat Pancreatic Stellate Cells. Pancreas. 2017 03; 46(3):385-394. doi: 10.1097/mpa.0000000000000757. [PMID: 28099257]
  • Z I Krutetskaya, L S Milenina, A A Naumova, S N Butov, V G Antonov, A D Nozdrachev. Methyl-β-cyclodextrin modulates thapsigargin-induced store-dependent Ca2+ entry in macrophages. Doklady. Biochemistry and biophysics. 2017 Mar; 473(1):88-90. doi: 10.1134/s1607672917020028. [PMID: 28510132]
  • Alex Gutterres Taranto, Sônia Carine Cova Costa, Franco Henrique Andrade Leite, Matheus Santos de Sá, Milena Botelho Pereira Soares, Miriam Moreira Mussi, Alexsandro Branco. Caffeoylquinic acids from antiplasmodial active extract of Xanthium cavanillesii fruits and their molecular modelling studies. Natural product research. 2017 Mar; 31(6):729-733. doi: 10.1080/14786419.2016.1219856. [PMID: 27686750]
  • Nozomi Takahashi, Miyuki Harada, Yasushi Hirota, Lin Zhao, Jerilee M K Azhary, Osamu Yoshino, Gentaro Izumi, Tetsuya Hirata, Kaori Koga, Osamu Wada-Hiraike, Tomoyuki Fujii, Yutaka Osuga. A Potential Role for Endoplasmic Reticulum Stress in Progesterone Deficiency in Obese Women. Endocrinology. 2017 01; 158(1):84-97. doi: 10.1210/en.2016-1511. [PMID: 27886513]
  • Thomas S Weiss, Madeleine Lupke, Sara Ibrahim, Christa Buechler, Julia Lorenz, Petra Ruemmele, Ute Hofmann, Michael Melter, Rania Dayoub. Attenuated lipotoxicity and apoptosis is linked to exogenous and endogenous augmenter of liver regeneration by different pathways. PloS one. 2017; 12(9):e0184282. doi: 10.1371/journal.pone.0184282. [PMID: 28877220]
  • Daniel R Beriault, Vi T Dang, Lexy H Zhong, Christina I Petlura, Cameron S McAlpine, Yuanyuan Shi, Geoff H Werstuck. Glucosamine induces ER stress by disrupting lipid-linked oligosaccharide biosynthesis and N-linked protein glycosylation. American journal of physiology. Endocrinology and metabolism. 2017 01; 312(1):E48-E57. doi: 10.1152/ajpendo.00275.2016. [PMID: 27879249]
  • Tengfei Bian, Joseph M Autry, Denise Casemore, Ji Li, David D Thomas, Gaohong He, Chengguo Xing. Direct detection of SERCA calcium transport and small-molecule inhibition in giant unilamellar vesicles. Biochemical and biophysical research communications. 2016 Dec; 481(3-4):206-211. doi: 10.1016/j.bbrc.2016.10.096. [PMID: 27815070]
  • Lijuan Zhang, Lina Wang, Run Wang, Yonghua Pan, Yuan Gao, Peng Fu. Protective effects of GTM-1 on endoplasmic reticulum stress induced by thapsgargin in rat neurons. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2016 Dec; 84(?):821-827. doi: 10.1016/j.biopha.2016.09.050. [PMID: 27723573]
  • Yongzhong Zhao, Shuvojit Banerjee, Ping Huang, Xinning Wang, Candece L Gladson, Warren D Heston, Charles B Foster. Selenoprotein P neutralizes lipopolysaccharide and participates in hepatic cell endoplasmic reticulum stress response. FEBS letters. 2016 Dec; 590(24):4519-4530. doi: 10.1002/1873-3468.12494. [PMID: 27859223]
  • Bogeon Yun, HeeJung Lee, Heather Ewing, Michael H Gelb, Christina C Leslie. Off-target effect of the cPLA2α inhibitor pyrrophenone: Inhibition of calcium release from the endoplasmic reticulum. Biochemical and biophysical research communications. 2016 10; 479(1):61-6. doi: 10.1016/j.bbrc.2016.09.033. [PMID: 27620490]
  • Kayleen Vannuvel, Martine Van Steenbrugge, Catherine Demazy, Noëlle Ninane, Antoine Fattaccioli, Maude Fransolet, Patricia Renard, Martine Raes, Thierry Arnould. Effects of a Sublethal and Transient Stress of the Endoplasmic Reticulum on the Mitochondrial Population. Journal of cellular physiology. 2016 09; 231(9):1913-31. doi: 10.1002/jcp.25292. [PMID: 26680008]
  • Lauren A Biwer, Evan P Taddeo, Brandon M Kenwood, Kyle L Hoehn, Adam C Straub, Brant E Isakson. Two functionally distinct pools of eNOS in endothelium are facilitated by myoendothelial junction lipid composition. Biochimica et biophysica acta. 2016 Jul; 1861(7):671-9. doi: 10.1016/j.bbalip.2016.04.014. [PMID: 27106139]
  • Pedro Chacón-Fernández, Katharina Säuberli, Maria Colzani, Thomas Moreau, Cedric Ghevaert, Yves-Alain Barde. Brain-derived Neurotrophic Factor in Megakaryocytes. The Journal of biological chemistry. 2016 May; 291(19):9872-81. doi: 10.1074/jbc.m116.720029. [PMID: 27006395]
  • Tomofumi Nakayama, Noriko Saitoh, Keiko Morotomi-Yano, Ken-Ichi Yano, Mitsuyoshi Nakao, Hisato Saitoh. Nuclear extrusion precedes discharge of genomic DNA fibers during tunicamycin-induced neutrophil extracellular trap-osis (NETosis)-like cell death in cultured human leukemia cells. Cell biology international. 2016 May; 40(5):597-602. doi: 10.1002/cbin.10594. [PMID: 26888435]
  • Xiujie Liang, Na Duan, Yue Wang, Shuangshuang Shu, Xiaohong Xiang, Tingting Guo, Lei Yang, Shaojie Zhang, Xun Tang, Jun Zhang. Advanced oxidation protein products induce endothelial-to-mesenchymal transition in human renal glomerular endothelial cells through induction of endoplasmic reticulum stress. Journal of diabetes and its complications. 2016 May; 30(4):573-9. doi: 10.1016/j.jdiacomp.2016.01.009. [PMID: 26861949]
  • D Mahalingam, G Wilding, S Denmeade, J Sarantopoulas, D Cosgrove, J Cetnar, N Azad, J Bruce, M Kurman, V E Allgood, M Carducci. Mipsagargin, a novel thapsigargin-based PSMA-activated prodrug: results of a first-in-man phase I clinical trial in patients with refractory, advanced or metastatic solid tumours. British journal of cancer. 2016 Apr; 114(9):986-94. doi: 10.1038/bjc.2016.72. [PMID: 27115568]
  • Bao Hoang, Yijiang Shi, Patrick J Frost, Veena Mysore, Carolyne Bardeleben, Alan Lichtenstein. SGK Kinase Activity in Multiple Myeloma Cells Protects against ER Stress Apoptosis via a SEK-Dependent Mechanism. Molecular cancer research : MCR. 2016 Apr; 14(4):397-407. doi: 10.1158/1541-7786.mcr-15-0422. [PMID: 26869290]
  • Zan-Chao Liu, Jiang Chu, Li Lin, Jie Song, Lin-Na Ning, Hong-Bin Luo, Shu-Sheng Yang, Yan Shi, Qun Wang, Na Qu, Qi Zhang, Jian-Zhi Wang, Qing Tian. SIL1 Rescued Bip Elevation-Related Tau Hyperphosphorylation in ER Stress. Molecular neurobiology. 2016 Mar; 53(2):983-994. doi: 10.1007/s12035-014-9039-4. [PMID: 25575678]
  • Chang-Xiang Shi, Ming-Xia Zhao, Xiao-Dong Shu, Xiao-Qing Xiong, Jue-Jin Wang, Xing-Ya Gao, Qi Chen, Yue-Hua Li, Yu-Ming Kang, Guo-Qing Zhu. β-aminoisobutyric acid attenuates hepatic endoplasmic reticulum stress and glucose/lipid metabolic disturbance in mice with type 2 diabetes. Scientific reports. 2016 Feb; 6(?):21924. doi: 10.1038/srep21924. [PMID: 26907958]
  • T B Vasconcelos, H V Ribeiro-Filho, L T Lucetti, P J C Magalhães. β-Citronellol, an alcoholic monoterpene with inhibitory properties on the contractility of rat trachea. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas. 2016 Feb; 49(2):e4800. doi: 10.1590/1414-431x20154800. [PMID: 26648088]
  • Xinzhou Zhu, Andrea Zelmer, Josef P Kapfhammer, Sven Wellmann. Cold-inducible RBM3 inhibits PERK phosphorylation through cooperation with NF90 to protect cells from endoplasmic reticulum stress. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2016 Feb; 30(2):624-34. doi: 10.1096/fj.15-274639. [PMID: 26472337]
  • Ok-Kyung Kim, Woojin Jun, Jeongmin Lee. Effect of Cudrania tricuspidata and Kaempferol in Endoplasmic Reticulum Stress-Induced Inflammation and Hepatic Insulin Resistance in HepG2 Cells. Nutrients. 2016 Jan; 8(1):. doi: 10.3390/nu8010060. [PMID: 26805878]