Ethylene (BioDeep_00000006200)
Secondary id: BioDeep_00000872344
human metabolite Endogenous Chemicals and Drugs Volatile Flavor Compounds
代谢物信息卡片
化学式: C2H4 (28.0312984)
中文名称: 乙烯
谱图信息:
最多检出来源 Homo sapiens(lipidsearch) 98%
分子结构信息
SMILES: C=C
InChI: InChI=1S/C2H4/c1-2/h1-2H2
描述信息
Polyethylene (m w 2,000-21,000) is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]")
Occurs naturally in ripening fruit and is used artificially to accelerate fruit ripening, e.g in banana transportation
D006133 - Growth Substances > D010937 - Plant Growth Regulators
C1907 - Drug, Natural Product > C28269 - Phytochemical
同义名列表
25 个代谢物同义名
Polyethylene as med mol. wt.; Bicarburretted hydrogen; Ethylene, compressed; Liquid ethylene; Liquid ethyene; Ethylene (8ci); Ethylene, pure; Ethylene-CMPD; Olefiant gas; Ethene (9ci); Ethene, 9ci; Plastipore; Ethylene; Aethylen; Etileno; Athylen; CH2=ch2; H2C=ch2; Acetene; Ethene; R-1150; Aethen; Elayl; Polyethylene; Ethylene
数据库引用编号
20 个数据库交叉引用编号
- ChEBI: CHEBI:18153
- KEGG: C06547
- PubChem: 6325
- HMDB: HMDB0029594
- ChEMBL: CHEMBL117822
- Wikipedia: Polyethylene
- MetaCyc: ETHYLENE-CMPD
- KNApSAcK: C00000175
- foodb: FDB000754
- chemspider: 6085
- CAS: 9002-88-4
- CAS: 74-85-1
- PMhub: MS000019213
- PubChem: 8777
- 3DMET: B00966
- NIKKAJI: J1.939I
- KEGG: C19503
- PubChem: 124490175
- KNApSAcK: 53227
- KNApSAcK: 18153
分类词条
相关代谢途径
Reactome(5)
BioCyc(3)
PlantCyc(0)
代谢反应
178 个相关的代谢反应过程信息。
Reactome(40)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
CAF + H+ + Oxygen + TPNH ⟶ CH2O + H2O + Paraxanthine + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
BioCyc(10)
- tetrachloroethene degradation:
A + H+ + chloride + ethene ⟶ A(H2) + chloroethene
- ethylene biosynthesis IV (engineered):
2-oxoglutarate + H+ + O2 ⟶ CO2 + H2O + ethene
- ethene and chloroethene degradation:
H+ + NADH + O2 + ethene ⟶ H2O + NAD+ + ethylene oxide
- ethylene biosynthesis II (microbes):
2-oxoglutarate + H+ + O2 ⟶ CO2 + H2O + ethene
- ethylene biosynthesis III (microbes):
4-(methylsulfanyl)-2-oxobutanoate + hydroxyl radical ⟶ CO2 + ethene + methanethiol
- ethylene biosynthesis V (engineered):
2-oxoglutarate + H+ + O2 ⟶ CO2 + H2O + ethene
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethylene + hydrogen cyanide
WikiPathways(0)
Plant Reactome(5)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Hormone signaling, transport, and metabolism:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-octanoate + Oxygen ⟶ CH3COO- + jasmonic acid
- Ethylene biosynthesis and signaling:
1-aminocyclopropane-1-carboxylate + Oxygen + VitC ⟶ H2O + HCN + L-dehydroascorbate + carbon dioxide + ethene
- Ethylene mediated signaling:
ATP + OsEIN2 ⟶ ADP + OsEIN2-phospho
- Ethene biosynthesis from methionine:
1-aminocyclopropane-1-carboxylate + Oxygen + VitC ⟶ H2O + HCN + L-dehydroascorbate + carbon dioxide + ethene
INOH(0)
PlantCyc(123)
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis II (microbes):
2-oxoglutarate + O2 + arg ⟶ (3S)-3-hydroxy-L-arginine + CO2 + succinate
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- terminal olefins biosynthesis I:
H+ + a long-chain fatty acid + hydrogen peroxide ⟶ CO2 + H2O + a terminal olefin
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis II (microbes):
2-oxoglutarate + O2 + arg ⟶ (3S)-3-hydroxy-L-arginine + CO2 + succinate
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethylene biosynthesis I (plants):
SAM ⟶ 1-aminocyclopropane-1-carboxylate + S-methyl-5'-thioadenosine + H+
- ethene biosynthesis I (plants):
ATP + H2O + met ⟶ SAM + diphosphate + phosphate
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
15 个相关的物种来源信息
- 3625 - Actinidia chinensis: 10.1104/PP.45.4.533
- 49314 - Annona cherimola: 10.21273/JASHS.119.3.524
- 3702 - Arabidopsis thaliana: 10.1046/J.1365-313X.2003.01881.X
- 3711 - Brassica rapa: 10.1034/J.1399-3054.2001.1120216.X
- 41496 - Calendula officinalis: 10.1016/0031-9422(85)80062-5
- 4312 - Corynocarpus laevigatus: 10.1080/0028825X.1984.10425264
- 3570 - Dianthus caryophyllus: 10.21273/HORTSCI.27.10.1100
- 3467 - Eschscholzia californica: 10.1016/0031-9422(91)83604-J
- 9606 - Homo sapiens: -
- 3750 - Malus domestica: 10.1021/JA00362A052
- 283210 - Malus pumila: 10.1021/JA00362A052
- 13816 - Marsilea quadrifolia: 10.1007/BF00196657
- 4097 - Nicotiana tabacum: 10.1016/0031-9422(91)83608-N
- 317 - Pseudomonas syringae: 10.1080/00021369.1987.10868178
- 39636 - Regnellidium diphyllum: 10.1007/BF00196657
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Hua Fang, Fujin Ye, Ruirui Yang, Dengjing Huang, Xinfang Chen, Chunlei Wang, Weibiao Liao. Hydrogen gas: A new fresh keeping agent of perishable horticultural products.
Food chemistry.
2024 Sep; 451(?):139476. doi:
10.1016/j.foodchem.2024.139476
. [PMID: 38677131] - Zhichao Sun, Xinmiao Guo, R M Saravana Kumar, Chunying Huang, Yan Xie, Meng Li, Jisheng Li. Transcriptomic and metabolomic analyses reveal the importance of ethylene networks in mulberry fruit ripening.
Plant science : an international journal of experimental plant biology.
2024 Jul; 344(?):112084. doi:
10.1016/j.plantsci.2024.112084
. [PMID: 38614360] - Jia Li, Yunche Chen, Linkai Wang, Dongxia Li, Liyun Liu, Meng Li. An ethylene response factor AcERF116 identified from A. catechu is involved in fruitlet abscission.
Plant science : an international journal of experimental plant biology.
2024 Jul; 344(?):112091. doi:
10.1016/j.plantsci.2024.112091
. [PMID: 38615719] - Shuang Gu, Lin Xie, Qiuyue Guan, Xuerong Sheng, Yonggang Fang, Xiangyang Wang. Effect of ethylene production by four pathogenic fungi on the postharvest diseases of green pepper (Capsicum annuum L.).
International journal of food microbiology.
2024 Jun; 418(?):110729. doi:
10.1016/j.ijfoodmicro.2024.110729
. [PMID: 38696986] - Qiunan Zhu, Qinqin Tan, Qiyang Gao, Senlin Zheng, Weixin Chen, Jean-Philippe Galaud, Xueping Li, Xiaoyang Zhu. Calmodulin-like protein CML15 interacts with PP2C46/65 to regulate papaya fruit ripening via integrating calcium, ABA and ethylene signals.
Plant biotechnology journal.
2024 Jun; 22(6):1703-1723. doi:
10.1111/pbi.14297
. [PMID: 38319003] - Yuan-Chi Chien, Gyeong Mee Yoon. Subcellular dynamics of ethylene signaling drive plant plasticity to growth and stress: Spatiotemporal control of ethylene signaling in Arabidopsis.
BioEssays : news and reviews in molecular, cellular and developmental biology.
2024 Jun; 46(6):e2400043. doi:
10.1002/bies.202400043
. [PMID: 38571390] - Yidong Wang, Lanlan Jiang, Dongdong Kong, Jie Meng, Meifang Song, Wenxiu Cui, Yaqi Song, Xiaofan Wang, Jiao Liu, Rui Wang, Yikun He, Caren Chang, Chuanli Ju. Ethylene controls three-dimensional growth involving reduced auxin levels in the moss Physcomitrium patens.
The New phytologist.
2024 Jun; 242(5):1996-2010. doi:
10.1111/nph.19728
. [PMID: 38571393] - Patrycja Baraniecka, Wibke Seibt, Karin Groten, Danny Kessler, Erica McGale, Klaus Gase, Ian T Baldwin, John R Pannell. Prezygotic mate selection is only partially correlated with the expression of NaS-like RNases and affects offspring phenotypes.
The New phytologist.
2024 Jun; 242(6):2832-2844. doi:
10.1111/nph.19741
. [PMID: 38581189] - Yu Wang, Hong An, Yue Yang, Cheng Yi, Ying Duan, Qian Wang, Yannan Guo, Lina Yao, Mingkun Chen, Jiaxin Meng, Jun Wei, Chenyang Hu, Houhua Li. The MpNAC72/MpERF105-MpMYB10b module regulates anthocyanin biosynthesis in Malus 'Profusion' leaves infected with Gymnosporangium yamadae.
The Plant journal : for cell and molecular biology.
2024 Jun; 118(5):1569-1588. doi:
10.1111/tpj.16697
. [PMID: 38412288] - Gwendolyn K Kirschner. A compact topic: How ethylene controls crown root development in compacted soil.
The Plant cell.
2024 May; 36(6):2063-2064. doi:
10.1093/plcell/koae091
. [PMID: 38526200] - Yuxiang Li, Juan Wang, Yadi Gao, Bipin K Pandey, Lucas León Peralta Ogorek, Yu Zhao, Ruidang Quan, Zihan Zhao, Lei Jiang, Rongfeng Huang, Hua Qin. The OsEIL1-OsWOX11 transcription factor module controls rice crown root development in response to soil compaction.
The Plant cell.
2024 May; 36(6):2393-2409. doi:
10.1093/plcell/koae083
. [PMID: 38489602] - Xi-Tao Wang, Kai Yan, Tian-Hua Yu, Zhan-Nan Yang, Shi-Qiong Luo. A Single Latent Plant Growth-Promoting Endophyte BH46 Enhances Houttuynia cordata Thunb. Yield and Quality.
Journal of agricultural and food chemistry.
2024 May; 72(21):12057-12071. doi:
10.1021/acs.jafc.3c08177
. [PMID: 38753758] - Yi-Wen Wang, Savithri U Nambeesan. Ethylene promotes fruit ripening initiation by downregulating photosynthesis, enhancing abscisic acid and suppressing jasmonic acid in blueberry (Vaccinium ashei).
BMC plant biology.
2024 May; 24(1):418. doi:
10.1186/s12870-024-05106-4
. [PMID: 38760720] - Vojtěch Schmidt, Roman Skokan, Thomas Depaepe, Katarina Kurtović, Samuel Haluška, Stanislav Vosolsobě, Roberta Vaculíková, Anthony Pil, Petre Ivanov Dobrev, Václav Motyka, Dominique Van Der Straeten, Jan Petrášek. Phytohormone profiling in an evolutionary framework.
Nature communications.
2024 May; 15(1):3875. doi:
10.1038/s41467-024-47753-z
. [PMID: 38719800] - Zhuanxia Zhang, Mukhtiar Ali, Zhiwen Tang, Qi Sun, Qing Wang, Xin Liu, Lipu Yin, Song Yan, Minmin Xu, Frederic Coulon, Xin Song. Unveiling complete natural reductive dechlorination mechanisms of chlorinated ethenes in groundwater: Insights from functional gene analysis.
Journal of hazardous materials.
2024 May; 469(?):134034. doi:
10.1016/j.jhazmat.2024.134034
. [PMID: 38521036] - Yu-Wei Cao, Meng Song, Meng-Meng Bi, Pan-Pan Yang, Guo-Ren He, Jing Wang, Yue Yang, Lei-Feng Xu, Jun Ming. Lily (Lilium spp.) LhERF4 negatively affects anthocyanin biosynthesis by suppressing LhMYBSPLATTER transcription.
Plant science : an international journal of experimental plant biology.
2024 May; 342(?):112026. doi:
10.1016/j.plantsci.2024.112026
. [PMID: 38342186] - M Iqbal R Khan, Autar K Mattoo, Nafees Khan, Antonio Ferrante, Maren Lilian Müller. Perspective of ethylene biology for abiotic stress acclimation in plants.
Plant physiology and biochemistry : PPB.
2024 May; 210(?):108284. doi:
10.1016/j.plaphy.2023.108284
. [PMID: 38135615] - Juncai Deng, Xiangqing Huang, Jianhua Chen, Bartel Vanholme, Jinya Guo, Yuanyuan He, Wenting Qin, Jing Zhang, Wenyu Yang, Jiang Liu. Shade stress triggers ethylene biosynthesis to accelerate soybean senescence and impede nitrogen remobilization.
Plant physiology and biochemistry : PPB.
2024 May; 210(?):108658. doi:
10.1016/j.plaphy.2024.108658
. [PMID: 38677188] - Jian Qin, Xi Chen, Xiuhua Tang, Xuehua Shao, Duo Lai, Weiqiang Xiao, Qingli Zhuang, Wenlin Wang, Tao Dong. Near-freezing temperature suppresses avocado (Persea americana Mill.) fruit softening and chilling injury by maintaining cell wall and reactive oxygen species metabolism during storage.
Plant physiology and biochemistry : PPB.
2024 May; 210(?):108621. doi:
10.1016/j.plaphy.2024.108621
. [PMID: 38604012] - Min Zhou, Hongyan Wang, Xuena Yu, Kaicheng Cui, Yang Hu, Shunyuan Xiao, Ying-Qiang Wen. Transcription factors VviWRKY10 and VviWRKY30 co-regulate powdery mildew resistance in grapevine.
Plant physiology.
2024 Apr; 195(1):446-461. doi:
10.1093/plphys/kiae080
. [PMID: 38366578] - Petar Mohorović, Batist Geldhof, Kristof Holsteens, Marilien Rinia, Stijn Daems, Timmy Reijnders, Johan Ceusters, Wim Van den Ende, Bram Van de Poel. Ethylene inhibits photosynthesis via temporally distinct responses in tomato plants.
Plant physiology.
2024 Apr; 195(1):762-784. doi:
10.1093/plphys/kiad685
. [PMID: 38146839] - Marieke Dubois. Time after time: the chronology of photosynthesis inhibition by ethylene.
Plant physiology.
2024 Apr; 195(1):268-270. doi:
10.1093/plphys/kiae033
. [PMID: 38246137] - Muhammad Muzammal Aslam, Mingrui Kou, Yaqi Dou, Shicheng Zou, Rui Li, Wen Li, Yuanzhi Shao. The Transcription Factor MiMYB8 Suppresses Peel Coloration in Postharvest 'Guifei' Mango in Response to High Concentration of Exogenous Ethylene by Negatively Modulating MiPAL1.
International journal of molecular sciences.
2024 Apr; 25(9):. doi:
10.3390/ijms25094841
. [PMID: 38732059] - Miron Gieniec, Zbigniew Miszalski, Piotr Rozpądek, Roman J Jędrzejczyk, Małgorzata Czernicka, Michał Nosek. How the Ethylene Biosynthesis Pathway of Semi-Halophytes Is Modified with Prolonged Salinity Stress Occurrence?.
International journal of molecular sciences.
2024 Apr; 25(9):. doi:
10.3390/ijms25094777
. [PMID: 38731994] - Caixia Liu, Erqin Fan, Yuhang Liu, Meng Wang, Qiuyu Wang, Sui Wang, Su Chen, Chuanping Yang, Xiangling You, Guanzheng Qu. Genome-Wide Identification and Analysis of the EIN3/EIL Transcription Factor Gene Family in Doubled Haploid (DH) Poplar.
International journal of molecular sciences.
2024 Apr; 25(7):. doi:
10.3390/ijms25074116
. [PMID: 38612925] - Meifei Su, Suiwen Hou. Ethylene insensitive 2 (EIN2) destiny shaper: The post-translational modification.
Journal of plant physiology.
2024 Apr; 295(?):154190. doi:
10.1016/j.jplph.2024.154190
. [PMID: 38460400] - Nadeem Iqbal, Attila Ördög, Péter Koprivanacz, András Kukri, Zalán Czékus, Péter Poór. Salicylic acid- and ethylene-dependent effects of the ER stress-inducer tunicamycin on the photosynthetic light reactions in tomato plants.
Journal of plant physiology.
2024 Apr; 295(?):154222. doi:
10.1016/j.jplph.2024.154222
. [PMID: 38484685] - Hexon Angel Contreras-Cornejo, Monika Schmoll, Blanca Alicia Esquivel-Ayala, Carlos E González-Esquivel, Victor Rocha-Ramírez, John Larsen. Mechanisms for plant growth promotion activated by Trichoderma in natural and managed terrestrial ecosystems.
Microbiological research.
2024 Apr; 281(?):127621. doi:
10.1016/j.micres.2024.127621
. [PMID: 38295679] - Heng Deng, Yangang Pei, Xin Xu, Xiaofei Du, Qihan Xue, Zhuo Gao, Peng Shu, Yi Wu, Zhaoqiao Liu, Yongfei Jian, Mengbo Wu, Yikui Wang, Zhengguo Li, Julien Pirrello, Mondher Bouzayen, Wei Deng, Yiguo Hong, Mingchun Liu. Ethylene-MPK8-ERF.C1-PR module confers resistance against Botrytis cinerea in tomato fruit without compromising ripening.
The New phytologist.
2024 Apr; 242(2):592-609. doi:
10.1111/nph.19632
. [PMID: 38402567] - Xi Chen, Yan Sun, Yu Yang, Yuxin Zhao, Chuanzhong Zhang, Xin Fang, Hong Gao, Ming Zhao, Shengfu He, Bo Song, Shanshan Liu, Junjiang Wu, Pengfei Xu, Shuzhen Zhang. The EIN3 transcription factor GmEIL1 improves soybean resistance to Phytophthora sojae.
Molecular plant pathology.
2024 Apr; 25(4):e13452. doi:
10.1111/mpp.13452
. [PMID: 38619823] - Jing Chen, Senlin Jiang, Guobin Yang, Lujun Li, Jing Li, Fengjuan Yang. The MYB transcription factor SmMYB113 directly regulates ethylene-dependent flower abscission in eggplant.
Plant physiology and biochemistry : PPB.
2024 Apr; 209(?):108544. doi:
10.1016/j.plaphy.2024.108544
. [PMID: 38520965] - María Segura, Alicia García, Germán Gamarra, Álvaro Benítez, Jessica Iglesias-Moya, Cecilia Martínez, Manuel Jamilena. An miR164-resistant mutation in the transcription factor gene CpCUC2B enhances carpel arrest and ectopic boundary specification in Cucurbita pepo flower development.
Journal of experimental botany.
2024 Mar; 75(7):1948-1966. doi:
10.1093/jxb/erad486
. [PMID: 38066672] - Katerina Muselikova, Katerina Mouralova. Synthetic auxin herbicide 2,4-D and its influence on a model BY-2 suspension.
Molecular biology reports.
2024 Mar; 51(1):444. doi:
10.1007/s11033-024-09392-x
. [PMID: 38520569] - Buket Rüffer, Yvonne Thielmann, Moritz Lemke, Alexander Minges, Georg Groth. Crystallization of Ethylene Plant Hormone Receptor-Screening for Structure.
Biomolecules.
2024 Mar; 14(3):. doi:
10.3390/biom14030375
. [PMID: 38540793] - Pan Shu, Yujing Li, Jiping Sheng, Lin Shen. Recent Advances in Dissecting the Function of Ethylene in Interaction between Host and Pathogen.
Journal of agricultural and food chemistry.
2024 Mar; 72(9):4552-4563. doi:
10.1021/acs.jafc.3c07978
. [PMID: 38379128] - Paolo M Triozzi, Luca Brunello, Giacomo Novi, Gianmarco Ferri, Francesco Cardarelli, Elena Loreti, Mariano Perales, Pierdomenico Perata. Spatiotemporal oxygen dynamics in young leaves reveal cyclic hypoxia in plants.
Molecular plant.
2024 03; 17(3):377-394. doi:
10.1016/j.molp.2024.01.006
. [PMID: 38243593] - Yuan-Chi Chien, Andres Reyes, Hye Lin Park, Shou-Ling Xu, Gyeong Mee Yoon. Uncovering the proximal proteome of CTR1 through TurboID-mediated proximity labeling.
Proteomics.
2024 Mar; 24(6):e2300212. doi:
10.1002/pmic.202300212
. [PMID: 37876141] - Shuang Xiao, Doudou Yang, Fangjun Li, Xiaoli Tian, Zhaohu Li. The EIN3/EIL-ERF9-HAK5 transcriptional cascade positively regulates high-affinity K+ uptake in Gossypium hirsutum.
The New phytologist.
2024 Mar; 241(5):2090-2107. doi:
10.1111/nph.19500
. [PMID: 38168024] - Giulia Scimone, Claudia Pisuttu, Lorenzo Cotrozzi, Roberto Danti, Cristina Nali, Elisa Pellegrini, Mariagrazia Tonelli, Gianni Della Rocca. Signalling responses in the bark and foliage of canker-susceptible and -resistant cypress clones inoculated with Seiridium cardinale.
Physiologia plantarum.
2024 Mar; 176(2):e14250. doi:
10.1111/ppl.14250
. [PMID: 38467566] - Pao-Yuan Hsiao, Cyong-Yu Zeng, Ming-Che Shih. Group VII ethylene response factors forming distinct regulatory loops mediate submergence responses.
Plant physiology.
2024 Feb; 194(3):1745-1763. doi:
10.1093/plphys/kiad547
. [PMID: 37837603] - Chuanwei Li, Likai Wang, Jiangshuo Su, Wenjie Li, Yun Tang, Nan Zhao, La Lou, Xiaoli Ou, Diwen Jia, Jiafu Jiang, Sumei Chen, Fadi Chen. A group VIIIa ethylene-responsive factor, CmERF4, negatively regulates waterlogging tolerance in chrysanthemum.
Journal of experimental botany.
2024 Feb; 75(5):1479-1492. doi:
10.1093/jxb/erad451
. [PMID: 37952115] - Liang Xu, Ying Lan, Miaohong Lin, Hongkai Zhou, Sheng Ying, Miao Chen. Genome-Wide Identification and Transcriptional Analysis of AP2/ERF Gene Family in Pearl Millet (Pennisetum glaucum).
International journal of molecular sciences.
2024 Feb; 25(5):. doi:
10.3390/ijms25052470
. [PMID: 38473718] - Yan Yan, Hongwei Guo, Wenyang Li. Endoribonuclease DNE1 Promotes Ethylene Response by Modulating EBF1/2 mRNA Processing in Arabidopsis.
International journal of molecular sciences.
2024 Feb; 25(4):. doi:
10.3390/ijms25042138
. [PMID: 38396815] - Hui Qiu, Yiwen Chen, Jianxin Fu, Chao Zhang. Expression of ethylene biosynthetic genes during flower senescence and in response to ethephon and silver nitrate treatments in Osmanthus fragrans.
Genes & genomics.
2024 Feb; ?(?):. doi:
10.1007/s13258-023-01489-0
. [PMID: 38319456] - Jingyun Lu, Guifang Zhang, Chao Ma, Yao Li, Chuyan Jiang, Yaru Wang, Bingjie Zhang, Rui Wang, Yuexuan Qiu, Yanxing Ma, Yangchao Jia, Cai-Zhong Jiang, Xiaoming Sun, Nan Ma, Yunhe Jiang, Junping Gao. The F-box protein RhSAF destabilizes the gibberellic acid receptor RhGID1 to mediate ethylene-induced petal senescence in rose.
The Plant cell.
2024 Feb; ?(?):. doi:
10.1093/plcell/koae035
. [PMID: 38315889] - Martin Balcerowicz. Left out in the rain: ethylene emerges as a novel regulator of responses to air humidity.
The Plant journal : for cell and molecular biology.
2024 Feb; 117(3):651-652. doi:
10.1111/tpj.16632
. [PMID: 38294828] - Inger B Holme, Christina R Ingvardsen, Giuseppe Dionisio, Dagmara Podzimska-Sroka, Kell Kristiansen, Anders Feilberg, Henrik Brinch-Pedersen. CRISPR/Cas9-mediated mutation of Eil1 transcription factor genes affects exogenous ethylene tolerance and early flower senescence in Campanula portenschlagiana.
Plant biotechnology journal.
2024 Feb; 22(2):484-496. doi:
10.1111/pbi.14200
. [PMID: 37823527] - Zeyu Jiang, Lingya Yao, Xiangmei Zhu, Guodong Hao, Yanxia Ding, Hangwei Zhao, Shanshan Wang, Chi-Kuang Wen, Xiaoyan Xu, Xiu-Fang Xin. Ethylene signaling modulates air humidity responses in plants.
The Plant journal : for cell and molecular biology.
2024 Feb; 117(3):653-668. doi:
10.1111/tpj.16556
. [PMID: 37997486] - Jiaxin Xing, Wenwu Yang, Li Xu, Jianrong Zhang, Yekun Yang, Jiarui Jiang, Haitao Huang, Lele Deng, Jing Li, Weisong Kong, Yudong Chen, Qili Mi, Qian Gao, Xuemei Li. Overexpression of NtLHT1 affects the development of leaf morphology and abiotic tolerance in tobacco.
Plant science : an international journal of experimental plant biology.
2024 Feb; 339(?):111961. doi:
10.1016/j.plantsci.2023.111961
. [PMID: 38103697] - Jiahang Zhang, Lijing Li, Zhiwei Zhang, Liebao Han, Lixin Xu. The Effect of Ethephon on Ethylene and Chlorophyll in Zoysia japonica Leaves.
International journal of molecular sciences.
2024 Jan; 25(3):. doi:
10.3390/ijms25031663
. [PMID: 38338942] - Zhanghong Yu, Xiaoshan Chen, Yan Li, Sayyed Hamad Ahmad Shah, Dong Xiao, Jianjun Wang, Xilin Hou, Tongkun Liu, Ying Li. ETHYLENE RESPONSE FACTOR 070 inhibits flowering in Pak-choi by indirectly impairing BcLEAFY expression.
Plant physiology.
2024 Jan; ?(?):. doi:
10.1093/plphys/kiae021
. [PMID: 38269601] - Shouhartha Choudhury. Computational analysis of the AP2/ERF family in crops genome.
BMC genomics.
2024 Jan; 25(1):102. doi:
10.1186/s12864-024-09970-0
. [PMID: 38262942] - Le-Le Chu, Wei-Xuan Zheng, Hai-Qiang Liu, Xing-Xing Sheng, Qing-Ye Wang, Yue Wang, Chun-Gen Hu, Jin-Zhi Zhang. ACC SYNTHASE4 inhibits gibberellin biosynthesis and FLOWERING LOCUS T expression during citrus flowering.
Plant physiology.
2024 Jan; ?(?):. doi:
10.1093/plphys/kiae022
. [PMID: 38227428] - Sheen Khan, Ameena Fatima Alvi, Sadaf Saify, Noushina Iqbal, Nafees A Khan. The Ethylene Biosynthetic Enzymes, 1-Aminocyclopropane-1-Carboxylate (ACC) Synthase (ACS) and ACC Oxidase (ACO): The Less Explored Players in Abiotic Stress Tolerance.
Biomolecules.
2024 Jan; 14(1):. doi:
10.3390/biom14010090
. [PMID: 38254690] - Ziming Ma, Lanjuan Hu, Wenzhu Jiang. Understanding AP2/ERF Transcription Factor Responses and Tolerance to Various Abiotic Stresses in Plants: A Comprehensive Review.
International journal of molecular sciences.
2024 Jan; 25(2):. doi:
10.3390/ijms25020893
. [PMID: 38255967] - Bipin K Pandey, Malcolm J Bennett. Uncovering root compaction response mechanisms: new insights and opportunities.
Journal of experimental botany.
2024 Jan; 75(2):578-583. doi:
10.1093/jxb/erad389
. [PMID: 37950742] - Gyeongik Ahn, Yeong Jun Ban, Gyeong-Im Shin, Song Yi Jeong, Ki Hun Park, Woe-Yeon Kim, Joon-Yung Cha. Ethylene enhances transcriptions of asparagine biosynthetic genes in soybean (Glycine max L. Merr) leaves.
Plant signaling & behavior.
2023 Dec; 18(1):2287883. doi:
10.1080/15592324.2023.2287883
. [PMID: 38019725] - Xiaomeng Liu, Weiwei Zhang, Ning Tang, Zexiong Chen, Shen Rao, Hua Cheng, Chengrong Luo, Jiabao Ye, Shuiyuan Cheng, Feng Xu. Genomic-wide identification and expression analysis of AP2/ERF transcription factors in Zanthoxylum armatum reveals the candidate genes for the biosynthesis of terpenoids.
The plant genome.
2023 Dec; ?(?):e20422. doi:
10.1002/tpg2.20422
. [PMID: 38129947] - Sunchung Park, Ainong Shi, Lyndel W Meinhardt, Beiquan Mou. Genome-wide characterization and evolutionary analysis of the AP2/ERF gene family in lettuce (Lactuca sativa).
Scientific reports.
2023 Dec; 13(1):21990. doi:
10.1038/s41598-023-49245-4
. [PMID: 38081919] - María Segura, Alicia García, Álvaro Benítez, Cecilia Martínez, Manuel Jamilena. Comparative RNA-Seq Analysis between Monoecious and Androecious Plants Reveals Regulatory Mechanisms Controlling Female Flowering in Cucurbita pepo.
International journal of molecular sciences.
2023 Dec; 24(24):. doi:
10.3390/ijms242417195
. [PMID: 38139023] - Kanae Masuda, Eriko Kuwada, Maria Suzuki, Tetsuya Suzuki, Takeshi Niikawa, Seiichi Uchida, Takashi Akagi. Transcriptomic Interpretation on Explainable AI-Guided Intuition Uncovers Premonitory Reactions of Disordering Fate in Persimmon Fruit.
Plant & cell physiology.
2023 Dec; 64(11):1323-1330. doi:
10.1093/pcp/pcad050
. [PMID: 37225398] - Wenqiu Lin, Shenghui Liu, Xiou Xiao, Weisheng Sun, Xinhua Lu, Yuyao Gao, Junjun He, Zhuying Zhu, Qingsong Wu, Xiumei Zhang. Integrative Analysis of Metabolome and Transcriptome Provides Insights into the Mechanism of Flower Induction in Pineapple (Ananas comosus (L.) Merr.) by Ethephon.
International journal of molecular sciences.
2023 Dec; 24(24):. doi:
10.3390/ijms242417133
. [PMID: 38138962] - Anna B Kitaeva, Tatiana A Serova, Pyotr G Kusakin, Viktor E Tsyganov. Effects of Elevated Temperature on Pisum sativum Nodule Development: II-Phytohormonal Responses.
International journal of molecular sciences.
2023 Dec; 24(23):. doi:
10.3390/ijms242317062
. [PMID: 38069383] - Alejandra Duque-Jaramillo, Nina Ulmer, Saleh Alseekh, Ilja Bezrukov, Alisdair R Fernie, Aleksandra Skirycz, Talia L Karasov, Detlef Weigel. The genetic and physiological basis of Arabidopsis thaliana tolerance to Pseudomonas viridiflava.
The New phytologist.
2023 Dec; 240(5):1961-1975. doi:
10.1111/nph.19241
. [PMID: 37667565] - Jing Li, Yu Liu, Jianling Zhang, Lili Cao, Qiaoli Xie, Guoping Chen, Xuqing Chen, Zongli Hu. Suppression of a hexokinase gene SlHXK1 in tomato affects fruit setting and seed quality.
Plant physiology and biochemistry : PPB.
2023 Dec; 205(?):108160. doi:
10.1016/j.plaphy.2023.108160
. [PMID: 37944243] - Ramin Bahmani, DongGwan Kim, Mahsa Modareszadeh, Seongbin Hwang. Ethylene and ROS mediate root growth inhibition induced by the endocrine disruptor bisphenol A (BPA).
Plant physiology and biochemistry : PPB.
2023 Dec; 205(?):108212. doi:
10.1016/j.plaphy.2023.108212
. [PMID: 38008009] - Liu Quan, Liang Shiting, Zhao Chen, Han Yuyan, Zhao Minrong, Li Shuyan, Cheng Libao. NnWOX1-1, NnWOX4-3, and NnWOX5-1 of lotus (Nelumbo nucifera Gaertn)promote root formation and enhance stress tolerance in transgenic Arabidopsis thaliana.
BMC genomics.
2023 Nov; 24(1):719. doi:
10.1186/s12864-023-09772-w
. [PMID: 38017402] - Xiaobai Li, Dandan Zhang, Xuhao Pan, Kaleem Ullah Kakar, Zarqa Nawaz. Regulation of carotenoid metabolism and ABA biosynthesis during blueberry fruit ripening.
Plant physiology and biochemistry : PPB.
2023 Nov; 206(?):108232. doi:
10.1016/j.plaphy.2023.108232
. [PMID: 38091932] - Md Ibrahim Khalil, Md Mahmudul Hassan, Swadesh Chandra Samanta, Abul Kashem Chowdhury, Md Zahid Hassan, Nasar Uddin Ahmed, Uzzal Somaddar, Sharmistha Ghosal, Arif Hasan Khan Robin, Ujjal Kumar Nath, Mohammad Golam Mostofa, David J Burritt, Chien Van Ha, Aarti Gupta, Lam-Son Phan Tran, Gopal Saha. Unraveling the genetic enigma of rice submergence tolerance: Shedding light on the role of ethylene response factor-encoding gene SUB1A-1.
Plant physiology and biochemistry : PPB.
2023 Nov; 206(?):108224. doi:
10.1016/j.plaphy.2023.108224
. [PMID: 38091930] - Jinzhu Qiao, Ruidang Quan, Juan Wang, Yuxiang Li, Dinglin Xiao, Zihan Zhao, Rongfeng Huang, Hua Qin. OsEIL1 and OsEIL2, two master regulators of rice ethylene signaling, promote the expression of ROS scavenging genes to facilitate coleoptile elongation and seedling emergence from soil.
Plant communications.
2023 Nov; ?(?):100771. doi:
10.1016/j.xplc.2023.100771
. [PMID: 37994014] - Shuangyu Bai, Jiaohui Long, Yuanyuan Cui, Zhaoyi Wang, Caixia Liu, Fenglou Liu, Zhangjun Wang, Qingfeng Li. Regulation of hormone pathways in wheat infested by Blumeria graminis f. sp. tritici.
BMC plant biology.
2023 Nov; 23(1):554. doi:
10.1186/s12870-023-04569-1
. [PMID: 37940874] - Miaomiao Wang, Yao Wu, Wenduo Zhan, Hao Wang, Ming Chen, Tongxin Li, Tuanhui Bai, Jian Jiao, Chunhui Song, Shangwei Song, Jiancan Feng, Xianbo Zheng. The apple transcription factor MdZF-HD11 regulates fruit softening by promoting Mdβ-GAL18 expression.
Journal of experimental botany.
2023 Nov; ?(?):. doi:
10.1093/jxb/erad441
. [PMID: 37936320] - Agata Kućko, Juan de Dios Alché, Timothy John Tranbarger, Emilia Wilmowicz. Abscisic acid- and ethylene-induced abscission of yellow lupine flowers is mediated by jasmonates.
Journal of plant physiology.
2023 Nov; 290(?):154119. doi:
10.1016/j.jplph.2023.154119
. [PMID: 37879220] - Zheng Sun, Manman Wu, Siqi Wang, Shan Feng, Yan Wang, Teng Wang, Chunlin Zhu, Xinyu Jiang, Hongya Wang, Ruiming Wang, Xinyi Yuan, Menglu Wang, Linlin Zhong, Yunjiang Cheng, Manzhu Bao, Fan Zhang. An insertion of transposon in DcNAP inverted its function in the ethylene pathway to delay petal senescence in carnation (Dianthus caryophyllus L.).
Plant biotechnology journal.
2023 11; 21(11):2307-2321. doi:
10.1111/pbi.14132
. [PMID: 37626478] - Guadalupe L Fernández-Milmanda. Touch me not! Jasmonic acid and Ethylene converge on Gibberellins breakdown to regulate touch-induced morphogenesis.
Plant physiology.
2023 Oct; ?(?):. doi:
10.1093/plphys/kiad588
. [PMID: 37925742] - B Geldhof, O Novák, B Van de Poel. Leaf ontogeny gates epinasty through shifts in hormone dynamics during waterlogging of tomato.
Journal of experimental botany.
2023 Oct; ?(?):. doi:
10.1093/jxb/erad432
. [PMID: 37910663] - Yunqing Cheng, Yujie Li, Jing Yang, Hongli He, Xingzheng Zhang, Jianfeng Liu, Xiangdong Yang. Multiplex CRISPR-Cas9 knockout of EIL3, EIL4, and EIN2L advances soybean flowering time and pod set.
BMC plant biology.
2023 Oct; 23(1):519. doi:
10.1186/s12870-023-04543-x
. [PMID: 37884905] - Lei Wang, Canrong Ma, Shuanghua Wang, Fei Yang, Yan Sun, Jinxiang Tang, Ji Luo, Jianqiang Wu. Ethylene and jasmonate signaling converge on gibberellin catabolism during thigmomorphogenesis in Arabidopsis.
Plant physiology.
2023 Oct; ?(?):. doi:
10.1093/plphys/kiad556
. [PMID: 37847103] - Mizuki Murao, Rika Kato, Shuhei Kusano, Rina Hisamatsu, Hitoshi Endo, Yasuki Kawabata, Seisuke Kimura, Ayato Sato, Hitoshi Mori, Kenichiro Itami, Keiko U Torii, Shinya Hagihara, Naoyuki Uchida. A Small Compound, HYGIC, Promotes Hypocotyl Growth Through Ectopic Ethylene Response.
Plant & cell physiology.
2023 Oct; 64(10):1167-1177. doi:
10.1093/pcp/pcad083
. [PMID: 37498972] - Ling Li, Xiaolong Sun, Wencai Yu, Mingchun Gui, Yanfen Qiu, Min Tang, Hai Tian, Guoping Liang. Comparative transcriptome analysis of high- and low-embryogenic Hevea brasiliensis genotypes reveals involvement of phytohormones in somatic embryogenesis.
BMC plant biology.
2023 Oct; 23(1):489. doi:
10.1186/s12870-023-04432-3
. [PMID: 37828441] - Monia Guizani, Samira Maatallah, Samia Dabbou, Giuseppe Montevecchi, Andrea Antonelli, Maria Serrano, Hichem Hajlaoui, Soumaya Kilani-Jaziri. Ethylene production and antioxidant potential of five peach cultivars during maturation.
Journal of food science.
2023 Oct; ?(?):. doi:
10.1111/1750-3841.16774
. [PMID: 37812169] - Liuchun Feng, Qi Li, Dongqin Zhou, Mingyun Jia, Zhuangzhuang Liu, Zhaoqi Hou, Quanjin Ren, Shengdong Ji, Shifei Sang, Shipeng Lu, Jinping Yu. B. subtilis CNBG-PGPR-1 induces methionine to regulate ethylene pathway and ROS scavenging for improving salt tolerance of tomato.
The Plant journal : for cell and molecular biology.
2023 Oct; ?(?):. doi:
10.1111/tpj.16489
. [PMID: 37812678] - Hongxue Li, Shouwen Wang, Lulu Zhai, Yuhai Cui, Guiliang Tang, Junwei Huo, Xuyan Li, Shaomin Bian. The miR156/SPL12 module orchestrates fruit colour change through directly regulating ethylene production pathway in blueberry.
Plant biotechnology journal.
2023 Oct; ?(?):. doi:
10.1111/pbi.14193
. [PMID: 37797061] - Dali Rashid, Ravi Sureshbhai Devani, Natalia Yaneth Rodriguez-Granados, Fadi Abou-Choucha, Christelle Troadec, Halima Morin, Feng-Quan Tan, Fabien Marcel, Hsin-Ya Huang, Melissa Hanique, Siqi Zhang, Marion Verdenaud, Clement Pichot, Vincent Rittener, Ying Huang, Moussa Benhamed, Catherine Dogimont, Adnane Boualem, Abdelhafid Bendahmane. Ethylene produced in carpel primordia controls CmHB40 expression to inhibit stamen development.
Nature plants.
2023 10; 9(10):1675-1687. doi:
10.1038/s41477-023-01511-z
. [PMID: 37653338] - Ayla Mongès, Hajar Yaakoub, Baptiste Bidon, Gaëlle Glévarec, François Héricourt, Sabine Carpin, Lucie Chauderon, Lenka Drašarová, Lukáš Spíchal, Brad M Binder, Nicolas Papon, Soizic Rochange. Are Histidine Kinases of Arbuscular Mycorrhizal Fungi Involved in the Response to Ethylene and Cytokinins?.
Molecular plant-microbe interactions : MPMI.
2023 Oct; 36(10):656-665. doi:
10.1094/mpmi-05-23-0056-r
. [PMID: 37851914] - Changxi Chen, Yanxing Ma, Lanxin Zuo, Yue Xiao, Yunhe Jiang, Junping Gao. The CALCINEURIN B-LIKE 4/CBL-INTERACTING PROTEIN 3 module degrades repressor JAZ5 during rose petal senescence.
Plant physiology.
2023 09; 193(2):1605-1620. doi:
10.1093/plphys/kiad365
. [PMID: 37403193] - Linli Huang, Nuo Xu, Junyu Wu, Shuaiqi Yang, Lijun An, Zhongjing Zhou, Chui Eng Wong, Mingjie Wu, Hao Yu, Yinbo Gan. GLABROUS INFLORESCENCE STEMS3 binds to and activates RHD2 and RHD4 genes to promote root hair elongation in Arabidopsis.
The Plant journal : for cell and molecular biology.
2023 Sep; ?(?):. doi:
10.1111/tpj.16475
. [PMID: 37738394] - Yayao Zhang, Yihao Zang, Jinwen Chen, Shouli Feng, Zhiyuan Zhang, Yan Hu, Tianzhen Zhang. A truncated ETHYLENE INSENSITIVE3-like protein, GhLYI, regulates senescence in cotton.
Plant physiology.
2023 09; 193(2):1177-1196. doi:
10.1093/plphys/kiad395
. [PMID: 37430389] - Tuuli Virkkala, Sergey Kosourov, Ville Rissanen, Vilja Siitonen, Suvi Arola, Yagut Allahverdiyeva, Tekla Tammelin. Bioinspired mechanically stable all-polysaccharide based scaffold for photosynthetic production.
Journal of materials chemistry. B.
2023 09; 11(36):8788-8803. doi:
10.1039/d3tb00919j
. [PMID: 37668222] - Qinpei Li, Haiqi Fu, Xiang Yu, Xing Wen, Hongwei Guo, Yan Guo, Jingrui Li. The SOS2-CTR1 module coordinates plant growth and salt tolerance in Arabidopsis.
Journal of experimental botany.
2023 Sep; ?(?):. doi:
10.1093/jxb/erad368
. [PMID: 37721807] - Hua Cheng, Qingguo Wang, Zixin Zhang, Peilei Cheng, Aiping Song, Lijie Zhou, Likai Wang, Sumei Chen, Fadi Chen, Jiafu Jiang. The RAV transcription factor TEMPRANILLO1 involved in ethylene-mediated delay of chrysanthemum flowering.
The Plant journal : for cell and molecular biology.
2023 Sep; ?(?):. doi:
10.1111/tpj.16453
. [PMID: 37696505] - Kai Wang, Mingjuan Zhai, Dezhou Cui, Ran Han, Xiaolu Wang, Wenjing Xu, Guang Qi, Xiaoxue Zeng, Yamei Zhuang, Cheng Liu. Genome-Wide Analysis of the Amino Acid Permeases Gene Family in Wheat and TaAAP1 Enhanced Salt Tolerance by Accumulating Ethylene.
International journal of molecular sciences.
2023 Sep; 24(18):. doi:
10.3390/ijms241813800
. [PMID: 37762108] - Faroza Nazir, Badar Jahan, Noushina Iqbal, Ashish B Rajurkar, Manzer H Siddiqui, M Iqbal R Khan. Methyl jasmonate influences ethylene formation, defense systems, nutrient homeostasis and carbohydrate metabolism to alleviate arsenic-induced stress in rice (Oryza sativa).
Plant physiology and biochemistry : PPB.
2023 Sep; 202(?):107990. doi:
10.1016/j.plaphy.2023.107990
. [PMID: 37657298] - Jessica Iglesias-Moya, Ana Cristina Abreu, Sonsoles Alonso, María Trinidad Torres-García, Cecilia Martínez, Ignacio Fernández, Manuel Jamilena. Physiological and metabolomic responses of the ethylene insensitive squash mutant etr2b to drought.
Plant science : an international journal of experimental plant biology.
2023 Sep; 336(?):111853. doi:
10.1016/j.plantsci.2023.111853
. [PMID: 37659732] - Hong-Liang Li, Zhi-Ying Liu, Xiao-Na Wang, Yuepeng Han, Chun-Xiang You, Jian-Ping An. E3 ubiquitin ligases SINA4 and SINA11 regulate anthocyanin biosynthesis by targeting the IAA29-ARF5-1-ERF3 module in apple.
Plant, cell & environment.
2023 Sep; ?(?):. doi:
10.1111/pce.14709
. [PMID: 37658649] - Greice Leal Pereira, Vitor L Nascimento, Rebeca Patrícia Omena-Garcia, Beatriz Costa O Q Souza, José Francisco de Carvalho Gonçalves, Dimas Mendes Ribeiro, Adriano Nunes-Nesi, Wagner L Araújo. Physiological and metabolic changes in response to Boron levels are mediated by ethylene affecting tomato fruit yield.
Plant physiology and biochemistry : PPB.
2023 Sep; 202(?):107994. doi:
10.1016/j.plaphy.2023.107994
. [PMID: 37660605] - Wenli Hu, Shuang Hu, Shaozhuang Li, Qi Zhou, Zijing Xie, Xiaohua Hao, Sha Wu, Lianfu Tian, Dongping Li. AtSAMS regulates floral organ development by DNA methylation and ethylene signaling pathway.
Plant science : an international journal of experimental plant biology.
2023 Sep; 334(?):111767. doi:
10.1016/j.plantsci.2023.111767
. [PMID: 37302530] - Zunyang Song, Xiaoyang Zhu, Xiuhua Lai, Hangcong Chen, Lihua Wang, Yulin Yao, Weixin Chen, Xueping Li. MaBEL1 regulates banana fruit ripening by activating cell wall and starch degradation-related genes.
Journal of integrative plant biology.
2023 Sep; 65(9):2036-2055. doi:
10.1111/jipb.13506
. [PMID: 37177912] - Hilary J Rogers. How far can omics go in unveiling the mechanisms of floral senescence?.
Biochemical Society transactions.
2023 08; 51(4):1485-1493. doi:
10.1042/bst20221097
. [PMID: 37387359]